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Abstract. The accumulation of anthropogenic CO2 emissions in the atmosphere has been buffered by the absorption of CO2 

by the global ocean which acts as a net CO2 sink. The CO2 flux between the atmosphere and the ocean, that collectively 

results in the oceanic carbon sink, is spatially and temporally variable, and fully understanding the driving mechanisms 

behind this flux is key to assessing how the sink may change in the future. In this study a time series decomposition analysis 10 

was applied to satellite observations to determine the drivers that control the sea-air difference of CO2 partial pressure 

(ΔpCO2) and the CO2 flux on seasonal and interannual time scales in the South Atlantic Ocean. Linear trends in ΔpCO2 and 

the CO2 flux were calculated to identify key areas of change.  

Seasonally, changes in both the ΔpCO2 and CO2 flux were dominated by sea surface temperature (SST) in the subtropics 

(north of 40 o S) and were correlated with biological processes in the subpolar regions (south of 40° S). In the Equatorial 15 

Atlantic, analysis of the data indicated that biological processes are likely a key driver, as a response to upwelling and 

riverine inputs. These results highlighted that seasonally ΔpCO2 can act as an indicator to identify drivers of the CO2 flux. 

Interannually, the SST and biological contributions to the CO2 flux in the subtropics were correlated with the Multivariate 

ENSO Index (MEI) which leads to a weaker (stronger) CO2 sink in El Niño (La Niña) years.  

The 16-year time-series identified significant trends in ΔpCO2 and CO2 flux, however, these trends were not always 20 

consistent in spatial extent. Therefore, predicting the oceanic response to climate change requires the examination of CO2 

flux rather than ΔpCO2. Positive CO2 flux trends (weakening sink for atmospheric CO2) were identified within the Benguela 

upwelling system, consistent with increased upwelling and wind speeds. Negative trends in the CO2 flux (intensifying sink 

for atmospheric CO2) offshore into the South Atlantic Gyre, were consistent with an increase in the export of nutrients from 

mesoscale features, which drives the biological drawdown of CO2. These multi-year trends in the CO2 flux indicate that the 25 

biological contribution to changes in the air-sea CO2 flux cannot be overlooked when scaling up to estimates of the global 

ocean carbon sink. 
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1 Introduction 

Since the industrial revolution, anthropogenic CO2 emissions have increased unabated and continue to rise atmospheric CO2 

concentrations (IPCC, 2021). The global oceans have buffered the rise by acting as a sink for atmospheric CO2 at a rate of 30 

between 1 and 3.5 Pg C yr-1 (e.g. Friedlingstein et al., 2020; Landschützer et al., 2014; Watson et al., 2020). The strength of 

the ocean as a sink for CO2 appears to be increasing with time (Friedlingstein et al., 2020; Watson et al., 2020). Regionally 

this can vary hugely however, and the ocean can oscillate between a source or sink of atmospheric CO2. The difference in the 

partial pressure of CO2 (pCO2) between the seawater and atmosphere (ΔpCO2) is used as an indicator or proxy for the net 

direction of air-sea CO2 flux during gas exchange. 35 

In the open ocean, changes in physical and biogeochemical processes that control seawater pCO2 (pCO2 (sw)) also modify 

ΔpCO2 as the atmospheric pCO2 (pCO2 (atm)) is less variable (e.g. Henson et al., 2018; Landschützer et al., 2016). ΔpCO2 can 

therefore be controlled by changes in sea surface temperature (SST), because the pCO2 is proportional to the temperature. In 

addition, plankton net community production (NCP) modifies the concentration of CO2 in the seawater depending on the 

balance between net primary production (NPP; uptake of CO2 via photosynthesis) and respiration (release of CO2 into the 40 

water). The NCP describes the overall metabolic balance of the plankton community, where positive (negative) NCP 

indicates a drawdown (or release) of CO2 from (or into) the water contributing to a decrease (increase) in ΔpCO2. Physical 

processes, including riverine input (e.g. Ibánhez et al., 2016; Lefèvre et al., 2020; Valerio et al., 2021), and upwelling (e.g. 

González-Dávila et al., 2009; Lefèvre et al., 2008; Santana-Casiano et al., 2009) can alter pCO2 (sw) and ΔpCO2 directly 

through the entrainment of high-CO2 water or indirectly by modifying NCP through nutrient supply (enhancing 45 

photosynthesis) and/or organic material supply (enhancing respiration). 

The air-sea CO2 flux is more precisely a function of the difference in CO2 concentrations across the mass boundary layer at 

the ocean’s surface, with any turbulent exchange characterised by the gas transfer velocity. The CO2 concentration difference 

is determined by the pCO2 at the base (pCO2 (sw)) and top (pCO2 (atm)) of the mass boundary layer and the respective  

solubilities (Weiss, 1974), and must be carefully calculated due to vertical thermo-haline gradients existing across the mass 50 

boundary layer (Woolf et al., 2016). The gas transfer velocity is usually parameterised as a function of wind speed (e.g. Ho 

et al., 2006; Nightingale et al., 2000; Wanninkhof, 2014) which accounts for ~75% of the variance in surface turbulent 

exchange (e,g, Dong et al., 2021; Ho et al., 2006). Therefore, both oceanographic and meteorological conditions are able to 

modify and control the seasonality, interannual variability and multi-year trends of this flux.  

Seasonal drivers of ΔpCO2 have been explored globally (Takahashi et al., 2002), and regionally in the Atlantic Ocean 55 

(Landschützer et al., 2013; Henson et al., 2018). Takahashi et al. (2002) used binned in situ pCO2 (sw) observations to a 4º by 

5º global grid, and found that SST drives ΔpCO2 in the subtropics, and non-SST processes (i.e. biological activity and ocean 

circulation) dominate in subpolar and equatorial regions. Landschützer et al. (2013) used a self-organising map feed forward 

neural network (SOM-FNN) technique to extrapolate the in situ pCO2 (sw) observations and reported similar seasonal drivers 

in the Atlantic Ocean with one exception, that SST and non-SST processes compensated each other in the Equatorial 60 
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Atlantic. Henson et al. (2018) using binned in situ observations for the North Atlantic Ocean, also indicated that the 

subtropics are driven by SST and that subpolar regions are correlated with biological activity.  

