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Abstract 34 

 35 

Climatic extreme events are expected to occur more frequently in the future, increasing the 36 

likelihood of unprecedented climate extremes (UCEs), or record-breaking events. UCEs, such as 37 

extreme heatwaves and droughts, substantially affect ecosystem stability and carbon cycling by 38 

increasing plant mortality and delaying ecosystem recovery. Quantitative knowledge of such 39 

effects is limited due to the paucity of experiments focusing on extreme climatic events beyond 40 

the range of historical experience. Here, we present a road map of how dynamic vegetation 41 

demographic models (VDMs) can be used to investigate hypotheses surrounding ecosystem 42 

responses to one type of UCE: unprecedented droughts. As a result of nonlinear ecosystem 43 

responses to UCEs, that are qualitatively different from responses to milder extremes, we 44 

consider both biomass loss and recovery rates over time, by reporting a time-integrated carbon 45 

loss as a result of UCE, relative to the absence of drought. Additionally, we explore how 46 

unprecedented droughts in combination with increasing atmospheric CO2 and/or temperature 47 

may affect ecosystem stability and carbon cycling. We explored these questions using 48 

simulations of pre-drought and post-drought conditions at well-studied forest sites, using equally 49 

well-tested models (ED2 and LPJ-GUESS). The severity and patterns in biomass losses differed 50 

sustainably between models. For example, biomass loss could be sensitive to either drought 51 

duration or drought intensity depending on the model approach. This is due to the models having 52 

different, but also plausible representations of processes and interactions, highlighting the 53 

complicated interactions and variability of UCE impacts still needed to be narrowed down in 54 

models. Elevated atmospheric CO2 concentrations (eCO2) alone did not completely buffer the 55 

ecosystems from carbon losses during UCEs in the majority of our simulations. Our findings 56 

highlight contrasting differences in process formulations and uncertainties in models, most 57 

notably related to availability in plant carbohydrate storage and the diversity of plant hydraulic 58 

schemes, in projecting potential ecosystem responses to UCEs. We provide a summary of the 59 

current state and role of many model processes that give way to different underlying hypotheses 60 

of plant responses to UCEs, reflecting knowledge gaps, which in future studies could be tested 61 

with targeted field experiments and an iterative modeling-experimental conceptual framework.  62 
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1 Introduction 78 
The increase in extreme climate and weather events, such as prolonged heatwaves and 79 

droughts as seen over the last three decades, are expected to continue to increase in frequency 80 

and magnitude, leading to progressively longer and warmer droughts on land (IPCC 2012, 2021). 81 

Droughts are affecting all areas of the globe, more than any other natural disturbance, and recent 82 

droughts have broken long-standing records (Ciais et al., 2005; Phillips et al., 2009; Williams et 83 

al., 2012; Matusick et al., 2013; Griffin and Anchukaitis, 2014; Asner et al., 2016; Feldpausch et 84 

al., 2016; Seneviratne et al., 2021). Such ‘unprecedented climate extremes’ (UCEs; “record-85 

breaking events”, IPCC (2012)) that are larger in extent and longer-lasting than historical norms 86 

can have dramatic consequences for terrestrial ecosystem processes, including carbon uptake and 87 

storage and other ecosystem services (Reichstein et al., 2013; Settele, 2014; Allen et al., 2015; 88 

Brando et al., 2019; Kannenberg et al., 2020). Thus, to better anticipate the implications of 89 

climatic changes for the terrestrial carbon sink and other ecosystem services, we need to better 90 

understand how ecosystems respond to extreme droughts and other UCEs. 91 

To learn how ecosystems respond to rarely experienced or unprecedented conditions, 92 

ecologists can experimentally manipulate environmental conditions (Rustad, 2008; Beier et al., 93 

2012; Meir et al., 2015; Aguirre et al., 2021). However, the majority of such experiments apply 94 

moderate treatments based on a historical sense, which are mostly weaker in intensity and/or 95 

shorter in duration than potential future UCEs (Beier et al., 2012; Kayler et al., 2015; but see Luo 96 

et al., 2017), and single experiments have low power to detect effects of stressors on ecosystem 97 

responses (Yang et al., 2022). Additionally, most experiments examine low-stature ecosystems, 98 

such as grassland, shrubland or tundra, due to lower requirements for infrastructure and financial 99 

investment compared to mature forests. However, forests may respond qualitatively differently 100 

to UCEs than other ecosystems, in part due to mortality of large trees and strong nonlinear 101 

ecosystem responses, with long-lasting consequences for ecosystem-climate feedbacks (Williams 102 

et al., 2014; Meir et al., 2015). Ecosystem responses to naturally occurring extreme droughts and 103 

heatwaves have been documented (Ciais et al., 2005; Breshears et al., 2009; Feldpausch et al., 104 

2016; Matusick et al., 2016; Ruthrof et al., 2018; Powers et al., 2020); however, these rapidly-105 

mobilized post-hoc studies often are unable to measure all critical variables and may lack 106 

consistently collected data for comparison with pre-drought conditions, thus limiting their 107 

inferential power and ability to improve quantitative models. The difficulties of performing 108 
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controlled real-world experiments of UCEs at broad spatial and temporal scales make process-109 

based modeling a valuable tool for studying potential ecosystem responses to extreme events. 110 

Process-based models can be used to explore potential ecosystem impacts using projected 111 

climate change over broad spatial and temporal scales (Gerten et al., 2008; Luo et al., 2008; 112 

Zscheischler et al., 2014; Sippel et al., 2016), as seen in a few modeling studies that have 113 

synthesized and improved our process-level understanding of UCE effects (McDowell et al., 114 

2013; Dietze and Matthes, 2014). However, due to the overly simplified representation of 115 

ecological processes in most land surface models (LSMs) – the terrestrial components of Earth 116 

System Models (ESMs) used for climate projections – it is doubtful whether most of these 117 

models adequately capture ecosystem feedbacks and other responses to UCEs (Fisher and 118 

Koven, 2020). For example, only a few ESMs in recent coupled model intercomparison projects 119 

(CMIP6) (Arora et al., 2020; IPCC 2021) include vegetation demographics (Döscher et al., 120 

2022), and most rely on prescribed, static maps of plant functional types (PFTs) (Ahlström et al., 121 

2012). Other LSMs simulate PFT shifts (i.e., dynamic global vegetation models, DGVMs; Sitch 122 

et al., (2008)) based on bioclimatic limits, instead of emerging from the physiology- and 123 

competition-based demographic rates that determine resource competition and plant distributions 124 

in real ecosystems (Fisher et al., 2018). While a new generation of LSMs with more explicit 125 

ecological dynamics and structured demography is emerging (Holm et al., 2020; Koven et al., 126 

2020; Döscher et al., 2022), most current ESMs are limited in ecological detail and realism (e.g., 127 

ecosystem structure, demography, and disturbances). Failing to mechanistically represent 128 

mortality, recruitment, and disturbance – each of which influences biomass turnover and carbon 129 

(C) allocation (Friend et al., 2014) – limits the ability of these models to realistically forecast 130 

ecosystem responses to anomalous environmental conditions like UCEs (Fisher et al., 2018). 131 

Evaluating and improving the representation of physiological and ecological processes in 132 

ecosystem models is critical for reducing model uncertainties when projecting the effects of 133 

UCEs on long-term ecosystem dynamics and functioning. Vegetation demography, plant 134 

hydraulics, enhanced representations of plant trait variation, explicit treatments of resource 135 

competition (e.g., height-structured competition for light), and representing major disturbances 136 

(e.g., extreme drought) have all been identified as critical areas for advancing current models 137 

(Scheiter et al., 2013; Fisher et al., 2015; Weng et al., 2015; Choat et al., 2018; Fisher et al., 138 

2018; Blyth et al., 2021) and are necessary advances for realistically representing the ecosystem 139 
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impacts of UCEs. In this perspectives focused paper we look at the differences in these 143 

processes, and how they contribute to uncertainty across multiple temporal phases surrounding 144 

an extreme event: predicting an ecosystem’s pre-disturbance resistance, which influences the 145 

degree of impact and recovery from UCEs. Table 1 describes a summary of model mechanisms 146 

that affect pre-drought resistance and post-drought recovery and we suggest are critical areas 147 

further research (ca. Frank et al., 2015). 148 

In order to inform our discussion, we explore the potential responses of forest ecosystems 149 

to UCEs using two state-of-the-art process-based demographic models (vegetation demographic 150 

models, VDMs; Fisher et al., (2018)), a unique model exploration-discussion approach to help 151 

highlight new paths forward for model advancement. We first present conceptual frameworks 152 

and hypotheses on potential ecosystem responses to UCEs based on current knowledge. We then 153 

present VDM simulations for a range of hypothetical UCE scenarios to illustrate current state-of-154 

the-art model representations of eco-physiological mechanisms expected to drive responses to 155 

UCEs, using droughts as an example. While a variety of UCE-linked biophysical tree 156 

disturbance processes (e.g., fire, wind, insect outbreaks) can drive nonlinear ecosystem 157 

responses, we focus specifically on extreme droughts, which have important impacts on many 158 

ecosystems around the world (e.g. Frank et al., 2015, IPCC 2021). By studying modeled 159 

responses to UCEs, we explore the limits to our current understanding of ecosystem responses to 160 

extreme droughts and their corresponding thresholds and tipping points. As anthropogenic 161 

forcing has increased the frequency, duration, and intensity of droughts throughout the world 162 

(Chiang et al., 2021), we explore how eCO2 and rising temperatures may affect drought-induced 163 

C loss and recovery trajectories. This study can help guide how the scientific community can 164 

iteratively address these questions through future experiments and modeling studies. We believe 165 

the combination of using cutting-edge VDMs alongside an inspection of current gaps in 166 

knowledge will help guide modeling and experimental advances in order to address novel forest 167 

responses to climate extremes.   168 

  169 

1.1 Conceptual and Modeling Framework for Hypothesis Testing: 170 

 We combine conceptual frameworks (Fig. 1) and ecosystem modeling to test two 171 

hypotheses on potential responses of plant carbon stocks to UCEs. The first hypothesis is: 172 
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Hypothesis (H1). Terrestrial ecosystem responses to UCEs will differ qualitatively from 174 

ecosystem responses to milder extremes because responses are nonlinear and highly variable. 175 

