

1 **Variation in CO₂ and CH₄ Fluxes Among Land Cover Types in Heterogeneous Arctic Tundra**
2 **in Northeastern Siberia**

3

4 Sari Juutinen^{1,2}, Mika Aurela¹, Juha-Pekka Tuovinen¹, Viktor Ivakhov³, Maiju Linkosalmi¹, Aleksi
5 Räsänen^{4,5}, Tarmo Virtanen⁴, Juha Mikola^{4,6} Johanna Nyman¹, Emmi Vähä¹, Marina Loskutova⁷,
6 Alexander Makshtas⁷, and Tuomas Laurila¹

7

8 1) Finnish Meteorological Institute, Climate System Research, Erik Palménin aukio 1, 00560
9 Helsinki, Finland

10 2) Department of Geographical and Historical Studies, University of Eastern Finland,
11 Yliopistonkatu 2, FI-80100 Joensuu, Finland (P.O. Box 111, FI-80101 Joensuu, Finland)

12 3) Voeikov Main Geophysical Observatory, Ulitsa Karbysheva, 7, St Petersburg, 194021,
13 Russia

14 4) Ecosystems and Environment Research Programme, University of Helsinki, Viikinkaari 1,
15 00790 Helsinki, Finland

16 5) Natural Resources Institute Finland (Luke), Paavo Havaksen tie 3,
17 90570 Oulu, Finland

18 6) Natural Resources Institute Finland (Luke), Latokartanonkaari 9,
19 00790 Helsinki, Finland

20 7) Arctic and Antarctic Research Institute, Bering str., 38, St Petersburg, 199397, Russia

21

22
23 Corresponding author Sari Juutinen, sari.juutinen@uef.fi

24

25

26

27 **Abstract**

28 Arctic tundra is facing unprecedented warming, resulting in shifts in the vegetation, thaw regimes,
29 and potentially in the ecosystem-atmosphere exchange of carbon (C). However, the estimates of
30 regional carbon dioxide (CO₂) and methane (CH₄) budgets are highly uncertain. We measured CO₂
31 and CH₄ fluxes, vegetation composition and leaf area index (LAI), thaw depth, and soil wetness in
32 Tiksi (71° N, 128° E), a heterogeneous site located within the prostrate dwarf-shrub tundra zone in
33 northeastern Siberia. Using the closed chamber method, we determined net ecosystem exchange
34 (NEE) of CO₂, dark ecosystem respiration (ER), ecosystem gross photosynthesis (Pg), and CH₄
35 fluxes during the growing season. We applied a previously developed high-spatial-resolution land-
36 cover map over an area of 35.8 km² for spatial extrapolation. Among the land-cover types varying
37 from barren to dwarf-shrub tundra and tundra wetlands, the NEE and Pg at the photosynthetically
38 active photon flux density of 800 μmol m⁻² h⁻¹ (NEE₈₀₀ and Pg₈₀₀) were greatest in the graminoid-
39 dominated habitats, i.e., streamside meadow and fens, with NEE₈₀₀ and Pg₈₀₀ of up to -21 (uptake)
40 and 28 mmol m⁻² h⁻¹, respectively. Vascular LAI was a robust predictor of both NEE₈₀₀ and Pg₈₀₀
41 and, on a landscape scale, the fens were disproportionately important for the summertime CO₂
42 sequestration. Dry tundra, including the dwarf-shrub-dominated vegetation and barren, had smaller
43 CO₂ exchange rates. The fens were the dominant source of CH₄, while the dry mineral soil tundra
44 consumed atmospheric CH₄, which on a landscape scale amounted to -9 % of the total CH₄ balance.
45 The largest seasonal mean CH₄ consumption rate of 0.02 mmol m⁻² h⁻¹ occurred in sand- and stone-
46 covered barren. The high consumption rate agrees with the estimate based on the eddy covariance
47 measurements at the same site. We acknowledge the uncertainty involved in spatial extrapolations
48 due to a small number of replicates per land-cover type. This study highlights the need to
49 distinguish different land-cover types including the dry tundra habitats to account for their different
50 CO₂ and CH₄ flux patterns, especially the consumption of atmospheric CH₄, when estimating tundra
51 C exchange on a larger spatial scale.

52 **1 Introduction**

53 It is uncertain whether the Arctic tundra is a sink or a source of atmospheric carbon (C). The current
54 estimates suggest a sink of 13–110 Tg C yr⁻¹, but their uncertainty range crosses the zero balance
55 (McGuire et al. 2012, Virkkala et al. 2020). Improving these estimates is vital, because the Arctic
56 tundra covers a vast area of 7.6 million km² (Walker 2000) that is experiencing substantial warming
57 (IPCC 2013, Chen et al. 2021). Warming can alter C exchange, and either amplify or mitigate
58 climate change through ecosystem–atmosphere interactions. Some local-scale studies suggest that
59 the Arctic tundra is shifting from a small sink to a source of C (Webb et al. 2016, Euskirchen et al.
60 2017). It is likely that the climate change response of the ecosystem carbon dioxide (CO₂) sink
61 strength and methane (CH₄) emissions, whether an increase or a decrease, depends on site-specific
62 changes in thawing, wetness, temperature, and vegetation (McGuire et al. 2018). Dynamics of C
63 exchange need to be quantified across the Arctic habitats to improve the upscaling of arctic CO₂ and
64 CH₄ balances and to monitor how ecosystems respond to environmental changes.

65 The uncertainty in the arctic C balance estimates arises from the sparse and uneven
66 observation network, which provides poor support for model-based spatial extrapolation (*cf.*
67 McGuire et al. 2018, Virkkala et al. 2021, Kuhn et al. 2021). On a local scale, landscape
68 heterogeneity and the related difficulty of mapping the spatial distribution of habitats and their C
69 fluxes add to this uncertainty (McGuire et al. 2012, Treat et al. 2018, Saunois et al. 2020). In
70 addition, year-to-year variations in seasonal features, particularly the timing of spring, summer
71 temperatures, and snow depth have been found to cause substantial variation in the annual net CO₂
72 and CH₄ balances (Aurela et al. 2004, Humphreys and Lafleur 2011, Zhang et al. 2019). Fine-scale
73 spatial heterogeneity in soil water saturation, thaw depth, vegetation characteristics, and soil organic
74 content is typical of the tundra landscape (*e.g.*, Virtanen and Ek 2014, Mikola et al. 2018, Lara et al.
75 2020). These factors control CO₂ and CH₄ exchange, and on an annual scale, tundra wetlands
76 typically act as net CO₂ sinks while upland tundra areas have a close-to-neutral CO₂ balance (*e.g.*,

77 Marushchak et al. 2013, Virkkala et al. 2021). While tundra wetlands are substantial sources of
78 CH₄, dry tundra acts as a small sink or small source of atmospheric CH₄ (Bartlett and Harriss 1993,
79 Kuhn et al. 2021).

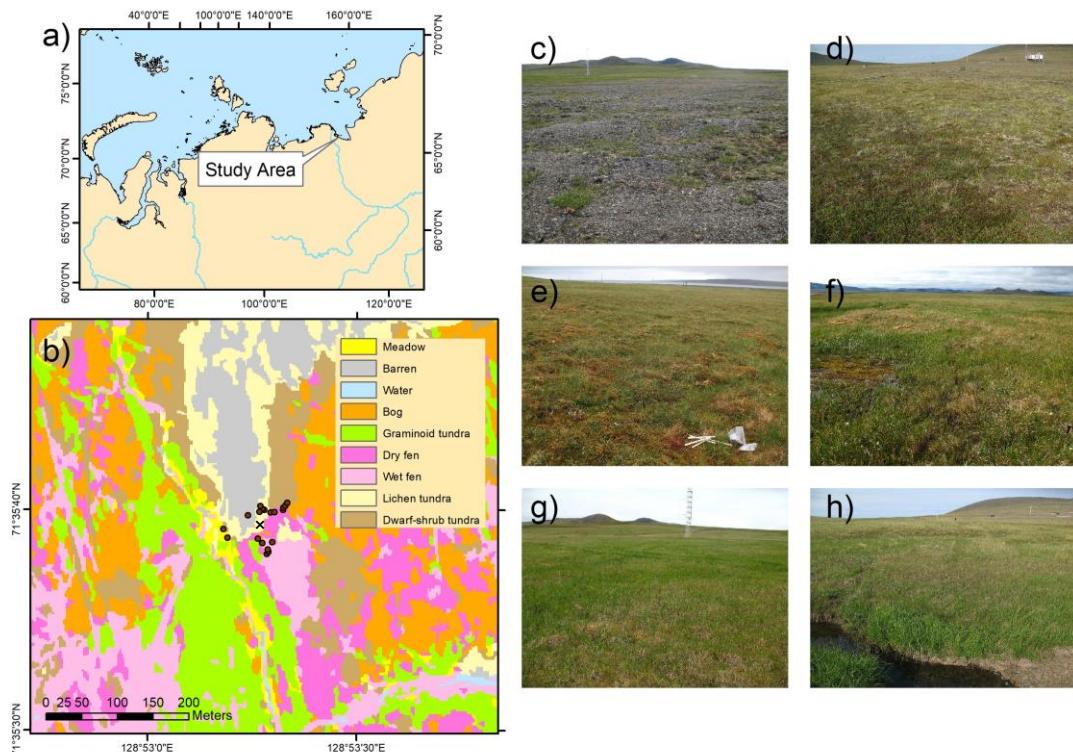
80 Mineral soil tundra barrens, however, have been found to have high consumption rates
81 of atmospheric CH₄ which is due to the high-affinity methane oxidizing bacteria (Emmerton et al.
82 2014, Jørgensen et al. 2014, D'Imperio et al. 2017, Oh et al. 2020). These bacteria can utilize
83 atmospheric CH₄ as energy source at low atmospheric concentrations, opposite to the low-affinity
84 methane oxidizers that require higher CH₄ concentrations and occur in wetlands (e.g., Oh et al.
85 2020). A modeling exercise that introduced the high-affinity methanotrophy for mineral-rich soils
86 resulted in a doubling of the circumpolar soil CH₄ sink above 50° N compared to previous estimates
87 (Oh et al. 2020) Thus, distinguishing dry and wet tundra with their moisture and vegetation
88 characteristics is crucial when mapping C exchange within the tundra biome. Treat et al. (2018)
89 tested spatial resolution requirements for such mapping on a landscape level and found that a 20-m
90 pixel size captured the spatial variation in a reasonable manner, while a coarser resolution resulted
91 in underestimation of both the landscape-scale CO₂ uptake and CH₄ emissions. In addition,
92 understanding the spatial heterogeneity of ecosystem C exchange substantially improves analyses of
93 eddy covariance (EC) measurements that, while in principle representing spatially integrated fluxes,
94 may provide biased gas flux balances in a highly heterogeneous source/sink environment, as the
95 spatial integration of EC involves non-uniform weighting of the surface elements that contribute to
96 the measured flux (Tuovinen et al. 2019).

97 The aim of this study was to assess the spatial patterns and magnitudes of CO₂ and
98 CH₄ fluxes within heterogenous prostrate dwarf-shrub tundra in Tiksi, located in northeastern
99 Russia. Growing season fluxes of CO₂ (ecosystem net exchange, photosynthesis, and respiration)
100 and CH₄ were determined using the chamber method to answer the questions: (i) what is the
101 magnitude of these fluxes in different land-cover types and (ii) how do they depend on vegetation

102 characteristics and soil wetness? In addition, we extrapolated the plot-level measurements in space
103 and compared them with the ecosystem-level data measured with the EC technique.

104

105 **2 Materials and Methods**


106 *2.1 Study site*

107 The study site is located near the Tiksi Observatory in Sakha (Yakutia) (see Uttal et al. 2016),
108 northeastern Russia (71.5943° N, 128.8878° E), 500 m inland off the Laptev Sea coast and, on
109 average, 7 m above sea level (Fig. 1a). The area belongs to the middle-arctic prostrate dwarf-shrub
110 tundra subzone (Walker, 2000) and has continuous permafrost. In the end of the growing season,
111 the maximum thaw depth is *ca.* 40 cm (Mikola et al. 2018). The climate in Tiksi is defined by cold
112 winters and cool summers. The long-term mean annual temperature and mean annual precipitation
113 were -12.7°C and 232 mm, respectively, during the climate normal period 1981–2010. Growing
114 season lasts about 3 months, and the soils typically freeze in the end of September and the
115 permanent snow falls in October and thaws in June (AARI 2018).

