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Abstract. The accumulation of anthropogenic CO2 emissions in the atmosphere has been buffered by the global oceans 

absorbing CO2 and acting as a net CO2 sink. The CO2 flux between the atmosphere and the ocean, that collectively results in 

the oceanic carbon sink, is spatially and temporally variable, and fully understanding the driving mechanisms behind this 

flux is key to assessing how the sink may change in the future. In this study a time series decomposition analysis was applied 10 

to satellite observations to determine the drivers that control the sea-air difference of CO2 partial pressure (ΔpCO2) and the 

CO2 flux on seasonal and interannual time scales in the South Atlantic Ocean. Linear trends in ΔpCO2 and the CO2 flux were 

calculated to identify key areas of change.  

Seasonally, changes in both the ΔpCO2 and CO2 flux were dominated by sea surface temperature (SST) in the subtropics 

(north of 40 o S) and correlated with biological processes in the subpolar regions (south of 40 °S). The Equatorial Atlantic 15 

indicated that biological processes were a key driver, as a response to upwelling and riverine inputs. These results 

highlighted that seasonally ΔpCO2 can act as an indicator to identify drivers of the CO2 flux. Interannually, the SST and 

biological contributions to the CO2 flux in the subtropics were correlated with the Multivariate ENSO Index (MEI) leading 

to a weaker (stronger) CO2 sink in El Niño (La Niña) years.  

The 16-year time-series identified significant trends in ΔpCO2 and CO2 flux, however, these trends were not always 20 

consistent in magnitude or spatial extent. Therefore, predicting the oceanic response to climate change requires the 

examination of CO2 flux rather than ΔpCO2. Positive CO2 flux trends (weakening sink for atmospheric CO2) were identified 

within the Benguela upwelling system, consistent with increased upwelling and wind speeds. Negative trends in the CO2 flux 

(intensifying sink for atmospheric CO2) offshore into the South Atlantic Gyre, were consistent with an increase in the export 

of nutrients in mesoscale features, which drive biological drawdown of CO2. These long-term trends in the CO2 flux indicate 25 

that the biological contribution to changes in the air-sea CO2 flux cannot be overlooked when scaling up to estimates of the 

global ocean carbon sink. 
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1 Introduction 

Since the industrial revolution, anthropogenic CO2 emissions have increased unabated and continue to rise atmospheric CO2 

concentrations (IPCC, 2021). The global oceans have buffered the rise by sequestering CO2 from the atmosphere at a rate 30 

between 1 and 3.5 Pg C yr-1 (e.g. Friedlingstein et al., 2020; Landschützer et al., 2014; Watson et al., 2020). The strength of 

the ocean as a sink for CO2 appears to be increasing with time (Friedlingstein et al., 2020; Watson et al., 2020). Regionally 

this can vary hugely, however and the ocean can oscillate between a source or sink of atmospheric CO2.  The difference in 

the partial pressure of CO2 (pCO2) between the seawater and atmosphere (ΔpCO2) is used as an indicator or proxy, for the 

net direction of air-sea CO2 flux during gas exchange. 35 

In the open ocean, changes in physical and biogeochemical processes that control seawater pCO2 (pCO2 (sw)) also modify 

ΔpCO2 as the atmospheric pCO2 (pCO2 (atm)) is by comparison less variable (e.g. Henson et al., 2018; Landschützer et al., 

2016). ΔpCO2 can therefore be controlled by changes in sea surface temperature (SST) because the solubility of CO2 is 

inversely proportional to the temperature (Weiss, 1974). In addition, plankton net community production (NCP) modifies the 

concentration of CO2 in the seawater depending on the balance between net primary production (NPP; uptake of CO2 via 40 

photosynthesis) and respiration (release of CO2 into the water). The NCP describes the overall metabolic balance of the 

plankton community, where positive (negative) NCP indicates a drawdown (or release) of CO2 from (or into) the water 

contributing to a decrease (increase) in ΔpCO2. Physical processes, including riverine input (e.g. Ibánhez et al., 2016; 

Lefèvre et al., 2020; Valerio et al., 2021), and upwelling (e.g. González-Dávila et al., 2009; Lefèvre et al., 2008; Santana-

Casiano et al., 2009) can alter pCO2 (sw) and ΔpCO2 directly through the entrainment of high-CO2 water or indirectly by 45 

modifying NCP through nutrient supply (enhancing photosynthesis) and or organic material supply (enhancing respiration). 

The air-sea CO2 flux is more precisely a function of the difference in CO2 concentrations across the mass boundary layer 

however, with any turbulent exchange characterised by the gas exchange coefficient. The CO2 concentration difference is 

determined by the pCO2 at the base (pCO2 (sw)) and top (pCO2 (atm)) of the boundary layer and the respective solubilities 

(Weiss, 1974), which must be carefully calculated due to vertical temperature gradients existing across the mass boundary 50 

layer (Woolf et al., 2016). The gas exchange coefficient is usually parameterised as a function of wind speed (e.g. Ho et al., 

2006; Nightingale et al., 2000; Wanninkhof, 2014) which accounts for ~75% of the variance in surface turbulent exchange 

(e,g, Dong et al., 2021; Ho et al., 2006). Therefore, clearly both oceanographic and meteorological conditions are able to 

modify and control the seasonality, interannual variability and long-term trends of this flux.  