The interannual drivers of ΔpCO2 are different compared to the seasonal drivers in the North Atlantic (Henson et al., 2018), 

which could be true of the South Atlantic Ocean, though this needs to be further investigated. Landschützer et al. (2016, 

2014) postulated the El Niño cycle may influence ΔpCO2 in the subtropical South Atlantic but did not explore the underlying 65 

processes. South of 35° S, Landschützer et al. (2015) indicated that atmospheric forcing could control the interannual 

variability of ΔpCO2 through changes in Ekman transport and upwelling. These interannual drivers of ΔpCO2 and the CO2 

flux in the South Atlantic Ocean are poorly understood but have key implications for determining how the oceanic CO2 sink 

could be impacted by climate change and its evolution over interannual and decadal timescales.  

In this study, we investigate the drivers of ΔpCO2 and the CO2 flux in the South Atlantic Ocean over both seasonal and 70 

interannual timescales using a timeseries decomposition approach. Trends in ΔpCO2 and the CO2 flux were calculated from 

2002 to 2018, and regions in the South Atlantic Ocean showing the greatest change in the CO2 flux are investigated. 

2. Data and Methods 

2.1. pCO2 data 

Satellite estimates of pCO2 (sw) were retrieved from the South Atlantic Feed Forward Neural Network (SA-FNN) dataset 75 

(Ford et al., 2022, 2021a). Ford et al. (2022) showed that the SA-FNN improved on estimating the seasonal pCO2 (sw) 

variability in the South Atlantic Ocean compared to the current ‘state of the art’ methodology (the SOM-FNN). The SA-

FNN estimates pCO2 (sw) by clustering in situ monthly 1° gridded Surface Ocean CO2 Atlas (SOCAT) v2020 pCO2 (sw) 

observations (Bakker et al., 2016; Sabine et al., 2013), that have been reanalysed into a dataset configured using consistent 

depth and temperature fields (Goddijn-Murphy et al., 2015; Woolf et al., 2016; Reynolds et al., 2002), into eight static 80 

provinces in the South Atlantic Ocean (Fig. B1a). The use of eight static provinces allows the SA-FNN to more accurately 

reproduce the pCO2 (sw) variability. The nonlinear relationships between pCO2 (sw) and three environmental drivers (SST, NCP 

and pCO2 (atm)), were constructed for each province with a feed forward neural network (FNN). The FNN for each province 

were applied to produce spatially and temporally complete pCO2 (sw) fields on monthly 1° grids between July 2002 and 

December 2018, with uncertainties generated on a per pixel basis as described in Ford et al. (2022). These per pixel 85 

uncertainties are shown in Appendix B (Fig. B1).  

Monthly 1º grids of pCO2 (atm) were extracted from v5.5 of the global estimates of pCO2 (sw) dataset (Landschützer et al., 

2017, 2016) which was calculated using the dry mixing ratio of CO2 from the NOAA-ESRL marine boundary layer reference 

(https://www.esrl.noaa.gov/gmd/ccgg/mbl/; last accessed 25/09/2020), Optimum Interpolated SST (Reynolds et al., 2002) 

and sea level pressure following Dickson et al. (2007). ΔpCO2 was calculated from pCO2 (sw) and pCO2 (atm) as;  90 

ΔpCO2 = pCO2 (sw) – pCO2 (atm)                                                                     (1) 

https://www.esrl.noaa.gov/gmd/ccgg/mbl/
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2.2. Air-sea CO2 flux data 

The air-sea CO2 flux (F) can be estimated using a bulk parameterisation as: 

𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠  𝑝𝐶𝑂2 (𝑎𝑡𝑚))                                                                 (2) 

Where k is the gas transfer velocity which was estimated from ERA5 monthly reanalysis wind speed (Hersbach et al., 2019) 95 

following the parameterisation of Nightingale et al. (2000). αw and αs are the solubility of CO2 at the base and top of the mass 

boundary layer at the sea surface (Woolf et al., 2016). αw was calculated as a function of SST and sea surface salinity (SSS) 

(Weiss, 1974) using the monthly Optimum Interpolated SST (Reynolds et al., 2002) and SSS from the Copernicus Marine 

Environment Modelling Service global ocean physics reanalysis product (GLORYS12V1; CMEMS, 2021). αs was 

calculated using the same temperature and salinity datasets but included a gradient from the base to the top of mass boundary 100 

layer of -0.17 K (Donlon et al., 1999) and +0.1 salinity units (Woolf et al., 2016). pCO2 (atm) was calculated using the dry 

mixing ratio of CO2 from the NOAA-ESRL marine boundary layer reference, Optimum Interpolated SST (Reynolds et al., 

2002) applying a cool skin bias (0.17K; Donlon et al., 1999) and sea level pressure following Dickson et al. (2007).  

All of these calculations along with the resulting monthly CO2 flux were carried out using the open source FluxEngine 

toolbox (Holding et al., 2019; Shutler et al., 2016), for the period between July 2002 and December 2018, assuming ‘rapid’ 105 

transfer (as described in Woolf et al., 2016). 

2.3. Biological data 

The 4 km resolution mean monthly chlorophyll-a (Chl a) was calculated from Moderate Resolution Imaging 

Spectroradiometer on Aqua (MODIS-A) Level 1 granules, retrieved from the National Aeronautics Space Administration 

(NASA) Ocean Colour website (https://oceancolor.gsfc.nasa.gov/; last accessed 10/12/2020), using SeaDAS v7.5, and 110 

applying the standard OC3-CI algorithm for Chl a (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/; last accessed 15/12/2020). 