Nonlinearities can arise from multiple mechanisms – including shifts in plant hydraulics, C 176 

allocation, phenology, and stand demography – and can vary depending on the pre-drought 177 

state of the ecosystem.          178 

We present three conceptual relationships that describe terrestrial ecosystem responses to 179 

varying degrees of extreme events (Fig. 1). We hypothesize that change in vegetation C stock is 180 

related to drought intensity and/or drought duration, such that biomass loss increases nonlinearly 181 

with increased drought intensity (i.e., reduction in precipitation) represented by a threshold-based 182 

relationship (Fig. 1a, H1a), increased drought duration (i.e., prolonged drought with the same 183 

intensity) by shifting responses typically seen in milder extremes downwards via increasing 184 

slopes (Fig. 1a, H1b), or the combination of both intensity and duration (Fig. 1a, H1c). These 185 

hypotheses are supported by observations from the Amazon Basin and Borneo (Phillips et al., 186 

2010) where tree mortality rates increased nonlinearly with drought intensity. Similarly, plant 187 

hydraulic theories predict nonlinear damage to the plant-water transport systems, and thus 188 

mortality risk, as a function of drought stress (Sperry and Love, 2015). In particular, longer 189 

droughts are more likely to lead to lower soil water potentials, leading to a nonlinear xylem 190 

damage function even if stomata effectively limit water loss (Sperry et al., 2016). 191 

Hypothesis (H2): The effects of increasing atmospheric CO2 concentration (eCO2) will 192 

alleviate impacts of extreme drought stress through an increase in vegetation productivity and 193 

water-use efficiency, but only up to a threshold of drought severity, while increased 194 

temperature (and related water stress) will exacerbate tree mortality. 195 

This second hypothesis is based on growing evidence that effects of eCO2 and climate 196 

warming may interact with effects of drought intensity on ecosystems. The CO2 fertilization 197 

effect enhances vegetation productivity (e.g., net primary production, NPP) (Ainsworth and 198 

Long, 2005; Norby et al., 2005; Wang et al., 2012), but this fertilization effect is generally 199 

reduced by drought (Hovenden et al., 2014; Reich et al., 2014; Gray et al., 2016). Drought events 200 

often coincide with increased temperature, which intensifies the impact of drought on 201 

ecosystems (Allen et al., 2015; Liu et al., 2017), resulting in nonlinear responses in mortality 202 

rates (Adams et al., 2009; Adams et al., 2017a). The evaluation of C cycling in VDMs with 203 

Deleted: four204 

Deleted: C205 

Deleted: in a near-linear relationship (Fig. 1a, H0, null 206 
hypothesis), which has some observational support from 207 
annual and perennial grassland ecosystems, shrublands and 208 
savannas across the globe (Bai et al., 2008; Muldavin et al., 209 
2008; Ruppert et al., 2015). We recognize that most 210 
ecological systems are nonlinear, thus alternatives to the null 211 
hypothesis are212 
Deleted: the near-linear relationship213 



 7 

doubling of CO2 (only “beta effect”) showed a large carbon sink in a tropical forest (Holm et al., 214 

2020), but the inclusion of climate interactions in VDMs needs to be further explored.     215 

Here, we relate ecosystem responses to UCEs by calculating a “severity-drought index” 216 

(Fig. 1b and see Methods), which integrates C loss from the beginning of the drought until the 217 

time when C stocks have recovered to 50% of the pre-drought level. In response to drought, 218 

warming, and eCO2, divergent potential C responses (gains and losses; Fig. 1c) can be expected 219 

(Keenan et al., 2013; Zhu et al., 2016; Adams et al., 2017a). For example, a grassland 220 

macrocosm experiment found that eCO2 completely compensated for the negative impact of 221 

extreme drought on net carbon uptake due to increased root growth and plant nitrogen uptake, 222 

and led to enhanced post-drought recovery (Roy et al., 2016). However, a 16-year grassland 223 

FACE and the SoyFACE experiments showed that CO2 fertilization effects were reduced or 224 

eliminated under hotter/drier conditions (Gray et al., 2016; Obermeier et al., 2016). Reich et al., 225 

(2014) also found that CO2 fertilization effects were reduced in a perennial grassland by water 226 

and nitrogen limitation. 227 

A corollary to our H2 is that conditions that favor productivity (e.g., longer growing 228 

seasons and/or CO2 fertilization) will enhance vegetation growth leading to “structural 229 

overshoot” (SO; Fig. 1d; adapted from and supported by Jump et al., 2017), and can amplify the 230 

effects of UCEs. Enhanced vegetation growth coupled with environmental variability can lead to 231 

exceptionally high plant-water-demand during extreme drought and water stress, resulting in a 232 

“mortality overshoot” (MO; Fig 1d). We conceptualize how oscillations between SO and 233 

associated MO could be amplified by increasing climatic variability and UCEs (Fig. 1d). 234 

Additionally, more climatic variability from unprecedented eCO2 levels and warming will 235 

contribute to unknowns in how ecosystems are affected in the future (i.e., the widening, and 236 

downward shape of the shaded areas compared to historical, Fig. 1d). We expect, however that a 237 

rapidly changing climate, combined with effects of UCEs as a result of more frequent extreme 238 

drought/heat events and drought stress, can exacerbate and amplify SOs and MOs (Jump et al., 239 

2017), leading to increasing C loss, even though various buffering mechanisms exist (cf. (Lloret 240 

et al., 2012; Allen et al., 2015)). Relative to our conceptual (Fig. 1d), we note that most 241 

experimental, observational and modeling studies (Ciais et al., 2005; da Costa et al., 2010; 242 

Phillips et al., 2010; Meir et al., 2015) take into account only low to moderate drought intensities 243 
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(such as 50% rain excluded) or single events, or combine drought with moderate effects of 249 

temperature change. Where there has been 100% rain exclusion, it was on very small plots of 1.5 250 

m2 (Meir et al., 2015). As represented by the increasing amplitude of oscillations in Fig. 1d, the 251 

interactions between increased temperatures, UCE events, and vegetation feedbacks make 252 

ecosystem states become inherently unpredictable, particularly over longer time-scales. 253 

  254 

2 Vegetation Demography Model (VDM) Approaches  255 

We argue that VDMs are well suited to address climate change impacts due to the 256 

inclusion of detailed process representation of dynamic plant growth, recruitment, and mortality, 257 

resulting in changes in abundance of different PFTs, as well as vertically stratified tree size- and 258 

age-class structured ecosystem demography. Community dynamics and age-/size-structure are 259 

emergent properties from competition for light, space, water, and nutrients, which dynamically 260 

and explicitly scale up from the tree, to stand, to ecosystem level. Within this characterization, 261 

VDMs also differ between each other and are set up in different configuration, allowing for 262 

various testing capabilities. For full names of each model listed below and references, see Table 263 

S1. For example, VDMs can aggregate and track the community level disturbance into either 264 

patch-tiling sampling (e.g., ED2, FATES, LM3-PPA, ORCHIDEE, JSBACH4.0) or statistical 265 

approximations (e.g., LPJ-GUESS, SEIB-DGVM, and CABLE-POP). VDMs could also vary in 266 

representing light competition within either multiple canopy layers (e.g., ED2, FATES, LM3-267 

PPA, LPJ-GUESS, SEIB-DGVM) or in a single canopy (e.g., JSBACH4.0, ORCHIDEE, 268 

CABLE-POP). 269 

Powell et al. (2013) compared multiple VDMs and LSMs to interpret ecosystem 270 

responses to long-term droughts in the Amazon and are informative when conducting model-data 271 

comparisons, but studies of the cascade of ecosystem responses and mortality to UCEs are 272 

lacking. In a cutting-edge area of development, new mechanistic implementation of plant 273 

competition for water and plant hydraulics in VDMs (i.e., hydrodynamics) are improving our 274 

understanding of plant-water relations and stresses within plants, such as with TFSv.1-Hydro 275 

(Christoffersen et al., 2016), ED2-hydro (Xu et al., 2016), and FATES-HYDRO (Ma et al., 2021; 276 

Fang et al., 2022). Compared to more simplistic representation of plant acquiring soil moisture 277 

not connected to plant physiology (e.g., LPJ-GUESS, LM3-PPA, CABLE-POP, SEIB-DGVM). 278 
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For hydrodynamic representations in ‘big-leaf’ LSMs such as CLM5, JULES, and Noah-MP-279 

PHS see Kennedy et al., (2019), Eller et al., (2020), and Li et al., (2021) respectively.  280 

The discussion section provides a deeper investigation of model response to UCEs related 281 

to droughts. An exhaustive review of all VDMs, and all plant processes is too large to be done 282 

here. Existing review papers of different VDM development, processes, and uncertainties can be 283 

found here: Fisher et al., (2018); Bonan (2019); Trugman et al., (2019); Hanbury-Brown et al. 284 

(2022); Bugmann and Seidl (2022); and specifically related to plant hydraulics see: Mencuccini 285 

et al., (2019); Anderegg and Venturas (2020). We use LPJ-GUESS and ED2 as example VDMs 286 

in an initial guide framework to explore hypotheses around vegetation mortality and severity 287 

index from UCEs and climate change impacts, and highlight limiting model processes. Since 288 

field data needed to evaluate UCE responses are, by definition, unavailable, we do not perform 289 

model-data comparisons. Rather, we use the model results and conceptual framework as a road 290 

map to explore our hypotheses and illustrate their implications for ecosystem responses under 291 

UCEs, not historical drought events.     292 

  293 

2.1 LPJ-GUESS and ED2 Model Descriptions 294 

We explored our hypotheses at forested ecosystems in Australia and Central America 295 

using two VDMs: the Lund-Potsdam-Jena General Ecosystem Simulator (LPJ-GUESS) (Smith et 296 

al., 2001; Smith et al., 2014) and the Ecosystem Demography model 2 (ED2) (Medvigy et al., 297 

2009; Medvigy and Moorcroft, 2012). Both LPJ-GUESS and ED2 resolve vegetation into tree 298 

cohorts characterized by their PFT, in addition to age-class in LPJ-GUESS; and size, and stem 299 

number density in ED2. Both models are driven by external environmental drivers (e.g., 300 

temperature, precipitation, solar radiation, atmospheric CO2 concentration, nitrogen deposition), 301 

and soil properties (soil texture, depth, etc.), and also depend on dynamic ecosystem state, which 302 

includes light attenuation, soil moisture, and soil nutrient availability. Establishment and growth 303 

of PFTs, and their carbon-, nitrogen- and water-cycles, are simulated across multiple patches per 304 

grid cell to account for landscape heterogeneity. Both models characterize PFTs by physiological 305 

and bioclimatic parameters, which vary between the models (Smith et al., 2001; Smith et al., 306 