Seasonal drivers of ΔpCO2 have been explored globally (Takahashi et al., 2002), and regionally in the Atlantic Ocean 55 

(Henson et al., 2018; Landschützer et al., 2013). Takahashi et al. (2002) binned in situ pCO2 (sw) observations to a 4º by 5º 

grid globally, and reported that SST drives ΔpCO2 in the subtropics, and non-temperature processes (i.e. biological activity 

and ocean circulation) dominate in subpolar and equatorial regions. Landschützer et al. (2013) used a self-organising map 

feed forward neural network (SOM-FNN) technique to extrapolate the in situ pCO2 (sw) observations and reported similar 

seasonal drivers in the Atlantic Ocean with one exception, that temperature and non-temperature processes compensated 60 
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each other in the Equatorial Atlantic. Henson et al. (2018) using binned in situ observations for the North Atlantic Ocean, 

also indicated that the subtropics are driven by SST and that subpolar regions are correlated with biological activity.  

The interannual drivers of ΔpCO2 are different compared to the seasonal drivers in the North Atlantic (Henson et al., 2018), 

which could be true of the South Atlantic Ocean, though this needs to be further investigated. Landschützer et al. (2014, 

2016) postulated the El Niño cycle may influence ΔpCO2 in the subtropical South Atlantic but did not explore the underlying 65 

processes. South of 35° S, Landschützer et al. (2015) indicated that atmospheric forcing could control interannual variability 

of ΔpCO2 through changes in Ekman transport and upwelling. These interannual drivers of ΔpCO2 and the CO2 flux in the 

South Atlantic Ocean are poorly understood but have key implications for determining how the oceanic CO2 sink could be 

impacted by climate change and its evolution over interannual and decadal timescales.  

In this study, we investigate the drivers of ΔpCO2 and the CO2 flux in the South Atlantic Ocean over both seasonal and 70 

interannual timescales using a timeseries decomposition approach. Trends in ΔpCO2 and the CO2 flux were calculated from 

2002 to 2018, and regions in the South Atlantic Ocean showing the greatest change in the CO2 flux are investigated. 

2. Data and Methods 

2.1. pCO2 data 

Satellite estimates of pCO2 (sw) were retrieved from the South Atlantic Feed Forward Neural Network (SA-FNN) dataset 75 

(Ford et al., 2021b, 2022). Ford et al. (2022) showed that the SA-FNN improved on the seasonal pCO2 (sw) variability in the 

South Atlantic Ocean compared to current estimates using the ‘state of the art’ methodology (the SOM-FNN). The SA-FNN 

estimates pCO2 (sw) by clustering in situ monthly 1° gridded Surface Ocean CO2 Atlas (SOCAT) v2020 pCO2 (sw) observations 

(Bakker et al., 2016; Sabine et al., 2013), that have been reanalysed into a dataset configured using consistent depth and 

temperature fields (Goddijn-Murphy et al., 2015; Reynolds et al., 2002; Woolf et al., 2016), into eight static provinces in the 80 

South Atlantic Ocean. The nonlinear relationships between pCO2 (sw) and three environmental drivers; SST, NCP and pCO2 

(atm) were constructed for each province with a feed forward neural network (FNN). The FNN for each province were applied 

to produce spatially and temporally complete pCO2 (sw) fields on monthly 1° grids between July 2002 and December 2018, 

with uncertainties also generated on a per pixel basis as described in Ford et al. (2022).  

Monthly 1º grids of pCO2 (atm) were extracted from v5.5 of the global estimates of pCO2 (sw) dataset (Landschützer et al., 85 

2016, 2017). pCO2 (atm) was estimated using the dry mixing ratio of CO2 from the NOAA-ESRL marine boundary layer 

reference (https://www.esrl.noaa.gov/gmd/ccgg/mbl/; last accessed 25/09/2020), Optimum Interpolated SST (Reynolds et al., 

2002) and sea level pressure following Dickson et al. (2007). ΔpCO2 was calculated from pCO2 (sw) and pCO2 (atm) as;  

ΔpCO2 = pCO2 (sw) – pCO2 (atm)                                                                     (1) 

2.2. Air-sea CO2 flux data 90 

The air-sea CO2 flux (F) can be estimated using a bulk parameterisation as: 
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𝐹 = 𝑘 (𝛼𝑊 𝑝𝐶𝑂2 (𝑠𝑤) − 𝛼𝑠  𝑝𝐶𝑂2 (𝑎𝑡𝑚))                                                                 (2) 

Where k is the gas transfer velocity which was estimated from ERA5 monthly reanalysis wind speed (Hersbach et al., 2019) 

following the parameterisation of Nightingale et al. (2000). αw and αs are the solubility of CO2 at the base and top of the mass 

boundary layer at the sea surface (Woolf et al., 2016). αw was calculated as a function of SST and sea surface salinity (Weiss, 95 

1974) using the monthly Optimum Interpolated SST (Reynolds et al., 2002) and sea surface salinity from the Copernicus 

Marine Environment Modelling Service global ocean physics reanalysis product (GLORYS12V1; CMEMS, 2021). αs was 

calculated using the same temperature and salinity datasets but included a gradient from the base to the top of mass boundary 

layer of -0.17 K (Donlon et al., 1999) and +0.1 salinity units (Woolf et al., 2016). pCO2 (atm) was calculated using the dry 

mixing ratio of CO2 from the NOAA-ESRL marine boundary layer reference, Optimum Interpolated SST (Reynolds et al., 100 

2002) applying a cool skin bias (0.17K; Donlon et al., 1999) and sea level pressure following Dickson et al. (2007).  