Monthly composites of MODIS-A SST (NASA OBPG, 2015) and photosynthetically active radiation (PAR; NASA OBPG, 

2017b) were also downloaded from the NASA Ocean Colour website. Monthly NPP composites were generated from 

MODIS-A Chl a, SST and PAR composites using the Wavelength Resolving Model (Morel, 1991) with the look up table 

described in Smyth et al. (2005). Coincident monthly composites of NCP using the algorithm NCP-D described in Tilstone 115 

et al. (2015) were generated using the NPP and SST data. Further details of the satellite algorithms are given in O’Reilly et 

al. (1998), O’Reilly and Werdell (2019) and Hu et al. (2012) for Chl a, Smyth et al. (2005), Tilstone et al. (2005, 2009) for 

NPP and Tilstone et al. (2015) for NCP. Monthly composites were generated between July 2002 and December 2018 and 

were re-gridded onto the same 1º grid as the pCO2 (sw) and flux data. Ford et al. (2021b) showed that these satellite algorithms 

for Chl a, NPP, NCP and SST are accurate compared to in situ observations in the South Atlantic Ocean following an 120 

algorithm intercomparison which accounted for model, in situ and input parameter uncertainties.  

https://oceancolor.gsfc.nasa.gov/
https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/
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2.4. Seasonal and interannual driver analysis 

The X-11 analytical econometric tool (Shiskin et al., 1967) was used to decompose the timeseries into seasonal, interannual 

and residual components following the methodology of Pezzulli et al. (2005). In brief, the X-11 method comprises a three 

step filtering algorithm: (1) The interannual component (Tt) is initially estimated using an annual centred running mean, 125 

which is subtracted from the initial timeseries (Xt) to estimate the seasonal component (St). (2) Tt is revised by applying an 

annual centred running mean to the Xt minus St. The revised Tt is removed from Xt and the final St calculated. (3) The final 

Tt is calculated by applying an annual centred running mean to Xt minus the revised St. The analysis has been shown to be 

effective in the decomposition of environmental time-series (Pezzulli et al., 2005; Vantrepotte & Mélin, 2011; Henson et al., 

2018), that allows the seasonal cycle to vary on a yearly basis and, produces an interannual component that results in a 130 

robust representation of the longer-term changes in the timeseries.  

The approach was applied to monthly 1° fields of ΔpCO2 that were estimated from pCO2 (atm) and SA-FNN pCO2 (sw), on a per 

pixel basis. The pCO2 (atm) and spatially and temporally varying pCO2 (sw) uncertainties (Table 1; Fig. B1) were propagated 

through the X-11 analysis, using a Monte Carlo uncertainty propagation approach. The input time series were randomly 

perturbed 1000 times within the uncertainties of each parameter, and Spearman correlations calculated for each perturbation. 135 

The 95% confidence interval was extracted from the resulting distribution of correlations coefficients, and results were 

deemed significant (α < 0.05) where the confidence interval remained significant. Spatial autocorrelation was tested using 

the method of field significance (Wilks, 2006). The analysis was then conducted on the CO2 fluxes, on a per pixel basis. The 

pCO2 (sw), pCO2 (atm), gas transfer velocity, SST and SSS uncertainties (Table 1) were propagated through the flux calculations 

using the same Monte Carlo uncertainty propagation approach used for ΔpCO2. 140 

The potential drivers tested were MODIS-A skin SST, NCP and NPP alongside SSS from the CMEMS global reanalysis 

product (GLORYSV12; CMEMS, 2021) and two climate indices: Multivariate ENSO Index (MEI) as an indicator of El 

Niño Southern Oscillation phases, https://www.esrl.noaa.gov/psd/enso/mei (last accessed: 19/12/2019); Southern Annular 

Mode (SAM) data, which indicate the displacement of the westerly winds in the Southern Ocean, were downloaded from 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html (last accessed: 19/12/2019).  145 

 

Table 1: Uncertainties in the input parameters used in the Monte Carlo uncertainty propagation. 

Parameter Uncertainty Reference 

pCO2 (sw) Variable (Appendix B) (Ford et al., 2022) 

SST 0.441 °C (Ford et al., 2021b) 

SSS 0.1 psu (Jean-Michel et al., 2021) 

pCO2 (atm) 1 µatm (Takahashi et al., 2009) 

Gas transfer velocity 20 % (Woolf et al., 2019) 

 

https://www.esrl.noaa.gov/psd/enso/mei
http://www.nerc-bas.ac.uk/icd/gjma/sam.html
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2.5. Trend analysis 

The linear trend in the interannual components of ΔpCO2 and the CO2 flux were calculated on a per pixel basis using the non 150 

parametric Mann-Kendall test (Kendall, 1975; Mann, 1945) and Sen’s Slope estimates (Sen, 1968), which are less sensitive 

to outliers in the timeseries. The input parameter uncertainties (Table 1) were propagated within this trend analysis using a 

Monte Carlo uncertainty propagation (n = 1000) to extract the 95% confidence interval on the trends. The overall trend was 

deemed significant if 95% of the trends were significant (α = 0.05), and the uncertainties in these trends are displayed in 

Appendix B (Fig. B2). 155 

2.6. Limitations 

It should be noted that correlations between the ΔpCO2 and SST/NCP are expected since the SA-FNN estimates pCO2 (sw) 

(the major determinant of ΔpCO2 variability) using SST and NCP as input parameters which are subsequently interpreted as 

drivers here. By extension, but to a lesser extent, this also applies to correlations between CO2 flux and SST/NCP since pCO2 

(sw) is included in the flux calculations. Different lines of evidence suggest that this is not a major limitation of our study. 160 

Firstly, any correlation between ΔpCO2/CO2 flux and SST/NCP is not determined a priori, but is an emerging property of the 

SA-FNN. Therefore, the driver analysis undertaken here represents an indirect decomposition of the SA-FNN drivers rather 

than a strict correlation analysis between independent variables. The accurate representation of seasonal pCO2 (sw) cycles 

across the South Atlantic Ocean (Ford et al., 2022) provides confidence in the SA-FNN. Secondly, conducting the analysis 

described by Henson et al. (2018) using in situ pCO2 (sw) to estimate ΔpCO2 on a per province basis (Longhurst, 1998) for the 165 

South Atlantic Ocean, yielded similar seasonal drivers to the SA-FNN (Appendix A). The interannual drivers displayed 

some differences however, which may be due to the spatial and temporal averaging that is required to construct the in situ 

timeseries. 