2014; Medvigy et al., 2009; Medvigy and Moorcroft, 2012). 307 

The LPJ-GUESS includes three woody PFTs: evergreen, intermediate evergreen, and 308 

deciduous PFTs. Mortality in LPJ-GUESS is governed by a ‘growth-efficiency’-based function 309 
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(kg C m-2 leaf yr-1), which captures effects of water deficit, shading, heat stress, and tree size on 311 

plant productivity relative to its resource-uptake capacity (leaf area), with a threshold below 312 

which stress-related mortality risk increases markedly, in addition to background senescence and 313 

exogenous disturbances. Stress mortality can be reduced by plants using labile carbon storage, 314 

modeled implicitly using a ‘C debt’ approach, which buffers low productivity, enhancing 315 

resilience to milder extremes (more details are given in section 4.1.4). Total mortality can thus be 316 

impacted by variation in environmental conditions such as water limitation, low light conditions, 317 

and nutrient constraints, as well as current stand structure (Smith et al., 2001; Hickler et al., 318 

2004). 319 

The ED2 version used here (Xu et al., 2016) includes four woody PFTs: evergreen, 320 

intermediate evergreen, deciduous, brevi-deciduous, and deciduous stem-succulent. This ED2 321 

version includes coupled photosynthesis, plant hydraulics, and soil hydraulic modules (Xu et al., 322 

2016), which together determine plant water stress. The plant hydraulics module tracks water 323 

flow along a soil–plant–atmosphere continuum, connecting leaf water potential, stem sap flow, 324 

and transpiration, thus influencing controls on photosynthetic capacity, stomatal closure, 325 

phenology, and mortality. Leaf water potential depends on time-varying environmental 326 

conditions as well as time-invariant PFT traits. Leaf shedding is triggered when leaf water 327 

potential falls below the turgor loss point (a PFT trait) for a sufficient amount of time. Leaf 328 

flushing occurs when stem water potential remains high (above half of the turgor loss point) for a 329 

sufficient time (see Xu et al., 2016 for details). PFTs differ in their hydraulic traits, wood 330 

density, specific leaf area, allometries, rooting depth, and other traits. Stress-based mortality in 331 

the ED2 version used here includes two main physiological pathways in our current 332 

understanding of drought mortality (McDowell et al., 2013): C starvation and hydraulic failure. 333 

Mortality due to C starvation in ED2 results from a reduction of C storage, a proxy for non-334 

structural carbohydrate (NSC) storage, which integrates the balance of photosynthetic gain and 335 

maintenance cost under different levels of light and moisture availability. Mortality due to 336 

hydraulic failure in ED2 is based on the percentage loss of stem conductivity. ED2 also includes 337 

a density-independent senescence mortality rate based on wood density. 338 

2.2 Modeling guide 339 
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To exemplify how VDMs can be tools to explore new hypotheses related to UCEs we 340 

applied the models at two field sites, that were chosen due to being extensively studied and the 341 

models used here have already been run at these sites and previously benchmarked against field 342 

data (see Xu et al., 2016; Medlyn et al., 2016; Medvigy et al., 2019 for model-data validation). 343 

The purpose of this paper was not to do a large multi-site comparison, but rather just select a few 344 

for hypothesis testing. In addition, the two sites span a range of vegetation types and are in 345 

warm, seasonally dry climates that are more likely to experience droughts in the future (Allen et 346 

al., 2017). The first is a mature Eucalyptus (E. tereticornis) warm temperate-subtropical 347 

transitional forest that is the site of the Eucalyptus Free Air CO2 enrichment (EucFACE) 348 

experiment in Western Sydney, Australia (Medlyn et al., 2016; Ellsworth et al., 2017; Jiang et 349 

al., 2020). The second site is a seasonally dry tropical forest in the Parque Nacional Palo Verde 350 

in Costa Rica (Powers et al., 2009). Site description details can be found in Supplement Text A.  351 

We performed a 100-year “baseline” simulation for each model at each site driven by 352 

constant, near ambient, atmospheric CO2 (400 ppm) and recycled historical site-specific climate 353 

data (1992-2011 for EucFACE and 1970-2012 for Palo Verde; Sheffield et al., (2006)), absent of 354 

drought treatments. A detailed description of the meteorological data and initial conditions used 355 

to drive the models is in the Supplementary Text A. The two models were previously tuned for 356 

each site (Xu et al., 2016; Medlyn et al., 2016), and no additional site-level parameter tuning was 357 

conducted here due to evaluating responses from hypothetical UCEs. To describe the ecosystem 358 

impact of UCEs, we simulated 10 years of pre-drought conditions (continuing from the baseline 359 

simulation), followed by drought treatments that differed in intensity and duration, followed by a 360 

100-year post-drought recovery period. To explore the effects of drought intensity, we conducted 361 

20 different artificial drought intensity simulations, in which precipitation during the whole year 362 

is reduced by 5% to 100% of its original amount, in increments of 5%. To explore the effects of 363 

drought duration, the 20 different drought intensities are maintained over 1, 2 and 4 years (Table 364 

S2). We examined model responses of aboveground biomass, leaf area index (LAI), stem density 365 

(number ha-1), plant available soil water (mm), plant C storage (kg C m-2), change in stem 366 

mortality rate (yr-1), and PFT composition. 367 

To explore how temperature, eCO2 concentration, and UCE droughts influence forest C 368 

dynamics individually and in combination, we implemented the following five experimental 369 

scenarios, some realistic and others hypothetical, for each model (Table S2): increased 370 
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temperature only (+2K over ambient), eCO2 only (600 ppm and 800 ppm), and both increased 371 

temperature and eCO2 (+2K 600 ppm; +2K 800 ppm). Temperature and eCO2 manipulations 372 

were applied as step increases over the baseline conditions, and are artificial scenarios, as 373 

opposed to model-generated climate projections.  374 

  375 

2.3 Linking concepts, hypotheses, and model outcomes 376 

To relate our simulation results to Fig. 1a, we compared the total biomass loss as a result 377 

of each drought treatment by calculating the percentage of biomass reduction at the end of the 378 

drought period relative to the baseline (no drought) simulation. To explicitly consider biomass 379 

recovery rates over time, we calculated “severity-drought index” (Eqs. 1-3), as a result of 380 

drought under current climate, which are determined based on the concepts in Fig. 1b. We 381 

defined “severity-drought index” as the time-integrated carbon in biomass that is lost due to 382 

drought relative to what the vegetation would have stored in the absence of drought. That is, it is 383 

the difference between biomass in the presence of drought (Bd) at time (t) and biomass in the 384 

baseline simulation (no drought; Bbase), integrated over a defined recovery time period (in kg C 385 

m-2 yr):      	 386 

 (Eq. 1) 387 

To define the bounds of integration, in Eq. 1, t1 is defined as the time when the maximum 388 

amount of plant C is lost as a result of the drought: 389 

   (Eq. 2)  390 

Then, t2 is defined implicitly as the time when 50% of the lost biomass has been recovered 391 

compared to the baseline: 392 

                (Eq. 3) 393 

 Since all severity-drought index results are taken as the difference from a non-drought baseline 394 

biomass (Bbase) and all droughts will result in a loss of C. 395 

We also use the severity-drought index as a starting point to examine the role of drought, 396 

temperature and eCO2 change for moderating or exacerbating the impacts of drought on forest C 397 

Severity-drought index
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stocks; i.e., to evaluate the hypotheses illustrated in Fig. 1c. To assess these impacts of changing 403 

climates, we calculate a severity-climate index (Eq. 4). Defined as the difference between the 404 

severity-drought index due to drought alone (Eqs. 1-3) under present climate, and the severity 405 

index due to the combined effects of drought and climate change (i.e., five scenarios of 406 

temperature increase and eCO2), still integrated over time to account for recovery: 407 

 408 

 (Eq. 4) 409 

Because we expect drought to reduce vegetation C stocks, and thus severity-climate 410 

index to be negative, positive values of severity-climate index indicate that changes in climatic 411 

drivers ameliorate the C losses from drought (i.e., buffering effects). Negative values of severity-412 

climate index indicate that the climate change scenario leads to either greater C losses or losses 413 

that persist for longer amounts of time (i.e., magnitude and/or duration) compared to a simulation 414 

with no climate change (i.e., “control” run). 415 

 416 

3 Results 417 

As a basis for the treatment results presented here, we compared the baseline simulations 418 

(prior to drought or climate change treatments) of the two VDMs against observations, and found  419 

strong model validation at both sites (Table S3, Fig. S1, Supplemental Text A). These models are 420 

well documented and investigated VDMs, with many studies that have looked into parameter 421 

uncertainty (see Supplemental Text A for select references that explore model/parameter 422 

sensitivity).  423 

The models displayed varied nonlinear responses to drought, differing substantially in 424 

their behavior and between sites. In general, ED2 shows sensitivity to drought duration 425 

(Hypothesis H1b), while LPJ-GUESS shows a stronger sensitivity to drought intensity 426 

(Hypothesis H1a). ED2’s sensitivity to the duration of drought was mild at Palo Verde (Fig. 2a), 427 

and stronger at EucFACE particularly during the 4-year drought with a strong non-monotonic 428 

pattern (see explanation below) (Fig. 2b). When reporting only percentage of biomass loss, ED2 429 

predicts close to no UCE response at Palo Verde; with a maximum biomass reduction of only 430 

40% during 95% precipitation removal and a 4-year drought event (i.e., UCE). LPJ-GUESS 431 

shows threshold tipping patterns highly sensitive to drought intensity. C loss predicted by LPJ-432 
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GUESS at Palo Verde reached a threshold at ~65% drought intensity, after which forests exhibit 459 

strong biomass losses, up to 100% (Fig. 2a). At the EucFACE site, both models predict a critical 460 

threshold of biomass loss at 35%-45% drought intensity, with LPJ-GUESS predicting total 461 

biomass loss (up to 100%) after this drought intensity threshold (Fig. 2b). The EucFACE drought 462 

threshold is lower than that of the seasonally dry mixed tropical forest in Palo Verde. 463 

With respect to C loss over a recovering time period (severity-drought index), the two 464 

models predict similar drought responses at Palo Verde (Fig. 2c), but not at EucFACE (Fig. 2d). 465 