All of these calculations along with the resulting monthly CO2 flux were carried out using the open source FluxEngine 

toolbox (Holding et al., 2019; Shutler et al., 2016), for the period between July 2002 and December 2018, assuming ‘rapid’ 

transfer (as described in Woolf et al., 2016). 

2.3. Biological data 105 

The 4 km resolution mean monthly Chl a was calculated from Moderate Resolution Imaging Spectroradiometer on Aqua 

(MODIS-A) Level 1 granules, retrieved from the National Aeronautics Space Administration (NASA) Ocean Colour website 

(https://oceancolor.gsfc.nasa.gov/; last accessed 10/12/2020), using SeaDAS v7.5, and applying the standard OC3-CI 

algorithm for Chl a (https://oceancolor.gsfc.nasa.gov/atbd/chlor_a/; last accessed 15/12/2020). Monthly composites of 

MODIS-A SST (NASA OBPG, 2015) and photosynthetically active radiation (PAR; NASA OBPG, 2017b) were also 110 

downloaded from the NASA Ocean Colour website. Monthly NPP composites were generated from MODIS-A Chl a, SST 

and PAR composites using the Wavelength Resolving Model (Morel, 1991) with the look up table described in Smyth et al. 

(2005). Coincident monthly composites of NCP using the algorithm NCP-D described in Tilstone et al. (2015) were 

generated using the NPP and SST data. Further details of the satellite algorithms are given in O’Reilly et al. (1998), O’Reilly 

and Werdell (2019) and Hu et al. (2012) for Chl a, Smyth et al. (2005), Tilstone et al. (2005, 2009) for NPP and Tilstone et 115 

al. (2015) for NCP. Monthly composites were generated between July 2002 and December 2018 and were re-gridded onto 

the same 1º grid as the pCO2 (sw) and flux data. Ford et al. (2021a) showed that these satellite algorithms for Chl a, NPP, NCP 

and SST are accurate compared to in situ observations in the South Atlantic Ocean following an algorithm intercomparison 

which accounted for model, in situ and input parameter uncertainties.  

2.4. Seasonal and interannual driver analysis 120 

An X-11 analysis (Pezzulli et al., 2005; Shiskin et al., 1967) was performed following the approach described by Henson et 

al. (2018), on a per pixel basis using monthly 1° fields of ΔpCO2 that were estimated from pCO2 (atm) and SA-FNN pCO2 (sw). 

The spatially and temporally varying pCO2 (sw) uncertainty was propagated through the X-11 analysis, using a Monte Carlo 
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uncertainty propagation approach. The input time series were randomly perturbed 1000 times within the uncertainty of each 

pCO2 (sw) estimate, and Spearman correlations calculated for each perturbation. The 95% confidence interval was extracted 125 

from the resulting distribution of correlations coefficients, and results were deemed significant (α < 0.05) where the 

confidence interval remained significant. Spatial autocorrelation was tested using the method of field significance (Wilks, 

2006).  

The potential drivers tested were MODIS-A SST, NCP and NPP alongside three climate indices: the North Atlantic 

Oscillation (NAO), indicating the atmospheric condition over the North Atlantic Ocean, downloaded from 130 

http://www.cgd.ucar.edu/cas/catalog/ (last accessed: 31/12/2019); Multivariate ENSO Index (MEI) as an indicator of El 

Niño Southern Oscillation phases, https://www.esrl.noaa.gov/psd/enso/mei (last accessed: 19/12/2019); Southern Annular 

Mode (SAM) data, which indicate the displacement of the westerly winds in the Southern Ocean, were downloaded from 

http://www.nerc-bas.ac.uk/icd/gjma/sam.html (last accessed: 19/12/2019).  

The X-11 analysis was then conducted on the CO2 fluxes, on a per pixel basis. The pCO2 (sw) and gas transfer uncertainties 135 

were propagated through the flux calculations using the same Monte Carlo uncertainty propagation approach used for 

ΔpCO2. The uncertainty in the gas transfer coefficient was assumed to be ±10% (Woolf et al., 2019). 

It should be noted that correlations between the ΔpCO2 and SST/NCP are expected since the SA-FNN estimates pCO2 (sw) 

(the major determinant of ΔpCO2 variability) using SST and NCP as input parameters which are subsequently interpreted as 

drivers here. By extension, but to a lesser extent, this also applies to correlations between CO2 flux and SST/NCP since pCO2 140 

(sw) is included in the flux calculations. Different lines of evidence suggest that this is not a major limitation of our study. 

Firstly, any correlation between ΔpCO2/CO2 flux and SST/NCP is not determined a priori, but is an emerging property of the 

SA-FNN. Therefore, the driver analysis undertaken here represents an indirect decomposition of the SA-FNN drivers rather 

than a strict correlation analysis between independent variables. The accurate representation of seasonal pCO2 (sw) cycles 

across the South Atlantic Ocean (Ford et al., 2022) provides confidence in the SA-FNN. Secondly, conducting the analysis 145 

described by Henson et al. (2018) using in situ pCO2 (sw) to estimate ΔpCO2 on a per province basis (Longhurst, 1998), 

yielded similar drivers (Appendix A). 