3. Results 

3.1. Seasonal drivers of ΔpCO2 and CO2 flux 170 

The X-11 analysis conducted on ΔpCO2 indicated significant seasonal correlations (Fig. 1), when the uncertainties are 

accounted for. The subtropics (10° S to 40° S) showed positive correlations between ΔpCO2, SST and SSS (Fig. 1c, d), as 

well as negative correlations between ΔpCO2, NCP and NPP (Fig. 1a, b). In contrast the subpolar (south of 40° S) and 

equatorial regions (10° N to 10° S) displayed negative correlations between ΔpCO2 and SST (Fig. 1c). Correlations between 

ΔpCO2 and NCP were negative in the subpolar regions and were positive in the Equatorial regions (Fig. 1a). There were no 175 

significant correlations observed between ΔpCO2 and MEI or SAM in any of the regions. 
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Figure 1: Significant Spearman correlations between the ΔpCO2 seasonal component of the X-11 analysis and (a) net community 

production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) 180 
Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components. White regions indicate no 

significant correlations, and green regions indicate no analysis was performed due to missing satellite data. 

 

Regional deviations were observed in the Amazon Plume, Benguela upwelling, the South American coast, and a band across 

40° S. The region under the influence of the Amazon Plume indicated negative correlations between ΔpCO2 and NCP in 185 

contrast to the surrounding waters which had positive correlations (Fig. 1a). The Benguela upwelling displayed positive 

correlations between ΔpCO2 and NCP (Fig. 1a), no significant correlations between ΔpCO2 and SST (Fig. 1c), and negative 

correlations between ΔpCO2 and SSS (Fig. 1e). The South American coast between 12° S and 17° S displayed positive 

correlations between ΔpCO2 and NPP (Fig. 1b), along with negative correlations between ΔpCO2 and SSS (Fig. 1e). 

Negative correlation between ΔpCO2 and SSS, and positive correlations between NCP, NPP and ΔpCO2 were also observed 190 

in the southwestern Atlantic (Fig. 1e). Positive correlations between NCP, NPP and ΔpCO2 were identified in a band across 

40° S (Fig. 1a, b). Performing the X-11 analysis on the CO2 flux revealed similar and comparable correlations to ΔpCO2 

(Fig. 2). Significant driver-flux correlations were observed over a larger area however, compared to ΔpCO2. 
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Figure 2: Significant Spearman correlations between the air-sea CO2 flux seasonal component of the X-11 analysis and (a) net 195 
community production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), 

(e) Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components. White regions indicate no 

significant correlations, and green regions indicate no analysis was performed due to missing satellite data. 

 

3.2. Interannual drivers of ΔpCO2 and CO2 flux 200 

The X-11 analysis identified regionally significant interannual correlations between ΔpCO2 and SST, MEI and to a lesser 

extent NCP and SSS (Fig. 3). The subtropics displayed positive correlations between SST and ΔpCO2, which extended 

across the basin from the South American coast (Fig. 3c). Positive correlations were also observed between the MEI and 

ΔpCO2 (Fig. 3e), with a similar geographic extent as the correlations with SST. In the central South Atlantic gyre spatially 

variable negative correlations between NCP and ΔpCO2, and positive correlations between SSS and ΔpCO2 were observed 205 

(Fig. 3a, d). The central Equatorial Atlantic displayed spatially variable positive correlations between NCP and ΔpCO2, 

which extended south-east towards the African coast (Fig. 3a).  
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Figure 3: Significant Spearman correlations between the ΔpCO2 interannual component of the X-11 analysis and (a) net 

community production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), 210 
(e) Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) interannual components. White regions indicate no 

significant correlations, and green regions indicate no analysis was performed due to missing satellite data. 

 

Significant interannual correlations for the CO2 flux were also identified by the X-11 analysis (Fig. 4), which generally 

covered a larger spatial area to the corresponding ΔpCO2 correlations (Fig. 3). Positive correlations between the CO2 flux 215 

and SST were observed in the subtropics (Fig. 4c), consistent with the correlations with ΔpCO2 (i.e. by comparing Fig. 4c 

and Fig. 3c). Nevertheless, negative correlations between the CO2 flux and SST were observed at the border between the 

equatorial region and subtropics, which was not identified in the ΔpCO2 correlations. Negative correlations between NCP 

and the CO2 flux were also identified over a spatially larger area (Fig. 4a, 3a). Correlations between the MEI and CO2 flux 

were positive in the subtropics (Fig. 4e) and included a band of negative correlations to the south between 35° S and 45° S 220 

(Fig. 4e).  

Positive correlations between NCP and CO2 flux were observed in the western equatorial Atlantic, alongside spatially 

variable negative correlations to SST (Fig. 4a, c). Positive correlations between SSS and CO2 flux were identified in the 

region of the Amazon plume (Fig. 4d). Weak positive correlations between the SAM and CO2 flux were identified between 

30° S and 45° S (Fig. 4f).  225 
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Figure 4: Significant Spearman correlations between the air-sea CO2 flux interannual component of the X-11 analysis and (a) net 

community production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), 

(e) Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) interannual components. White regions indicate no 

significant correlations, and green regions indicate no analysis was performed due to missing satellite data. 230 

3.3. Trends in interannual ΔpCO2 and CO2 flux 

Regions of significant trends in the interannual component of ΔpCO2 were observed (Fig. 5a). Negative trends occurred in 

the South Atlantic gyre. Positive trends in ΔpCO2 were identified along the South African coast, which switched to strong 

negative trends moving offshore into the central South Atlantic gyre. Positive trends were also observed in the Equatorial 

Atlantic consistent with the positions of the Amazon Plume and Equatorial Upwelling. 235 

Regions of significant trends in the CO2 flux were identified (Fig. 5b), but over much larger spatial areas than evident in the 

ΔpCO2 results (i.e. comparing Fig. 5a with 5b). The trends in CO2 flux are generally in the same direction as trends in 

ΔpCO2. Strong positive trends in the CO2 flux occurred in the Benguela upwelling region, before switching to a negative 

trend offshore of similar magnitude but occupying a larger spatial extent.  
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 240 

Figure 5: Linear trends in (a) ΔpCO2 and (b) the air-sea CO2 flux between 2002 and 2018. Hashed areas indicate non-significant 

trends when accounting for the uncertainties. Green regions indicate insufficient data to calculate trends. 