At Palo Verde, the similarity between models in severity-drought index reflected longer biomass 466 

recovery time but less biomass loss in the short-term in ED2 relative to LPJ-GUESS, which 467 

predicted greater biomass loss immediately after drought but shorter recovery time. With the 468 

exception of the 1-year drought in ED2, both models predict similar severity-drought index 469 

across a range of UCEs at Palo Verde, via different pathways. The severity-drought index 470 

revealed an exacerbated response to drought duration in ED2 with drought durations greater than 471 

one year (Fig. 2c), compared to when only examining loss in biomass at the time of the event 472 

(Fig. 2a). The “V”-shaped patterns observed particularly in Fig. 2b, arise from interactions 473 

between whole-leaf phenology and stomatal responses to drought in ED2. For drought intensities 474 

lower than 40%, stomatal conductance is reduced but leaves are not fully shed. Leaf respiration 475 

continues, gradually depleting non-structural C pools, followed by a loss of biomass. However, 476 

for higher drought intensities, leaf water potentials quickly become systematically lower than 477 

leaf turgor loss points and tree cohorts shed all their leaves. This strategy represents an 478 

immediate loss of C via leaf shedding, but spares the cohort from slow, respiration-driven 479 

depletion of C stocks. 480 

  481 

3.1 Predicted model responses to UCE droughts combined with increased temperature 482 

and/or eCO2 483 

Relating to our second hypothesis of additional effects of warming and eCO2, we tested 484 

15 treatments in total, repeating the five climate change scenarios for each of the three drought 485 

durations. With the addition of climate change impacts, ED2 remained sensitive to the duration 486 

of drought, with warming negatively impacting severity-climate index and most consistently 487 

during 2- and 4-year drought durations. ED2 predicts that during the 2- and 4-year droughts at 488 

EucFACE, losses are exacerbated when accompanied with warming, even with eCO2, with 600 489 

Deleted: integrated-C-loss490 

Deleted: integrated-C-loss491 

Deleted: integrated-C-loss492 

Deleted: integrated-C-loss metric493 

Deleted:  strong nonlinear494 

Deleted: while this nonlinearity is less evident495 
Deleted: change496 

Deleted: integrated-C-change497 



 15 

ppm having a more detrimental impact than the more elevated 800 ppm (Fig. 3b-c). The average 498 

severity-climate index was -111.0 kg C m-2 yr across all 15 treatments (Table 2). Only during the 499 

1-year drought duration did drought plus warming and eCO2 have a buffering effect on C stocks, 500 

seen in four out of our five scenarios but only during relatively modest droughts intensities (Fig. 501 

3a; i.e., positive severity-climate index, see also Table 2). 502 

The ED2 simulations of the seasonally dry Palo Verde site (Fig. 3d-f), produced less 503 

frequent negative impacts on drought and climate change driven C losses compared to 504 

EucFACE, with an average severity-climate index of -53.9 kg C m-2 yr across all 15 treatments 505 

(Table 2). During the 2-year drought, applying +2K with eCO2 to 600 ppm showed a slight 506 

buffering effect to droughts and the most consistent positive severity-climate index (Fig. 3e; 507 

Table 2). Interestingly, an increase in only eCO2 to 800 ppm (no warming) when applied with the 508 

2- and 4-year droughts resulted in the largest loss in carbon (Fig. 3e-f), larger than the expected 509 

‘most severe’ scenario; +2K and 800 ppm. 510 

Similar to ED2, the LPJ-GUESS model showed a nearly complete negative response in 511 

severity-climate index as a result of UCE drought and scenarios of warming and eCO2 at the 512 

EucFACE site (Fig. 3g-i), but mixed and more muted results at Palo Verde (Fig. 3j-l, Table 2). 513 

The average severity-climate index relative to the no climate change control case was -95.4 at 514 

EucFACE and -7.8 kg C m-2 yr at Palo Verde, both less negative compared to ED2. One notable 515 

pattern was up until a drought intensity threshold of ~40%, the climate scenarios had no effect or 516 

response in severity-climate index at EucFACE, and the muted response from warming and 517 

eCO2 Palo Verde, compared to ED2. Surprisingly, the +2K scenario switched the severity-518 

climate index to positive, compared to the control case (Fig. 3g-i; red lines), potentially a 519 

physiological process in the model to increased temperatures only that signals an anomalous 520 

resiliency response. Similar to the results with no climate change, LPJ-GUESS remained 521 

sensitive to the intensity of drought, with ~40% precipitation reduction being a threshold. 522 

When comparing the VDM responses to increasing drought severity and its interactions 523 

with warming and eCO2 (related to conceptual Fig. 1d), ED2 showed a more consistent MO 524 

response during UCEs and with additional warming and eCO2 (Fig. 3; negative severity-climate 525 

index), especially at EucFACE, suggesting these ecosystems will remain in a depressed carbon 526 

condition driving vegetation mortality, and/or longer recoveries. LPJ-GUESS produced more 527 

opportunities for SO with climate change. For example, at EucFACE CO2 fertilization created 528 
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small SO periods that then led to MO with increasing drought severities, and at Palo Verde all 547 

+2K and 600 ppm led to a SO (Fig. 3j-l; Table 2). 548 

Both models predicted that C losses due to drought interactions with increased 549 

temperature and eCO2 were less severe at the seasonally dry Palo Verde site compared to the 550 

somewhat less seasonal, more humid EucFACE site (Table 2), which could be attributed to 551 

higher diversity in PFT physiology at Palo Verde. Palo Verde’s community composition that 552 

emerged following drought included either three (LPJ-GUESS) or four (ED2) PFTs, while only a 553 

single PFT existed at EucFACE. With rising temperatures under climate change, UCEs will be 554 

hotter and drier. Nine out of the twelve simulations with both +2K and 600 ppm CO2, and all but 555 

one +2K and 800 ppm CO2 produced a negative severity-climate index, implying stronger C 556 

losses and/or longer recovery times when droughts are exacerbated by increasing temperatures 557 

(Table 2). 558 

  559 

4 Discussion 560 

Vegetation demographic models (VDMs) allowed us to uniquely explore two hypotheses 561 

regarding a range of modeled response of terrestrial ecosystems to unprecedented climate 562 

extremes (UCEs), and setting the stage for the following perspectives to help guide future 563 

research. Key model results indicate strong differences in nonlinearities in C response to extreme 564 

drought intensities in LPJ-GUESS and alternatively drought durations in ED2 (at one of two 565 

sites), with differences in thresholds between the two models and ecosystems, and only the ED2 566 

model representing impacts from combined intensity and drought (Hypothesis H1c). These 567 

nonlinearities may arise from multiple mechanisms that we begin to investigate here, including 568 

shifts in plant hydraulics or other functional traits, C allocation, phenology, stand size-structure 569 

and/or age demography, and compositional changes, all which vary among ecosystem types. A 570 

critical look of driving model mechanisms, which emerged from the hypothetical drought 571 

simulations used here, are summarized in Table 3. The models also show exacerbated biomass 572 

loss and recovery times in the majority of our scenarios of warming and eCO2, supporting 573 

Hypothesis H2. Below, we discuss the underlying mechanisms that drive simulated ecosystem 574 

response to UCEs using the models and sites as conceptual “experimental tools” and 575 

observational evidence from the literature. We focus on two temporal stages of the UCE: The 576 

pre-drought ecosystem stage characterized as the quasi-stable state of the ecosystem prior to a 577 
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UCE, which can mediate ecosystem resistance and disturbance impact, and the post-drought 582 

recovery stage (Table 1). 583 

 584 

4.1 The role of ecosystem processes and states prior to UCEs 585 

4.1.1 The role of phenology and phenological strategies prior to UCEs: 586 

Observations show that diversity of deciduousness contributes to successful alternative 587 

strategies for tropical forest response to water stress (Williams et al., 2008). For example, during 588 

the severe 1997 El Nino drought, brevi-deciduous trees and deciduous stem-succulents within a 589 

tropical dry site in Guanacaste Costa Rica retained leaves during the extreme wet-season 590 

drought, behaving differently than during normal dry seasons (Borchert et al., 2002). Both 591 

models here predict that neither seasonal deciduousness, nor drought-deciduous phenology at the 592 

seasonally dry tropical forest, Palo Verde (which consists of trees with different leaf 593 

phenological strategies), act to buffer the forest from a large drop in LAI during UCEs (Fig. S1a-594 

b). Even with this large decrease in LAI, ED2 predicted a very weak biomass loss at the time of 595 

UCEs (Fig. 2a), suggesting large-scale leaf loss is not a direct mechanism of plant mortality in 596 

ED2. Leaf loss is one component of total carbon turnover flux equations in terrestrial models, in 597 

addition to woody loss, fine-roots, and reproductive tissues. Having a better understanding of 598 

when extreme levels of phenological turnover contribute to stand-level mortality could be 599 

improved. Among other turnover hypothesis explored, Pugh et al. (2020) found that phenological 600 

turnover fluxes where just as important as mortality fluxes in driving forest turnover time in the 601 

VDMs: LPJ-GUESS, CABLE-POP, ORCHIDEE, but not the LSM JULES. At the EucFACE 602 

site prior to the simulated extreme drought, LPJ-GUESS displayed strong inter-annual variability 603 

in LAI (Fig. S1a-b). This capability of large swings in LAI (5.8 to 0.8) by LPJ-GUESS could 604 

contribute to model uncertainty and the considerable mortality response at EucFACE.  Modeled 605 

LAI was the largest source of variability in another ecosystem model, CABLE, when evaluating 606 

the simulated response to CO2 fertilization (Li et al., 2018). VDMs could be improved by better 607 

capturing different plant phenological responses to UCEs by better representing a range of leaf-608 

level morphological and physiological characteristics relevant to plant-water relations such as 609 

leaf age, retention of young leaves even during extreme droughts, (Borchert et al., (2002)), and 610 

variation in hydraulic traits as a function of leaf habit (Vargas et al., (2021)) (Table 3). Two such 611 
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examples are seen in the FATES model where the possibility for “trimming” the lowest leaf 612 

layer can occur when leaves are in negative carbon balance due to light limitation thus 613 

optimizing maintenance costs and carbon gain, as well as leaf age classifications providing 614 

variations in leaf productivity and turnover.   615 

  616 

4.1.2 The role of plant hydraulics prior to UCEs: 617 

Susceptibility of plants to hydraulic stress is one of the strongest determinants of 618 

vulnerability to drought, with loss of hydraulic conductivity being a major predictor of drought 619 

mortality in temperate (McDowell et al., 2013; Anderegg et al., 2015; Sperry and Love, 2015; 620 

