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Abstract. Efforts to develop effective climate mitigation strategies for agriculture require methods to estimate nitrous oxide 

(N2O) emissions from soil. Process-based biogeochemical models have been used for such estimations but were mainly 10 

tested with field-scale measurements. In this study, results from a short-term (43-day) factorial incubation experiment were 

used to investigate the ability of a process-oriented model (CoupModel) to estimate N2O and carbon fluxes, and soil mineral 

nitrogen (N) dynamics. This study identified the sensitivities of model parameters when estimating three output variables 

using a global sensitivity analysis approach. Our results suggested that important parameters regarding N2O flux estimates 

were linked to the decomposability of soil organic matter (e.g. organic C pool sizes) and the denitrification process (e.g. 15 

Michaelis constant and denitrifier respiratory rates). The model was able to simulate low-magnitude daily and cumulative 

N2O fluxes with model errors (MEs) close to zero, but tended to underestimate N2O fluxes as observed daily values 

increased over 0.1 g N m-2 day-1. Besides, the response of N2O emissions to soil moisture was not well reflected in the 

model, probably related to the indirect involvement of soil moisture response function in the denitrification process. We also 

evaluated ancillary variables regarding N cycling, which indicates that more frequent measurements and additional types of 20 

observed data such as soil oxygen content and the microbial sources of emitted N2O are required to further evaluate model 

performance and biases. The current description of the N cycling process in the model may not consistently represent the 

temporal scale of nitrification and denitrification processes behind N2O emissions. The major challenges for calibration are 

associated with high sensitivities of denitrification parameters to initial soil moisture abiotic conditions and residue 

amendment. For the development of process-based models, we suggest there is a need to address soil heterogeneity, and to 25 

revisit current subroutines of moisture response functions.  

1 Introduction 

The potent greenhouse gas nitrous oxide (N2O) has been estimated to be responsible for about 7 % of the overall global 

radiative forcing by long-lived greenhouse gases (World Meteorological Organization, 2021). N2O emissions from the 

agricultural sector account for 60-70 % of the total anthropogenic emissions of this gas (Davidson and Kanter, 2014; Syakila 30 
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and Kroeze, 2011). To provide a scientific basis for developing achievable climate mitigation strategies, improved 

understanding of N2O production in agricultural soils and quantification of N2O emissions are urgently needed.  

N2O emissions from agricultural soils are driven by a suite of microbiological processes among which nitrification and 

denitrification predominate as sources of N2O. The factors directly regulating nitrification and denitrification activity are the 

availability of mineral nitrogen (N), oxygen, and degradable carbon (C) sources used by denitrifying organisms (Wijler and 35 

Delwiche, 1954). Indirect controls include soil temperature, moisture, pH, and soil texture. During nitrification, where 

ammonia (NH3, at equilibrium with ammonium NH4
+) is oxidized to nitrate (NO3

-), a small proportion of N may be lost as 

N2O (Firestone and Davidson, 1989). Nitrification mainly occurs in well-aerated soils with moderate water content (Goreau 

et al., 1980; Li et al., 1992; Parton et al., 1996). In contrast, denitrification is a microbial process that occurs under anaerobic 

conditions where NO3
- is reduced to gaseous N. Soil C substrates are electron donors for denitrification, but they are also a 40 

sink for oxygen that leads to anaerobic microsites (Sommer et al., 2004), and finally NO3
- is used as electron acceptors. 

Nitrifying and denitrifying bacteria are most active to produce N2O in environments with abundant N relative to assimilatory 

demands by other microorganisms or plants (Firestone and Davidson, 1989), as is often the case following input of 

fertilizers, manure, or crop residues to the soil.  

Farming practices influence the potential for interactions between microbial, physical, and chemical processes in the soil. 45 

Incorporation of crop residues can reduce NH3 losses and enhance degradation compared to leaving residues at the soil 

surface, but the increased soil water holding capacity and oxygen demand locally may stimulate the development of 

anaerobic microsites and bacterial denitrification activity (Kravchenko et al., 2018; Kuzyakov and Blagodatskaya, 2015). 

Mechanical disturbance via tillage may influence soil properties (e.g. porosity, aggregate size distribution, solute and gas 

diffusivities) and microbial enzyme activities, with subsequent changes in the magnitude of N2O emissions (Grandy and 50 

Robertson, 2006).  

The quantification of N2O emissions from agroecosystems is constrained by logistical challenges and resource availability 

(e.g. analytical equipment and budgets). Process-oriented biogeochemical models, e.g. DNDC (Li et al., 1992), DayCent 

(Parton et al., 1996), APSIM (Keating et al., 2003), and CoupModel (Jansson and Moon, 2001), have been developed to 

partly compensate for these limitations. In the application of process-based models, available in-situ measurements can be 55 

used to infer model parameters and allow simulation of soil N transformations and N2O emissions at temporal and spatial 

scales beyond the monitoring sites, but accurately simulating the magnitude and temporal variability of N2O fluxes under 

contrasting contexts still poses a challenge. Those models may provide reasonable estimates of N2O emissions from soils in 

a narrow context, usually at specific sites and at annual time scales, but they become less successful at finer time resolution 

(e.g. diurnal time steps) and at sites different from the pre-calibrated ones. This represents a barrier in evaluating the effects 60 

of agricultural land use and management on greenhouse gas emissions (Brilli et al., 2017). Such model errors are often 

attributed to physical and biogeochemical processes being inadequately represented, which calls for the improvement of 
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process descriptions beyond parameter optimization (Abdalla et al., 2010; Brilli et al., 2017; Gaillard et al., 2018; Uzoma et 

al., 2015). 

Process models attempt to reproduce the most relevant physical and biogeochemical processes through understanding 65 

grounded in the best available theory at the time they were developed, after which some new empirical adjustments were 

gradually added. CoupModel, used in the current investigation, has a high level of detail on soil physical and abiotic 

components and has adopted details of submodules of nitrification, denitrification, and gas fluxes from the DNDC model (Li 

et al., 2000; Norman et al., 2008). The description of N2O emissions, including the links between soil environmental factors 

and biological reactions, is based on a series of hypotheses and results generated from both field measurements and 70 

laboratory incubations studies (Li et al., 2000), and the algorithms and parameterization of microbial growth and death 

dynamics were specifically supported by the latter. While our understanding regarding decomposition and denitrification has 

advanced in recent decades, the incorporation of state-of-the-art knowledge into process-based models has lagged behind. To 

test the description of N2O emissions, it is necessary to apply the model to results from properly controlled laboratory 

experiments, where the impact of ill-defined pedo-climatic conditions on model predictability can be minimized (Brilli et al., 75 

2017). This may reveal causal relationships behind gas production and transport in a microcosm representing the ecosystem, 

and suggest new paths for model development. 

The application of process-based models has often been challenged by the paucity of prior information and measurements 

compared to the model’s demands, and this is also the case when applying a model to incubation experiments. One widely-

used model calibration method to bridge the gap between model requirements and available data, and to quantify parameter 80 

uncertainties, is “generalized likelihood uncertainty estimation (GLUE)” (Beven and Binley, 1992). During model 

calibration, uncertainty analysis can help assess whether the model performance is good enough compared to the 

requirement of the applied use of the model, and to evaluate possible biases in simulations (U.S. Environmental Protection 

Agency, 2009). This may be facilitated by applying a Global Sensitivity Analysis (GSA), which can rank the sensitivities of 

parameters so that the model calibration can focus on the relatively more sensitive parameters (Vezzaro et al., 2012), and 85 

thereby the model’s uncertainties can be more efficiently constrained. While model processes and performance have been 

extensively documented, in many studies N2O emissions alone were used to train and test the subroutines of nitrification and 

denitrification (Chen et al., 2008). Evaluation under controlled conditions and with ancillary measurements is noticeably 

lacking, which makes it difficult to identify model structure limitations. Thus, a first step in understanding model 

performance may be an evaluation using new datasets that contain different variables linked to N cycling based on targeted 90 

laboratory experiments. To our knowledge, no previous study has attempted a systematic sensitivity and uncertainty analysis 

in the prediction of N2O emissions based on laboratory incubation results. 