2.5. Trend analysis 

The linear trend in the interannual components of ΔpCO2 and the CO2 flux were calculated on a per pixel basis using the non 

parametric Mann-Kendall test for trend (Kendall, 1975; Mann, 1945) and Sen’s Slope estimates (Sen, 1968), which are less 150 

sensitive to outliers in the timeseries. The pCO2 (sw) and gas transfer coefficient uncertainties were propagated within this 

trend analysis using a Monte Carlo uncertainty propagation (n = 1000) in order to extract the 95% confidence interval on the 

trends. The overall trend was deemed significant if 95% of the trends were significant (α = 0.05). 
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3. Results 

3.1. Seasonal drivers of ΔpCO2 and CO2 flux 155 

The X-11 analysis conducted on ΔpCO2 indicated significant seasonal correlations (Fig. 1), when the uncertainties are 

accounted for. The subtropics (10 °S to 40 °S) showed positive correlations between ΔpCO2 and SST (Fig. 1c), as well as 

negative correlations between ΔpCO2, NCP and NPP (Fig. 1a, b). In contrast the subpolar (south of 40 °S) and equatorial 

regions (10 °N to 10 °S) displayed negative correlations between ΔpCO2 and SST (Fig. 1c). Correlations between ΔpCO2 

and NCP were negative in the subpolar regions and were positive in the Equatorial regions (Fig. 1a). The correlation 160 

between ΔpCO2 and NCP in the equatorial region was greater than between ΔpCO2 and NPP (Fig. 1a, b). There were no 

significant correlations observed between ΔpCO2 and MEI, NAO or SAM in any of the regions. 

 

 
Figure 1: Significant Spearman correlations between the ΔpCO2 seasonal component of the X-11 analysis and (a) net community 165 
production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic Oscillation 

and (f) Southern Annular Mode seasonal components. White regions indicate no significant correlations, and green regions 

indicate no analysis was performed due to missing satellite data. 

 

Regional deviations were observed in the Amazon Plume and Benguela upwelling. The region under the influence of the 170 

Amazon Plume indicated negative correlations between ΔpCO2 and NCP in contrast to the surrounding positive correlations 

(Fig. 1a). The Benguela upwelling displayed positive correlations between ΔpCO2 and NCP (Fig. 1a) and no significant 

correlations between ΔpCO2 and SST (Fig. 1c). Performing the X-11 analysis on the CO2 flux revealed similar and 
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comparable correlations to ΔpCO2 (Fig. 2). Significant driver-flux correlations were observed over a larger area however, 

compared to ΔpCO2. 175 

 

Figure 2: Significant Spearman correlations between the air-sea CO2 flux seasonal component of the X-11 analysis and (a) net 

community production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic 

Oscillation and (f) Southern Annular Mode seasonal components. White regions indicate no significant correlations, and green 

regions indicate no analysis was performed due to missing satellite data. 180 

 

3.2. Interannual drivers of ΔpCO2 and CO2 flux 

The X-11 analysis identified regionally significant interannual correlations between ΔpCO2 and SST, MEI and to a lesser 

extent NCP (Fig. 3). The subtropics displayed positive correlations between SST and ΔpCO2, which extended across the 

basin from the South American coast (Fig. 3c). Positive correlations were also observed between the MEI and ΔpCO2 (Fig. 185 

3d), with a similar geographic extent as the correlations with SST. In the central South Atlantic gyre spatially variable 

negative correlations between NCP and ΔpCO2 were observed (Fig. 3a). The central Equatorial Atlantic displayed spatially 

variable positive correlations between NCP and ΔpCO2 , which extended south- east towards the African coast (Fig. 3a). 
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Figure 3: Significant Spearman correlations between the ΔpCO2 interannual component of the X-11 analysis and (a) net 190 
community production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic 

Oscillation and (f) Southern Annular Mode interannual components. White regions indicate no significant correlations, and green 

regions indicate no analysis was performed due to missing satellite data. 

 

Significant interannual correlations for the CO2 flux were also identified by the X-11 analysis (Fig. 4), which generally 195 

covered a larger spatial area to the corresponding ΔpCO2 correlations (Fig. 3). Positive correlations between the CO2 flux 

and SST were observed in the subtropics (Fig. 4c), consistent with the ΔpCO2 correlations (i.e. by comparing Fig. 4c and 

Fig. 3c). Nevertheless, negative correlations between the CO2 flux and SST were observed at the border between the 

equatorial region and subtropics; a feature that was not identified in the ΔpCO2 correlations. Negative correlations between 

NCP and the CO2 flux were also identified over a spatially larger area (Fig. 4a, 3a). Correlations between the MEI and CO2 200 

flux were positive in the subtropics (Fig. 4d) and included a band of negative correlations to the south between 35 °S and 45 

°S (Fig. 4d).  

Positive correlations between NCP and CO2 flux were observed in the western equatorial Atlantic, alongside spatially 

variable negative correlations to SST (Fig. 4a, c). Weak positive correlations between the SAM and CO2 flux were identified 

between 30° S and 45° S (Fig. 4f), as well as weak negative correlations between the CO2 flux and NAO (Fig. 4e). 205 
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Figure 4: Significant Spearman correlations between the air-sea CO2 flux interannual component of the X-11 analysis and (a) net 

community production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic 

Oscillation and (f) Southern Annular Mode interannual components. White regions indicate no significant correlations, and green 

regions indicate no analysis was performed due to missing satellite data. 210 

3.3. Trends in interannual ΔpCO2 and CO2 flux 

Connected regions of significant positive and negative trends in the interannual component of ΔpCO2 were observed across 

the region (Fig. 5a). Negative trends occurred in the South Atlantic gyre. Positive trends in ΔpCO2 were identified along the 

South African coast, which switched to strong negative trends moving offshore into the central South Atlantic gyre. Positive 

trends were also observed in the Equatorial Atlantic consistent with the positions of the Amazon Plume and Equatorial 215 

Upwelling. 