Venturas et al., 2021) and tropical forests (Rowland et al., 2015; Adams et al., 2017b), as well as 621 

a tractable mortality mechanism to represent in process-based models (Choat et al., 2018, 622 

Kennedy et al., 2019). Both LPJ-GUESS and ED2 exhibited a wide range in amount and pattern 623 

of plant-available-water prior to drought (Fig. S1c-d), contributing to large differences in UCE 624 

response. LPJ-GUESS, which does not simulate hydrodynamics, predicted lower total plant-625 

available-water at both sites compared to ED2, and subsequently simulated greater mortality and 626 

a greater increase in plant-available-water right after the UCEs as a result of less water demand. 627 

Due to ED2 using a static mortality threshold from conductivity loss (88%), it likely does not 628 

accurately reproduce the wide range of observations of drought-induced mortality. In ED2, large 629 

trees, with longer distances to transport water, were at higher risk and suffered higher mortality 630 

(Fig. 4), demonstrating how stand demography, size structure, and tapering of xylem conduits 631 

can play an important role in ecosystem models (Petit et al., 2008; Fisher et al., 2018). Of the 632 

VDMs that are beginning to incorporate a continuum of hydrodynamics (e.g., ED2 (described in 633 

Methods 2.1 section) and FATES-HYDRO (Fang et al., 2022, based on Christoffersen et al., 634 

2016), they are able to solve for transient water from soils to roots, through the plant and connect 635 

with transpiration demands. Therefore, instead of the plant water stress function being based on 636 

soil water potentials, it is replaced with more realistic connections with leaf water potentials. 637 

Mortality is then caused by hydraulic failure via embolism controlled by the critical water 638 

potential (P50) that leads to 50% loss of hydraulic conductivity. For advancements in tree level 639 

hydrodynamic modeling see the FETCH3 model (Silva et al., 2022), for justification for plant 640 

hydrodynamics in conjunction with multi-layer vertical canopy profiles see Bonan et al., (2021). 641 

There are strong interdependencies and related mechanisms connecting both hydraulic failure 642 
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(e.g., low soil moisture availability) and C limitation (e.g., stomatal closure) during drought 643 

(McDowell et al., 2008; Adams et al., 2017b), and these interactions should be incorporated in 644 

ecosystem modeling and further explored (Table 3). 645 

4.1.3. The role of carbon allocation prior to UCEs: 646 

Plants have a variety of strategies to buffer vulnerability to water and nutrient stress 647 

caused by extreme droughts, such as allocating more C to deep roots (Joslin et al., 2000; Schenk 648 

and Jackson, 2005), investing in mycorrhizal fungi (Rapparini and Peñuelas, 2014), or reducing 649 

leaf area without shifting leaf nutrient content (Pilon et al., 1996). Alternatively, presence of 650 

deep roots doesn’t necessarily lead to deep soil moisture utilization, as seen in a 6-year 651 

Amazonian throughfall exclusion experiment where deep root water uptake was still limited, 652 

even with high volumetric water content (Markewitz et al., 2010). Elevated CO2 alone will 653 

enhance growth and water-use efficiency (Keenan et al., 2013), reducing susceptibility to 654 

drought. However, such increased productivity within a forest stand, and associated structural 655 

overshoot during favorable climate windows, can also be reversed by increased competition for 656 

light, nutrients, and water during unfavorable UCEs – potentially leading to mortality overshoot 657 

(Fig. 1d) and higher C loss. Mortality overshoot, as a result of structural overshoot, could be an 658 

explanation for the negative severity-climate index (i.e., C loss) in the majority of eCO2-only 659 

simulations (18 out of 24 scenarios; Table 2). 660 

Effects of CO2 fertilization on plant C allocation strategies are uncertain. As a result, 661 

ecosystem models differ in their assumptions on controls of C allocation in response to eCO2, 662 

leading to divergent plant C use efficiencies (Fleischer et al., 2019). Global scale terrestrial 663 

models are beginning to include optimal dynamic C allocation schemes, over fixed ratios, that 664 

account for concurrent environmental constraints on plants, such as water, and adjust allocation 665 

based on resource availability such as in LM3-PPA (Weng et al., 2015), but the representation of 666 

C allocation is still debated and progressing (De Kauwe et al., 2014; Montané et al., 2017; Reyes 667 

et al., 2017). Options for carbon allocation strategies can based on the allometric partitioning 668 

theory (i.e., allocation follows a power allometry function between plant size and organs which 669 

is insensitive to environmental conditions; Niklas, 1993), as an alternative to ratio-based optimal 670 

partitioning theory (i.e., allocation to plant organs based on the most limiting resources) 671 

(McCarthy and Enquist, 2007) or fixed ratios (Table 3), and the strategies should be further 672 

investigated particularly due to VDMs substantial use of allometric relationships. A meta-673 

Deleted: integrated-C-change 674 



 20 

analysis of 164 studies found that allometric partitioning theory outperformed optimal 675 

partitioning theory in explaining drought-induced changes in C allocation (Eziz et al., 2017). 676 

Further eco-evolutionarily-based approaches such as optimal response or game-theoretic 677 

optimization, as well as entropy-based approaches are useful when wanting to simulate higher 678 

levels of complexity (reviewed in Franklin et al. 2012). With more frequent UCEs and the need 679 

for plants to reduce water consumption, a shift in the optimal strategy of allocation between 680 

leaves and fine roots should change. The goal functions (e.g., fitness proxy) used in optimal 681 

response modeling can account for these shifts in costs and benefits of allocation between all 682 

organs (Franklin et al. 2009, 2012). 683 

  684 

4.1.4 The role of plant carbon storage prior to UCEs: 685 

Studies of neotropical and temperate seedlings show that pre-drought storage of non-686 

structural carbohydrates (NSCs) provides the resources needed for growth, respiration 687 

osmoregulation, and phloem transport when stomata close during subsequent periods of water 688 

stress (Myers and Kitajima, 2007; Dietze and Matthes, 2014; O’Brien et al., 2014). Furthermore, 689 

direct correlations have been shown between NSC depletion and embolism accumulation, and 690 

the degree of pre-stress reserves and utilization of soluble sugars (Tomasella et al., 2020). The 691 

amount of NSC storage required to mitigate plant mortality during C starvation and interactions 692 

with hydraulic failure from severe drought is difficult to quantify, due to the many roles of NSCs 693 

in plant function and metabolism (Dietze and Matthes, 2014). For example, NSCs were not 694 

depleted after 13 years of experimental drought in the Brazilian Amazon (Rowland et al., 2015). 695 

As atmospheric CO2 increases with climate change, NSC concentrations may increase, as seen in 696 

manipulation experiments (Coley, 2002), but interactions with heat, water stress, enhanced leaf 697 

shedding, and nutrient limitation complicates this relationship, and needs to be further explored. 698 

Despite the recognition of the critical role that plant hydraulic functioning and NSCs play in tree 699 

resilience to extremes, knowledge gaps and uncertainties preclude fully incorporating these 700 

processes into ecosystem models.  701 

Compared to ED2, LPJ-GUESS predicted low plant carbon storage (a model proxy for 702 

NSCs) prior to and during drought, and at times became negative, thereby creating C costs (Fig. 703 

S2a-b), leading to C starvation and potentially explaining the larger biomass loss in LPJ-GUESS 704 

at both sites. Alternatively, ED2 maintained higher levels of NSCs providing a buffer to stress, 705 
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and mitigating the negative effects of drought. Maintenance of NSCs in ED2, even during 706 

prolonged drought (at EucFACE) is due to: (1) trees resorbing a fraction of leaf C during leaf 707 

shedding, (2) no maintenance costs for NSC storage in the current version, and (3) no allocation 708 

of NSCs to structural growth until NSC storage surpasses a threshold (the amount of C needed to 709 

build a full canopy of leaves and associated fine roots), allowing for a buffer to accumulate. In 710 

LPJ-GUESS, accumulation and depletion of NSC is recorded as a ‘C debt’ being paid back in 711 

later years. The contrasting responses of the two models to drought, and the likely role of NSCs 712 

in explaining differences in model behavior, highlights the need to better understand NSC 713 

dynamics and to accurately represent the relevant processes in models (Richardson et al., 2013; 714 

Dietze and Matthes, 2014). More observations of C accumulation patterns and how/where NSCs 715 

drive growth, respiration, transport and cellular water relations would enable a more realistic 716 

implementation of NSC dynamics in models (Table 3). 717 

  718 

4.1.5 Role of functional trait diversity prior to UCEs: 719 

Currently LPJ-GUESS simulates the Palo Verde community using three PFTs, while ED2 uses 720 

four PFTs that differ in photosynthetic and hydraulic traits. The community composition simulated by 721 

ED2 is shown to be more resistant to UCEs compared to LPJ-GUESS (Fig. 5), perhaps due to 722 

relatively higher functional diversity (via more PFTs with additional phenological and hydraulic 723 

diversity). This additional diversity helps to buffer ecosystem response to drought by allowing more 724 

tolerant PFTs to benefit from reductions in less-tolerant PFTs, thus buffering reductions in ecosystem 725 

function (Anderegg et al., 2018). Higher diversity ecosystems were found to protect individual species 726 

from negative effects of drought (Aguirre et al., 2021) and enhance productivity resilience following 727 

wildfire (Spasojevic et al., 2016); thus, functionally diverse communities may be key to enhancing 728 

tolerance to rising environmental stress. 729 

Recent efforts to consolidate information on plant traits (Reich et al., 2007; Kattge et al., 2011) 730 

have contributed to identifying relationships that can impact community-level drought responses 731 

(Skelton et al., 2015; Anderegg et al., 2016a; Uriarte et al., 2016; Greenwood et al., 2017), such as 732 

life-history characteristics, and strategies of resource acquisition and conservation as predictors of 733 

ecosystem resistance (MacGillivray et al., 1995; Ruppert et al., 2015). While adding plant trait 734 

complexity in ESMs may be required to accurately simulate key vegetation dynamics, it necessitates 735 

more detailed parameterizations of processes that are not explicitly resolved (Luo et al., 2012). Further 736 
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investigation of how VDMs represent interactions leading to functional diversity shifts is crucial to 737 

this issue. Enquist and Enquist, (2011), as an example, show that long-term patterns of drought (20-738 

years) have led to increases in drought-tolerant dry forest species, which could modulate resistance to 739 

future droughts. Higher diversity of plant physiological traits and drought-resistance strategies is 740 

expected to enhance community resistance to drought, and models should account for shifts in diverse 741 

functionality (Table 3). 742 

  743 

4.2 The role of ecosystem processes and states in post-UCE recovery 744 

4.2.1 The role of soil water resources post-UCEs: 745 

Our simulation results generally demonstrated a fast recovery of plant-available-water 746 

and LAI at both sites (Fig. S1). Annual plant-available-water substantially increased right after 747 

drought by an average of 163 mm at Palo Verde and 213 mm at EucFACE in the LPJ-GUESS 748 

simulations, compared to much lower increases in ED2 (50 mm and 12 mm at Palo Verde and 749 