For this work, we selected CoupModel which has integrated options for uncertainty estimation and performance evaluation 

(Jansson, 2012). It has a flexible setting of soil layer thickness down to a scale of mm, which is proper to study soil physical 
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processes at the scale of incubation experiments. Data sets used in the model were obtained from a 43-day laboratory 95 

incubation using a factorial-based design with various crop residue practices and abiotic factors (Taghizadeh-Toosi et al., 

2021). Specifically, our objectives were (i) to conduct a global sensitivity analysis for parameters in a model setup that can 

simulate N cycling under different incubation treatments (ii) to calibrate the model and quantify the uncertainty in the 

estimates of N2O emissions, and (iii) to discuss any model limitations identified and suggest directions for future model 

improvement. We hypothesized that the model is able to simulate the daily and cumulative N2O emissions under contrasting 100 

environments in incubated soil cores. Furthermore, we hypothesized that it would be difficult to constrain the parameters of a 

complex model to an unambiguous solution with limited laboratory measurements. 

2 Materials and methods 

2.1 Laboratory incubation experiment 

In spring 2018, soil used for the experiment was collected from the 0-20 cm tilled layer at the Lönnstorp Field Station, 105 

Sweden. Red beets had been grown in the previous year with no cover crop during winter. The soil is sandy loam (61.8 % 

sand, 22.4 % silt, and 15.8 % clay) with a pH of 6.18, C content of 15 g kg-1, and N content of 1.49 g kg-1. After collection, 

the soil was partially dried, stored at –20 °C, and thawed one day before sieving and use for the experiment.  

Treatments were prepared with four different soil conditions regarding the moisture level (i.e. 40 or 60 % WFPS) and nitrate 

content (i.e. no nitrate addition or addition of KNO3 to 100 mg NO3
--N kg-1 dry wt. soil). Soil cores were prepared by 110 

stepwise packing 1 cm layers of soil to a density of 1.25 g cm-3 in cylinders to the height of 8 cm, at each step adding 

deionized water or a KNO3 solution. The soil treatments were pre-incubated for one week at 15 °C. The experiment involved 

two different crop residues, red clover (RC) and winter wheat (WW). RC residues had a C/N ratio of 17.9, and a moisture 

level corresponding to 80 % of the fresh weight. The WW residues had a C/N ratio of 90.9, and the moisture content 

corresponded to 20 % of the fresh weight. WW residues had  a higher proportion of lignin and ash (11.7 %) than RC residues 115 

(5.1 %). In the experiment, RC or WW residues were either mixed at a rate of 0.04 g DM cm-2 into the soil from 0-4 cm 

depth and then repacked, or residues were placed as a layer at 4 cm depth; only results from the mixed treatments were used 

in the present study. Incubations with RC and WW took place sequentially, and therefore each residue treatment had its own 

set of unamended controls. Thus, in total 16 treatments from the incubation experiment were used for this modeling study, 

including unamended soils (as controls) and soil-residue mixtures from either red clover or winter wheat.  120 

All cylinders were covered at both ends with perforated plastic caps and incubated at 15 °C for up to 43 days. Gas sampling 

for N2O and CO2 flux measurements took place ten times, i.e., on day 1, 3, 6, 9, 13, 16, 22, 29, 36, and 43. Gas 

concentrations were determined by gas chromatography. Additionally, nitric oxide (NO) fluxes were quantified in four 

selected treatments set up separately. Soil mineral N pools in all treatments were measured at four destructive samplings 
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after 1, 6, 22, and 43 days of incubation. Further details about the experimental treatments, preparations, and analytical 125 

methods are given by Taghizadeh-Toosi et al. (2021). 

2.2 Model description and simulation setup 

2.2.1 CoupModel 

This study used CoupModel v6.1, which can be downloaded from http://coupmodel.com. A detailed description of 

CoupModel can be found in Jansson & Karlberg (2010). The main structure of the model is a one-dimensional vertical soil 130 

profile with user-defined layer thickness and subdivisions. The current setup of CoupModel includes a number of 

components, of which the following are linked to N2O emissions (Fig. 1): (i) soil organic matter (SOM) decomposition and 

mineralization; (ii) nitrification and nitrifier growth; (iii) denitrification and denitrifier growth; and (iv) gas diffusion 

between soil layers and internal exchange of N trace gases between aerobic and anaerobic micro-sites. In the nitrification 

subroutine, CoupModel accounts for response functions of soil temperature, soil moisture, mineral N concentration, and pH. 135 

For denitrification, each step in the chain of denitrification is explicitly calculated, and denitrifier activity is directly 

influenced by soil temperature, pH, nitrogen oxides and anaerobic fraction. The anaerobic soil volume fraction is calculated 

using the “anaerobic balloon” concept, as implemented in the DNDC model (Li et al., 2000; Norman et al., 2008).  

 

https://doi.org/10.5194/bg-2022-56
Preprint. Discussion started: 17 March 2022
c© Author(s) 2022. CC BY 4.0 License.



6 

 

Figure 1: A conceptual diagram of major C and N processes in the current setup of CoupModel. The details of parameters and 140 

equations in each C or N process can be found in Table S2. 

2.1.2 Simulation settings 

The modeled soil profile consisted of a single soil layer with a depth of 4 cm for the control treatments and 4.2 cm for the 

mixed treatments, allowing a 2 mm increment owing to residue amendment as observed in the experiment. We only 

simulated the upper half of the 8 cm soil core since the model only allows external gas exchange at the upper boundary of 145 

the soil profile, although in the experiments both ends of the cylinder were exposed to air and the two halves were identical 

for control soils. For the water process, it was assumed that there was no evaporation from the surface and no vertical water 

flow across the lower boundary. Constant temperature was set for the upper and lower boundaries, in accordance with 

incubation conditions. The model was initialized based on the measured soil water content, temperature, pH, total organic C 

and N, and NO3
--N, and NH4

+-N of the incubated soil cores. The dynamics of SOM dynamics were simulated with first-order 150 

kinetics using three pools (litter1, litter2, and humus). Considering there were no explicit pools designed for crop residue 

addition, we assigned the rapidly decomposable SOM and metabolic residue materials (e.g. sugars and proteins) to litter1, 

the moderately decomposable SOM and structural residue materials (e.g. lignin and other fibers) to litter2, and the resistant 

SOM to humus. For simulating gas transport, we selected the steady-state mode where the oxygen content within the soil 

profile is a trade-off between soil oxygen consumption and diffusive supply from surface air, and N trace gases are directly 155 

lost to the ambient air from the layer in which they are generated. 

Calibration datasets – Measurements used for model calibration were N2O flux, CO2 flux, NO flux, NO3
--N content, and 

NH4
+-N content. As the gas fluxes and mineral N content in the upper part with soil-residue mixtures and the lower part with 

bulk soil were not analyzed separately, we assumed that soil C and N turnover in the lower, unamended part was identical to 

that of control treatments to create datasets for the residue-amended part for modeling. Specifically, the amounts of mineral 160 

N and gas fluxes recorded on individual sampling days in the controls were divided by two and subtracted from the values 

recorded in residue-amended soil.  