Connected regions of significant positive and negative trends in the CO2 flux were identified (Fig. 5b), but over much larger 

spatial areas than evident in the ΔpCO2 results (i.e. comparing Fig. 5a with 5b). The trends in CO2 flux are generally in the 

same direction as trends in the ΔpCO2 results, however, the magnitude of the CO2 flux trend is generally of lower magnitude. 

Strong positive trends in the CO2 flux occurred in the Benguela upwelling region, before switching to a similar magnitude 220 

negative trend offshore with a greater spatial extent.  
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Figure 5: Linear trends in (a) ΔpCO2 and (b) the air-sea CO2 flux between 2002 and 2018. Hashed areas indicate non-significant 

trends when accounting for the uncertainties. Green regions indicate insufficient data to calculate trends. 

4. Discussion 225 

4.1. Seasonal drivers of ΔpCO2 and CO2 flux 

Previous studies have explored the seasonal drivers of ΔpCO2 and to a lesser extent the air-sea CO2 flux. In this study, we 

investigated the drivers of ΔpCO2 and CO2 flux at both seasonal and interannual timescales in the South Atlantic Ocean. 

Henson et al. (2018) indicated that seasonal subtropical ΔpCO2 variability in the North Atlantic Ocean was driven by SST 

variability, while ΔpCO2 variability in subpolar regions was biologically driven, similar to previous studies (Landschützer et 230 

al., 2013; Takahashi et al., 2002). The X-11 analysis conducted here on spatially complete ΔpCO2 and CO2 flux displayed 

consistent seasonal results (Fig. 1, 2), although the CO2 flux produced a greater spatial area of significant correlations. These 

both indicated a similar pattern of seasonal drivers in the South Atlantic Ocean, with subtropical ΔpCO2 and CO2 flux driven 

by SST, and subpolar correlated with biological controls, although the equatorial region displayed more complex drivers 

(Fig. 1).  235 

In the Equatorial Atlantic, the correlations between ΔpCO2, temperature and biological production were spatially variable 

(Fig. 1). Landschützer et al. (2013) suggested that the temperature and non-temperature (i.e. biological and circulation) 

drivers generally compensated each other. We found positive correlations between NCP, ΔpCO2 and CO2 flux seasonal 

components, indicating that biological activity was a key driver of seasonal variability in response to the equatorial 

upwelling and highlighting the dominance of non-temperature drivers. Ford et al. (2022) showed that the SA-FNN improved 240 

on the seasonal pCO2 (sw) variability in the Equatorial Atlantic compared to the current ‘state of the art’ SOM-FNN 

methodology (Watson et al., 2020). Elevated ΔpCO2 associated with elevated biological activity in the eastern Equatorial 

Atlantic was consistent with the seasonal equatorial upwelling (Radenac et al., 2020). Parard et al. (2010) indicated strong 

negative correlations between SST and ΔpCO2 during the upwelling season (R2= -0.76 for June to September), consistent 
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with our results. By contrast, Lefèvre et al. (2016) showed that correlations between pCO2 (sw) and SST were weak across the 245 

whole year (R2= -0.13), and sea surface salinity was the primary driver at the same station.  

In the western Equatorial Atlantic, negative correlations between NCP and ΔpCO2 seasonal components occurred in the 

vicinity of the Amazon River mouth. The mixing of the Amazon river and oceanic water decreases sea surface salinity 

(Bonou et al., 2016; Ibánhez et al., 2016; Lefévre et al., 2010; Lefèvre et al., 2020), and increases the nutrient supply to the 

ocean which can enhance NPP and NCP, leading to a decrease in ΔpCO2 within the Amazon plume (Cooley et al., 2007; 250 

Körtzinger, 2003). This coupling produces an extensive area of depressed ΔpCO2 which is a CO2 sink (Ibánhez et al., 2016). 

Lefèvre et al. (2010) indicated that rainfall from the intertropical convergence zone could reduce sea surface salinity, 

increasing CO2 solubility in water, with an associated decrease in ΔpCO2. The Eastern Tropical Atlantic is also subject to 

large river input, especially from the Congo (Hopkins et al., 2013) and Niger rivers, which could produce nutrient-rich 

plumes that fuel NCP and decrease ΔpCO2 (Lefèvre et al., 2016, 2021). 255 

Deviations from the expected drivers in the subtropics, occurred within the Benguela upwelling system between 20 °S and 

35 °S. Positive correlations between NCP and the CO2 flux (Fig. 2a) alongside negative correlations between SST and the 

CO2 flux (Fig. 2c) are indicative of upwelled waters that have both elevated pCO2 (sw) and nutrients, which cause an increase 

in NPP (Lamont et al., 2014). These upwelled waters move offshore in filaments (Rubio et al., 2009) where biological 

activity subsides, and SST becomes the dominant driver, reinforced by positive correlations between SST and the CO2 flux 260 

further offshore. Ford et al. (2021a) indicated a switch in NCP drivers in the Benguela upwelling from wind driven 

upwelling on the shelf, to filaments that propagate offshore from the upwelling front, which is consistent with the switch in 

the drivers observed for the CO2 flux moving offshore.  