116 Bedrock is alkaline, resulting in high plant species richness. Vegetation consists of
117 mosses, lichens, grasses, sedges, prostrate dwarf-shrubs such as willows (*Salix* spp.), dwarf birch
118 (*Betula nana*), and *Diapensia lapponica*, and forb species (Table 1). The average heights of dwarf-
119 shrub species are 4–6 cm and the leaf area index (LAI) of vascular plants reaches up to $1\text{ m}^2\text{ m}^{-2}$ in
120 the fen and meadow habitats with graminoid vegetation (Juutinen et al. 2017). The land cover at the
121 site has been classified *a priori* and mapped based on a combination of field inventories and high-
122 spatial resolution satellite images (Mikola et al. 2018). The *a priori* land-cover types (LCTs) consist
123 of wet fen, dry fen, graminoid tundra, bog, meadow at the stream bank, dwarf-shrub tundra, and
124 lichen tundra that consists of barren ground with rocks and sand and patches of vegetation (Table 1,
125 Fig. 1 c–h, for a closer view see Fig. A1). Organic layer depth is negligible in lichen tundra and a
126 few centimeters in dwarf-shrub tundra, meadow, and graminoid tundra. In bog, dry fen, and wet

127 fen, the organic layer depth is at least the maximum depth of the active layer, *ca.* 30–40 cm. Soil
128 organic content reach *ca.* 40 % in tundra wetlands (Mikola et al. 2018). A section of the wet and dry
129 fen within the EC footprint area is disturbed by vehicle tracks that create open water surfaces, and
130 there is also an area of eroded bare-peat surface on a dry fen.

131

132

133 **Fig. 1.** a) Location of the study area in Tiksi, Yakutia, Russia, b) Land-cover map with the chamber
134 flux measurement points (dots) and the EC mast (x), and photos of the land-cover types: c) lichen
135 tundra with barren ground and patches of vegetation, d) dwarf-shrub tundra, e) bog, f) wet and dry
136 fen, g) graminoid tundra, and h) meadow by the stream. See Tuovinen et al. (2019) for the EC
137 footprint climatology.

138

139

140

141

142

143

144 **Table 1.** Soil and vegetation characteristics of the land cover types (LCT) and their proportions in
 145 the EC impact area (90 % of the cumulative footprint).

LCT	Soil properties and plant taxa	Proportion (%) ²
Lichen tundra ¹	Mixture of vegetated patches, stones, and bare ground. <i>Lichens</i> , e.g. genera <i>Thamnolia</i> , <i>Flavocetraria</i> , <i>Alectoria</i> , <i>Stereocaulon</i> , dwarf shrubs <i>Dryas octopetala</i> , <i>Vaccinium vitis-ideae</i> , <i>Salix polaris</i> , <i>Diapensia lapponica</i> , and forbs <i>Oxytropis</i> spp., <i>Astragalus</i> spp., <i>Pedicularis</i> spp., <i>Artemisia</i> spp., <i>Minuartia</i> sp.,	8 barren, 11 sparse vegetation
Dwarf-shrub tundra	Shallow organic layer on mineral soil ground Feather mosses, lichens, <i>Salix polaris</i> , <i>Vaccinium vitis-ideae</i> , <i>Vaccinium uliginosum</i> , <i>Dryas octopetala</i> , <i>Cassiope tetragona</i> , <i>Betula nana</i> , <i>Polygonum viviparum</i> , <i>Pedicularis</i> spp., <i>Carex</i> spp.	18
Meadow	Shallow organic layer on mineral soil ground <i>Calamagrostis</i> sp., <i>Festuca</i> sp., <i>Salix</i> spp. <i>Polygonum viviparum</i> , <i>Bistorta major</i> , <i>Polemonium</i> sp., <i>Valeriana</i> sp.	1.4
Graminoid tundra	Shallow peat layer on mineral soil ground Feather mosses, <i>Sphagnum</i> spp., <i>Carex</i> spp., <i>Eriophorum</i> spp., <i>Calamagrostis</i> spp., <i>Salix</i> spp., <i>B. nana</i> , <i>Saxifraga</i> spp., <i>Ranunculus</i> spp., <i>Bistorta major</i> , <i>Stellaria</i> sp., <i>Valeriana</i> sp., <i>Polemonium</i> sp., <i>Comarum palustre</i>	13
Bog	Dry hummock habitat at the tundra peatland <i>Sphagnum</i> spp., feather mosses, <i>Salix</i> spp., <i>Vaccinium uliginosum</i> , <i>Vaccinium vitis-ideae</i> , <i>Betula nana</i> , <i>Rhododendron tomentosum</i> , <i>Cassiope tetragona</i> , <i>Carex</i> spp., <i>Polygonum viviparum</i> , <i>Stellaria</i> sp.	23
Dry fen	Intermediate wet tundra peatland habitat <i>Sphagnum</i> spp., <i>Carex</i> spp., <i>Salix</i> spp., <i>Saxifraga</i> spp., <i>Comarum palustre</i> , <i>Epilobium</i> spp., <i>Ranunculus</i> spp., <i>Pedicularis</i> spp., <i>Stellaria</i> sp.	10
Wet fen	Wet tundra peatland habitat with open pools <i>Brown mosses</i> , <i>Carex</i> spp., <i>Eriophorum</i> spp., <i>Ranunculus</i> sp., <i>Caltha palustris</i> , <i>Pedicularis</i> sp., <i>Saxifraga</i> sp.	15

146 ¹⁾ Combined land-cover types bare and lichen tundra in Juutinen et al. (2017), Mikola et al. (2018),
 147 Tuovinen et al. (2019), ²⁾ Proportion within the 90% coverage of the mean EC footprint area during
 148 the growing season of 2014 (Tuovinen et al. 2019).

151 2.2 CO_2 and CH_4 flux measurements

152 Fluxes of CO_2 and CH_4 were measured using static chambers equipped with a fan and set on pre-
 153 installed collars of 50 cm \times 50 cm. The measurement points (collars) were set to cover the
 154 heterogeneity in land cover, and in each study year, there were 1–4 measurement points per each
 155 LCT (Table 2). Most of the data were collected during a study campaign in July 15 – August 16,
 156 2014 (12 collars). The growing season had started earlier due to a warm period and daily mean air
 157 temperature stayed over 5 °C since July 5 (Fig. 2 and Tuovinen et al. 2019). Net ecosystem
 158 exchange of CO_2 (NEE) and ecosystem respiration of CO_2 in dark (ER) were measured using
 159 transparent and opaque chambers (transparent chamber covered with a hood), respectively, allowing
 160 the partitioning of ecosystem gross photosynthesis (Pg) and ER. Fluxes of CH_4 were determined
 161 from closures of both transparent and opaque chambers, but because there was no difference
 162 between them when performed consecutively, the data from opaque chamber measurements were
 163 used for flux calculations. In addition, CH_4 fluxes were measured during shorter campaigns in 2012,
 164 2013, 2016, and 2019 (Table 2). These data also included vehicle track disturbance plots and an
 165 eroded bare-peat surface, which were measured in 2019.

166 **Table 2.** Measurement periods, measured fluxes (CH_4 , ER, NEE), and number of measurement
 167 points and observations (points, observations) in each land cover type (LCT) across the study years.

	2012	2013	2014	2016	2019
LCT	Jul 18–21	Jul 5–Sep 3	Jul 15–Aug 16	May 30, Aug 4–5, Sep 13–14	Aug 28–Sep 1
	CH_4	CH_4	ER, NEE, CH_4	CH_4	CH_4
Wet fen	4, 4	6, 22	3, 107	3, 27	5, 72
Vehicle track					2, 30
Dry fen	2, 2	4, 11	3, 107	3, 14	2, 26
Bare peat					1, 15
Bog	2, 2	3, 7	1, 36		1, 13
Meadow	1, 1	2, 6	2, 62		
Dwarf-shrub tundra	1, 1		1, 36	1, 1	
Lichen tundra		1, 3	2, 67	2, 18	2, 29
Snow and ice ¹				2, 2	

¹Measured only on May 30, 2016.

168 In 2012 and 2013, four air samples were taken from the chambers using syringes. The
169 samples were stored in glass vials prior to the analysis. First, a vial was flushed with the sample and
170 then filled to over-pressure. The samples were analyzed for CH₄ concentration using a TSVET 500-
171 M gas chromatograph (Chromatek, Russia) with a flame ionization detector at the laboratory of the
172 Voeikov Main Geophysical Observatory within a month from sampling. Each measurement was
173 accompanied by calibration using standard gas mixtures with the NOAA2004 scale. The vials were
174 tested prior to the field sampling using a standard gas: after two weeks, the vials were still over-
175 pressurized and sample CH₄ concentrations were within ± 3 ppb of the initial standard gas
176 concentration. Since July 2014, CH₄ and CO₂ concentrations inside the chambers were recorded
177 every second during closures of about 5 min using a gas analyzer (DLT-100, Los Gatos Research,
178 Inc., San Jose, CA, USA) (see Fig. A2 for examples). Gas fluxes between the ecosystem and the
179 atmosphere were calculated from the phase of linear concentration change in the chamber head
180 space over time and accounting for temperature, volume, and atmospheric pressure. Concentration
181 change during each chamber closure was evaluated visually for determining the closure start time
182 and to remove cases showing nonlinearity due to leaks, ebullition, or saturation. The first data
183 points were generally neglected when determining the slope of concentration change over time, and
184 the cases with a linear concentration change had a coefficient of determination (R^2) > 0.9 . For near
185 zero flux cases smaller R^2 values were accepted to not ignore those cases. There were a few
186 ebullition cases at the vehicle track measurement points that had only sparse or no vegetation cover,
187 and those measurements were included in the final data. When determining NEE fluxes measured
188 using the transparent chamber, the data were screened for variation in photosynthetically active
189 photon flux density (PPFD), measured during the chamber closure, and rejected if the PPFD
190 variation exceeded 100 $\mu\text{mol m}^{-2} \text{s}^{-1}$ during the measurement.

191 The fluxes of CO₂ and CH₄ were also measured by the micrometeorological EC
192 method, which provides continuous data of the atmosphere-biosphere fluxes averaged on an

193 ecosystem scale. The EC system consisted of a three-dimensional sonic anemometer (USA-1,
194 METEK GmbH, Elmshorn, Germany), a closed-path CH₄ analyzer (RMT-200, Los Gatos Research,
195 Inc., San Jose, CA, USA), and a closed-path CO₂/H₂O analyzer (LI-7000, LI-COR, Inc., Lincoln,
196 NE, USA). The fluxes were calculated as 30-min averages and processed using standard methods
197 (Aubinet et al. 2012). The EC measurement system and the post-processing procedures have been
198 presented in more detail by Tuovinen et al. (2019).

199 Supporting meteorological measurements including air temperature (T_{air}) (HMP,
200 Vaisala), soil temperature (T_{soil}) (IKES, Nokeval), PPFD (PQS1, Kipp & Zonen), and water table
201 level relative to the ground surface (WT) (8438.66.2646, Trafag) were collected by a Vaisala QML
202 datalogger as 30-min averages. We also present meteorological data for the period 2011–2019 to
203 relate the conditions during the measurement campaign in July 15 - August 16, 2014, and the CH₄
204 flux campaigns in 2012, 2013, 2014, 2016, and 2019, to longer-term variations.

205

206 2.3 Vegetation and Topographic Wetness Index

207 On a site level, vegetation and soil characteristics were inventoried in plots assigned into a
208 systematic grid outside the area covered by the gas flux measurement points in 2014 (see Juutinen
209 et al. 2017; Mikola et al. 2018). The projection cover (%) of plant species and species groups, and
210 the mean canopy height of each species group were recorded. Seven species groups were included
211 in the inventory: *Sphagnum* mosses, feather mosses, brown mosses, dwarf shrubs, *Betula nana*,
212 *Salix* species, forbs, and graminoids. A subset of the plots was harvested, and vascular plant leaves
213 were scanned to determine the one-sided LAI to find an empirical relationships between LAI and
214 %-cover and canopy height to estimate the LAI in the collars (see Juutinen et al. 2017). In the
215 collars, the projection cover and canopy height of each species group were recorded weekly during
216 the gas flux measurement campaign in July 15–August 16, 2014. Because there were no
217 observational vegetation data for the other years than 2014, the green chromatic coordinate (GCC)

218 was used as a proxy for the amount of green above-ground vascular plants (e.g. Richardson 2019).
219 GCC was calculated from the digital numbers of red (R), green (G), and blue (B) color channels as
220 the proportion of green in the RGB images, $GCC = G/(R+G+B)$, of the vegetation inside the collars.
221 The photographs were taken at the time of measurements. We determined an empirical relationship
222 between LAI and GCC by using a data set of harvested plots with digital photographs and measured
223 LAI data (n=91). For the LAI estimation, we used a linear relationship ($R^2 = 0.46$, $p < 0.001$)
224 between LAI and GCC determined using the entire data set (see Fig. A3 for the data and equation).