Initial values – (1) Mineral N: Since the mineral N content in the unamended control soil changed little during incubation 

and the mineral N content in crop residues was negligible, the initial NH4
+-N and NO3

--N values for the control and residue-

amended treatments were taken as the measurement in control soil on day 1. (2) Soil moisture: For the control treatments, the 165 

initial volumetric water content was calculated from the water-filled pore space (WFPS) levels of 40 or 60 % according to 

the total porosity of 0.53. For the residue treatments, the initial volumetric water content was calculated from the moisture 

content of soil and crop residues (Taghizadeh-Toosi et al., 2021). (3) Organic matter pools: The partitioning of soil organic C 

between litter1, litter2, and humus was defined by the ratio 0.02:0.54:0.44 (Gijsman et al., 2002). For crop residues, the 

metabolic fraction of organic C was calculated from the lignin/N ratio: Metabolic fraction = 0.85 - 0.013 (lignin/N) (Gijsman 170 
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et al., 2002), and hence the organic C allocation between litter1 and litter2 had a ratio of 0.82:0.18 for RC and 0.55:0.45 for 

WW. The allocation of organic N in different pools followed the pattern of C and the C/N ratios (Table S5).  

A summary of calibration data sets can be found in Table S1 in the supplement, in which cumulative gas emissions were 

estimated by linearly interpolating between sampling dates and integrating the area under emission curves; and average 

mineral N were calculated by dividing the integrated values by the sampling period. The results for nitrate in soil cores with 175 

residues were not included due to high uncertainty in the calculations that was probably caused by solute transport between 

the unamended and amended soil layers, as observed in a related incubation experiment using some of the same soil and 

residue treatments conducted by Lashermes et al. (2021).  

2.3 Model sensitivity and uncertainty analysis 

2.3.1 Global sensitivity analysis 180 

Given uncertain prior information, the study used Morris screening (Morris, 1991) for a global sensitivity analysis to identify 

the most important input parameters and process parameters affecting N2O fluxes. We included seven input parameters 

related to the characteristics of soil and crop residues (i.e. soil porosity, residue porosity, soil pH, and sizes of organic C 

pools), with realistic ranges of uncertainty intervals considered. Besides, we considered 45 process parameters involved in 

the relevant model processes. These parameters are listed in Table S4.  185 

The Morris screening method is a commonly used sensitivity analysis technique, based on an efficient sampling strategy for 

performing a randomized calculation of one-factor-at-a-time (OAT) sensitivity analysis. This method can be viewed as a 

compromise between a simple OAT approach and the more complex GSA methods (e.g. variance-based approaches) as it 

provides a good approximation to the global sensitivity measure of the parameters at an affordable computational cost. 

Furthermore, it was considered excessive and unnecessary in the present study to adopt a more detailed analysis given the 190 

limited data availability. 

The elementary effect (EE) was estimated by comparing the variation of the model’s output 𝑦𝑗, with the variation of a given 

parameter 𝜃𝑖, according to Eq. (1). The number of iterations n was set to 50, and the optimal perturbation factor ∆ was set to 

2/3 by dividing the input space into four levels (Morris, 1991). To allow comparison across outputs, the EE was then 

standardized by using the standard deviation of the model factor and the standard deviation of the output (SEE, Eq. (2)). The 195 

significance of the impact of parameters was tested by comparing the mean of the SEE of those parameters to twice the 

standard error (sem, Eq. (3)) (Sin et al., 2009). If the input factor lies outside this range, it is said to have a significant effect 

on the output. The codes used in the analysis were adapted from (Sin et al., 2009). 
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The GSA was performed to the model-evaluation measure root mean square error (RMSE) for three variables: N2O flux, 

CO2 flux, and soil NH4
+ which had relatively complete measurement data sets. By applying the sensitivity analysis to the 200 

likelihood measure, the main factors that drive the model runs with a good fit to data could be identified (Ratto et al., 2001). 

The results from sensitivity analyses were further used to identify process parameters for inclusion in the uncertainty 

analysis due to their contribution to output variability. 

2.3.2 Uncertainty analysis 

Model calibration was conducted separately for each of the 16 treatments to give more flexibility in model parameterization. 205 

The calibration was carried out with reference to five measurement variables, namely N2O flux, CO2 flux, NH4
+ content, 

NO3
- content, and NO flux (only four treatments), using the “generalized likelihood uncertainty estimation” (GLUE) 

technique (Beven and Binley, 1992). The GLUE method does not seek the single best fit to the measured data but utilizes an 

ensemble of model simulations that represent equally good results using informal likelihood measures, often mentioned as 

acceptance criteria. In this study, we first described the entire ensemble of model runs as prior runs and after applying 210 

selection criteria the selected ensemble of model runs was analyzed as posterior runs or behavioral runs. Based on the 

calculated sensitivity indices from Morris screening, a total of 26 process parameters were selected for calibration where the 

parameters with marginal SEEs were omitted and only one denitrifier growth parameter was kept in each step of the 

denitrification chain (see Table S4). These parameters were uniformly or log-uniformly distributed within the predefined 

ranges, from which 20,000 parameter sets were then randomly sampled for model runs. Out of these runs, whether a 215 

parameter set was accepted or not was based on the defined criteria, which in this study consisted of coefficient of 

determination, R2 and mean error, ME. The latter is defined as ME = E (Oi - Si), where Si and Oi are the time series of the 

simulated and observed data.  

The ME acceptance threshold of each variable was set to be around the average of daily measurements taking into account 

the different magnitudes of each variable (see Table S3). In prior runs ME values were often skewed to one side (above 0 or 220 

below 0) while setting the same threshold on both sides rejected most of the prior model runs, and hence the ME criterion on 

one side might be looser than the other. For N2O emissions with marked peak fluxes, a combination of R2 and ME was used 

for the selection of posterior parameters to simulate the dynamics and magnitudes. An ensemble of ca. 50 posterior runs was 
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selected with an acceptance rate of 0.25% based on prior simulations. The uncertainties of model predictions were quantified 

within the limits and posterior probability distributions of parameters.  225 

Finally, to investigate whether the treatment effects concerning soil moisture and nitrate level could be represented by a 

common parameterization, we attempted to calibrate process parameters against combined data sets from multiple treatments 

where measurements from every four treatments with the same residue application were pooled. The prior parameter 

ensembles used the same 20,000 parameter sets as the single-treatment calibration. Accordingly, the measurement datasets 

from the four treatments in each group were pooled and thus a larger data set for model evaluation was obtained. The 230 

procedure of selecting behavioral runs followed the aforementioned approach based on ME and R2. A diagram that describes 

the analysis workflow for this study is presented in Fig. 2.  

 

 Figure 2: A schematic diagram for performing sensitivity and uncertainty analyses. 