The seasonal correlations between the CO2 flux and the drivers were similar to ΔpCO2, but for CO2 flux these occurred over 

a larger spatial area. The South Atlantic subtropical anticyclone (Reboita et al., 2019) which controls wind speeds across the 265 

region, and therefore the gas transfer coefficient, could enhance the CO2 flux into the subtropical ocean, through higher (or 

lower) wind speeds in winter (or summer; Xiong et al., 2015). Comparable results between ΔpCO2 and the CO2 flux, would 

indicate that ΔpCO2 can be used as a proxy to understand seasonal variations in the CO2 flux, because the seasonal variations 

in ΔpCO2 largely explain the seasonal variability in the CO2 flux. 

4.2. Interannual drivers of ΔpCO2 and CO2 flux 270 

The X-11 analytical econometric tool (Shiskin et al., 1967) has been shown to be effective in the decomposition of 

environmental time-series into their seasonal, interannual and residual components (Pezzulli et al., 2005; Vantrepotte & 

Mélin, 2011; Henson et al., 2018). The ability of the seasonal cycle to vary on a yearly basis in the X-11 approach, produces 

an interannual component that results in a robust representation of the longer-term changes in the timeseries.  

The larger geographic region of significant correlations for the air-sea CO2 flux compared to ΔpCO2, and the consistency 275 

between the two results (i.e. comparing the smaller regions of ΔpCO2 correlations with their equivalent in the flux results; 

Fig. 3, 4) suggests that analysing the CO2 flux is the better dataset to investigate drivers of variations in inter-annual and 
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longer timescales. The results become clearer when analysing the CO2 flux, where the effects of solubility and surface 

turbulence (estimated via wind speed proxy) could reinforce correlations and long-term trends, which will be retrieved by 

performing long timeseries analyses on the CO2 flux. Landschutzer et al. (2015) showed that variations in the Southern 280 

Ocean carbon sink were primarily driven by changes in ΔpCO2, which may be the case when integrating across basin scales. 

At localised scales of 1° by 1° as performed in our analysis, changes in surface turbulence and solubility are shown to be 

important in determining interannual variability, consistent with Keppler and Landschützer (2019). Henson et al. (2018) 

showed that the seasonal and interannual drivers of ΔpCO2 were different in the North Atlantic Ocean, which could arise 

from the necessity to study CO2 fluxes over longer timescales.  285 

The interannual component of NCP and the CO2 flux were negatively correlated in the subtropical gyre (Fig. 4a), alongside a 

positive correlation between SST and CO2 flux (Fig. 4b). El Niño (La Niña) events are known to influence the South Atlantic 

Ocean, causing an increase (decrease) in SST across the basin (Colberg et al., 2004; Rodrigues et al., 2015), and a decrease 

(increase) in NPP and NCP (Ford et al., 2021a; Tilstone et al., 2015). Positive correlations between the MEI and CO2 flux 

(Fig. 4d) indicates that the MEI partially controls the interannual variability in CO2 flux in the South Atlantic subtropical 290 

gyre, through modulations primarily in SST and to a lesser extent NCP. The South Atlantic Subtropical Anticyclone has 

been observed to strengthen (weaken) and move south (north) during La Niña (El Niño) events. This displacement increases 

(decreases) wind speeds across the subtropical South Atlantic, which will enhance (weaken) gas exchange, and elevate 

(depress) NCP (Ford et al., 2021a). These results suggest a more significant role of biological activity in controlling the 

interannual variability in the CO2 flux than previously thought.  295 

The negative correlation between the CO2 flux and the MEI in a band between 30° S and 45° S (Fig. 4d), indicates that 

reduced (elevated) wind speeds that occur during La Niña (El Niño) events in this region, suppress (enhance) the gas 

exchange (Colberg et al., 2004). In the equatorial region, neither ΔpCO2 or the CO2 flux were correlated with the MEI, in 

sharp contrast with Lefevre et al. (2013) who showed stronger outgassing of CO2 in the western equatorial Atlantic for the 

year following the 2009 El Niño. In that respect, it should be noted that our analysis would not identify such lagged 300 

correlations. 

The SAM has known meteorological connections to the MEI (Fogt et al., 2011), where El Niño (La Niña) events generally 

coincide with negative (positive) SAM phases, resulting in northward (southward) displacement of the westerly winds in the 

Southern Ocean. Our results showed positive correlations between the CO2 flux and the SAM between 30° S and 45° S (Fig. 

4e) indicating stronger (weaker) CO2 drawdown into the oceans during negative (positive) SAM phases. Although no 305 

significant correlations were found between ΔpCO2 and the SAM (Fig. 3e), the changes in the gas transfer driven by the 

displacement of the westerly winds could control the CO2 flux. Landschützer et al. (2015) indicated that the SAM is unlikely 

to be the main driver of changes in the Southern Ocean CO2 flux, but an observed zonally asymmetric atmospheric pattern 

could induce changes in the CO2 flux (Keppler and Landschützer, 2019; Landschützer et al., 2015). This asymmetric 

atmospheric pattern, however, may not be captured within the SAM index. 310 

https://doi.org/10.5194/bg-2022-54
Preprint. Discussion started: 21 March 2022
c© Author(s) 2022. CC BY 4.0 License.