225 To quantify the potential soil wetness at each measurement point, we calculated the
226 mean topographic wetness index (TWI) value based on a 2 m spatial resolution digital elevation
227 model (Mikola et al. 2018). To characterize differences between growing seasons as manifested by
228 vegetation greenness, the MODIS Normalized Difference Vegetation Index (NDVI) with 16-day
229 temporal and 500 m spatial resolution was calculated for a circular area with a 300 m radius from
230 the flux tower using Google Earth Engine (Gorelick et al. 2017). NDVI was derived for 2011–2019
231 to place the measurement years in the context of year-to-year variation in weather.

232

233 2.4 Data analyses

234 When examining the role of the LCTs in CO_2 and CH_4 exchange, we applied the land cover
235 classification presented in Mikola et al. (2018). The data collected in July 15 – August 16, 2014
236 were used for examining gas exchange in relation to the variation in LAI, GCC, WT, and TWI
237 among the collars. The light-normalized Pg and NEE at $PPFD = 800 \mu\text{mol m}^{-2} \text{s}^{-1}$ (Pg_{800} and
238 NEE_{800} , respectively), were estimated by fitting a hyperbolic response function of CO_2 vs PPFD
239 utilizing the ER and NEE flux data:

240

241 $NEE = ER - Pg_{max} \times PPFD / (\beta + PPFD)$, (1)

242

243 where Pg_{max} is the asymptotic maximum of photosynthesis, and β is the half-saturation PPFD.
244 Fluxes of CH₄ are expressed as temporally averaged per each collar. We used a sign convention
245 where a positive value means net release to the atmosphere and a negative value denotes net uptake
246 by the ecosystem. Fluxes of CH₄ measured over all study years, 2012–2019, were averaged for each
247 LCT.

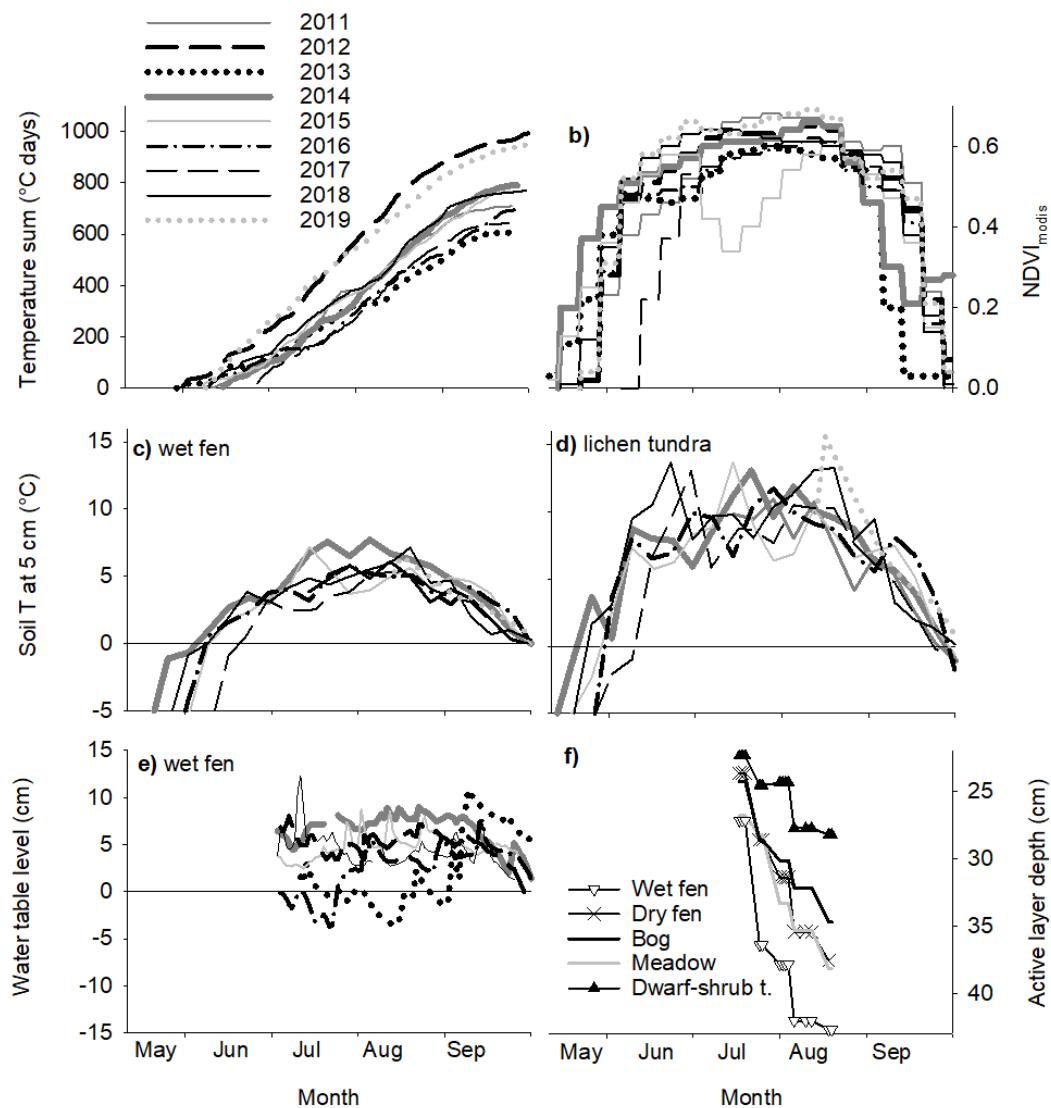
248 Regression analyses were used to test the relationships between gas flux estimates and
249 vascular LAI, GCC, WT, and TWI. All CH₄ flux data from the years 2012–14, 2016, and 2019 were
250 used to quantify the mean growing season CH₄ flux for each LCT and examine the relationship
251 between CH₄ and GCC and TWI. To find the main factors and gradients in the plant community,
252 gas flux, and environmental variables data measured in the flux collars in 2014, we performed a
253 detrended correspondence analysis (DCA) of the species group data with post-hoc fit of
254 environmental variables, including gas fluxes, WT, LAI, GCC, elevation, and thaw depth as
255 supplementary variables. The DCA was performed on logarithmically transformed, centered species
256 data (species or species groups) using Canoco 5 (Ter Braak and Šmilauer 2012).

257 We compared the LCT-specific flux estimates based on the chamber measurements
258 with the estimates based on EC measurements over the same period. Partitioning of the EC-based
259 CO₂ fluxes to Pg and ER and estimates of Pg₈₀₀ and NEE₈₀₀ were calculated similarly to that of
260 chamber data using Eq. (1). The EC flux data were classified into five wind sectors (30–125°, 125–
261 185°, 185–239°, 239–310°, 310–360°) based on the mean EC flux footprint, modeled for the
262 growing of 2014 by Tuovinen et al. (2019). The sectors distinguished areas dominated by different
263 LCTs, especially tundra heaths and wetlands, and similarly those with a large and small vascular
264 LAI. For each sector, the footprint-weighted areal proportions of LCTs and mean vascular LAI
265 were derived from the high spatial resolution LCT and LAI maps (Mikola et al. 2018). For this
266 comparison, sector averages of Pg₈₀₀, ER, NEE₈₀₀, and CH₄ flux were calculated from the chamber
267 data by weighting the LCT-specific flux estimates with the above-mentioned LCT proportions in

268 each sector. Because there were no chamber measurement points within graminoid tundra, we
269 applied wet fen (for CO_2) and dry fen (for CH_4) flux estimates for the graminoid tundra based on
270 the observed similarities in LAI and soil wetness, respectively. Overall, graminoid tundra can be
271 considered part of the fen continuum in terms of soil characteristics (high organic content) and CH_4
272 exchange (Mikola et al. 2018, Tuovinen et al. 2019).

273 Finally, to synthesize the CO_2 and CH_4 exchange variability across the tundra, we
274 upscaled the LCT-specific average NEE_{800} , Pg_{800} , ER, and CH_4 flux (2014 data) to the 35.8 km² area
275 surrounding our study site, for which a LCT map was produced by Mikola et al. (2018).

276


277 3 Results

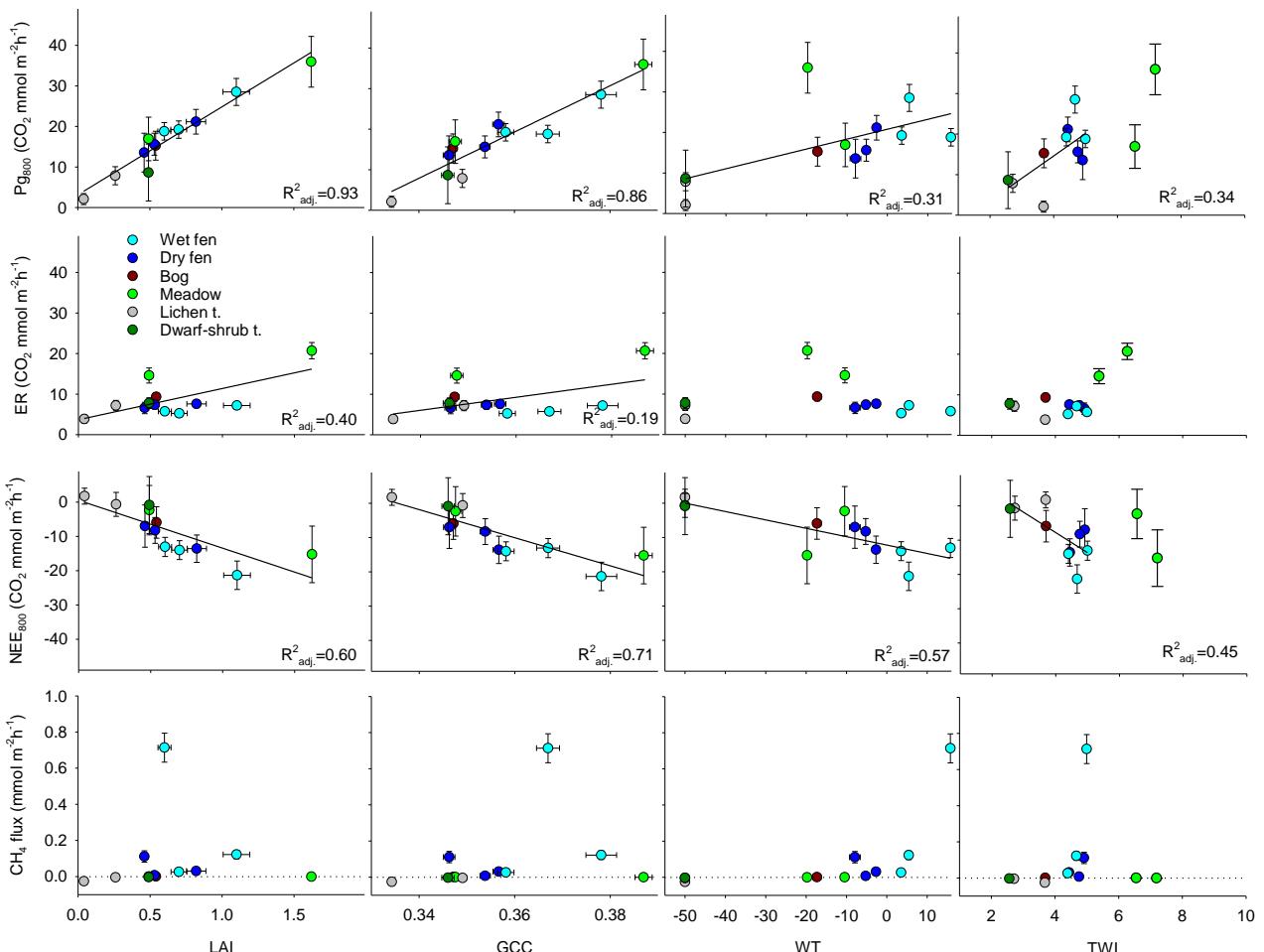
278 3.1 Environmental conditions

279 In 2014, when we collected most of the flux data, temperature sum accumulation (with a 0 °C T_{air}
280 threshold) was near-average during the thaw period (the period when soil surface temperature was
281 continuously above 0 °C), but the spring and mid-growing season were warmer than on average
282 (Fig. 2a). The average air temperature was 15 °C during the gas flux measurements. Accordingly,
283 the MODIS NDVI showed an early start of greening (Fig. 2b), and vegetation development had
284 already started at the beginning of the measurement period. In 2011–2019, which included the other
285 CH_4 measurement years, the thaw period lasted for 74–124 days, creating a temperature sum range
286 of 642–1003 °C days (Fig. 2a). Surface soils thawed between May 28 and July 9 and froze again
287 between September 21 and October 1. Among the observation years, the years 2012 and 2019 had
288 notably longer and warmer thaw periods than the other years. The driest habitat, lichen tundra, with
289 least snow accumulation, thawed 10–15 days earlier than the other habitats, and had a ca. 3 °C
290 higher soil temperature than the wet fen at the depth of 5 cm (Fig. 2c–d). Water table level,
291 measured at a wet fen location, showed only subtle interannual variation (Fig. 2e). In 2014, the
292 active layer depth, measured over the measurement period close to the collars, was deepest in the

293 end of August, reaching *ca.* 40 cm in wet fen, and remained < 30 cm in the dry dwarf-shrub tundra
 294 (Fig. 2f). Lichen tundra had rocks underneath the loose surface layer, which made it impossible to
 295 measure the actual thaw depth.