3 Results 235 
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3.1 Sensitivity analysis 

The results of Morris screening were evaluated by comparing the absolute SEE concerning N2O flux, CO2 flux, and soil 

NH4
+ for individual treatments. Figure 3a-c lists all parameters ranking in the top five across the 16 treatments. Parameter 

ranking was performed based on the absolute mean of SEEs – the higher the absolute value, the more important the 

parameter is, as shown by the shade of color in Fig. 3a-c. In general, the parameters identified as most influential for soil 240 

respiration (CO2 flux) and NH4
+ content showed robustness across treatments as they differed only slightly in their ranking 

with, respectively, eight and nine different parameters represented. In contrast, more inter-treatment variation was found in 

the parameter ranking for N2O emissions with 18 different parameters represented. For N2O, the parameters exhibiting 

relatively high SEE values for most treatments belonged to categories of SOM decomposition and denitrification (Table S2), 

including deffNO, SOCh, dgrowthNO3, cnm, and dhrateNxOy. The model input, SOCh, characterizing the partitioning of SOM pools in 245 

the simulation, was found to be crucial in 13 out of 16 treatments. deffNO represents the respiration of denitrifying bacteria 

based on NO, and it showed relatively large elementary effects for almost all treatments by directly regulating the reduction 

step from NO to N2O. The parameter dgrowthNO3 describes the loss of NO3
- from the anaerobic nitrogen pool due to microbial 

growth. dhrateNxOy represents the N concentration for half rate in the denitrification process and is also known as the Michaelis 

constant of the enzyme (see n13, n15, n17, n19, and n20 in Fig. 1).  250 

Parameters that had the greatest impact on CO2 emissions were concentrated in the following: SOCh, SOM decomposition 

rates (kl2, kl1,) and the corresponding efficiencies (fe,l2, fe,l1). In addition, the two parameters, pθLow and θwilt, controlling the 

lower limit of the soil moisture response function for the decomposition of organic matter (see Eq. (5.86) in Table S2), 

exhibited distinct influences for the treatments at the lower moisture level.  

The main processes influencing the NH4
+ content of the soil were identified as SOM decomposition and denitrification, and 255 

influential parameters included: cnm, SOCh, kl2, and fe,l2. The C/N ratio of microbes, cnm, has an influence on the mineral N 

content by changing the magnitude and direction of soil mineralization/immobilization of nitrogen (see n1-n7 and n11 in Fig. 

1). It was also found that soil porosity (θs) had significant effects on some treatments, especially under higher moisture 

conditions. Besides, as a key intermediate of mineral nitrogen turnover, the content of NH4
+, was also influenced by 

denitrification-related parameters, such as dgrowthNO3. 260 

The average elementary effects across all treatments are shown in Fig. 3d-f. For the N2O flux, all parameters were located 

inside the wedge indicating that none of these parameters showed a significant effect across all treatments despite their 

significance in individual treatments. In contrast, we found that the other two variables, CO2 flux, and NH4
+ content, were 

significantly affected by 15 and 28 parameters respectively. Moreover, all parameters showed non-linear effects on the 

outputs as revealed by their non-zero standard deviations, which suggested that simulated C and N processes did not solely 265 

depend on individual parameters but also their interactions.  
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Figure 3: Sensitivity analyses for N2O flux, CO2 flux, and soil NH4
+ content in all treatments. (a-c): Heatmaps that include all 

parameters ranked in the top five places for each treatment based on absolute standardized elementary effects (SEEs). (d-f): 

Estimated mean and standard deviation of SEEs averaged across the 16 treatments, where the two lines drawn in each subplot 270 
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correspond to twice the standard error (sem): μi = ± 2semi (see Sect. 2.3.1): if a factor is located inside the wedge, it indicates that 

its impact on the output is insignificant and vice versa. 

3.2 Uncertainty analysis 

3.2.1 Temporal dynamics of N2O flux, CO2 flux, and mineral N 

In the experimental treatments with RC amendment, N2O emission rates were consistently low at 40 % WFPS but were 275 

markedly higher and peaked on day 3 at 60 % WFPS (Fig. 5a). The highest measured daily N2O flux was 1.4 g N m-2 day-1 in 

the RC treatment with NO3
- addition at 60 % WFPS. Similar patterns were observed for CO2 emission rates, with emission 

peaks at an early stage of incubation (day 1 or day 3) and then followed by a decline. In treatments amended with WW, N2O 

evolution rates were generally low compared to those with RC amendment, and showed higher rates at 60 % WFPS and in 

NO3
- amended soil but treatment effects were generally minor. For CO2 evolution, higher rates were detected by day 1, but 280 

there was also a secondary peak after 1-2 weeks. The control treatments of the WW residue incubations showed less CO2 and 

N2O release compared to the control treatments of the preceding RC incubations. 

The prior models generally showed significantly biased mean errors in terms of gas emissions and soil mineral N, and their 

magnitude was reduced in the posterior models for most model outputs (Fig. 4a-d). For N2O fluxes, most treatments 

amended with WW and corresponding controls did not show significant deviations from the observed fluxes. In contrast, in 285 

treatments amended with RC and corresponding controls, though the absolute MEs had been reduced, there were still 

significant deviations generally in the direction of underestimating the observed fluxes. For CO2 emissions, 13 out of 16 

treatments showed reduced mean errors in the behavioral models and half of the treatments showed insignificant deviations 

from the observed fluxes. For soil NH4
+ content, there was a severe overestimation for most prior models, but this was 

alleviated by posterior models, and seven treatments showed insignificant deviations from 0 after model calibration. For soil 290 

NO3
- content in control treatments, the ME ranges of posterior runs were around zero while negative or positive biases 

existed especially the former. The simulated evolution of associated variables is depicted in Fig. 5a-d and results are 

summarized below.  

N2O  ̶  The accepted simulations (Fig. 5a) were able to represent the scenarios with low daily N2O emissions (10-5-10-2 g N 

m-2 day-1), while simulations failed to capture the large emission peaks (e.g. 1.4 g N m-2 day-1 and 0.13 g N m-2 day-1 for the 295 

two RC treatments with NO3
- amendment), or the emission dynamics were reasonably simulated (e.g. R2 > 0.4, see Table S3) 

but the peak values were lower than observed. The N2O fluxes obtained from the model tended to increase over time and 

generally agreed with the observed fluxes in the second part of the experiment.  

CO2  ̶  Overall, the behavioral models mimicked the measured dynamics and magnitude of CO2 emissions well (Fig. 5b). 

There were overestimations or underestimations by the model, most pronounced in the early stage of incubation. By day 14, 300 

a second peak of respiration was observed for the WW treatments that was not simulated by posterior models.  
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NH4
+  ̶  For RC residue treatments, net N mineralization was observed from the early to mid-stage of the incubation period, 

followed by a declining trend, whereas in the posterior models in three of four treatments the simulated NH4
+ predicted a 

trend of net N mineralization throughout the incubation (Fig. 5c). Such a continuously increasing trend also existed in the 

prior runs, which would not be radically altered in the behavioral models by setting a stricter selection criterion for R2. For 305 

WW residue and control treatments the measured NH4
+ content was at the detection limit, and the magnitude of the 

simulated NH4
+ content was either in line with the measurements, or a bit higher.  

NO3
-  ̶  The change of simulated daily NO3

- content generally showed a declining trend for all control treatments, with 

modeled values comparable to observed data. While in most of the control treatments except for the ones with high moisture 

and NO3
- amendment, the observed NO3

- levels remained stable or slightly increased during incubation (Fig. 5d). For the 310 

treatments amended with crop residues, the simulated NO3
- content showed a more clear downward trend throughout the 

period, consistent with NO3
- being utilized as a substrate of denitrification in the simulation. Though no explicit 

measurement of NO3
- within the residue-amended layer in the present experiment, the average NO3

- within the entire soil 

core in RC treatments showed net consumption followed by a rebound (Taghizadeh-Toosi et al., 2021), consistent with 

observations for the RC-amended layer in a comparable incubation experiment by Lashermes et al. (2021). In view of this, 315 

the simulated NO3
- content in residue treatments exhibiting a continuous decline was probably lower than the actual values.  
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Figure 4: Comparison of the ME ranges between prior simulations and accepted simulations for daily N2O fluxes (a), CO2 fluxes 

(b), soil NH4
+ content (c), and soil NO3

- content (d). Blue color shows ME values not significantly different from zero by one-sample 

t-tests (significance level α = 0.05). Treatment indices 1-4 represent treatments of mix RC, 5-8 for control RC, 9-12 for mix WW, 320 

and 13-16 for control WW, where treatment conditions are, in order: “40% WFPS, -NO3
-”, “40% WFPS, +NO3

-”, “60% WFPS, -

NO3
-”, and “60% WFPS, +NO3

-”. No measured data for nitrate in residue treatments. 