4. Discussion 

4.1. Seasonal drivers of ΔpCO2 and CO2 flux 

Previous studies have explored the seasonal drivers of ΔpCO2 and to a lesser extent the air-sea CO2 flux. In this study, we 245 

investigated the drivers of ΔpCO2 and CO2 flux at both seasonal and interannual timescales in the South Atlantic Ocean. In 

the North Atlantic, Henson et al. (2018) indicated that the seasonal variability in subtropical ΔpCO2 variability is driven by 

SST, whereas the variability in ΔpCO2 in subpolar regions is biologically driven, similar to previous studies (Takahashi et 

al., 2002; Landschützer et al., 2013). The X-11 analysis conducted on spatially complete ΔpCO2 and CO2 flux displayed 

consistent seasonal results (Fig. 1, 2), though for the CO2 flux significant correlations occupied a larger area. These both 250 

indicated a similar pattern in seasonal drivers for the South Atlantic Ocean, with subtropical ΔpCO2 and CO2 flux driven by 

SST, and subpolar correlated with biological controls, although the equatorial region exhibited more complex patterns (Fig. 

1).  

In the Equatorial Atlantic, the correlations between ΔpCO2, SST and biological production were spatially variable (Fig. 1). 

Landschützer et al. (2013) suggested that the temperature and non-temperature (i.e. biological and circulation) drivers 255 

generally compensated each other. We found positive correlations between the NCP, ΔpCO2 and CO2 flux seasonal 

components, indicating that biological activity is likely a key driver of seasonal variability in response to the equatorial 
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upwelling. Ford et al. (2022) showed that the SA-FNN improved the seasonal pCO2 (sw) variability in the Equatorial Atlantic 

compared to the current ‘state of the art’ SOM-FNN methodology (Watson et al., 2020). Elevated ΔpCO2 associated with 

elevated NCP in the eastern Equatorial Atlantic was consistent with the seasonal equatorial upwelling (Radenac et al., 2020). 260 

Parard et al. (2010) indicated strong negative correlations between SST and ΔpCO2 during the upwelling season (R= -0.76 

for June to September), which is also consistent with our results. By contrast, Lefèvre et al. (2016) showed that correlations 

between pCO2 (sw) and SST were weak across the whole year (R= -0.13), and SSS (R = 0.93) was the primary driver at the 

same station. 

In the western Equatorial Atlantic, negative correlations between NCP and ΔpCO2, and positive correlations between the 265 

SSS and ΔpCO2 seasonal component occurred in the vicinity of the Amazon River mouth. The mixing of the Amazon river 

and oceanic water decreases SSS (Ibánhez et al., 2016; Lefèvre et al., 2020; Bonou et al., 2016; Lefévre et al., 2010), and 

increases the nutrient supply to the ocean which can in turn enhance NPP and NCP, leading to a decrease in ΔpCO2 within 

the Amazon plume (Körtzinger, 2003; Cooley et al., 2007). This coupling produces an extensive area of depressed ΔpCO2 

which is a CO2 sink (Ibánhez et al., 2016). Lefèvre et al. (2010) indicated that rainfall from the intertropical convergence 270 

zone could reduce SSS, with an associated decrease in ΔpCO2. The Eastern Tropical Atlantic is also subject to large river 

input, especially from the Congo (Hopkins et al., 2013) and Niger rivers, which could produce nutrient-rich plumes that fuel 

NCP and decrease ΔpCO2 (Lefèvre et al., 2016, 2021). 

Between 30° S and 45° S, dissolved inorganic carbon and SST exert a similar influence on pCO2 (sw), indicating that seasonal 

changes in dissolved inorganic carbon driven by biological uptake in the summer and upwelling in winter are approximately 275 

balanced by seasonal changes in SST and their control on the solubility pump (Henley et al., 2020). This likely explains the 

band of positive correlations between NCP, NPP and ΔpCO2 and sharp transitions in correlations between SST and ΔpCO2 

across ~40° S.  

Deviations from the expected drivers in the subtropics, occurred within the Benguela upwelling system between 20° S and 

35° S. Positive correlations between NCP and the CO2 flux (Fig. 2a) alongside negative correlations between SST, SSS and 280 

the CO2 flux (Fig. 2c, d) are indicative of upwelled waters that have both elevated pCO2 (sw) and nutrients, which cause an 

increase in NPP (Lamont et al., 2014). These upwelled waters move offshore in filaments (Rubio et al., 2009) where NPP 

decreases, and SST becomes the dominant driver, which is confirmed by the positive correlations between SST and the CO2 

flux further offshore. Ford et al. (2021b) indicated a switch in NCP drivers in the Benguela upwelling from wind driven 

upwelling on the shelf, to filaments that propagate offshore from the upwelling front, which is consistent with the switch in 285 

the drivers observed for the CO2 flux as these filaments move offshore.  

At between 12° S and 17 °S along the South American coast, there were also deviations from the expected drivers as there 

were positive correlations between NPP and ΔpCO2 (Fig. 1b) and negative correlations between SSS and ΔpCO2 (Fig. 1d), 

which are consistent with an upwelling signature that occurs along the coast. Aguiar et al. (2018) also showed intense 

seasonal upwelling events in this region that are driven by wind and currents. The southern coast of South America is 290 

strongly influenced by riverine water input that reduces the total alkalinity and therefore causes an increase in pCO2 (sw) 
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(Liutti et al., 2021). This is associated with an increased supply of nutrients which in turn enhances NPP, though the main 

drivers of pCO2 (sw) in this region still remain as total alkalinity and SST (Liutti et al., 2021). This potentially explains the 

positive correlation between ΔpCO2 and both NCP and NPP (Fig. 1a, b), as well as the negative correlations between ΔpCO2 

and SSS. The extension offshore of this negative correlation between SSS and ΔpCO2 (Fig. 1d) could be caused by the 295 

advection of water masses due to intense mesoscale eddy activity arising from the Brazil-Malvinas confluence (Mason et al., 

2017). 

The seasonal correlations between the CO2 flux and the drivers were similar to ΔpCO2, but for CO2 flux these occurred over 

a larger spatial area. The South Atlantic subtropical anticyclone (Reboita et al., 2019) which controls wind speeds across the 

region, and therefore the gas transfer velocity could enhance the CO2 flux into the subtropical ocean, through higher (or 300 

lower) wind speeds in winter (or summer; Xiong et al., 2015). Since seasonal variations in ΔpCO2 largely explain the 

seasonal variability in the CO2 flux ΔpCO2 can be used as a proxy to understand seasonal variations in the CO2 flux in this 

region. 