296

297


298 **Fig. 2.** **(a)** Air temperature accumulation with the threshold surface T_{soil} and T_{air} of 0 $^{\circ}\text{C}$, **b)**
 299 seasonal dynamics of NDVI in the study area, 16 d MODIS data, **c)** weekly means of soil
 300 temperature at depth of 5 cm in wet fen and **d)** in lichen tundra, **e)** water-table level relative to the
 301 ground surface in wet fen, and **f)** LCT means of thaw depth in the measurement collars in 2014.
 302 Rocks in the ground prevented detecting the thaw depth of lichen tundra.

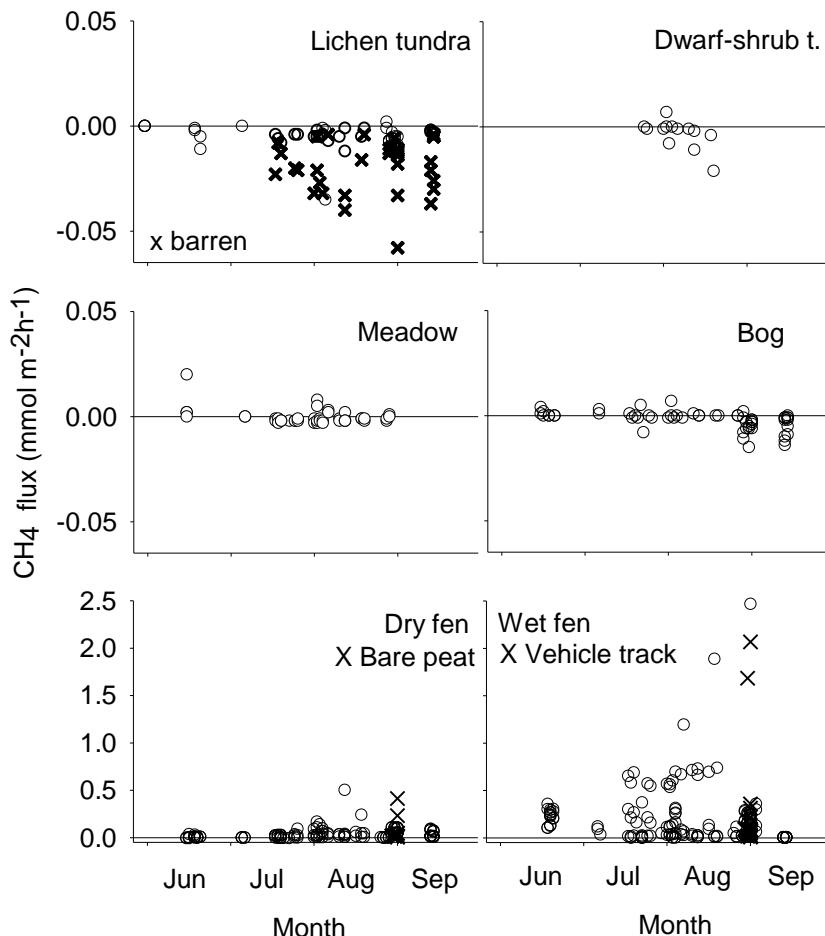
303 3.2 Exchange of CO_2 and CH_4

304 Among different LCTs, Pg_{800} varied from about 5 $\text{mmol m}^{-2} \text{h}^{-1}$ in the lichen tundra to 22 and 27
 305 $\text{mmol m}^{-2} \text{h}^{-1}$ in the wet fen and meadow, respectively. Pg_{800} was strongly and positively correlated

306 with the vascular plant LAI and the greenness index GCC (Fig. 3). There was also a positive
307 correlation between Pg₈₀₀ and both WT and TWI, possibly because the highest LAI occurred at the
308 wet fen and meadow plots. However, the TWI values for the two meadow plots located on an
309 elevated bank of the stream were disproportionately high in relation to the WT at the plots, probably
310 because of insufficient locational accuracy or an artefact in the digital elevation model. Ecosystem
311 respiration was highest in the two meadow plots, on average 18 mmol m⁻² h⁻¹. The relationship
312 between ER and LAI was weaker than between Pg₈₀₀ and LAI (Fig. 3). NEE₈₀₀ varied from about
313 zero in the lichen tundra plots to a net CO₂ uptake of 16 mmol m⁻² h⁻¹ in the meadow and wet fen
314 plots. NEE₈₀₀ was more tightly linked to Pg₈₀₀ than to ER and was correlated with LAI, GCC, WT,
315 and TWI (Fig. 3).

316 There was substantial consumption of the atmospheric CH₄ in the barren tundra (mean
317 -0.018 ± standard error 0.002 mmol m⁻² h⁻¹) and in vegetated lichen tundra (-0.006 ± 0.002 mmol m⁻
318 ² h⁻¹) (Figs. 4 and 5). Minor consumption occurred in the bog, meadow, and dwarf-shrub tundra
319 plots (mean -0.001 ± standard error 0.0008 mmol m⁻² h⁻¹), while efflux to the atmosphere was
320 observed in the dry fen and wet fen plots (means 0.05 and 0.16 mmol m⁻² h⁻¹, respectively; Figs. 4
321 and 5). The eroded bare-peat plot within the dry fen habitat and the vehicle-track plots in wet fen
322 had equally high emissions as the fens (up to 0.2 mmol m⁻² h⁻¹). Variation among the plot means of
323 CH₄ flux (Fig. 3 for 2014, Fig. 5 for all years) was related to WT, and CH₄ emissions occurred
324 when TWI was > 4. The two meadow plots that showed net consumption of CH₄ had an
325 unrealistically high TWI relative to their WT (see above and Figs. 3 and 5). Variation in CH₄ fluxes
326 was incoherently related to variation in LAI and GCC because of the high emission cases in plots
327 with little vegetation, including the wettest wet fen plot, vehicle-track, and bare-peat plots (Fig. 5).

328

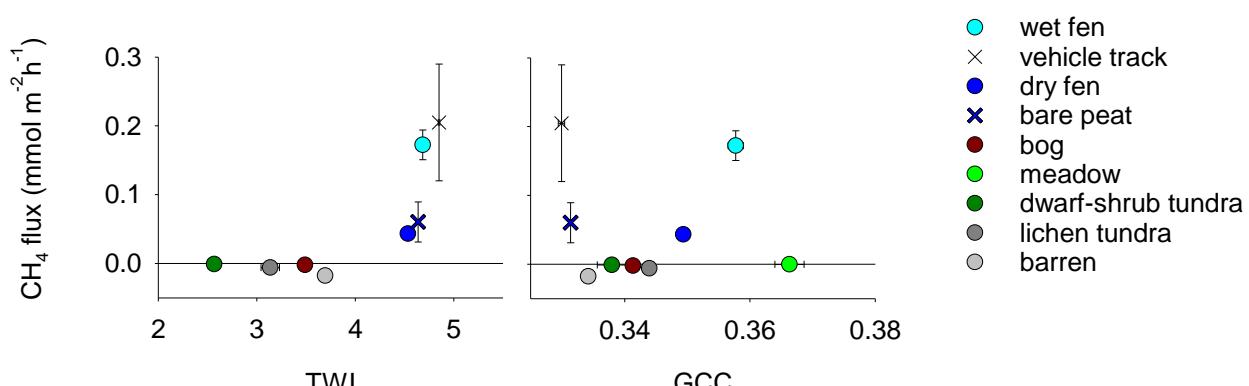

329

330 **Fig. 3.** Variation in estimates of Pg₈₀₀, ER, NEE₈₀₀ (Eq. 1) and collar means of CH₄ fluxes in
 331 relation to variation in collar means of LAI, GCC, WT, and TWI in July 6–August 16, 2014. Error
 332 bars denote the standard error of estimate. Fitted regression lines and adjusted coefficients of
 333 determination ($R^2_{adj.}$) are included for the significant linear relationships. The two meadow plots
 334 were not included in the TWI regressions.

335

336

337

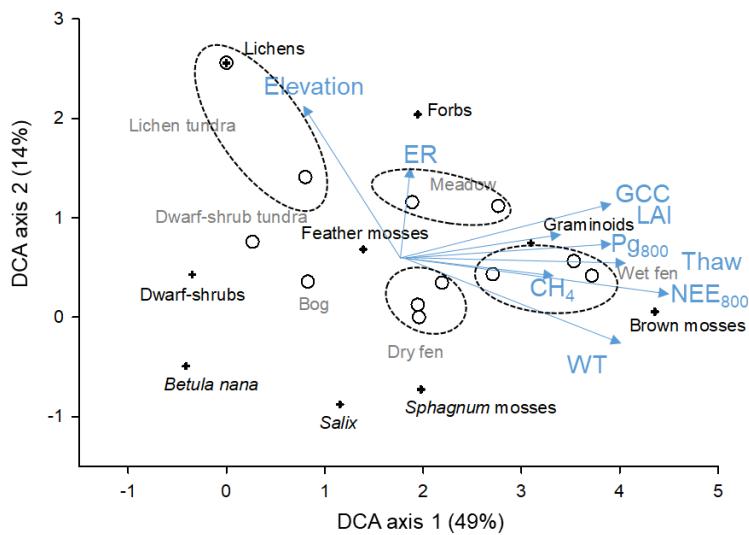


338

339 **Fig. 4.** Instantaneous CH_4 fluxes in each LCT. The data are a composite of all study years.
 340 Barren surfaces are indicated among the lichen tundra data. The eroded bare-peat and vehicle-track plots
 341 (×) are plotted as part of the dry fen and wet fen data, respectively. Note that the panel groups have
 342 different y-axis scales.