13 
 

4.3. Long term trends in ΔpCO2 and CO2 flux 

The trends in ΔpCO2 and CO2 flux over 16 years (Fig. 5) showed some similarities to previous trend assessments in the 

South Atlantic Ocean (Landschützer et al., 2016). Our results indicated a lower number of significant trends however, since 

uncertainties in the trend analysis were accounted for. The uncertainties in both the pCO2 (sw) estimates from extrapolation 

techniques and the gas transfer coefficient are rarely propagated through previous trend analyses. By accounting for these 315 

uncertainties, the trend analyses provide a robust depiction of regions that can confidently be determined as changing. As 

with the seasonal and inter-annual analysis, the CO2 flux-based trend analysis showed a greater spatial area of significant 

trends, when compared to ΔpCO2, while regions also showed differing magnitudes between the ΔpCO2 and the CO2 flux 

trends (Fig. 5).  

The strongest trends in ΔpCO2 and the CO2 flux were observed in the Benguela upwelling system. Arnone et al. (2017) 320 

reported positive trends in in situ pCO2 (sw) of 6.1 ± 1.4 µatm yr-1,  between 2005 and 2015. Assuming an atmospheric CO2 

increase of 1.5 µatm yr-1
 (Takahashi et al., 2002; Zeng et al., 2014), these results are consistent with the ΔpCO2 trends 

observed in this study (1.5 – 3.8 µatm yr-1, Fig. 5a). Arnone et al. (2017) also suggested that the positive trend was due to a 

stronger influence of upwelling (Rouault et al., 2010), which injects CO2 and nutrients into the upwelling system, that are not 

completely removed by enhanced NPP/NCP. Varela et al. (2015) indicated an increase in the strength of the Benguela 325 

upwelling. By contrast, Lamont et al. (2018) showed no significant change in upwelling in the Southern Benguela but 

increases in the Northern Benguela which are consistent with our data highlighting an increasing efflux of CO2 to the 

atmosphere (Fig. 5b). The CO2 flux trends in this study (0.03 – 0.09 mol m-2 yr-1, Fig. 5b) were also consistent with a 0.13 ± 

0.03 mol m-2 yr-1 trend in CO2 flux observed by Arnone et al. (2017). An increase in the strength of the upwelling that injects 

CO2 into the surface layer, will be driven by enhanced (upwelling-conducive) winds, that also enhance the gas transfer. This 330 

highlights the importance of studying long-term trends using the CO2 flux, because the enhancement of these trends by 

meteorological conditions would not be observed by using ΔpCO2. 

Offshore from the upwelling region negative ΔpCO2 and CO2 flux trends were observed. Rubio et al. (2009) showed that 

mesoscale filaments and eddies propagate away from the upwelling front, transporting nutrients offshore into the South 

Atlantic gyre. Ford et al. (2021a) showed negative correlations between sea level height anomalies (SLHA), and NPP/NCP 335 

anomalies (negative SLHA; positive NCP/NPP), indicating an influence of mesoscale features on ΔpCO2 and the CO2 flux. 

Xiu et al. (2018) indicated that an increase in upwelling conducive winds could increase the number of mesoscale eddies, 

which would transport nutrients offshore of the Californian upwelling. Although the Benguela and Californian upwelling 

systems are not identical, these connections could suggest an elevated nutrient export offshore, driving elevated NPP/NCP, 

which would increase the CO2 sink. Kulk et al. (2020) showed significant increases in NPP of ~2 % yr-1
, between 1998 and 340 

2018 in the region of strong negative trends in the CO2 flux observed in this study, that would reinforce the important 

biological contribution to long-term trends in the CO2 flux. 
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The Equatorial Atlantic also indicated positive ΔpCO2 and CO2 flux trends. Lefèvre et al. (2016) suggested a negative trend 

in in situ ΔpCO2, between 2006 and 2013, in the Eastern Equatorial Atlantic but indicated that the trend may be biased by 

extreme events at either end of the record. Parard et al. (2010) indicated a greater increase in in situ pCO2 (sw) than pCO2 (atm) 345 

(increasing ΔpCO2) between 1995 and 2007, however this trend was derived from only two cruises. An increase in ΔpCO2 is 

counter intuitive for the Equatorial upwelling where ΔpCO2 would in theory decrease with increasing pCO2 (atm), assuming a 

constant deep water CO2 concentration. This could suggest a missing mechanism within the SA-FNN to estimate pCO2 (sw), 

such as changes in the biological export efficiency (Kim et al., 2019), which could suppress upwelling induced CO2 

outgassing.  350 

The Western Tropical Atlantic, in the vicinity of the Amazon Plume, also showed positive ΔpCO2 and CO2 flux trends. 

Previous studies have not investigated the ΔpCO2 or CO2 flux trends in the Amazon Plume, however the carbon retention in 

a colored ocean site (CARIACO), situated to the northwest, displayed positive trends in pCO2 (sw) of 2.95 ± 0.43 µatm yr-1 

(Bates et al., 2014). Although, the air-sea CO2 flux and ΔpCO2 within the Amazon Plume region is spatially and temporally 

variable (Bruto et al., 2017; Ibánhez et al., 2016; Valerio et al., 2021). 355 

The South Atlantic gyre showed negative trends in ΔpCO2 and the CO2 flux indicating an increasing drawdown of 

atmospheric CO2 into the ocean, which were consistent with Landschützer et al. (2016) over the period from 1982 and 2011. 

Fay and Mckinley (2013) showed weak negative trends in ΔpCO2 using in situ observations over different time series 

lengths. Gregor et al. (2019), with an ensemble of complete pCO2 (sw) fields, indicated negative trends in ΔpCO2 however 

there was low confidence in these trends especially in the South Atlantic gyre. In contrast, Kitidis et al. (2017) reported a 360 

mean trend in in situ ΔpCO2 that was not significantly different from zero between 1995 and 2013. These contradictory 

trends support the conclusion that ΔpCO2 is unlikely to be representative of the CO2 flux on interannual timescales. 