EucFACE). This increase in available water post-drought can be attributed to reduced stand 750 

density and water competition (Fig. S2c-d; diamonds vs. circles), alleviating the demand for soil 751 

resources (water) and subsequent stress, which has also been shown in observations (McDowell 752 

et al., 2006; D'Amato et al., 2013). After large canopy tree mortality events there can be 753 

relatively rapid recovery of forest biogeochemical and hydrological fluxes (Biederman et al., 754 

2015; Anderegg et al., 2016b; Biederman et al., 2016). These crucial fluxes strongly influence 755 

plant regeneration and regrowth, which can buffer ecosystem vulnerability to future extreme 756 

droughts. However, this enhanced productivity has a limit. In a scenario where UCEs continue to 757 

intensify, causing greater reductions in soil water and reduced ecosystem recovery potential, the 758 

SO growth that typically occurs after UCEs may be dampened (Fig. 1d). In water-limited 759 

locations, similar to the dry forest sites used here, initial forest recovery from droughts were 760 

faster due to thinning induced competitive-release of the surviving trees, and shallow roots not 761 

having to compete with neighboring trees for water, allowing for more effective water user 762 

(Tague and Moritz, 2019), stressing the importance of root competition and distribution in 763 

models (Goulden and Bales, 2019). Tague and Moritz, (2019) also reported that this increased 764 

water use efficiency and SO ultimately lead to water stress and related declines in productivity, 765 

similar to the MO concept (Jump et al., 2017; McDowell et al., 2006). Since a core strength of 766 
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VDMs is predicting stand demography during recovery, improved quantification of density-767 

dependent competition following stand dieback would be beneficial for model benchmarking 768 

(Table 3). 769 

  770 

4.2.2 The role of lagged turnover and secondary stressors post-UCEs: 771 

Time lags in forest compositional response and survival to drought could indicate 772 

community resistance or shifts to more competitive species and competitive exclusion. During a 773 

15-year recovery period from extreme drought at Palo Verde, LPJ-GUESS predicted an increase 774 

in stem density (stems m2 yr-1) (Fig. S2c) compared to ED2, which predicted almost no impact in 775 

stem recovery. The mortality “spike” in ED2 due to drought was muted and slightly delayed, 776 

contributing to ED2’s lower biomass loss and more stable behavior of plant processes over time 777 

at Palo Verde. At EucFACE, both models exhibited a pronounced lag effect in stem turnover 778 

response, i.e. ~8-12 years after drought (Fig. S2d). After about a decade, strong recoveries and 779 

increased stem density occurred, which in ED2 was followed by delayed mortality/thinning of 780 

stems. Delayed tree mortality after droughts is common due to optimizing carbon allocation and 781 

growth (Trugman et al., 2018), but typically only up to several years post-drought, not a decade 782 

or more as seen in the model. 783 

The versions of the VDMs used here do not directly consider post-drought secondary 784 

stressors such as infestation by insects or pathogens, and the subsequent repair costs due to stress 785 

damage, which could substantially slow the recovery of surviving trees. Forest ecologists have 786 

long recognized the susceptibility of trees under stress, particularly drought, to insect attacks and 787 

pathogens (Anderegg et al., 2015). Tight connections between drought conditions and increased 788 

mountain pine beetle activity have been observed (Chapman et al., 2012; Creeden et al., 2014), 789 

and can ultimately lead to increased tree mortality (Hubbard et al., 2013). Leaf defoliation is a 790 

major concern from insect outbreaks following droughts, and can have large impacts on C 791 

cycling, plant productivity, and C sequestration (Amiro et al., 2010; Clark et al., 2010; Medvigy 792 

et al., 2012). Implementing these secondary stressors in models could slow the rate of post-UCE 793 

recovery and lead to increased post-UCEs tree mortality. 794 

  795 
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4.2.3 The role of stand demography post-UCEs: 796 

Change in stand structure is an important model process to capture, because large trees 797 

have important effects on C storage, community resource competition, and hydrology 798 

(Wullschleger et al., 2001) (Table 3), and maintaining a positive carbohydrate balance is 799 

beneficial in sustaining (or repairing) hydraulic viability (McDowell et al., 2011). There is 800 

increasing evidence, both theoretical (McDowell and Allen, 2015) and empirical (Bennett et al., 801 

2015; Rowland et al., 2015; Stovall et al., 2019), that large trees (particularly tall trees with high 802 

leaf area) contribute to the dominant fraction of dead biomass after drought events. Under rising 803 

temperatures (and decreasing precipitation), VPD will increase, leading to a higher likelihood of 804 

large tree death (Eamus et al., 2013; Stovall et al., 2019), driving MO events as hypothesized in 805 

Fig. 1d. Consistent with this expectation, ED2 predicted that the largest trees (>100 cm) 806 

experienced the largest decreases in basal area to compared to all other size classes (Fig. 4). This 807 

drought-induced partial dieback and mortality of large dominant trees has substantial impacts on 808 

community-level C dynamics, as long-term sequestered C is liberated during the decay of new 809 

dead wood (Palace et al., 2008; Potter et al., 2011). In ED2, the intermediate size class (60 - 80 810 

cm) increased in basal area following large-tree death, taking advantage of the newly open 811 

canopy space. However, small size classes do not necessarily benefit from canopy dieback. For 812 

example, in a dry tropical forest, prolonged drought led to a decrease in understory species and 813 

small-sized stems (Enquist and Enquist, 2011).  814 

Due to VDMs being able to exhibit dynamic biogeography they are more useful at 815 

predicting shifts in community composition beyond LSMs capabilities. Further areas of 816 

advancement (described in Franklin et al. (2020)) is including models of natural selection, self-817 

organization, and entropy maximization which can substantially improve community dynamic 818 

responses in varying environments such as UCEs. Eco-evolutionary optimality (EEO) theory can 819 

also help improve functional trait representation in global process-based models (reviewed in 820 

Harrison et al., 2021), through hypotheses in plant trait trade-offs and mechanistic links between 821 

processes such as resource demand, acquisition, and plant’s competitiveness and survival; traits 822 

associated with high degrees of sensitivity in models. The power of prognostic VDMs to predict 823 

shifts in demography and community migration with climate change is large, but rarely is being 824 

constrained with plant-level EEO theory, and thus will likely need to use stand level competition 825 

and coexistence principles of how plants self-organize (Franklin et al. 2020).  826 
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  827 

4.2.4 The role of functional trait diversity & plant hydraulics post-UCEs: 828 

In field experiments, higher disturbance rates have shifted the recovery trajectory and 829 

competition of the plant community towards one that is composed of opportunistic, fast-growing 830 

pioneer tree species, grasses (Shiels et al., 2010; Carreño-Rocabado et al., 2012), and/or 831 

deciduous species, as also seen in model results (Hickler et al., 2004). In the treatments presented 832 

here, deciduous PFT types were also the strongest to recover after 15 years in both models, 833 

surpassing pre-drought values (Fig. 5). It should be noted that ED2 exhibited a strong recovery in 834 

the evergreen PFT as well, inconsistent with the above literature (Fig. 5b). PFTs in ED2 respond 835 

to drought conditions via stomatal closure and leaf shedding, buffering stem water potentials 836 

from falling below a set mortality threshold (i.e., 88% of loss in conductivity). This conductivity 837 

threshold may need to be reconsidered if further examination reveals an unrealistic advantage 838 

under drought conditions for evergreen trees, which exhibited a lower impact from droughts 839 

(compared to deciduous and brevi-deciduous PFTs) in ED2. Nitrogen cycling feedbacks were 840 

not investigated here, but could also be an explanation for a strong evergreen PFT recovery.  841 

Recovery of surviving trees could be hindered by the high cost of replacing damaged 842 

xylem associated with cavitation (McDowell et al., 2008; Brodribb et al., 2010). Many studies 843 

have identified “drought legacy” effects of delayed growth or gross primary productivity 844 

following drought (Anderegg et al., 2015; Schwalm et al., 2017) and the magnitude of these 845 

legacies across species correlates with the hydraulic risks taken during drought itself (Anderegg 846 

et al., 2015). The conditions under which xylem can be refilled remain controversial, but it seems 847 

likely that many species, particularly gymnosperms, may need to entirely replace damaged 848 

xylem (Sperry et al., 2002), and trees worldwide operate within narrow hydraulic safety margins, 849 

suggesting that trees in all biomes are vulnerable to drought (Choat et al., 2012). The amount of 850 

damaged xylem from a given drought event and recovery rates also vary across trees of different 851 

sizes (Anderegg et al., 2018). 852 

Plasticity in nutrient acquisition traits, intraspecific variation in plant hydraulic traits 853 

(Anderegg et al., 2015), and changes in allometry (e.g., Huber values) can have large effects on 854 

acclimation to extreme droughts. This suggests some capacity for physiological adaptation to 855 

extreme drought, as seen by short-term negative effects from drought and heat extremes being 856 
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compensated for in the longer term (Dreesen et al., 2014). Still, given the shift towards more 857 

extreme droughts with climate change, vegetation mortality thresholds are likely to be exceeded, 858 

as reported in Amazonian long-term plots where mortality of wet-affiliated genera has increased 859 

while simultaneously new recruits of dry-affiliated genera are also increasing (Esquivel-Muelbert 860 

et al., 2019). Increasing occurrences of heat events, water stress and high VPD will lead to 861 

extended closure of stomata to avoid cavitation, progressively reducing CO2 enrichment benefits 862 

(Allen et al., 2015). Where CO2 fertilization has been seen to partially offset the risk of 863 

increasing temperatures, the risk response was mediated by plant hydraulic traits (Liu et al., 864 

2017) using a soil–plant–atmosphere continuum (SPAC) model, yet interactions with novel 865 

extreme droughts were not considered. The VDM simulations suggest that the combination of 866 

elevated warming and potential structural overshoot from eCO2 (or inaccurate representation in 867 