343

344



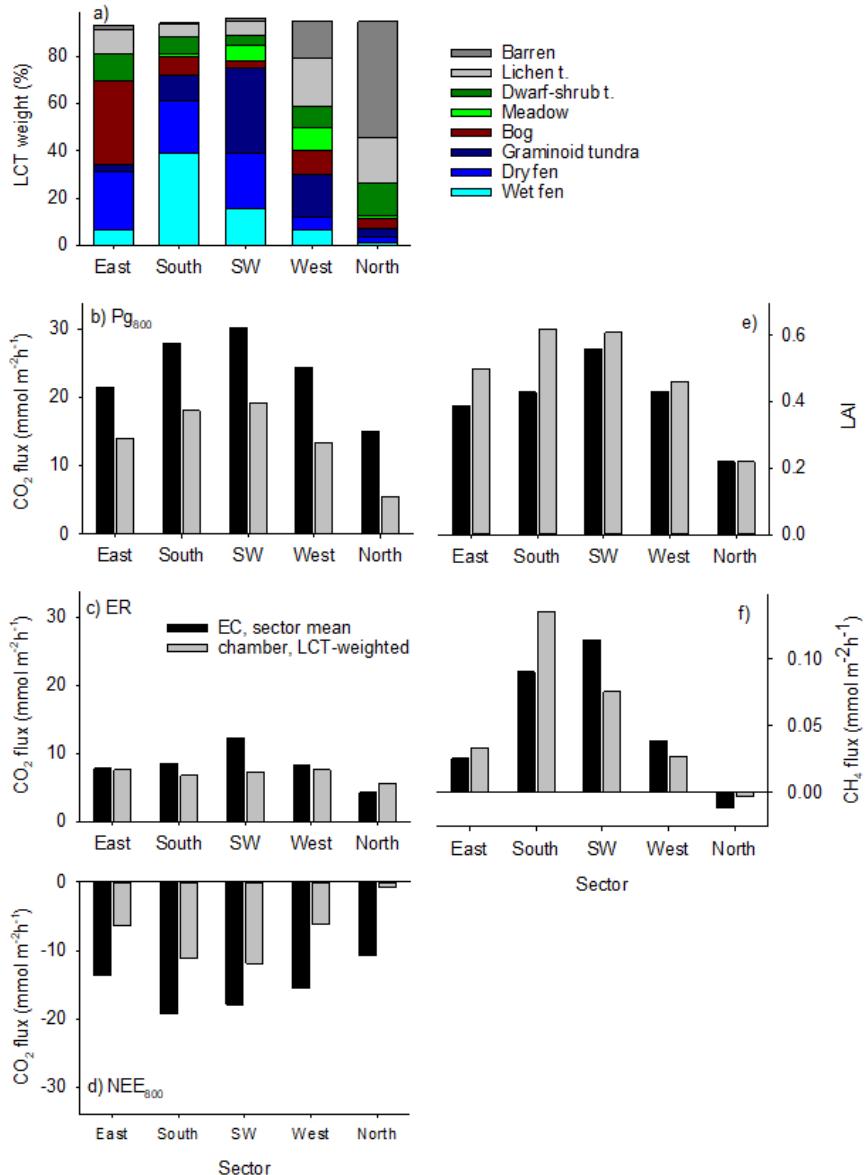
345

346 **Fig. 5.** LCT mean ($\pm \text{SE}$) CH_4 fluxes in relation to LCT mean ($\pm \text{SE}$) TWI (excluding the meadow)
 347 and GCC. Data from years 2012–2019.

348

349 The DCA ordination of species groups with a post-hoc fit of environmental variables
 350 (elevation, WT, thaw depth, LAI, GCC, and CO₂ and CH₄ exchange) showed that species
 351 distributed along a moisture gradient. Axis 1 explained 49 % of the variation in the species data and
 352 distinguished the wet and dry LCTs from wet fen to lichen tundra (Fig. 6). Graminoids and brown
 353 mosses occurred in the wet end of the gradient, while dwarf-shrubs, *Betula nana*, and lichens
 354 occurred in the dry end of it. The barren plot (the other lichen tundra plot) with its negligible
 355 vegetation differed most from the other plots. Axis 2 explained additional 14 % of the variation in
 356 the species data (Fig. 6). The supplementary variables WT, vascular plant LAI, thaw depth, GCC,
 357 Pg₈₀₀, NEE₈₀₀, and CH₄ fluxes correlated positively with Axis 1 having post-hoc correlations (r) of
 358 0.6–0.9, as derived from the DCA-weighted correlation matrix. In turn, plot's elevation and ER had
 359 positive correlations with Axis 2 (r = 0.8 and 0.4, respectively).

360
 361 **Fig. 6.** DCA ordination diagram based on species (species groups) data from the measurement
 362 collars in 2014. The explained variation in the species data is indicated for the axes. In the plot, the
 363 scores of species groups (cross), sample plots (open symbols), and post-hoc fits of the
 364 supplementary variables (arrows, blue type) mean CH₄, Pg₈₀₀, ER, NEE₈₀₀, thaw depth (Thaw),
 365 water table relative to the ground surface (WT), green chromatic coordinate (GCC), vascular plant
 366 LAI, and elevation above sea level (Elevation). Land-cover types of the sample plots are indicated
 367 (grey type) and plots assigned to the same LCTs are circled.


368

369 In both the southern and south-western wind sectors (125–185° and 185–239°),
370 vegetation mainly consisted of graminoids, as the LCTs dry fen, wet fen, graminoid tundra, and
371 meadow comprised 80 % of the total EC footprint-weighted area (Fig. 7a). The northern sector
372 (310–360°) was characterized by lichen tundra and bare ground that accounted for 68 % of the
373 footprint-weighted LCT areas, while all the other LCTs covered less than 18 % in total. The other
374 wind direction sectors had more even LCT distributions. The differences between the sectors were
375 similar in the EC-based and spatially weighted chamber-based averages of CO₂ exchange (Fig. 7b–
376 d). Both Pg₈₀₀ and NEE₈₀₀ were largest in the southern and south-western sectors and clearly
377 smallest in the barren–lichen tundra-dominated sector in the north. The chamber-based estimates of
378 CO₂ exchange were, however, lower: on average, Pg₈₀₀ was 57 %, ER 93 %, and NEE₈₀₀ 44 % of
379 the mean EC-based fluxes among the wind direction sectors.

380 The southern and south-western wind sectors with abundant dry and wet fens and
381 graminoid tundra had clearly the largest CH₄ fluxes (Fig. 7f). The estimate based on chamber
382 measurements was 30 % and 50 % larger than the mean EC-based flux in the east sector (dominated
383 by dry fen and bog) and south sector (dominated by dry and wet fen), respectively. In contrast, the
384 chamber-based estimate was smaller than the EC flux for the other sectors, which were dominated
385 by graminoid tundra, lichen tundra, and barren ground. Both the EC- and chamber-based
386 measurements showed consumption of atmospheric CH₄ in the northernmost sector, of which
387 barren ground and lichen tundra covered 50 % and 20 %, respectively. The mean EC flux was three
388 times the chamber-based estimate.

389 Within the extended study area of 35.8 km², the LCT-weighted mean NEE₈₀₀ was -4.6
390 mmol m⁻² h⁻¹ (uptake relative to the atmosphere). The corresponding mean Pg₈₀₀ was 11 mmol m⁻²
391 h⁻¹, and CH₄ flux 0.05 mmol m⁻² h⁻¹ (Table 3). Relative to their spatial cover (28 % in total), wet and
392 dry fens were disproportionately important for the landscape-level Pg₈₀₀, NEE₈₀₀, and CH₄ emissions,
393 because the fens contributed 47 % of total Pg₈₀₀ and 74 % of NEE₈₀₀, and were the dominant source

394 of CH₄ emission (Table 3). Consumption of CH₄ by barren and lichen tundra, dwarf-shrub tundra,
 395 and meadow tundra soils contributed -9 % of the CH₄ balance, and the barren ground dominated the
 396 sink.

397

398 **Fig. 7.** Footprint-weighted mean contribution of each LCT to the EC measurements divided into
 399 wind direction sectors (a), and comparison of EC and chamber-based sector means of CO₂
 400 exchange (Pg₈₀₀, ER, and NEE₈₀₀) (b-d) vascular plant LAI (e), and CH₄ fluxes (f). The chamber-
 401 based data are weighted by the LCT proportions shown in panel a. All data were measured in 2014.
 402 Map of LAI (Tuovinen et al., 2019) and the LAI measured in the collars were used to estimate the
 403 EC- and chamber-related sector means, respectively, in panel e.

404

405

406

407 Table 3. Land-cover type distribution in the mapped 35.8 km² area (Mikola et al. 2018), spatially
 408 weighted and LCT-specific means of Pg₈₀₀, ER, NEE₈₀₀, and CH₄, and proportions of LCTs in
 409 landscape totals of Pg₈₀₀, NEE₈₀₀, and CH₄ fluxes. Standard error of mean (SE) is shown for the
 410 LCT-specific estimates. Data period: July 15 – August 16, 2014.

LCT	Area	Pg ₈₀₀		ER		NEE ₈₀₀		CH ₄ flux		Pg ₈₀₀	NEE ₈₀₀	CH ₄ flux
	(%)	(mmol m ⁻² h ⁻¹)	(%)	(%)	(%)							
Mean ¹		11.2		6.6		-4.6		0.05				
		mean	SE	mean	SE	mean	SE	mean	SE			
Wet fen	16.4	21.9	2.5	6.4	0.7	-15.5	3.2	0.29	0.05	32.1	55.1	94.5
Dry fen	11.6	14.6	3.5	7.0	1.1	-7.6	4.6	0.05	0.01	15.1	19.1	11.2
Gram. t. ²	3.4	21.9	2.5	6.4	0.7	-15.5	3.2	0.05	0.01	6.7	11.4	3.3
Bog	9.1	15.3	3.6	9.3	1.0	-5.9	4.6	0.0001	0.0005	12.4	11.7	0.03
Meadow	0.4	26.4	5.8	17.7	1.9	-8.8	7.7	-0.001	0.0004	0.9	0.8	-0.01
Dwarf-s. t.	27.4	8.6	7.0	7.8	1.3	-0.8	8.3	-0.003	0.0015	21.1	5.0	-1.8
Lichen t.	11.1	5.0	2.2	5.5	1.3	0.5	3.5	-0.005	0.001	4.9	-1.3	-1.1
Barren	15.3	5.0	1.4	5.5	1.0	0.5	2.3	-0.020	0.003	6.8	-1.8	-6.1
Water	5.3	NA		NA		NA		NA				

411 ¹ area-weighted mean, ²Graminoid tundra fluxes estimated using values for wet fen (CO₂) and dry fen (CH₄)

412

413 2 Discussion

414 The studied tundra site in Tiksi in northeastern Siberia has heterogeneous land cover, which is
 415 reflected as equally heterogeneous CO₂ and CH₄ exchange. We found that the LAI of vascular
 416 plants was a robust predictor of Pg₈₀₀ and NEE₈₀₀ across the LCTs. On the one hand, due to the
 417 distribution of species and LAI, the tundra wetlands had a disproportionate role in the landscape-
 418 level CO₂ uptake capacity. The fens also dominated the landscape's CH₄ emissions. On the other
 419 hand, our results highlight the high CH₄ consumption rates within the dry tundra areas. The
 420 consumption of the atmospheric CH₄ by dry tundra was -9 % of the total CH₄ balance within this
 421 landscape, and the consumption rate of the barren was much higher than in other dry tundra habitats.
 422 This finding is in agreement with other studies and suggest distinguishing non-vegetated dry tundra
 423 habitats when upscling CH₄ fluxes (Table 4). In Tiksi, the barren was characterized by sand and
 424 rocks underlain by chists (Fig. A1). The consumption of CH₄ was smaller if the sand and stones

425 were partly covered with vegetation and, in lichen tundra, with a thin organic layer (Figs. 5 and
426 A1).

427 The land-cover categorical approach serves to distinguish the basic features of spatial
428 variation in CO₂ and CH₄ fluxes. The extreme ends of the moisture and vegetation gradients from
429 barren to wet fen are clearly distinguishable, also in terms of CO₂ and CH₄ exchange (Fig. 6).
430 Overall, microrelief, moisture gradient, vegetation types and ecosystem functions are connected.
431 Barren areas are wind swept having minimal snow accumulation, while in wet depressions snow
432 accumulation further increases soil moisture (Fig. 6, Callaghan et al. 2011). Nevertheless, the
433 spatial extrapolation of fluxes is clearly sensitive to a small number of chamber measurement points
434 as there is large within-LCT variation, as observed in the wet fen and meadow data, which
435 originates from the plot-to-plot variation in LAI. The LCTs share common features and form a
436 continuum as shown by the DCA ordination (Fig. 6). Mikola et al. (2018) used a larger data set
437 from Tiksi and also found that the neighboring LCTs overlapped in terms of soil properties and
438 vegetation. Despite the limited number of observations, our conclusions drawn from the chamber
439 data are, corroborated by the temporally matching section of EC data, which show similarity to the
440 chamber data (Fig. 7). Furthermore, the statistical analysis of EC data by Tuovinen et al. (2019)
441 showed that it is possible to find significant differences between different LCT categories
442 representing high and low CH₄ emitters and CH₄ sinks. However, for spatial modeling of ecosystem
443 functions, maps of key variables, such as LAI and WT, that drive CO₂ and CH₄ exchange would be
444 preferable to categorical LCT classification (Räsänen et al. 2021).