 

 

Figure 5: Simulated and measured daily N2O fluxes (a), CO2 fluxes (b), soil NH4
+ content (c), and soil NO3

- content (d) during the 325 

43-day incubation. Scatter points represent measured data; and triangles with dashed lines represent simulated data (error bar: 

95 % confidence interval). Daily measurements presented were re-calculated from the data provided by Taghizadeh-Toosi et al. 

(2021). 
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3.2.2 Cumulative gas fluxes and average mineral N content 

Model predictions of cumulative N2O fluxes and CO2 fluxes for the 16 treatments were significant and strongly correlated 330 

with the observed fluxes (Fig. 6 and Table 1). For N2O, there was a bias towards underestimation of high cumulative N2O 

fluxes (slope bias β1 = 0.17, ME = -0.23). Estimate of slope in linear regression for cumulative CO2 flux approached β1 = 1 

indicating there was no consistent bias. For the average NH4
+ and NO3

- content, the estimated slopes were close to unity, and 

the deviations between prediction and measurement, signified by the relative RMSEs (rRMSEs), were 46 and 11 %, 

respectively. For the average NH4
+ content in the low range, simulated values were found to overestimate the measured data 335 

(Fig. 6c).  

 

Figure 6: Simulated and measured cumulative N2O fluxes (a), CO2 fluxes (b), average NH4
+ content (c), and average soil NO3

- 

content (d) during the 43-day incubation (error bar: 95 % confidence interval). Reference lines with a slope of 1.0 are shown on the 

graphs. 340 

 

Table 1: Model evaluation of cumulative gas fluxes and average mineral N content from single-treatment calibration procedure and multi-

treatment calibration procedure. The mean values of posterior models were compared with the observed data for 16 treatments. Units are 

valid for the statistics of ME and RMSE. 
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Cumulative N2O emission 

(g N m-2 ) 

Cumulative CO2  

emission (g C m-2 ) 

Average NH4
+ content 

(g N m-2) 

Average NO3
-  content  

(g N m-2) 

Calibration Single-

treatment 

Multi-

treatment 

Single-

treatment 

Multi-

treatment 

Single-

treatment 

Multi-

treatment 

Single-

treatment 

Multi-

treatment 

ME  -0.23 0.10 -3.07 4.66 0.03 0.12 -0.11 -1.10 

RMSE 0.82  0.71  17.2 12.1 0.06 0.50 0.41 0.50 

rRMSE 275 %  238 %  34 % 24 % 46 % 411 % 11 % 14 % 

Slope, β1 0.17 0.56 0.93a 0.97a 1.15 2.13a 1.07a 1.08a 

Intercept, β0 0.02 0.23 0.64 6.16 0.01 -0.01 -0.36 -0.53 

R2 0.96 0.47 0.84 0.93 0.98 0.50 0.98 0.98 

a Values are not significantly different from one by one-sample t-tests (significance level α = 0.05).  345 

A regression of simulated cumulative N2O flux residuals against observed data confirmed that underestimations were 

strongly (R2 = 0.92) associated with the magnitude of observed N2O fluxes (Fig. S1a). The negative slope of the regression 

indicated an underestimate of 0.83 g N2O-N for every 1 g of observed N2O-N per square meter. A regression of simulated 

cumulative N2O flux residual against the residuals of other variables revealed that underestimations were not strongly 

associated with the residuals of simulated NH4
+ and NO3

- (Fig. S1c and d). However, we observed that clustering of residuals 350 

concerning mineral N existed in which underestimations of cumulative N2O flux tended to occur when soil NH4
+ was 

overestimated and when soil NO3
- was underestimated. Specifically, residuals for cumulative N2O flux and soil NO3

- were 

simultaneously underestimated in 53 % of the posterior runs as revealed by scatter points falling in the third quadrant; and 

underestimations of N2O flux were accompanied by overestimations of soil NH4
+ in 41 % of the posterior runs by looking at 

scattering points in the fourth quadrant. When only the subset of control treatments was analyzed, the clustering patterns 355 

became even more apparent (Fig. S2c and d).  

3.2.3 Calibration by multiple treatments 

Increasing the number of calibration treatments led to reduced uncertainty but, meanwhile, poor performances of posterior 

models for some treatments (Fig. 7). Cumulative N2O fluxes were better simulated for the treatments with higher observed 

fluxes in each group, especially treatments at 60 % WFPS, but were overestimated for others with low observed fluxes. The 360 

regression between the mean simulated and measured N2O flux only accounted for 47 % of the variation in the data, much 

lower than the level of 96 % in the single-treatment calibration procedure (Table 1). Simulated CO2 and NO3
- were generally 

close to the observed data. In the same group, simulated CO2 fluxes were not different between two levels of NO3
- input but 

depended on the level of moisture. Simulated soil NH4
+ showed a good agreement with the measured data in the low range 

of NH4
+ content, but had large model deviations for the four RC residue treatments, in which the R2 was 0.50 in contrast to 365 

0.98 in the single-treatment calibration procedure (Table 1). 
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Figure 7: Simulated and measured cumulative N2O fluxes (a), CO2 fluxes (b), average NH4
+ content (c), and average soil NO3

- 

content (d) during the 43-day incubation (error bar: 95 % confidence interval). Simulated results were obtained from multi-

treatment calibration. Reference lines with a slope of 1.0 are shown on the graphs. 370 

3.2.4 Simulated oxygen status and N2O sources 

Simulated oxygen content in the soil cores was close to that of the ambient air, with the modeled volumetric oxygen content 

ranging from 19.5 % to 20 % throughout the incubation period for all treatments (Table S7). Still, according to the model, 

denitrification-derived N2O accounted for 76-100 % of the total emissions on average (Table S7).  

In simulations, the 0-4 cm soil layer was treated as one uniform compartment, and this could have influenced model 375 

predictions. To investigate whether increasing the vertical resolution could improve the model performance, the soil profile 

was uniformly divided into five layers. The results showed that underestimations of high N2O fluxes still existed after this 

change in the vertical representation of the model (Table S6). The simulated soil oxygen profiles were still predominantly 

aerobic for all treatments, as the single-layer model, but showed stratification over depth as depicted in Fig. 8. The oxygen 

level was the lowest at the beginning of incubation and then showed an increase over the period studied, mirroring the trends 380 
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of CO2 flux. Despite the overall aerobic conditions in the soil, the large proportion of denitrification-derived N2O emissions 

was accompanied by the rapid growth of denitrifier biomass (data not shown). 

 

Figure 8: Simulated O2 content and volumetric anaerobic fraction by the multi-layer model for the treatment with the greatest soil 

respiration rate (i.e. RC treatment with NO3
- addition at 60 % WFPS). The mean daily values from posterior runs were used here.  385 

3.2.5 Calibrated parameters 

Although the number of parameters used for calibration had been reduced by Morris screening, more than half of the 26 

calibrated parameters still exhibited random distributions within the predefined ranges (Fig. S4). The many potential inter-

correlations may be the reason that these parameters could not be constrained to an unambiguous solution. But five 

parameters were showing marked variability in their posterior distributions between treatments as depicted in Fig. 9, where 390 

the prior ranges of these parameters are indicated in the ordinate.  