NSCs allocation/usage priority) will exacerbate consequences of UCEs by reductions in both C 868 

stocks and post-drought biomass recovery speeds (Fig. 3). Therefore, future UCE recovery may 869 

not be easily predicted from observations of historical post-disturbance recovery.  An associated 870 

area for further investigation is to better understand the hypothesized interplay between 871 

amplified mortality from hotter UCEs followed by structural overshoot regrowth during wetter 872 

periods (Fig. 1d), which could potentially lead to continual large swings in MO and SO and 873 

vulnerable net ecosystem C fluxes through time (Table 3).   874 

  875 

5 Summary of perspectives for model advancement 876 

Model limitations and unknowns exposed by our simulations and literature review 877 

highlight current challenges in our ability to understand and forecast UCE effects on ecosystems. 878 

These limitations reflect a general lack of empirical experiments focused on UCEs. Insufficient 879 

data means that relevant processes may currently be poorly represented in models, and models 880 

may then misrepresent C losses during UCEs. The two VDMs used here had different 881 

sensitivities to drought duration or intensity, and CO2 and warming interactions, indicating the 882 

wide variety of unknowns and plausible options when trying to represent future UCEs that still 883 

needs to be narrowed down (Fig. 1d). These model uncertainties could potentially be addressed 884 

by improved datasets on thresholds of conductivity loss at high drought intensities, the role of 885 

trait diversity (e.g., different strategies of drought deciduousness and EEO theory) in buffering 886 

ecosystem drought responses, and a better grasp of allocation to plant C storage stocks before, 887 
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during, and after multi-year droughts. Our study takes some initial steps to identify and assess 889 

model gaps in terms of mechanisms and magnitudes of responses to UCEs, which can then be 890 

used to inform and develop field experiments targeting key knowledge gaps as well as to 891 

prioritize ongoing model development (Table 3). Our intention was not to do an exhaustive list 892 

of UCE simulation experiments, and additional modeling perturbations and experiments would 893 

be useful outcomes of future studies. For example, we begin to investigate duration of droughts 894 

but we did not consider frequency of back-to-back UCEs. Using VDMs as hypothesis testing 895 

tools offers strong potential to drive progress in improving our understanding of terrestrial 896 

ecosystem responses to UCEs and climate feedbacks, while informing the development of the 897 

next generation of models.  898 
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Table 1. Hypothesized plant processes and ecosystem state variables affecting pre-drought 944 

resistance and post-drought recovery in the context of unprecedented climate extremes (UCEs). 945 

The “Included in Model?” column indicates which processes or state variables are represented in 946 

each of the two models studied in this paper. The mechanisms listed in the two right columns 947 

refer to real-world ecosystems and are not necessarily represented in the ED2 and LPJ-GUESS 948 

models. Contents of the table are based on a non-exhaustive literature review, expert knowledge, 949 

and modeling results presented here. Symbols refer to the following literature sources: * 950 

Borchert et al., 2002; Williams et al., (2008); ** Dietze and Matthes, (2014); O’Brien et al., 951 

2014; *** ENQUIST and ENQUIST, (2011); Greenwood et al., (2017); Powell et al., (2018); ^ 952 

Rowland et al., (2015); McDowell et al., (2013); Anderegg et al., (2015); ^^ Joslin et al., 2000; 953 

Markewitz et al., (2010); ^^^ Powell et al., (2018); ^^^^ Bennett et al., (2015); Rowland et al., 954 

(2015); ~ Hubbard et al., (2013); ~ ~ McDowell et al., (2006); D'Amato et al., (2013); + Zhu et 955 

al., (2018); Vargas et al., (2021); % Trugman et al., (2019); %% Franklin et al., (2012); %% 956 

Franklin et al., (2020). 957 

Process or 
State Variable 

Included in 
model? 

Mechanisms affecting pre-UCE 
drought resistance influencing impact 

Mechanisms affecting post-UCE 
drought recovery 

Processes   

1) Phenology 
Schemes 

ED2: Yes   
LPJ-G: Yes 

- Leaf area and metabolic activity 
modulates vulnerability to death  
- Drought-deciduousness reduces 

vulnerability to drought *, with higher 
water potential at turgor loss point 

and less leaf vulnerability to 
embolism + 

- Leaf lifespan tends to increase 
from pioneer to late-

successional species in some 
ecosystems (e.g., tropical 
forests) and is a balance 

between C gain and its cost 

2) Plant 
Hydraulics 

ED2: Yes   
LPJ-G: No 

- Cavitation resistance traits ^  
- Turgor loss, hydraulic failure (stem 

embolism) lead to increased plant 
mortality and enhanced vulnerability 

to secondary stressors. 

- Replacement cost of damaged 
xylem slows recovery of 

surviving trees 

3) Dynamic 
Carbon 
Allocation 

ED2: Yes   
LPJ-G: Yes 

- Increased root allocation could 
offset soil water deficit under gradual 

onset of drought ^^ 
- Leaf C allocation strategies should 

be connected to hydraulic processes % 

- Allocation among fine roots, 
xylem, & leaves affects 

recovery time & GPP/LAI 
trajectory 

- Eco-evolutionary optimality 
theory %% 
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4) Non-
Structural 
Carbohydrate 
(NSC) Storage 

ED2: Yes   
LPJ-G: Yes 

- NSCs buffer C starvation mortality 
due to reduced primary productivity.  
- Maintenance of hydraulic function 

& avoiding hydraulic failure ** 

- Low NSC could increase 
vulnerability to secondary 
stressors during recovery 

State Variables   

1) Plant-Soil 
Water 
Availability 

ED2: Yes   
LPJ-G: 
Partly 

- Low soil water potential increases 
risk of tree C starvation, turgor loss 

and hydraulic failure 

- After stand dieback reduced 
demand for soil resources &/or 

reduced shading  
- Increased soil water enhances 
regeneration/ regrowth, buffers 

vulnerability to long-term 
drought ~ ~ 

2) Plant 
Functional 
Diversity 

ED2: Yes   
LPJ-G: Yes 

- Presence of drought-tolerant species 
modulates resistance at community 

level.  
- Shallow-rooting species more 

vulnerable ^^^ *** 

- Changed resource spectra shift 
competitive balance in favor of 

grasses and pioneer trees 

3) Stand 
Demography 

ED2: Yes   
LPJ-G: Yes 

- Larger tree size enhances 
vulnerability to drought and 

secondary stressors due to higher 
maintenance costs ^^^^ 

- Mortality of canopy 
individuals favors understory 

species and smaller size-classes 
- Self-organizing principles %%% 

4) 
Compounding 
Stressors 

ED2: No   
LPJ-G: No 

- Reduced resistance to insects and 
pathogens due to 

physiological/mechanical/ hydraulic 
damage & depletion of NSC 

- Infestation by insects and 
pathogens, repair of damage due 

to secondary stressors, slows 
recovery of surviving trees ~ 
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Table 2 Impact of eCO2 and/or temperature on the severity-climate index (kg C m-2 yr) relative 959 

to drought treatments with no additional warming or eCO2, for both models, and both sites seen 960 

in Fig. 3. Quantified as average and minimum severity-climate index across all 20 drought 961 

intensities for step-change scenarios of warming and eCO2. The percentage of each scenario that 962 

was negative in severity-climate index (i.e., decreases in C loss). Green values represent positive 963 

severity-climate index. 964 

   965 

LPJ-GUESSED2
% climate 
scenario 

was 
negative

Largest 
severity-
climate 
index

Average 
severity-
climate 
index

% climate 
scenario 

was 
negative

Largest 
severity-
climate 
index

Average 
severity-
climate 
index

EucFACE

36.8-396.6-74.633.30.02.2600 ppm1 year
57.9-416.0-124.150.0-73.0-10.6800 ppm
15.8-20.821.316.7-0.52.32K
78.9-201.5-67.561.1-8.20.52K, 600 ppm
47.4-400.1-145.922.2-0.41.82K, 800 ppm
63.2-260.6-85.277.8-456.7-105.6600 ppm2 year
42.1-350.1-106.383.3-522.9-199.0800 ppm
31.6-35.214.277.8-34.7-10.32K
84.2-128.8-47.677.8-666.1-204.92K, 600 ppm
68.4-421.9-167.050.0-61.6-12.42K, 800 ppm
94.7-277.4-122.683.3-306.2-125.5600 ppm4 year
89.5-523.7-212.2100.0-423.3-277.1800 ppm
31.6-13.812.972.2-188.6-61.82K
94.7-197.3-79.194.4-674.2-385.92K, 600 ppm
100.0-503.8-247.072.2-737.7-277.92K, 800 ppm
62.5-276.5-95.464.8-277.0-111.0Average

LPJ-GUESSED2Palo Verde
78.9-32.4-11.077.8-6.2-1.6600 ppm1 year
100.0-154.0-39.211.1-0.26.7800 ppm
100.0-75.1-33.438.9-15.3-1.02K
52.6-4.66.522.2-1.12.52K, 600 ppm
100.0-237.7-121.177.8-16.6-6.62K, 800 ppm
10.5-6.027.338.9-16.715.1600 ppm2 year
26.3-17.220.666.7-756.6-229.2800 ppm
15.8-12.732.050.0-71.8-8.22K
5.3-1.236.211.1-5.724.82K, 600 ppm
36.8-54.58.077.8-348.1-152.92K, 800 ppm
26.3-25.13.494.4-37.3-11.1600 ppm4 year
57.9-132.6-25.294.4-694.8-260.2800 ppm
68.4-45.9-7.766.7-133.8-39.02K
31.6-4.16.138.9-16.41.02K, 600 ppm
78.9-75.5-20.083.3-429.3-148.52K, 800 ppm
52.6-58.6-7.856.7-170.0-53.9Average
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    ED2 LPJ-GUESS 