4.2. Interannual drivers of ΔpCO2 and CO2 flux 

The larger geographic region of significant correlations for the air-sea CO2 flux compared to ΔpCO2, and the consistency 305 

between the two results (i.e. comparing the smaller regions of ΔpCO2 correlations with their equivalent in the flux results; 

Fig. 3, 4) suggests that analysing the CO2 flux is the better dataset to investigate drivers of variations in interannual and 

longer timescales. The results become clearer when analysing the CO2 flux, where the effects of solubility and gas transfer 

(estimated via wind speed proxy) could reinforce correlations and multi-year trends, which will be retrieved by performing 

long timeseries analyses on the CO2 flux. Landschützer et al. (2015) showed that variations in the Southern Ocean carbon 310 

sink were primarily driven by changes in ΔpCO2, when integrating across basin scales. At localised scales of 1° by 1° as 

performed in our analysis, changes in surface turbulence and solubility are shown to be important in determining interannual 

variability, consistent with Keppler and Landschützer (2019). In the North Atlantic Ocean, Henson et al. (2018) showed that 

the seasonal and interannual drivers of ΔpCO2 are different, which could arise from the necessity to study CO2 fluxes over 

longer timescales.  315 

The interannual component of NCP and the CO2 flux were negatively correlated in the subtropical gyre (Fig. 4a), alongside a 

positive correlation between SST and CO2 flux (Fig. 4b). El Niño (La Niña) events are known to influence the South Atlantic 

Ocean, causing an increase (decrease) in SST across the basin (Rodrigues et al., 2015; Colberg et al., 2004), and a decrease 

(increase) in NPP and NCP (Ford et al., 2021b; Tilstone et al., 2015). Positive correlations between the MEI and CO2 flux 

(Fig. 4e) indicate that the MEI partially controls the interannual variability in CO2 flux in the South Atlantic subtropical gyre, 320 

through modulations primarily in SST and to a lesser extent NCP. The South Atlantic Subtropical Anticyclone has been 

observed to strengthen (weaken) and move south (north) during La Niña (El Niño) events. This displacement increases 

(decreases) wind speeds across the subtropical South Atlantic, which will enhance (weaken) gas exchange, and elevate 
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(depress) NCP (Ford et al., 2021b). These results suggest a more significant role of NCP in controlling the interannual 

variability in the CO2 flux than has previously been thought.  325 

The negative correlation between the CO2 flux and the MEI in a band between 30° S and 45° S (Fig. 4e), indicates that 

reduced (elevated) wind speeds that occur during La Niña (El Niño) events in this region, suppress (enhance) the gas 

exchange (Colberg et al., 2004) and therefore acts as a weaker (stronger) CO2 sink. In the equatorial region, neither ΔpCO2 

or the CO2 flux were correlated with the MEI, in sharp contrast with Lefèvre et al. (2013) who showed stronger outgassing of 

CO2 in the western equatorial Atlantic for the year following the 2009 El Niño. In that respect, it should be noted that our 330 

analysis would not identify such lagged correlations. 

The SAM has known meteorological connections to the MEI (Fogt et al., 2011), where El Niño (La Niña) events generally 

coincide with negative (positive) SAM phases, resulting in northward (southward) displacement of the westerly winds in the 

Southern Ocean. Our results showed positive correlations between the CO2 flux and the SAM between 30° S and 45° S (Fig. 

4f) indicating stronger (weaker) CO2 drawdown into the oceans during negative (positive) SAM phases. Although no 335 

significant correlations were found between ΔpCO2 and the SAM (Fig. 3f), the changes in the gas transfer driven by the 

displacement of the westerly winds could control the CO2 flux. It should be noted that the effect of the SAM may be more 

pronounced outside the domain of the present study (i.e south of 45 °S; Keppler and Landschützer, 2019). Landschützer et 

al. (2015) indicated that the SAM is unlikely to be the main driver of changes in the Southern Ocean CO2 flux, but an 

observed zonally asymmetric atmospheric pattern could induce changes in the CO2 flux (Keppler and Landschützer, 2019; 340 

Landschützer et al., 2015). This asymmetric atmospheric pattern, however, may not be captured within the SAM index. 

4.3. Multi-year trends in ΔpCO2 and CO2 flux 

The trends in ΔpCO2 and CO2 flux over 16 years (Fig. 5) showed some similarities to previous trend assessments in the 

South Atlantic Ocean (Landschützer et al., 2016). Our results indicated a lower number of significant trends however, since 

uncertainties in the trend analysis were accounted for. The uncertainties in both the pCO2 (sw) estimates from extrapolation 345 

techniques and the gas transfer velocity are rarely propagated through previous trend analyses. By accounting for these 

uncertainties, the trend analyses provide a robust depiction of regions that can confidently be determined as changing. As 

with the seasonal and interannual analysis, the CO2 flux-based trend analysis showed a greater spatial area of significant 

trends, when compared to ΔpCO2 (Fig. 5).  

The strongest trends in ΔpCO2 and the CO2 flux were observed in the Benguela upwelling system. Arnone et al. (2017) 350 

reported positive trends in in situ pCO2 (sw) of 6.1 ± 1.4 µatm yr-1,  between 2005 and 2015. Assuming an atmospheric CO2 

increase of 1.5 µatm yr-1
 (Takahashi et al., 2002; Zeng et al., 2014), these results are consistent with the ΔpCO2 trends 

observed in this study (1.5 – 3.8 µatm yr-1, Fig. 5a). Arnone et al. (2017) also suggested that the positive trend was due to a 

stronger influence of upwelling (Rouault et al., 2010), which injects CO2 and nutrients into the area that is then not 

completely removed by the enhanced NPP/NCP. Varela et al. (2015) indicated an increase in the strength of the Benguela 355 

upwelling. By contrast, Lamont et al. (2018) showed no significant change in upwelling in the Southern Benguela but 
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increases in the Northern Benguela which are consistent with our data that highlights an increasing efflux of CO2 to the 

atmosphere (Fig. 5b). The CO2 flux trends in this study (0.03 – 0.09 mol m-2 yr-1, Fig. 5b) were also consistent with but 

slightly lower than the 0.13 ± 0.03 mol m-2 yr-1 trend in CO2 flux observed by Arnone et al. (2017). An increase in the 

strength of the upwelling that injects CO2 into the surface layer, will be driven by enhanced (upwelling-conducive) winds, 360 

that also enhance the gas transfer. This highlights the importance of studying multi-year trends using the CO2 flux, because 

the enhancement of these trends by meteorological conditions would not be observed using ΔpCO2 alone. 