In most treatments, the parameter dhrateNxOy representing the N concentration for half rate in the denitrification process and 

also known as the Michaelis constant of the enzyme, was well constrained at the lower range of the parameter boundary 

within 50 mg N L-1 in contrast to the mean of 250 mg N L-1 in the prior range. A low dhrateNxOy relative to the physical 

concentration of NO3
- resulted in a pronounced response of denitrifying bacteria activity to substrate availability (see Eq. 395 

(6.44) in Table S2). In some treatments which had no NO3
- addition, i.e. treatment 3, 7, 9, and 13, the parameter showed 

more diffused distribution and higher medians compared to other treatments. An enzyme with high dhrateNxOy relative to the 

concentration of substrate is not normally saturated with substrate and thus the rate of formation of product is substrate-

limited. 
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In more than half of the treatments, the posterior distribution of cnm, the microbial C/N ratio (cnm) involved in calculations of 400 

mineralization and immobilization, was concentrated around 10 on average. However, for some NO3
- amended treatments 

which usually had higher N2O emission rates, i.e. treatments 4, 6, 10, 12, and 14, the distribution of calibrated microbial C/N 

ratio was not well constrained but similar to the prior distribution with medians up to 20.  

The parameter representing the rate coefficient for the decay of the litter carbon pool, kl1 generally showed higher values in 

WW treatments than controls, and its range for the high nitrate RC treatment at 60% WFPS (treatment 4) was markedly 405 

higher than other treatments, indicating the faster decomposition of labile organic matter. Besides, the efficiency of NO-

based denitrifier respiration, deffNO, showed a low-range distribution for treatment 4. Low deffNO values induced a high 

respiration rate of denitrifiers for carrying out NO reduction (see Eq. (6.47) in Table S2). This treatment also exhibited a 

low-range distribution of the efficiency of SOM decomposition, fe,l1, associated with a high fraction of CO2 production.  

 410 

Figure 9: Variability in five calibrated parameters among the 16 treatments. The boxplots show the 25 % and 75 % percentiles as 

the tops and bottoms of the boxes, and the medians as the bold lines. Treatment indices 1-4 represent treatments of mix RC, 5-8 

for control RC, 9-12 for mix WW, and 13-16 for control WW, where treatment conditions are, in order: “40% WFPS, -NO3
-”, 

“40% WFPS, +NO3
-”, “60% WFPS, -NO3

-”, and “60% WFPS, +NO3
-”. 
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4 Discussion 415 

4.1 Sensitivity analysis 

The sensitivity analyses, investigating the impact of parameter uncertainties on model predictions, revealed the importance 

of parameter interactions and connections between different processes in the model (Fig. 3a-f). Compared with CO2 

emissions and soil NH4
+ content, N2O emissions were controlled by a larger number of parameters related to decomposition 

and denitrification processes and had generally lower SEEs. According to Fig. 3a, the sizes of humus and litter pools and 420 

their decomposition rates were critical in reducing the uncertainty of simulating N2O emissions. These results highlight the 

importance of reliable information on the initial state of the soil with respect to the composition and recalcitrance of organic 

matter pools where part of the organic matter within the soil cores could be fresh input from residues. The results confirm the 

findings of previous experimental and modeling studies showing the importance of substrate heterogeneity for 

decomposition and denitrification processes (Brilli et al., 2017; Eusterhues et al., 2003; Sierra et al., 2011). However, some 425 

other studies (Dungait et al., 2012; Schmidt et al., 2011) indicate that the chemical structure of organic molecules alone may 

not control their stability in soil, instead environmental and biological controls (e.g. accessibility of the SOM to 

decomposers, abiotic reactions, and desorption) predominate the SOM turnover especially in the longer term.  

In our model simulations, C and N in crop residues were allocated to two labile pools, but the allocation ratio did not greatly 

influence N2O emissions, soil respiration, or mineral N. This could be related to the fact that the overall C/N ratio of crop 430 

residues was kept constant as the sizes of organic matter pools changed in the sensitivity analysis. The influence of crop 

residues on N2O emissions may be better reflected in other residue properties, e.g., the C/N ratio and solubility of individual 

substrates (Aulakh et al., 1991; Surey et al., 2020). Furthermore, it should be noted that addition of labile carbon from crop 

residues does not affect the decomposition of native soil organic matter in the model (i.e., no priming effect), as the 

decomposition of organic matter in labile and recalcitrant pools are calculated separately in CoupModel, similar as in other 435 

process-based models. The omission of a priming effect, the importance of which has been shown in field and laboratory 

studies (Kuzyakov, 2010), may cause models to underestimate the effects of crop residue composition on the turnover of soil 

C and N.  

On the other hand, denitrifier growth parameters (e.g. deffNO, dgrowthNO3) showed considerable influence on the release of N2O 

in most treatments (Fig. 3a). Our results suggested that the influences of microbial activities on N2O emissions varied 440 

between different denitrification steps, and the denitrifier respiration for NO reduction showed a relatively larger and broader 

impact across treatments than other steps. The analysis of the two statistical measures σ and μ suggested that, rather than a 

single factor driving the model to become more ‘behavioral’ in predicting N2O emissions, the collective effects of multiple 

parameters were more important, because one single parameter could exhibit various SEEs as other parameters changed, 

represented by high variability (σ) compared to the mean (μ) in Fig. 3d. In calibrating complex models, several combinations 445 

of different parameter values might give the same goodness-of-fit between model outputs and  measured variables, which is 
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defined as equifinality (Beven and Freer, 2001). The model sensitivity to such parameters is probably attenuated in the case 

of high-level equifinalities. Besides, the importance of parameter interaction structure associated with equifinality could 

hinder the constraint of parameters and hence the reduction of uncertainty in N2O simulations when limited measurement 

data are available. For instance, the fraction of C mineralized to CO2, characterized by (1-fe,l1), and the decay rate of litter1 450 

(kl1), have a product interaction regarding the production of CO2 (see Eq. (6.3) and Eq. (6.4) in Table S2). Also, the 

denitrifier growth rates (e.g. dgrowthNO3) and the Michaelis constant characterized by dhrateNxOy influence the loss of N from 

anaerobic N pools by invoking microbial growth via a quotient interaction (see Eq. (6.41) and Eq. (6.44) in Table S2).  

The parameters found to have the greatest impact on soil respiration and NH4
+ content were associated with SOM 

composition (SOCh) and decomposability (kl1, kl2, fe,l1, fe,l2), suggesting that model uncertainty for soil respiration and soil 455 

NH4
+ could be greatly reduced if data for either SOM composition or decay rates were available. For simulating soil NH4

+, 

information about microbial C/N ratio (cnm) and denitrifier growth parameters (e.g. dgrowthNO3) is also important, because the 

availability of soil mineral N is closely associated with decomposition dynamics and its consumption by immobilization, 

nitrification, and denitrification (Lashermes et al., 2022). The influences of soil porosity and wilting point on CO2 emissions 

and soil NH4
+ content were larger under, respectively, wet and dry conditions. The results can be explained by the fact that 460 

soil porosity and wilting point are key set points of the soil moisture response function controlling the upper and lower 

bounds of the function, which implies that the measurement of soil hydraulic properties could reduce model uncertainty 

under contrasting soil moisture levels. 

4.2 Model performance and possible explanations for deviations 

Overall, the performance of posterior models varied between estimated variables and treatments. The timing and magnitude 465 

of peak N2O emissions were more difficult to predict than those of CO2 emissions even though parameters had been adjusted 

for individual treatments, and negative errors relative to observations were seen particularly when simulating high N2O 

emissions. Evaluation of model bias with respect to the slope β1 in linear regression demonstrated a tendency across 

treatments to increasingly underestimate cumulative N2O flux as the observed flux increased. The problem of 

underestimating high N2O fluxes by process-oriented models has been reported in previous studies. For example, Fang et al. 470 

(2015) showed that four different algorithms all underestimated the four highest cumulative N2O fluxes among eight N 

fertilizer treatments in an irrigated cornfield. Also, Gaillard et al. (2018) evaluated the simulated N2O flux from three 

process-oriented models (DNDC, DayCent, and EPIC) and reported an underestimation of 0.01-0.93 kg N2O-N ha-1 for 

every 1 kg of observed N2O-N ha-1 across models.  