EucFACE 
Average 
severity-
climate 
index 

Largest 
severity-
climate 
index 

% climate 
scenario 

was 
negative 

Average 
severity-
climate 
index 

Largest 
severity-
climate 
index 

% climate 
scenario 

was 
negative 

1 year 600 ppm 2.2 0.0 33.3 -74.6 -396.6 36.8 
  800 ppm -10.6 -73.0 50.0 -124.1 -416.0 57.9 
  2K 2.3 -0.5 16.7 21.3 -20.8 15.8 
  2K, 600 ppm 0.5 -8.2 61.1 -67.5 -201.5 78.9 
  2K, 800 ppm 1.8 -0.4 22.2 -145.9 -400.1 47.4 
2 year 600 ppm -105.6 -456.7 77.8 -85.2 -260.6 63.2 
  800 ppm -199.0 -522.9 83.3 -106.3 -350.1 42.1 
  2K -10.3 -34.7 77.8 14.2 -35.2 31.6 
  2K, 600 ppm -204.9 -666.1 77.8 -47.6 -128.8 84.2 
  2K, 800 ppm -12.4 -61.6 50.0 -167.0 -421.9 68.4 
4 year 600 ppm -125.5 -306.2 83.3 -122.6 -277.4 94.7 
  800 ppm -277.1 -423.3 100.0 -212.2 -523.7 89.5 
  2K -61.8 -188.6 72.2 12.9 -13.8 31.6 
  2K, 600 ppm -385.9 -674.2 94.4 -79.1 -197.3 94.7 
  2K, 800 ppm -277.9 -737.7 72.2 -247.0 -503.8 100.0 
  Average -111.0 -277.0 64.8 -95.4 -276.5 62.5 

Palo Verde ED2 LPJ-GUESS 

1 year 600 ppm -1.6 -6.2 77.8 -11.0 -32.4 78.9 
  800 ppm 6.7 -0.2 11.1 -39.2 -154.0 100.0 
  2K -1.0 -15.3 38.9 -33.4 -75.1 100.0 
  2K, 600 ppm 2.5 -1.1 22.2 6.5 -4.6 52.6 
  2K, 800 ppm -6.6 -16.6 77.8 -121.1 -237.7 100.0 
2 year 600 ppm 15.1 -16.7 38.9 27.3 -6.0 10.5 
  800 ppm -229.2 -756.6 66.7 20.6 -17.2 26.3 
  2K -8.2 -71.8 50.0 32.0 -12.7 15.8 
  2K, 600 ppm 24.8 -5.7 11.1 36.2 -1.2 5.3 
  2K, 800 ppm -152.9 -348.1 77.8 8.0 -54.5 36.8 
4 year 600 ppm -11.1 -37.3 94.4 3.4 -25.1 26.3 
  800 ppm -260.2 -694.8 94.4 -25.2 -132.6 57.9 
  2K -39.0 -133.8 66.7 -7.7 -45.9 68.4 
  2K, 600 ppm 1.0 -16.4 38.9 6.1 -4.1 31.6 
  2K, 800 ppm -148.5 -429.3 83.3 -20.0 -75.5 78.9 
  Average -53.9 -170.0 56.7 -7.8 -58.6 52.6 

 



 32 

Table 3 Summary of suggested critical look of driving mechanisms (e.g., ecosystem or plant 972 

processes and state variables) which emerged from the hypothetical drought simulations used 973 

here to explore for future research in manipulation experiments, data collection, and model 974 

development and testing, as related to furthering our understanding of UCE resistance and 975 

recovery. 976 

 UCE Drought Resistance & Recovery Summary 

Processes Suggestions of driving mechanisms to further explore in data and models 

1) Phenology Schemes Represent morphological and physiological traits relevant to plant-water 
relations; drought- deciduousness can reduce vulnerability to drought; 

phenology of evergreens needs more investigation. 

2) Plant Hydraulics Interactions between hydraulic failure (e.g. low soil moisture availability) and 
C limitation (e.g. stomatal closure) during drought should be included in 
models. Account for turgor loss, hydraulic failure traits, costs to recover 

damaged xylem.  

3) Dynamic Carbon 
Allocation 

C allocation based on eco-evolutionary optimality (EEO) and allometric 
partitioning theory in addition to, or replacing ratio-based optimal 

partitioning theory, and fixed allocation ratios. Explore root allocation that 
could offset soil water deficits. 

4) Non-structural 
Carbohydrate (NSC) 
Storage 

Deciding best practices for NSC representation in models. Better 
understanding of NSC storage required to mitigate plant mortality during C 

starvation and interactions with avoiding hydraulic failure during severe 
droughts. 

States Variables   

1) Plant-Soil Water 
Availability 

Better quantification of the amount and accessibility of plant-available water 
for surviving trees, and tradeoff between increased structural productivity but 
vulnerability to subsequent droughts. Future relevance, or benefit, of lower 

water demand due to thinning with UCEs. 

2) Plant Functional 
Diversity 

Understand how higher diversity of plant physiological traits and drought-
resistance strategies will enhance community resistance to drought; models 

still need to account for shifts in diverse functionality, including 
deciduousness shifts and interplay of regrowth structural overshoot followed 

by amplified mortality from hotter UCEs. 

3) Stand Demography Large trees more vulnerable to drought; need data on changes in C stock with 
UCEs in high-density smaller tree stands vs. stands with larger trees. Using 

‘self-organization’ principles for modeling stand level competition and 
coexistence under UCEs.  

 977 
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  979 

Figure 1 Conceptual diagrams showing impacts of extreme droughts (unprecedented climate 980 

extremes, UCEs; i.e., record-breaking droughts) on plant C stocks. (a) Conceptual diagram of 981 

UCE C loss: potential loss in C stock as a function of increasing drought intensity (0-100% 982 

precipitation removal) and drought duration (1, 2 or 4 years of drought). In this example, an 983 

arbitrary threshold of 45% precipitation reduction and 4-year drought duration is assumed to 984 

correspond to a UCE. Hypotheses include nonlinear and threshold responses to drought intensity 985 

(H1a), drought duration via different slope responses (H1b), and combined effects of both 986 

drought intensity and durations (H1c). (b) Conceptualized diagram of integrated C change: 987 

responses of forest C stocks to a large (grey) and small (black) UCE. “Severity-drought index” 988 

(kg C m-2 yr) denotes the integral of the C loss over time and is calculated from the two arrows: 989 

the total loss in C (kg C m-2) due to drought, and the time (yr) to recover 50% of the pre-drought 990 

C stock. (c) Conceptualized UCE-climate C change diagram: hypothetical response in 991 

terrestrial “severity-climate index” (kg C m-2 yr) due to eCO2 (blue line), rising temperature (red 992 

line), interaction between eCO2 and temperature (dashed purple), and combined interactions 993 
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among eCO2, temperature, and UCEs of prolonged durations (green line), all relative to a 1002 

reference drought of normal duration with no warming (black line). Severity-climate index 1003 

denotes the difference in severity-drought index (see panel b) between a scenario of changing 1004 

climatic drivers and the reference drought with no climate change (control). (d) Conceptual 1005 

UCE amplification diagram: hypothetical amplified change in forest C stocks to eCO2 and 1006 

temperature relative to the pre-warming historical past (based on Jump et al. (2017)). Change in 1007 

C stock greater than zero indicates a ‘structural overshoot’ (SO) due to favorable environmental 1008 

conditions and/or recovery from an extreme drought-heat event (EE). Hashed black areas 1009 

indicate a structural overshoot due to eCO2, which occurs over the historical CO2 levels (dashed 1010 

blue line). Initially, an eCO2 effect leads to a larger increase in structural overshoot (due to CO2 1011 

fertilization), driving more extreme vegetation mortality (‘mortality overshoot’ - MO) relative to 1012 

historical dieback events and thus a greater decrease in C stock. Increased warming through time 1013 

increasingly counteracts any CO2 fertilization effect. While the amplitude of post-UCE C stock 1014 

recoveries remains large, net C stock values eventually decline (downward curvature, and 1015 

widening of the red shaded area) due to more pronounced loss in C stocks (and greater 1016 

ecosystem state change) from hotter UCEs and longer recovery periods. We conceptualize how 1017 

oscillations between SOs and MOs could be amplified and the widening of the shaded areas 1018 

represents increased variability in how unprecedented eCO2 levels and temperatures will affect 1019 

ecosystems in the future compared to historical.  1020 

SO = structural overshoot, MO = mortality overshoot, EE = historically extreme drought-heat 1021 

event, UCE = unprecedented climate extreme. 1022 
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  1028 

Figure 2 Modeled change in biomass (%) at the end of drought periods of different lengths (1, 2, 1029 

and 4-year droughts) and intensities (up to 95% precipitation removed) at (a) Palo Verde, and (b) 1030 

EucFACE, for the ED2 and LPJ-GUESS models. Modeled severity-drought index (C reduction 1031 

due to extreme drought integrated over time until biomass recovers to 50% of the non-drought 1032 

baseline biomass) at (c) Palo Verde and (d) EucFACE. 1033 
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  1037 

Figure 3 Vegetation C response to interactions between drought intensity (0% to 100% 1038 

precipitation reduction), drought durations (1, 2, 4-year droughts), and idealized scenarios of 1039 

warming and eCO2 compared to the control simulation, simulated by two VDMs; ED2 (a-f) and 1040 

LPJ-GUESS (g-l) at two sites (EucFACE and Palo Verde). The scenarios include a control 1041 
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(current temperature; 400 ppm atmospheric CO2), two eCO2 scenarios (600 ppm or 800 ppm), 1045 

elevated temperature (2 K above current), and a combination of eCO2 (600 ppm or 800 ppm) and 1046 

higher temperature. Vegetation response is quantified as “severity-climate index” (in kg C m-2 1047 

yr; Eq. 4), which is defined as the difference between severity-drought index (i.e., carbon loss 1048 

due to only drought) and a given scenario of drought plus change in climatic drivers, relative to 1049 

the control (i.e., no climate change). Negative values for severity-climate index indicate that 1050 

warming and/or eCO2 leads to stronger C losses and/or longer recovery, while positive values for 1051 

severity-climate index indicates a buffering effect. 1052 

 1053 

 1054 

 1055 

Figure 4 Change in basal area (m2 ha-1) immediately following either 1, 2, or 4 year droughts for 1056 

six increasing size class bins (DBH, cm) as predicted by the ED2 model for (a) the Palo Verde 1057 

site, with 90% precipitation removed, and (b) the EucFACE site with 50% precipitation 1058 

removed.  1059 
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 1067 

 1068 
 1069 
Figure 5 Percent change in community composition, represented by plant functional type (PFT), 1070 

the year following three drought durations of UCEs (1, 2, and 4-year droughts and 90% 1071 

precipitation removed) as well as 15 years after droughts, for the tropical Palo Verde site by (a) 1072 

LPJ-GUESS reported in biomass change, and (b) ED2 reported in LAI change. Even though Ds 1073 

had the strongest recovery, it should be noted it was the least abundant PFT at this site. Evgr. = 1074 

evergreen, Int. Ever. = intermediate evergreen, Decid. = deciduous, BD = brevi-deciduous, Ds = 1075 

deciduous stem-succulent. EucFACE data not shown because only one PFT present (evergreen 1076 

tree).  1077 
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