Offshore from the upwelling region negative ΔpCO2 and CO2 flux trends were observed. Rubio et al. (2009) showed that 

mesoscale filaments and eddies propagate away from the upwelling front, transporting nutrients offshore into the South 

Atlantic gyre. Ford et al. (2021b) showed negative correlations between sea level height anomalies (SLHA), and NPP/NCP 365 

anomalies (negative SLHA; positive NCP/NPP), indicating an influence of mesoscale features on ΔpCO2 and the CO2 flux. 

Xiu et al. (2018) indicated that an increase in upwelling conducive winds could increase the number of mesoscale eddies, 

which would transport nutrients offshore of the Californian upwelling. Although the Benguela and Californian upwelling 

systems are not identical, these connections could suggest an elevated nutrient export offshore, driving elevated NPP/NCP, 

which would increase the CO2 sink. Kulk et al. (2020) showed significant increases in NPP of ~2 % yr-1
, between 1998 and 370 

2018 in the region of strong negative trends in the CO2 flux observed in this study, which supports the  contribution of NCP 

to multi-year trends in the CO2 flux. 

There were also positive trends in ΔpCO2 and CO2 flux in the Equatorial Atlantic. In the Eastern Equatorial Atlantic, Lefèvre 

et al. (2016) previously suggested a negative trend in in situ ΔpCO2, between 2006 and 2013, but indicated that the trend 

may be biased by extreme events at either end of the record. From 1995 to 2007, Parard et al. (2010) indicated a greater 375 

increase in in situ pCO2 (sw) than pCO2 (atm) (increasing ΔpCO2), but the trend was derived from data from only two research 

cruises. For the Equatorial upwelling, an increase in ΔpCO2 (as shown here and in Landschützer et al., 2016) is counter 

intuitive because there is evidence that upwelled water has recently been in contact with the atmosphere (~15 years; 

Reverdin et al., 1993). Dissolved inorganic carbon in these upwelled waters has been shown to increase at a similar rate to 

the surface waters (e.g Woosley et al., 2016). Therefore, the trend in ΔpCO2 should be ~0 with increasing pCO2 (atm). This 380 

could suggest a missing component within the SA-FNN to estimate pCO2 (sw), such as changes in the biological export 

efficiency (Kim et al., 2019), which could then suppress upwelling induced CO2 outgassing.  

The Western Tropical Atlantic, in the vicinity of the Amazon Plume, also showed positive trends in ΔpCO2 and CO2 flux. 

Previous studies have not investigated the trends in ΔpCO2 or CO2 flux in the Amazon Plume, however the carbon retention 

in a colored ocean site (CARIACO), situated to the northwest, displayed positive trends in pCO2 (sw) of 2.95 ± 0.43 µatm yr-1 385 

(Bates et al., 2014). Araujo et al. (2019) identified a positive trend in pCO2 (sw) of 1.20 µatm yr-1, but a trend in pCO2 (atm) of 

1.70 µatm yr-1 (i.e. decreasing ΔpCO2) for the northeast Brazilian coast, Although, the air-sea CO2 flux and ΔpCO2 within 

the Amazon Plume region is spatially and temporally variable (Valerio et al., 2021; Ibánhez et al., 2016; Bruto et al., 2017). 

The South Atlantic gyre exhibited negative trends in ΔpCO2 and the CO2 flux indicating an increasing drawdown of 

atmospheric CO2 into the ocean, which were consistent with Landschützer et al. (2016) over the period from 1982 and 2011 390 
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though the trends were at the limits of the uncertainties (Fig. B2). Fay and Mckinley (2013) showed weak negative trends in 

ΔpCO2 using in situ observations over different time series lengths. Using an ensemble of complete pCO2 (sw) fields, Gregor 

et al. (2019) indicated negative trends in ΔpCO2 however there was low confidence in these trends especially in the South 

Atlantic gyre. By contrast, Kitidis et al. (2017) reported a mean trend in in situ ΔpCO2 between 1995 and 2013, that was not 

significantly different from zero. These contradictory trends support the conclusion that ΔpCO2 is unlikely to be 395 

representative of the CO2 flux over multi-year timescales. Therefore, we recommend that the CO2 flux should be used to 

assess multi-year variability in the oceanic CO2 sink, as the importance of changes in solubility and gas transfer velocity 

(estimated via wind speed) increases (Keppler and Landschützer, 2019). 

During the United Nations decade of ocean science (2021-2030) , the Integrated Ocean Carbon Research (IOC-R) highlights 

that the role of biology is a key issue to understanding the global ocean CO2 sink (Aricò et al., 2021). The biological 400 

contribution to both interannual and multi-year variations in the South Atlantic air-sea CO2 flux shown in this study, and 

supported by Ford et al. (2022), indicates that the biology activity through NCP cannot be assumed to be in steady state. The 

biological effect of NCP on ΔpCO2 and CO2 flux should therefore not be overlooked when assessing the interannual and 

multi-year variations in the global ocean carbon sink. 

5. Conclusions 405 

In this paper, we have identified the seasonal and interannual drivers of ΔpCO2 and the air-sea CO2 flux in the South Atlantic 

Ocean using satellite observations. Seasonally, our results indicated that the subtropics were controlled by SST, and the 

subpolar regions were correlated with biological processes. Deviations from this trend occurred in the Benguela upwelling 

where predominately biological processes correlated with variability in the ΔpCO2 as well as upwelling. The Equatorial 

Atlantic showed spatially variable drivers associated with the Amazon Plume and Equatorial upwelling which induced a 410 

biological effect. These regions imply a strong biological control on ΔpCO2 through local physical processes. The CO2 flux 

had similar seasonal drivers to ΔpCO2, but with significant correlations over a larger spatial area. This highlights that ΔpCO2 

can be used to indicate the important drivers of the CO2 flux on seasonal timescales, but it is still possible that ΔpCO2 will 

miss some of the spatial correlations and will likely overestimate the strength of these correlations. 