Therefore, we recommend that the CO2 flux should be used to assess long-term variability in the oceanic CO2 sink, as the 

importance of changes in solubility and surface turbulence (estimated via wind speed) increases. 

The Integrated Ocean Carbon Research (IOC-R) highlights the role of biology in the global ocean CO2 sink, and how it is 365 

changing as a key issue (Aricò et al., 2021) to address with the onset of the United Nations decade of ocean science (2021-

2030). The biological contribution to interannual and long-term variations in the South Altantic air-sea CO2 flux shown in 

this study, and reinforced by Ford et al. (2022), indicates that the biology in the oceans cannot be assumed to be in steady 

state. Therefore, the biological effect on ΔpCO2 and CO2 flux should not be overlooked when assessing the interannual and 

long-term variations in the global ocean carbon sink. 370 

5. Conclusions 

In this paper, we have identified the seasonal and interannual drivers of ΔpCO2 and the air-sea CO2 flux in the South Atlantic 

Ocean using satellite observations. Seasonally, our results indicated that the subtropics were controlled by SST, and the 

subpolar regions were correlated with biological processes. Deviations from this trend occurred in the Benguela upwelling 
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where predominately biological processes correlated with the ΔpCO2 variability, alongside upwelling. The Equatorial 375 

Atlantic showed spatially variable drivers associated with the Amazon Plume and Equatorial upwelling which induced a 

biological effect. These regions imply a strong biological control on ΔpCO2 through local physical processes. The CO2 flux 

had similar seasonal drivers to ΔpCO2, but with significant correlations over a larger spatial area. This highlights that ΔpCO2 

can be used to indicate the important drivers of the CO2 flux on seasonal timescales, but it’s still possible that ΔpCO2 will 

miss some of the spatial correlations and will likely overestimate the strength of any correlations. 380 

Interannual variability of ΔpCO2 and the CO2 flux was correlated with the MEI through a reduction (increase) of NCP and 

increase (decrease) in SST during El Niño (La Niña) events, highlighting the important biological contribution to interannual 

variability. The CO2 flux responses extended over a larger geographical region, indicating that the CO2 flux should be used 

to assess interannual trends in the oceanic CO2 sink, as opposed to a proxy such as ΔpCO2, which may overestimate the 

strength of correlations and not include variability in the solubility and the gas transfer (estimated via wind speed). The 16 385 

year trends in ΔpCO2 and the CO2 flux were determined with associated uncertainties which identified negative trends in the 

CO2 flux in the South Atlantic gyre. Positive trends in the CO2 flux were observed in the Benguela upwelling region, 

associated with an increase in the strength and frequency of upwelling. A transition to negative trends offshore were 

consistent with elevated nutrient export from the upwelling front, and subsequent biological drawdown of CO2. These results 

highlight that changes in biological activity within the South Atlantic Ocean control the interannual and long-term trends in 390 

the oceanic CO2 flux, and reinforce the importance of biology when assessing the global ocean carbon sink. 

Appendices 

Appendix A – Driver analysis using in situ ΔpCO2 

Henson et al. (2018) performed the X-11 analysis using in situ pCO2 (sw) observations to estimate average ΔpCO2 for the 

Longhurst provinces (Longhurst, 1998). The in situ pCO2 (sw) observations were obtained from SOCATv2020 395 

(https://www.socat.info/; Bakker et al., 2016), and were reanalysed to a consistent temperature and depth dataset (Reynolds 

et al., 2002) using the ‘fe_reanalyse_socat.py’ package within FluxEngine (Holding et al., 2019; Shutler et al., 2016), which 

follows the methodology of Goddijn-Murphy et al. (2015). ΔpCO2 was calculated using the reanalysed in situ pCO2 (sw) 

observations and pCO2 (atm). These ΔpCO2 estimates were used within the driver analysis as described by Henson et al. 

(2018), using the drivers described in section 2.4, for the South Atlantic Longhurst provinces (Longhurst, 1998). The 400 

seasonal drivers of in situ ΔpCO2 (Fig. A1) showed a similar spatial distribution as the SA-FNN ΔpCO2 (Fig. 1). The 

interannual drivers (Fig. A2) showed some differences to the SA-FNN (Fig. 3). The averaging required to produce the in situ 

ΔpCO2 timeseries may mask interannual signals, and Ford et al. (2021a) indicated that averaging over large province areas 

could mask correlations, especially in dynamic regions, and locally these correlations may be significant. 
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 405 

Figure A1 - Spearman correlations between the in situ ΔpCO2 seasonal component of the X-11 analysis and (a) net community 

production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic Oscillation 

and (f) Southern Annular Mode seasonal components on a per province basis. Hashed areas indicate no significant correlations, 

and green regions indicate no analysis was performed due to missing data. 

 410 

Figure A2 - Spearman correlations between the in situ ΔpCO2 interannual component of the X-11 analysis and (a) net community 

production, (b) net primary production, (c) sea surface temperature, (d) Multivariate ENSO index, (e) North Atlantic Oscillation 
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and (f) Southern Annular Mode interannual components on a per province basis. Hashed areas indicate no significant 

correlations, and green regions indicate no analysis was performed due to missing data. 
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