445 The spatial pattern of the growing season Pg₈₀₀ and NEE₈₀₀ was strongly related to the
446 corresponding pattern of the LAI of vascular plants (Figs. 3 and 4). Hence, the abundance of
447 graminoid (Cyperaceae and Poaceae) vegetation was associated with a large NEE₈₀₀, which varied
448 from near zero in lichen tundra up to 25 mmol m⁻² h⁻¹ in wet fen. Ecosystem respiration had a
449 smaller role than Pg in determining NEE, but we note that our data cover only a section of the

450 growing season with warmer temperatures and half to full-grown vegetation. The importance of ER
451 is likely to be different when considering the full annual balance (*e.g.*, Hashemi et al. 2021). While
452 our data represent only the growing season, a similar relationship has also been found between the
453 annual NEE and LAI at a tundra site with a mixture of wet and dry tundra in northeastern Europe
454 (Marushchak et al. 2013), in a multi-site EC study in Alaskan tundra (McFadden et al. 2003), in
455 Canadian low arctic tundra wetlands (Lafleur et al. 2012), and across tundra sites (Street et al. 2007;
456 Shaver et al. 2007).

457 The magnitude of Pg₈₀₀ and NEE₈₀₀ in the fen and meadow plots of this study were
458 similar to the maximum Pg and NEE found in tundra wetland in Seida in northeastern Europe
459 (Marushchak et al. 2013), at low tundra wetland sites in eastern Canada (Lafleur et al. 2012), and at
460 a wetland-dominated but more continental site (with an equally long growing season) in
461 northeastern Siberia (van der Molen et al. 2007). The vegetation and Pg₈₀₀ of lichen tundra and
462 dwarf-shrub tundra in our study resembled those observed within the polygon rim habitat of the
463 polygon tundra in the Lena River delta, while those of meadow, dry fen, and wet fen resembled the
464 wet polygon center habitats (Eckhardt et al. 2019). In our study, the variation of ecosystem
465 respiration resulted from the variation in vascular plant LAI, soil organic content, and water
466 saturation: the highest ER occurred in mineral soil meadow with high LAI, suggesting substantial
467 autotrophic respiration, and likely deep rooting and large root biomass contributing to the
468 ecosystem respiration (Fig. 3).

469 Our chamber-based estimate of the average CH₄ flux within the 35.8 km² upscaling area
470 was 0.05 mmol m⁻² h⁻¹, which is close to 0.04 mmol m⁻² h⁻¹ obtained by Tuovinen et al. (2019), who
471 combined EC data with footprint modeling to statistically determine LCT group-specific CH₄
472 fluxes. Within this upscaling area, we estimate that 28 % of the area emitted CH₄, while the other
473 habitats either consumed atmospheric CH₄ (barren and lichen tundra, dwarf-shrub tundra, meadow)
474 or were close to neutral relative to the atmosphere (Fig. 4, Table 3). The relationship between

475 vascular plant LAI and CH₄ flux was confused by the occurrence of large CH₄ fluxes in plots with
476 little or no vegetation. Those cases occurred at the wettest fen plot and bare-peat and vehicle track
477 plots (Figs. 3–5). High LAI, high WT and high CH₄ emissions systematically co-occurred in wet
478 fen (Fig. 6). The eroded bare-peat surface of dry fen and the disturbed vehicle tracks had high CH₄
479 emissions, where erosion or disturbance may have created CH₄ flux hotspots due co-occurrence of
480 permafrost scars, water saturation, and recently thawed organic matter (*e.g.*, Bubier et al. 1995,
481 McCalley et al. 2014, Wickland et al. 2020). These are small-scale landscape features, while in a
482 larger scale, our data encourage applying indices of wetness and vegetation as a means of CH₄ flux
483 upscaling in a tundra environment.

484 The recognition of CH₄ consuming tundra habitats is important for accurately estimating
485 the net CH₄ balance of tundra. The substantial uptake of atmospheric CH₄ by lichen tundra (here a
486 mixture of bare ground and sparse vegetation) in Tiksi was inferred by Tuovinen et al. (2019) based
487 on a source allocation analysis of EC data: the average flux of the consuming area was estimated at
488 -0.03 mmol m⁻² h⁻¹, which corresponded to -22 % of the total upscaled CH₄ flux. In this study, the
489 average seasonal CH₄ uptake was -0.02 mmol m⁻² h⁻¹ in the barren tundra and an order of magnitude
490 lower in meadow, dwarf-shrub tundra,. Our upscaling exercise suggested a CH₄ sink that
491 corresponded -9 % of the regional CH₄ balance. This difference may originate from the LCT-
492 weighting and the small sample of the chamber-based estimate and, in general, demonstrates the
493 inherent sensitivity involved in upscaling of fluxes of opposite direction.

494 High consumption of atmospheric CH₄ in barrens is associated with the high affinity
495 methanotrophs (Emmerton et al. 2014, Jørgensen et al. 2014, D’Imperio et al. 2017, St Pierre et al.
496 2019). In our summary of CH₄ fluxes in mineral-rich dry tundra (Table 4), the consumption values
497 of this study and Tuovinen et al. (2019) are the highest, but similar rates have been observed in
498 other dry tundra sites with little or no vegetation. For instance, on Disko Island, Greenland, which
499 consists of similar land cover types to Tiksi, uptake of CH₄ by bare ground was -0.005–0.01 mmol

500 $\text{m}^{-2} \text{h}^{-1}$ during the growing season, while a mean flux of $-0.003\text{--}0.004 \text{ mmol m}^{-2} \text{h}^{-1}$ was observed
 501 in dry tundra heath (D'Imperio et al. 2017). These consumption rates associated with tundra barrens
 502 and high-affinity methanotrophs can be even higher than those measured on north-boreal forest
 503 soils (for instance, $-0.01 \text{ mmol m}^{-2} \text{h}^{-1}$, Lohila et al. 2016).

504

505 Table 4. Summary of reported consumption rates of atmospheric CH_4 in mineralsoil dry tundra.

Location	Habitat type	Mean ($\mu\text{mol m}^{-2} \text{h}^{-1}$)	Min	Max	Reference
Narsarsuaq, Greenland	low elevation heath vegetation	-1.2	-4.0	-0.2	St Pierre et al. 2019
Narsarsuaq, Greenland	high elevation heath vegetation	-2.6	-11.9	3.6	St Pierre et al. 2019
Disko Island, Greenland	low elevation heath vegetation	-3.8	-12.1	-1.1	St Pierre et al. 2019
Disko Island, Greenland	high elevation heath vegetation	-3.5	-12.1	-1.3	St Pierre et al. 2019
Tierra del Fuego, Argentina	alpine tundra	0.5	-16.6	10.3	Sá et al. 2019
Disko Island, Greenland	dry tundra heath ¹	-4.0	-4.4	-2.5	D'Imperio et al. 2017
Disko Island, Greenland	bare ground ¹	-9.0	-15.0	-3.8	D'Imperio et al. 2017
Disko Island, Greenland	Betula nana and Salix sp. heath	-4.0			Christiansen et al. 2014
Axel Heiberg Island, CA	vegetated ice-wedge polygon		-2.7	-0.3	Lau et al. 2015
Lake Hazen, Ellesmere I., CA	polar desert ²	-3.6	-7.0	0.0	Emmerton et al. 2014
Zackenberg Valley, Greenland	moist tundra	-3.1	-7.0	-2.0	Jørgensen et al. 2014
Zackenberg Valley, Greenland	dry tundra & barren ground	-7.0	-16.0	-4.0	Jørgensen et al. 2015
Zackenberg Valley, Greenland	tundra heath	-1.3	-6.0	0.0	Christensen et al. 2000
Okse Bay, Ellesmere I., CA	polar desert ³	-0.5			Brummel et al. 2014
Petterson R., Ellesmere I., CA	polar desert ³	-0.04			Brummel et al. 2014
Dome, Ellesmere I., CA	polar desert ³	-0.5			Brummel et al. 2014
BAWLD- CH_4 Synthesis	dry tundra		-2.9	5.2	Kuhn et al. 2021
BAWLD- CH_4 Synthesis	boreal forest		-2.6	-0.5	Kuhn et al. 2021
Tiksi, RU	Barren & lichen tundra ⁴	-29			Tuovinen et al. 2019
Tiksi, RU	lichen tundra mean	-11.3	-57.9	-0.4	This study
Tiksi, RU	barren	-18.1	-57.9	-3.0	This study
Tiksi, RU	vegetated	-6.0	-34.7	-0.4	This study
Tiksi, RU	meadow	-1.0	-21.1	24.5	This study
Tiksi, RU	dwarf-shrub tundra	-0.2	-2.9	20.3	This study
Tiksi, RU	bog	-2.1	-14.8	6.6	This study

506 ¹⁾ mean estimated from a figure, ²⁾ min and max estimated from a figure, ³⁾ one-three day
 507 measurement, ⁴⁾ estimated from EC measurements with a statistical model.

508

509 **5 Conclusions**

510 Our results provide new observations of carbon exchange for the prostrate dwarf shrub tundra sub-
511 zone, which covers a substantial area of the Arctic. These data augment the knowledge on the
512 functional diversity, namely the distribution of different land-cover types and their emission factors,
513 across the vast arctic tundra and will lend support to bottom-up and top-down extrapolations across
514 the Arctic. Graminoid vegetation that favored the wet and moist habitats, such as wet fens, was
515 characterized by large CO₂ uptake and CH₄ emissions. In addition, our data support the observation
516 of notable consumption of atmospheric CH₄ in barren tundra that has substantial coverage across
517 the Arctic. The heterogeneity of landscape and the related large spatial variability of CO₂ and CH₄
518 fluxes observed in this study encourage to monitor the Arctic sites for changes in habitat type
519 distribution. Such changes can include the forming of meadows and wet fens and appearance of
520 new vegetation communities, such as erect shrubs, that benefit of warming-induced changes in thaw
521 depth and soil wetness. The spatial extrapolation based on a small number of measurement points
522 involves inherent uncertainty but still allowed us to identify key relationships between CO₂ and
523 CH₄ fluxes and vegetation and moisture features, which can be utilized in more robust upscaling
524 studies that make use of EC measurements.

525

526 *Data availability.* The flux data used in this study can be accessed via the Zenodo data repository:
527 Juutinen, Sari. (2022). Dataset for a manuscript entitled Variation in CO₂ and CH₄ Fluxes Among
528 Land Cover Types in Heterogeneous Arctic Tundra in Northeastern Siberia [Data set]. Zenodo.
529 <https://doi.org/10.5281/zenodo.5825705>

530

531 *Author contributions*

532 TL, MA, and SJ designed the study. TL, MA, and AM took care of the overall site governance and
533 maintenance. VI, ML, TL, JM, JN, EV, TL, TV, and MA conceived the field measurements of CO₂
534 and CH₄, vegetation, and environmental variables. In addition, ML calculated green chromatic

535 coordinates, and MA and J-PT postprocessed the EC data and J-PT modeled the footprint and
536 estimated footprint LCT fractions. AR and TV processed and modelled the landcover data and
537 estimated TWI and NDVI for the plots and area. SJ compiled the chamber flux data and conducted
538 the data analyses and spatial extrapolations and wrote the manuscript with contributions from all co-
539 authors.

540

541 *Competing interests*

542 The authors declare that they have no conflict of interest.

543

544 *Acknowledgements*

545 We thank G. Chumachenko, O. Dmitrieva, and E. Volkov at the Tiksi Observatory and the
546 Yakutian Hydrometeorological Service for their kind assistance in carrying out and organizing the
547 field campaigns and Lauri Rosenius for assistance in the field work. This study was financially
548 supported by the Academy of Finland, projects “Greenhouse gas, aerosol and albedo variations in
549 the changing Arctic” (project no. 269095), “Carbon balance under changing processes of Arctic and
550 subarctic cryosphere” (project no. 285630), “Constraining uncertainties in the permafrost-climate
551 feedback” (project no. 291736) and “Carbon dynamics across Arctic landscape gradients: past,
552 present and future” (project no. 296888); the European Commission, FP7 project “Changing
553 permafrost in the Arctic and its global effects in the 21st century (PAGE21, project no. 282700)”;
554 and the Nordic Council of Ministers, DEFROST Nordic Centre of Excellence within NordForsk.

555

556 **References**

557 AARI: Archive of Tiksi standard meteorological observations (1932–2016), Russian Federal
558 Service for Hydrometeorology and Environmental Monitoring, St Petersburg, Russia,

559 available at: http://www.aari.ru/resources/d0024/archive/description_e.html, last
560 access: 13 September 2018.