Residual analysis revealed that the model had a tendency to simultaneously underestimate NO3
- and overestimate NH4

+ when 475 

N2O emission was underestimated, and this trend was even more pronounced when looking at control treatments only (Figs. 

S1 and S2). This suggests the nitrification rates may have been underestimated by the model and calls for revisiting the 

parameterization of the nitrification process. The simulated accumulation of NH4
+ in the RC residue treatments, in contrast to 
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the transient NH4
+ peaks observed (Fig. 5c), indicates that the modeled NH4

+ release linked to decomposition was greater 

than the NH4
+ consumption by microbial immobilization and nitrification simulated. Nylinder et al. (2011) showed that a low 480 

nitrification rate simulated by the CoupModel was possibly the reason for the overestimation of the amount of soil NH4
+ in a 

model of an organic cropping system. In our study, however, the weak and insignificant relationship between N2O flux 

residuals and the residuals for mineral N indicates that N2O underestimation at high flux ranges may be due to other factors.  

Inaccurate estimation of proximal factors such as soil water content and temperature by the pedo-climatic subroutines has 

been a main cause of errors in simulating C and N emissions in many process-based models (Brilli et al., 2017). In our study, 485 

the soil water content and temperature were assumed constant during incubation, but heterogeneity in the distribution of 

water could be a problem when initializing the soil environment in the model. Water retention capacity in the soil might be 

altered by the practice of adding crop residues. Lashermes et al. (2021) found that adding crop residues to soil increased the 

average WFPS of this layer from 60 % to 63 %. Kravchenko et al. (2017) found that specific gravimetric moisture of plant 

residues in soil could vary in the range 60-220 %, and that residues were characterized by high moisture even at low soil 490 

water contents. Hence, the main effect of crop residues on the abiotic soil environment is probably not the marginal change 

in the average soil moisture content, but more likely the co-occurrence of elevated water content and labile C and N within 

the soil core. Residue fragments with high water retention capacity could represent microenvironments markedly different 

from those of the bulk soil and promote N2O emissions (Kravchenko et al., 2017). Model results indicated that the simulated 

O2 content at 0-4 cm depth had only slight changes overall during incubation and was close to the saturation partial pressure 495 

in soil air owing to faster diffusion supply compared to soil respiration rates (Fig. 8). In the experiments, most of the oxygen 

consumption likely occurred in the microenvironment around residue debris. This is supported by observations of O2 

concentration in soil using O2 microsensors (Markfoged et al., 2011) and planar optodes (Kravchenko et al., 2017) showing 

the aerated O2 partial pressure in the soil matrix away from organic hotspots and steep gradients in O2 between bulk soil and 

hotspots of manure and residues, respectively. Nevertheless, simulations showed that denitrification was the major N2O 500 

producing process in the experiment, accounting for 76-100 % of the total estimated N2O emissions. Parkin (1987) found 

that a thin water film even as little as 20 μm, could be enough to deplete air and support denitrification at the surface of 

decaying litter, and it is thus possible that the observed high N2O fluxes were produced via denitrification despite an overall 

high aeration status within the soil. Water absorption by residue fragments from the surrounding soil could create local 

anoxic environments conducive to denitrification while also enabling the release of produced gases via drained pores 505 

(Kravchenko et al., 2018). In existing process-based models the heterogeneity in physical and biochemical processes caused 

by organic amendments is not included, which may limit the ability of these models to reflect the microscale anaerobiosis 

and SOC availability, and to predict peak N2O emissions such as those observed in RC treatments (Fig. 5a). Some studies 

explored possibilities to incorporate spatial variability into denitrification models, although conceptual frameworks 

considering heterogeneous environments for greenhouse gas emissions have only in recent years emerged and gained 510 

attention (Sihi et al., 2020). Using a stochastic modeling approach, Parkin (1987) found that the patchy dispersion pattern of 
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high denitrification microsites was a major factor influencing the overall rates of denitrification. Based on a parsimonious 

numerical model, Sihi et al. (2020) used probability distribution functions to represent soil microsite production and 

consumption of three greenhouse gases, which explained occasional observations of simultaneous N2O uptake (reduction) 

and CH4 uptake (oxidation) that were not typically captured by other models. We suggest that model development should 515 

improve on the description of microscale processes in soil, for example by parameterizing the distribution and extent of 

heterogeneity in, e.g., organic amendments and clay content, and by establishing the degree of anaerobiosis associated with 

hotspots and bulk soil separately.  

The simultaneous underestimation of N2O and NO3
- could be linked to the incomplete description of nitrate supply in the 

residue-amended 0-4 cm soil layer, which assumed there was no exchange with the lower 4-8 cm bulk soil layer. In a 520 

separate incubation experiment using the same soil type and several of the same treatments, Lashermes et al. (2021) found 

that adding RC residue to the 0-4 cm soil layer induced a decrease in the NO3
- content of the unamended 4-8 cm depth layer, 

indicating that the above, amended layer influenced the NO3
- dynamics in the bottom layer presumably caused by mass 

transfer between the two layers due to net consumption of NO3
- within the top layer during denitrification. In the current 

model framework, solute transport is only simulated by convection (driven by water flow) and does not include diffusion 525 

driven by concentration gradients. The model was originally designed for field conditions, and at this spatial scale infiltration 

is the main mechanism for solute transport between compartments. However, in the short term after organic amendments, 

diffusive NO3
- supply from the bulk soil can be the most important source of electron acceptor for denitrification, as 

observed in earlier incubation studies (Nielsen et al., 1996; Petersen et al., 1996). The current solute transport process may 

thus not be sufficient to properly simulate N2O production in microbial hotspots, especially under low flow rates or for short 530 

travel distances where diffusive flux becomes increasingly important (Flury and Gimmi, 2002). Microbial turnover could 

accelerate the recycling of N and increase substrate availability for nitrification and denitrification locally (De Bruijn et al., 

2009), but in this and some other process-based models, microbial N is not connected to the mineral N pool or included in 

the calculation of total N budget, which could be another reason for model discrepancies in mineral N dynamics.  

Only a few parameters showed distinct probability distribution patterns after calibration while others exhibited uniform 535 

distributions as the prior sampling. This result was in accordance with the second hypothesis, which should be related to the 

limited size of calibration data set in each treatment and the equifinalities between parameters. The differences in the 

posterior parameter distribution hold information about the characteristics of simulated C and N processes between 

treatments, although such variability may also reflect potential model limitations. For example, the well-constrained 

microbial biomass C/N ratio (cnm) within 10 in most treatments was consistent with observations that, on average, the C/N 540 

ratio of the soil microbial biomass varies between 6 and 10 at a global scale (Xu et al., 2013) and does not easily adapt in 

composition to litter quality (Spohn, 2015). Fungal cells typically have a C/N ratio ranging from 10 to 15 while bacteria 

range from 3.5 to 7 (Paul, 2007). In some treatments associated with extra NO3
- input and high N2O emissions, the microbial 

C/N ratios in accepted runs exhibited relatively high values, closer to the soil-residue mixture C/N ratio. According to Eq. 
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(6.7) and Eq. (6.8) in Table S2, a relatively high cnm could lead to a low level of humification (i.e. less labile C and N 545 

converted to recalcitrant matter) as well as intense N mineralization (i.e. more organic N in litter pools converted to NH4
+). 