The interannual variability of ΔpCO2 and the CO2 flux was correlated with the MEI through a reduction (increase) of NCP 415 

and increase (decrease) in SST during El Niño (La Niña) events, again highlighting the importance of biology to the 

interannual variability. The CO2 flux response extended over a larger geographical region, indicating that the CO2 flux 

should be used to assess interannual trends in the oceanic CO2 sink, as opposed to a proxy such as ΔpCO2, which may 

overestimate the strength of the correlations and does not include variability in the solubility and the gas transfer velocity 

(estimated via wind speed). The 16 year trends in ΔpCO2 and the CO2 flux were determined with associated uncertainties 420 

which identified negative trends in the CO2 flux in the South Atlantic gyre. Positive trends in the CO2 flux were observed in 

the Benguela upwelling region, which were associated with an increase in the strength and frequency of upwelling. A 
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transition to negative trends offshore were consistent with elevated nutrient export from the upwelling area, and subsequent 

biological drawdown of CO2. These results highlight, that changes in biological activity in the South Atlantic Ocean can 

control the interannual and multi-year trends in the oceanic CO2 flux. This emphasises the importance of biology and 425 

specifically NCP in assessing the global ocean carbon sink. 

Appendices 

Appendix A – Driver analysis using in situ ΔpCO2 

Henson et al. (2018) performed the X-11 analysis using in situ pCO2 (sw) observations to estimate average ΔpCO2 for the 

Longhurst provinces (Longhurst, 1998). The in situ pCO2 (sw) observations were obtained from SOCATv2020 430 

(https://www.socat.info/; Bakker et al., 2016), and were reanalysed to a temperature dataset representative for a consistent 

and fixed depth (Reynolds et al., 2002) which is used to represent the base of the mass boundary layer. The reanalysis 

method used the ‘fe_reanalyse_socat.py’ routine within FluxEngine (Holding et al., 2019; Shutler et al., 2016), which 

follows the methodology of Goddijn-Murphy et al. (2015), and as used in Woolf et al. (2019) and Watson et al (2020). 

ΔpCO2 was calculated using the reanalysed in situ pCO2 (sw) observations and pCO2 (atm). These ΔpCO2 estimates were used 435 

within the driver analysis as described by Henson et al. (2018), using the drivers described in section 2.4, for the South 

Atlantic Longhurst provinces (Longhurst, 1998). The seasonal drivers of in situ ΔpCO2 (Fig. A1) showed a similar spatial 

distribution as the SA-FNN ΔpCO2 (Fig. 1). The interannual drivers (Fig. A2) showed some differences to the SA-FNN (Fig. 

3). The averaging required to produce the in situ ΔpCO2 timeseries may mask interannual signals, and Ford et al. (2021b) 

indicated that averaging over large province areas could mask correlations, especially in dynamic regions, and locally these 440 

correlations may be significant. 

  

https://www.socat.info/
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Figure A1 - Spearman correlations between the in situ ΔpCO2 seasonal component of the X-11 analysis and (a) net community 445 
production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS), (e) 

Multivariate ENSO index (MEI) and (f) Southern Annular Mode (SAM) seasonal components on a per province basis. Hashed 

areas indicate no significant correlations, and green regions indicate no analysis was performed due to missing data. 
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 450 

 

Figure A2 - Spearman correlations between the in situ ΔpCO2 interannual component of the X-11 analysis and (a) net community 

production (NCP), (b) net primary production (NPP), (c) sea surface temperature (SST), (d) sea surface salinity (SSS) (e) 

Multivariate ENSO index (MEI) (f) Southern Annular Mode (SAM) interannual components on a per province basis. Hashed 

areas indicate no significant correlations, and green regions indicate no analysis was performed due to missing data. 455 
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Appendix B – SA-FNN pCO2 (sw) and trend uncertainties 

 

Figure B1 – (a) Mean SA-FNN pCO2 (sw) uncertainty between July 2002 and December 2018. Longhurst provinces (Longhurst, 

1998) used within the SA-FNN training described in Ford et al. (2022; note the WTRA and ETRA are merged into one province). 

The province areas acronyms are listed as follows: WTRA is western tropical Atlantic; ETRA is eastern equatorial Atlantic; 460 
SATL is South Atlantic Gyre; BRAZ is Brazilian current coastal; BENG is Benguela Current coastal upwelling; FKLD is 

Southwest Atlantic shelves; SSTC is South Subtropical Convergence; SANT is sub-Antarctic and ANTA is Antarctic. (b) Standard 

deviation of SA-FNN pCO2 (sw) uncertainty.  
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 465 

Figure B2 – (a) Uncertainty in the ΔpCO2 trends presented in Fig. 5a (b) Uncertainty in the air-sea CO2 flux trends presented in 

Fig. 5b 

Data Availability 

Moderate Resolution Imaging Spectroradiometer on Aqua (MODIS-A) estimates of chlorophyll-a (NASA OBPG, 2017a), 

photosynthetically active radiation (NASA OBPG, 2017b) and sea surface temperature (NASA OBPG, 2015) are available 470 

from the National Aeronautics Space Administration (NASA) ocean colour website (https://oceancolor.gsfc.nasa.gov/). 

Modelled sea surface salinity from the Copernicus Marine Environment Modelling Service global ocean physics reanalysis 

product (GLORYS12V1) are available from CMEMS (CMEMS, 2021). ERA5 monthly reanalysis wind speeds are available 

from the Copernicus Climate Data Store (Hersbach et al., 2019). pCO2 (atm) data are available from v5.5 of the global 

estimates of pCO2 (sw) dataset (Landschützer et al., 2017, 2016). pCO2 (sw) estimates generated by the SA-FNN are available 475 

from Pangaea (Ford et al., 2021a). SOCATv2020 in situ pCO2 (sw) observations (Bakker et al., 2016) are available from 

https://www.socat.info/index.php/version-2020/. 
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