561 Aurela, M., Laurila, T., and Tuovinen, J-P.: The timing of snow melt controls the annual CO₂
562 balance in a subarctic fen, *Geophysical Research Letters* 31, L16119,
563 doi:10.1029/2004GL020315, 2004.

564 Brummel, M.E., Farrell, R.E., Hardy, S.P., and Siciliano, S.D., Greenhouse gas production and
565 consumption in High Arctic deserts, *Soil Biology and Biochemistry*, 68, 158–165,
566 <https://doi.org/10.1016/j.soilbio.2013.09.034>, 2014.

567 Bartlett, K. B., and Harriss, R. C., Review and assessment of methane emissions from wetlands.
568 *Chemosphere*, 26, 261–320, 1993.

569 Bubier, J.L., Moore, T.R., Bellisario, L., Comer, N.T., and Crill, P.M: Ecological controls on
570 methane emissions from a northern peatland complex in the zone of discontinuous
571 permafrost, Manitoba, Canada. *Global Biogeochemical Cycles* 9. 455–470, 1995.

572 Callaghan, T.V., Johansson, M., Brown, R.D. et al. Multiple Effects of Changes in Arctic Snow
573 Cover, 2011, *AMBIO* 40, 32–45 (2011). <https://doi.org/10.1007/s13280-011-0213-x>

574 Chen, L., Aalto, J., and Luoto, M.: Significant shallow–depth soil warming over Russia during the
575 past 40 years. *Global and Planetary Change*, 197, 103394,
576 doi.org/10.1016/j.gloplacha.2020.103394, 2021.

577 Christensen, T. R., Friberg, T., Sommerkorn, M., Kaplan, J., Illeris, L., Soegaard, H., Nordstroem,
578 C., and Jonasson, S., Trace gas exchange in a high-Arctic valley: 1. Variations in CO₂
579 and CH₄ Flux between tundra vegetation types, *Global Biogeochemical Cycles*, 14,
580 701– 713, doi:10.1029/1999GB001134, 2000.

581 Christiansen, J.R., Romero, A.J.B., Jørgensen, N.O.G., Glaring, M.A., Jørgensen, C.J., Berg, L.K.,
582 Elberling, B. Methane fluxes and the functional groups of methanotrophs and

583 methanogens in a young Arctic landscape on Disko Island, West Greenland,
584 Biogeochemistry, 122, 15–33, 2014.

585 D'Imperio, L., Skov Nielsen, C., Westergaard-Nielsen, A., Michelsen, A., and Elberling, B.:
586 Methane oxidation in contrasting soil types: responses to experimental warming with
587 implication for landscapeintegrated CH₄ budget. Global Change Biology 23, 966–
588 976, doi: 10.1111/gcb.13400, 2017.

589 Eckhardt, T., Knoblauch, C., Kutzbach, L., Holl, D., Simpson, G., Abakumov, E., and Pfeiffer, E-
590 M.: Partitioning net ecosystem exchange of CO₂ on the pedon scale in the Lena River
591 Delta, Siberia. Biogeosciences 16, 1543–1562, doi:10.5194/bg-16-1543-2019, 2019.

592 Emmerton, C.A., St Louis, V.L., Lehnher, I., Humphreys, E.R., Rydz, E., Kosolofski, H.R. The net
593 exchange of methane with high Arctic landscapes during the summer growing season.
594 Biogeosciences, 11, 3095–3106, 2014.

595 Euskirchen, E.S., Bret-Harte, M.S., Shaver, G.R., Edgar, C.W., and Romanovsky, V.E.: Long-Term
596 Release of Carbon Dioxide from Arctic Tundra Ecosystems in Alaska. Ecosystems 20,
597 960–974, doi: 10.1007/s10021-016-0085-9, 2017.

598 Gorelick, N., Hancher, M., Dixon, M., Ilyushchenko, S., Thau, D., and Moore, R.: Google Earth
599 Engine: Planetary-scale geospatial analysis for everyone. Remote Sensing of
600 Environment, 202, 18-27, doi.org/10.1016/j.rse.2017.06.031, 2017.

601 Hashemi, J., Zona, D., Arndt, K.A., Kalhori, A., and Oechel, W.C.: Seasonality buffers carbon
602 budget variability across heterogeneous landscapes in Alaskan Arctic Tundra.
603 Environ. Res. Lett. in press <https://doi.org/10.1088/1748-9326/abe2d1>, 2021.

604 Humphreys, E.R. and Lafleur, P.M.: Does earlier snowmelt lead to greater CO₂ sequestration in
605 two low Arctic tundra ecosystems? Geophysical Research Letters 38, L09703,
606 doi:10.1029/2011GL047339, 2011.

607 IPCC Summary for Policymakers in Climate Change 2013: The Physical Science Basis (eds
608 Stocker, T. F. et al.) 3–29, Cambridge Univ, Press, 2013.

609 Jørgensen, C.J., Lund Johansen, K.M., Westergaard-Nielsen, A., and Elberling, B.: Net regional
610 methane sink in High Arctic soils of northeast Greenland. *Nature Geoscience* 8, doi:
611 10.1038/NGEO2305, 2014.

612 Juutinen, S., Virtanen, T., Kondratyev, V., Laurila, T., Linkosalmi, M., Mikola, J., Nyman, J.,
613 Räsänen, A., Tuovinen, J-P., and Aurela, M.: Spatial variation and seasonal dynamics
614 of leaf-area index in the arctic tundra – implications for linking ground observations
615 and satellite images. *Environmental Research Letters* 12, doi.org/10.1088/1748-
616 9326/aa7f85, 2017.

617 Kuhn, M. A., Varner, R. K., Bastviken, D., Crill, P., MacIntyre, S., Turetsky, M., Walter Anthony,
618 K., McGuire, A. D., and Olefeldt, D.: BAWLD-CH₄: a comprehensive dataset of
619 methane fluxes from boreal and arctic ecosystems, *Earth Syst. Sci. Data*, 13, 5151–
620 5189, <https://doi.org/10.5194/essd-13-5151-2021>, 2021.

621 Lau, M.C.Y., Stackhouse, B.T., Layton, A.C., Chauhan, A., Vishnivetskaya, T.A., Chourey, K.,
622 Ronholm, J., Mykytczuk, N.C.S., Bennett, P.C., Lamarche-Gagnon, G., Burton, N.,
623 Pollard, W.H., Omelon, C.R., Medvigy, D.M., Hettich, R.L., Pfiffner, S.M., Whyte,
624 L.G., and Onstott, T.C.: An active atmospheric methane sink in high Arctic mineral
625 cryosols. *The ISME Journal* 9, 1880–1891, doi:10.1038/ismej.2015.13, 2015.

626 Lafleur, P.M., Humphreys, E.R., St. Louis, V.L., Myklebust, M.C., Papakyriakou, T., Poissant, L.,
627 Barker, J.D., Pilote, M., and Swystun, K.A.: Variation in Peak Growing Season Net
628 Ecosystem Production Across the Canadian Arctic. *Environmental Science and
629 Technology* 46, 7971–7977, doi.org/10.1021/es300500m, 2012.

630 Lara, M.J., McGuires, A.D., Euskirchen, E.S., Genet H., Yi, S., Rutter, R., Iversen, C., Sloan, V.,
631 and Wullschleger, S.D.: Local-scale Arctic tundra heterogeneity affects regional-scale

632 carbon dynamics- *Nature Communications* 11, 4925, doi:10.1038/s41467-020-18768-
633 z, 2020.

634 Lohila, A., Aalto, T., Aurela, M., Hatakka, J., Tuovinen, J-P., Kilkki, J., Penttilä, T., Vuorenmaa, J.,
635 Hänninen, P., Sutinen, R., Viisanen, Y., and Laurila, T.: Large contribution of boreal
636 upland forest soils to a catchment-scale CH₄ balance in a wet year. *Geophysical*
637 *Research Letters* 43, 2946–2953, doi.org/10.1002/2016GL067718, 2016.

638 Marushchak, M.E., Kiepe, I., Biasi, C., Elsakov, V., Friberg, T., Johansson, T., Soegaard, H.,
639 Virtanen, T., and Martikainen, P.J.: Carbon dioxide balance of subarctic tundra from
640 plot to regional scales. *Biogeosciences* 10, 437–452, doi:10.5194/bg-10-437-2013,
641 2013.

642 McCalley, C.K., Woodcroft, B.J., Hodgkins, S.B., Wehr, R.A., Kim, E-H., Mondav, R., Crill, P.M.,
643 Chanton, J.P., Rich, V.I., Tyson, G.W., and Saleska, S.R.: Methane dynamics
644 regulated by microbial community response to permafrost thaw. *Nature* 514, 478–451,
645 doi:10.1038/nature13798, 2014.

646 McFadden, J.P., Eugster, W., and Chapin, F.S., III: A regional study of the controls on water vapor
647 and CO₂ exchange in arctic tundra. *Ecology* 84, 2762–2776, doi:10.1890/01-0444,
648 2003.

649 McGuire, A. D., Christensen, T. R., Hayes, D., Heroult, A., Euskirchen, E., Kimball, J. S., Koven,
650 C., Lafleur, P., Miller, P. A., Oechel, W., Peylin, P., Williams, M., and Yi, Y.: An
651 assessment of the carbon balance of Arctic tundra: comparisons among observations,
652 process models, and atmospheric inversions, *Biogeosciences*, 9, 3185–3204,
653 <https://doi.org/10.5194/bg-9-3185-2012>, 2012.

654 McGuire, A.D., Lawrence, D.M., Koven, C., Clein, J.C., Burke, E., Chen, G., Jafarov, E.,
655 MacDougall, A.H., Marchenko, S., Nicolsky, D., Peng, S., Rinke, A., Ciais, P.,
656 Gouttevin, I., Hayes, D.J., Jin, D., Krinner, G., Moore, J.C., Romanovsky, V.,

657 Schädel, C., Schaefer, K., Schuur, E.A.G., and Zhuang, Q.: Dependence of the
658 evolution of carbon dynamics in the northern permafrost region on the trajectory of
659 climate change, PNAS 115,: 3882–3887, doi/10.1073/pnas.1719903115, 2018.

660 Mikola, J., Virtanen, T., Linkosalmi, M., Vähä, E., Nyman, J., Postanogova, O., Räsänen, A.,
661 Kotze, D.J., Laurila, T., Juutinen, S., Kondratyev, V., and Aurela, M.: Spatial
662 variation and linkages of soil and vegetation in the Siberian Arctic tundra – coupling
663 field observations with remote sensing data. Biogeosciences 15, 2781–2801, 2018.

664 Oh, Y., Zhuang, Q., Liu, L., Welp, L.R., Lau, M.C.Y., Onstott, T.C., Medvigy, D., Bruhwiler, L.,
665 Dlugokencky, E.J., Hugelius, G., D'Imperio, L., and Elberling, B. Reduced net
666 methane emissions due to microbial methane oxidation in a warmer Arctic. Nature
667 Climate Change 10, 317–321, 2020.

668 St Pierre, K.A., Kortegaard Danielsen, B., Hermesdorf, L., D'Imperio, L., Lønsmann Iversen, L.,
669 Elberling, B.: Drivers of net methane uptake across Greenlandic dry heath tundra
670 landscapes. Soil Biology and Biochemistry 138: 107605,
671 doi.org/10.1016/j.soilbio.2019.107605, 2019.

672 Räsänen, A., Manninen, T., Korkiakoski, M., Lohila, A., and Virtanen, T.: Predicting catchment-
673 scale methane fluxes with multi-source remote sensing. Landscape Ecology 36, 1177–
674 1195. <https://doi.org/10.1007/s10980-021-01194-x>. 2021.

675 Richardson, A.D.: Tracking seasonal rhythms of plants in diverse ecosystems with digital camera
676 imagery. New Phytologist 222, 1742–1750, doi: 10.1111/nph.15591, 2019.

677 Sá, M.M.F., Schaefer, C.E.G.R., Loureiro, D.C., Simas, F.N.B., Alves, B.J.R., de Sá Mendonça, E.,
678 Barreto de Figueiredo, E., La Scala, N., Panosso, A.R., Fluxes of CO₂, CH₄, and
679 N₂O in tundra-covered and Nothofagus forest soils in the Argentinian Patagonia,
680 Science of The Total Environment, 659, 401-409,
681 <https://doi.org/10.1016/j.scitotenv.2018.12.328>, 2019.