This could be associated with the underestimation of NO3
- availability discussed above, especially for the treatments 

amended with crop residues. Meanwhile, the relatively low values of estimated Michaelis constant dhrateNxOy suggested a high 

microbial affinity for soluble nitrogen oxides, accelerating microbial denitrification. In treatments without NO3
- addition, 

respiration via denitrification could be limited by the availability of electron acceptors through the respiratory chain, 550 

explaining an increase in the apparent Michaelis constant for N substrate reduction (Khalil et al., 2005). Including solute 

diffusion in the model may be able to change the posterior distributions of both parameters by better mimicking the mineral 

N supply. Compared to control treatments, the faster decay of organic matter (kl1, kl2) and higher CO2 formation rate (fe,l1, 

fe,l2) in the crop residue treatments could reflect the need to mobilize N for use in nitrification and denitrification processes. 

Fast organic matter turnover in the residue-soil mixture was possibly caused by a high concentration of decomposer 555 

microorganisms associated with residue fragments. Additionally, in contrast to natural soils, human disturbance of the soil in 

the laboratory could stimulate indigenous microbial communities resulting in rapid biological phenomena (Calderon et al., 

2001; Thiessen et al., 2013). 

It should be noted that the model deviations for N2O flux were not caused by the spatial resolution of the vertical soil profile, 

which has been a problem in some studies (e.g. Xing et al., 2011), as the model performance concerning N2O prediction was 560 

not improved in the multi-layer model (Table S6) where the one-layer soil profile had been sub-divided into five layers for 

simulations. Deviations between modeled results and measured values are more likely to have resulted from limitations in 

the description of the N processes behind N2O emissions. For example, increasing the number of layers would not reflect the 

microscale processes associated with crop residue fragments and soil aggregates, nor would it address the missing 

description of solute diffusion between interfaces. 565 

4.3 Treatment effects 

We did not investigate how the model responded to the specific change of soil moisture and NO3
- level, but the results we 

obtained after calibrating the model against multiple treatments indicated the challenges in predicting N2O emissions under 

varying soil environmental conditions using a common model parameterization (Fig. 7). Similar cumulative N2O fluxes were 

simulated for treatments with the same NO3
- level regardless of the soil moisture level, which was different from 570 

observations. In the experiment, in RC treatments higher N2O fluxes were associated with the higher WFPS level (60 %) 

rather than with the higher NO3
- level, although there was a strong interaction between the two factors (Taghizadeh-Toosi et 

al., 2021). The problem to describe treatment effects of incubation studies by process-based models was discussed in a recent 

study by Grosz et al. (2021) who found that three N2O models (DNDC, CoupModel, and DeNi) responded to controlling 

factors in the same direction as measurements with frequencies from only 19 % to 67 %. Different from their study, in which 575 

no systematic calibration of model parameters was performed, the model deviations in our study, obtained by calibration of 
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multiple treatments, suggested that potential limitations in model assumptions or the description of mechanisms were more 

critical reasons for unsatisfactory model responses than parameterization. In CoupModel, while the denitrification subroutine 

is sensitive to changes in soil temperature, pH, mineral N, and SOC content, the soil moisture has indirect and average 

effects on denitrification through decomposition, nitrification, and gas diffusion processes, but the effects of heterogeneity in 580 

the distribution of water and microbial activities are not represented. Therefore, soil moisture may have less effect on the 

N2O flux estimation in model applications than in real soil environments with heterogeneity in the distribution of C and N 

sources, and moisture. This is still one of the most challenging tasks facing soil biogeochemical models. On the other hand, 

our results showed a tendency to better predict treatments with higher N2O fluxes in the same group. This can be understood 

from the characteristics of the calibration dataset and selection criteria. The high flux samples represented only a minor 585 

fraction of the total samples (i.e. 40 sampling points) in each group but were higher than the rest of them by orders of 

magnitude (Fig. 5a). The application of the ME criterion mainly constrained model deviations for the high fluxes in one data 

set, and less so for minor fluxes. It may be argued that this limitation could be improved by applying more stringent 

additional criteria such as R2. However, this would reduce the acceptance rate or even refuse all posterior runs. Interestingly, 

Vezzaro et al. (2012) obtained similar results in a GLUE context by using the Nash-Sutcliffe-based likelihood and 590 

stormwater measurements with large internal variability, and concluded that the choice of selection criteria should be based 

not only on its mathematical features but also by looking at the characteristics of the available data. 

We also found that our capacity to evaluate model performance was limited by the data available for model estimation and 

calibration. Some model parameters were not assessed in the incubation experiment (e.g. soil/residue labile C content and 

microbial biomass) and their values were either estimated or determined by calibration. The quality and temporal resolution 595 

in the measurement of controlling factors such as NO3
- and NH4

+ were limited, and improving these aspects may reduce 

uncertainty in model prediction and facilitate model evaluation. By looking at the patterns of simulated N2O emissions and 

ancillary variables, we identified potential problems behind model principles, which should be investigated with 

experimental studies designed carefully for model use. Previous studies, including global sensitivity analyses (Metzger et al., 

2016; Wu et al., 2019) and model evaluations (Grosz et al., 2021), have specific suggestions to this end, such as improving 600 

measurement frequencies, evaluating sensitive input variables (e.g. decomposability of labile C), measuring more variables 

regarding N cycle (e.g. N2, NO) and using state-of-the-art techniques (e.g. 15N gas flux methods). We understand that 

collecting all data types discussed here is not always possible or practical, but encourage modelers to report more model 

outputs regarding N cycles even in the absence of observations, particularly the denitrification products, soil oxygen content, 

and anaerobic fraction, which was not done very often in previous studies.  605 

5 Conclusion 

The current setup of CoupModel, when applied to results from an incubation study, indicated that parameters associated with 

the decomposability of SOM and denitrifier growth were important in regulating soil respiration and mineral N dynamics. A 
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high level of parameter interaction and equifinality issues existed regarding N2O emissions, hindering the determination of 

sensitivities and parameter constraints.  610 

The parameters showing posterior distributions that differed from the prior distributions revealed specific modeled microbial 

processes between treatments and may be used as references behind observations. For example, in the treatments without 

NO3
- addition, the availability of N substrates to denitrifiers was limited according to the posterior distribution of Michaelis 

constants. More intense SOM decomposition was simulated in residue treatments compared to controls.  

The uncertainty analysis demonstrated a model bias towards underestimating high-range daily and cumulative N2O fluxes, 615 

which was associated with an inaccurate description of mineral N dynamics. Residual analysis indicated that nitrification 

rate could be underestimated but did not sufficiently explain the model deviations. While the simulated soil respiration 

response to soil moisture was generally in line with the direction of measurement, the modeled N2O emissions were not as 

sensitive to the WFPS as the measured data, probably because of the indirect effect of soil moisture response function on the 

denitrification process. Discussing potential limitations in model principles related to the prediction bias, we described 620 

several suggestions for model improvement including the use of new parameters and equations to represent microscale 

heterogeneity, and a re-examination of the effects of soil moisture on denitrification processes. 

Generally, we conclude that modeling N2O emissions in controlled experiments is useful to identify the need for prior 

knowledge in both basic (e.g. decomposability of SOM) and elaborate (e.g. denitrifier growth) aspects of the process-based 

model for reducing the uncertainty of N2O flux estimates. Moreover, we identified a potential model bias and discussed 625 

future steps that may be required to assess its sources. We believe there is a need to modify model equations and revisit basic 

model assumptions with high-quality measurement data sets that enable more intensive model evaluations and comparisons.  
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