682 Saunois, M., Stavert, A.R., Poulter, B., Bousquet, P., Canadell, J.G., Jackson, R.B., Raymond, P.A.,
683 Drugokencky, E.J., Houweling, S., Patra, P.K. and Ciais, P.: The global methane
684 budget 2000–2017. *Earth System Science Data*, 12, 1561–1623, 2020.

685 Shaver, G.R., Street, L.E., Rastetter, E.B., van Wijk, M.T., and Williams, M.: Functional
686 convergence in regulation of net CO₂ flux in heterogeneous tundra landscapes in
687 Alaska and Sweden. *Journal of Ecology* 95, 802–817, 2007.

688 Street, L.E., Shaver, G.R., Williams, M., and van Wijk, M.T.: What is the relationship between
689 changes in canopy leaf area and changes in photosynthetic CO₂ flux in arctic
690 ecosystems? *Journal of Ecology* 95, 139–150, 2007.

691 Ter Braak, C.J.F. and Šmilauer, P.: Canoco reference manual and user's guide: software for
692 ordination (version 5.0). Microcomputer Power, Ithaca, NY, USA, 2012.

693 Treat, C.C., Marushchak, M.E., Voigt, C., Zhang, Y., Tan, Z., Zhuang, Q., Virtanen, T.A., Räsänen,
694 A., Biasi, C., Hugelius, G., Kaverin, D., Miller, P.A., Stendel, M., Romanovsky, V.,
695 Rivkin, F., Martikainen, P.J., and Shurpali, N.J. Tundra landscape heterogeneity, not
696 interannual variability, controls the decadal regional carbon balance in the Western
697 Russian Arctic. *Global Change Biology* 24, 5188–5204, doi: 10.1111/gcb.14421,
698 2018.

699 Tuovinen, J-P., Aurela, M., Hatakka, J., Räsänen, A., Virtanen, T., Mikola, J., Ivakhov, V.,
700 Kondratyev, V., and Laurila, T.: Interpreting eddy covariance data from
701 heterogeneous Siberian tundra: land-cover-specific methane fluxes and spatial
702 representativeness. *Biogeosciences* 16, 255–274, doi.org/10.5194/bg-16-255-2019,
703 2019.

704 Uttal, T., Starkweather, S., Drummond, J. R., Vihma, T., Makshtas, A. P., Darby, L. S., Burkhart,
705 J. F., Cox, C. J., Schmeisser, L. N., Haiden, T., Maturilli, M., Shupe, M. D., de Boer,
706 G., Saha, A., Grachev, A. A., Crepinsek, S. M., Bruhwiler, L., Goodison, B.,

McArthur, B., Walden, V. P., Dlugokencky, E. J., Persson, P. O. G., Lesins, G., Laurila, T., Ogren, J. A., Stone, R., Long, C. N., Sharma, S., Massling, A., Turner, D. D., Stanitski, D. M., Asmi, E., Aurela, M., Skov, H., Eleftheriadis, K., Virkkula, A., Platt, A., Førland, E. J., Iijima, Y., Nielsen, I. E., Bergin, M. H., Candlish, L., Zimov, N. S., Zimov, S. A., O'Neill, N. T., Fogal, P. F., Kivi, R., Konopleva-Akish, E. A., Verlinde, J., Kustov, V.Y., Vasel, B., Ivakhov, V.M., Viisanen, Y., and Intrieri, J. M.: International Arctic Systems for Observing the Atmosphere: An International Polar Year Legacy Consortium. *Bull. Am. Meteor. Soc.*, 97, 1033–1056. doi:10.1175/BAMS-D-14-00145.1, 2016.

Schuur, E.A.G., Natali, S.M., Oken, K.L., Bracho, R., Krapek, J.P., Risk, D., and Nickerson, N.R.: Increased wintertime CO₂ loss as a result of sustained tundra warming, *Journal of Geophysical Research Biogeosciences* 121, 249–265, doi:10.1002/2014JG002795, 2016.

., P., Jorgenson, M.T., Koch, J.C., Kanevskiy, M., and Striegl, R.G.: Carbon dioxide and methane flux in a dynamic Arctic tundra landscape: Decadal-scale impacts of ice wedge degradation and stabilization. *Geophysical Research Letters*, 47, e2020GL089894, doi:10.1029/2020GL089894, 2020.

en, M.K., van Huissteden, J., Parmentier, F.J.W., Petrescu, A.M.R., Dolman, A.J., Maximov, T.C., Kononov, A.V., Karsanaev, S.V., and Suzdalov, D.A.: The growing season greenhouse gas balance of a continental tundra site in the Indigirka lowlands, NE Siberia. *Biogeosciences* 4, 985–1003, doi.org/10.5194/bg-4-985-2007, 2007.

-M., Virtanen, T., Lehtonen, A., Rinne, J., and Luoto, M.: The current state of CO₂ flux chamber studies in the Arctic tundra: A review. *Progress in Physical Geography*, 42, 162–184, 2018.

731 Virkkala, et al.: Statistical upscaling of ecosystem CO₂ fluxes across the terrestrial tundra and
732 boreal domain: regional patterns and uncertainties. *Global Change Biology*,
733 doi:10.1111/GCB.15659, 2021.

734 Virtanen, T. and Ek, M.: The fragmented nature of tundra landscape. *International Journal of
735 Applied Earth Observation and Geoinformation* 27, 4–12, 2014.

736 Zhang, W., Jansson, P-E., Sigsgaard, C., McConnell, A., Manon Jammet, M., Westergaard-Nielsen,
737 A., Lund, M., Friberg, T., Michelsen, A., and Elberling, B.: Model-data fusion to
738 assess year-round CO₂ fluxes for an arctic heath ecosystem in West Greenland
739 (69°N). *Agricultural and Forest Meteorology* 272–273, 176–186, 2019.

740

741

742

743

744

745

746

747

748

749

750

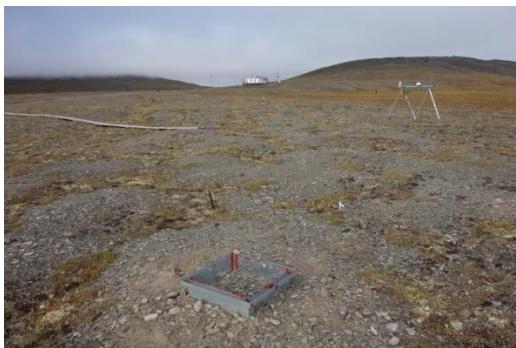
751

752

753

754

755

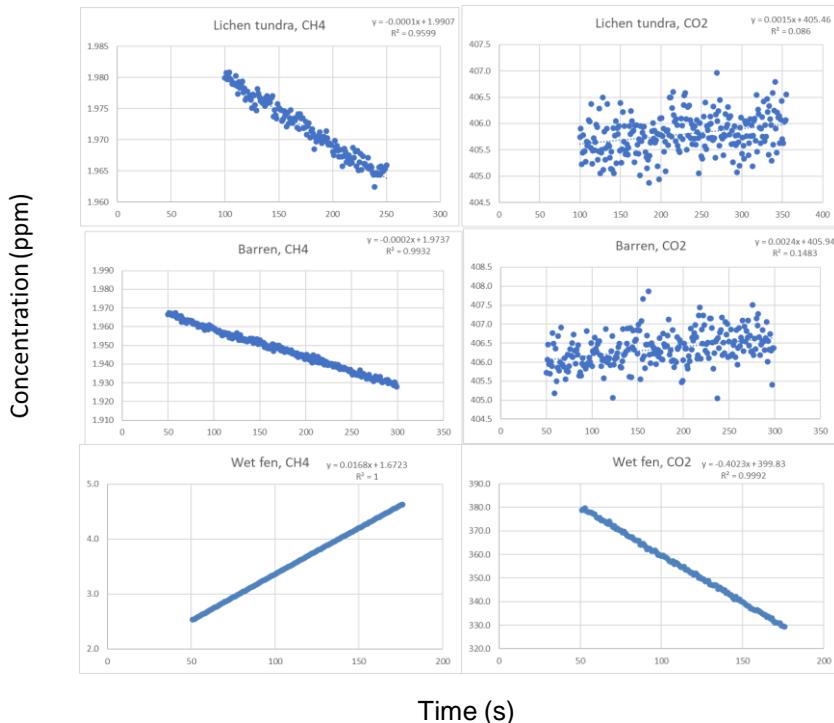

756

757

758

759

760 **Appendix A**

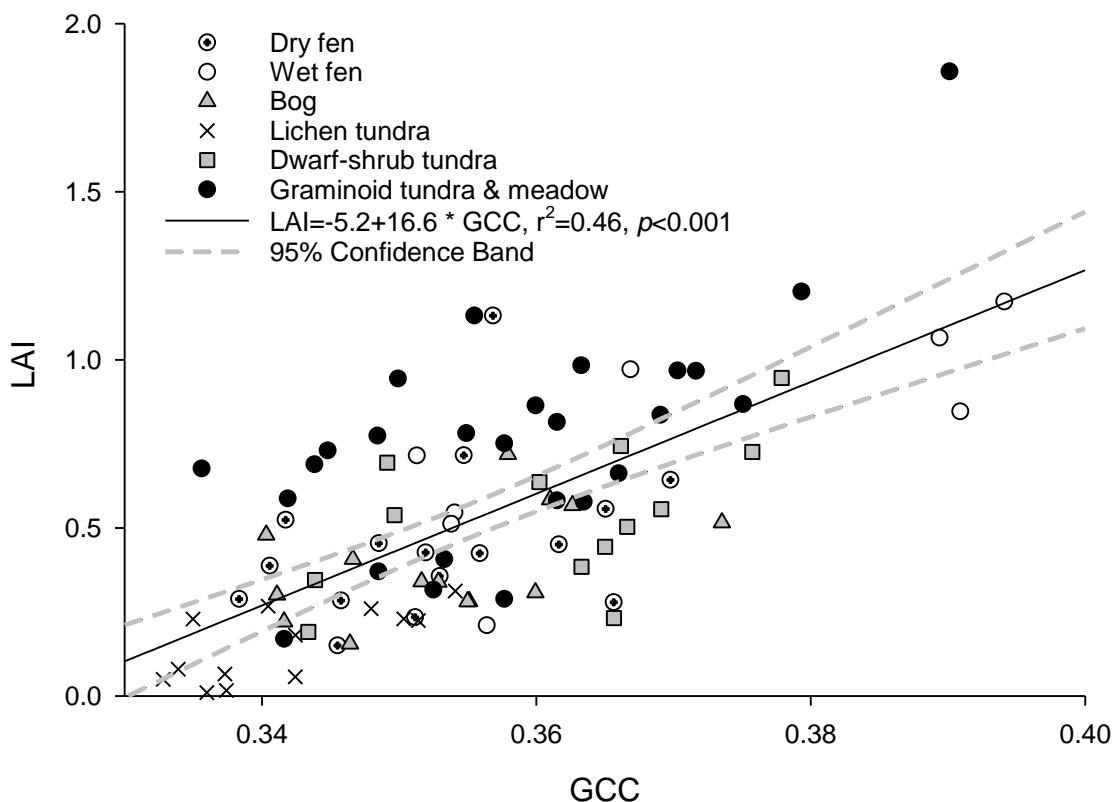

761

762 Fig. A1. Examples of the barren (left) and lichen tundra (right) plots with close views (bottom).
763 Vegetation consists of lichens *Flavocetraria* sp., *Thamnolia* sp., *Alectoria* sp., dwarf-shrubs *Dryas*
764 *octopetala*, *Vaccinium vitis-idaea*, *Cassiope tetragona*, and graminoids and forbs such as *Carex*
765 *spp.* and *Polygonum viviparum*.

766

767

768



769

770 Fig. A2. Examples of gas concentrations in chambers measured using the LRG analyzer (DLT-100,
 771 Los Gatos Research, Inc., San Jose, CA, USA). The examples represent lichen tundra, barren, and
 772 wet fen.

773

774

775

776 Fig. A3. Relationship between GCC and vascular plant LAI in the harvested plots. LCTs are
 777 indicated with symbols. In the LCT-specific regressions (not shown), the coefficient of
 778 determination ($R^2_{adj.}$) was lowest for dry fen (0.06) and highest for wet fen (0.54). Regression
 779 slopes varied from 8.3 for dry fen to 17.8 for the combined graminoid tundra and meadow LCT.

780