
Associate Editor decision: Publish subject to minor revisions (review by editor) 

Comments to the author: 

Dear Michael Stukel and co-authors, 

I have read the answers you provided to the comments of the two reviewers. Based on 

that, I invite you to submit a revised version of your work that incorporates all the 

changes mentioned in your answer. Please provide an annotated revised manuscript 

clearly highlighting all the changes made. 

Thanks a lot for your efforts in revising the manuscript, 

Kind regards, 

Marilaure Gregoire 

 

We greatly appreciate this opportunity to revise and resubmit our manuscript.  

Please see our point-by-point responses to the reviewers below.   

 

 

 

Reviewer #1: Vassilios Vervatis 

 

Title: Quantifying biological carbon pump pathways with a data-constrained 

mechanistic model ensemble approach. 

by Stukel et al., 

General comments: 

The study investigates the pathways of biological carbon pump, performing ensemble 

simulations of biogeochemical model parameterizations, constrained by data 

assimilation with the use of several data types obtained from Lagrangian experiments. 

The ms. is well written and well structured, being very informative for the processes 

controlling BCP pathways. The idea of using an ensemble-based approach to quantify 

model parameter uncertainties and constrain them by data assimilation is innovative 

and the general approach is meaningful. 



I am not an expert on the various aspects of biogeochemical model parameterizations, 

but I understand the most important feedbacks between the different compartments 

of the BGC model and the importance of the physical forcing. In this work, there are 

some assumptions that can be considered as simplifications (e.g., 1D model, physical 

forcing, length of simulations etc.), but in my opinion there are all justifiable and there 

are other novelties that compensate for the study approximations. 

Overall, I find the ms. worthy of publication in Biogeosciences after minor revisions. 

Please find below a list of comments that I would like the authors to address. 

Specific comments: 

1) P6, L183 and L188. Vertical eddy diffusivity is varying with depth or is set constant? 

Please clarify. 

Vertical eddy diffusivity varies with depth.  We now state:  

“We simulate vertical mixing as a simple diffusive process using vertical eddy 

diffusivity coefficients that vary with depth and are estimated for each 

Lagrangian experiment using Thorpe-scale analyses from field measurements 

(Gargett and Garner, 2008)” 

2) P6, L196. Which model variables, in addition to the euphotic zone, you could have 

simulated? Please clarify why those variables were excluded from the simulation (e.g., 

computational cost?) and explain how this may affect model uncertainty in relation to 

other error assumptions. 

This question is not entirely clear to us.  We did not exclude any variables from 

the model.  We simulated all model variables in the depth range from the surface 

to the base of the euphotic zone as defined by the 0.1% light level (which was 

typically at depths ranging from 40 – 100 m and hence included approximately 10 

– 20 model layers).   We made the decision to only model from the surface to the 

base of the euphotic zone (rather than from the surface down to an arbtitrary 

deeper depth, such as 1000 m) for two reasons: First, it does substantially 

decrease computational cost.  Second, the vast majority of our field 

measurements were made in the euphotic zone.  Thus, simulating the twilight 

zone would not give us substantial improvements in model fit (due to a lack of 

validation data below the euphotic zone), and it also would have added problems 

associated with defining boundary conditions (i.e., determining what the 

concentrations of each state variable should be at 1000 m depth would not have 

been feasible since most of them were not measured beneath the euphotic 

zone). 



3) P7, L237 and P8, L252-264. In the context of data assimilation, observational errors 

are often considered as a combination of instrument and representativity errors, the 

latter usually being the most important of all. The authors here quantify observational 

errors as the standard deviation of their measurements and/or the instrument error; if 

I understood correctly, representativity errors are not considered here. Are these 

errors relevant in terms of magnitude with observation representativity errors? 

We completely agree with the reviewer that representativity errors are often the 

dominant source of error.  However, we believe that the standard deviation of 

multiple distinct measurements inherently accounts for the most significant 

form of representativity error in our analyses.  Following Janjic et al. (2017) we 

consider three types of representatitivity error: I) error due to unresolved scales 

and processes, II) observation-operator error or forward model error, and III) 

errors associated with pre-processing or quality-control.  We note that since our 

data is mostly derived from direct in situ measurements, II and III are much less 

significant than they tend to be with, for instance remote sensing 

measurements.  We thus believe that error due to unresolved scales and 

processes is the dominant component in representativity error for our study.  

These unresolved scales and processes include such phenomena as temporal 

variability in vertical mixing or surface irradiance (i.e., inaccuracy of our steady-

state physical forcing), diel variability in phytoplankton carbon:chlorophyll 

ratios, internal waves that displace communities upwards or downwards, etc.  

When we state that we used the standard deviation of our measurements, these 

are measurements from different sampling points within a model layer during 

the Lagrangian experiment (i.e., different times and depths).  This variability 

from one measurement to another thus incorporates representativity error (or 

at least the portion of this due to unresolved scales and processes) along with 

measurement error.  Typically, this standard deviation (which incorporates 

representativity error + instrument error) is the error that we used.  However, in 

the rare cases where the standard deviation was less than expected instrument 

error (which can happen, for instance if four nitrate measurements all returned a 

value of 0.4 mmol m-3), we used the instrument error.   

4) I am confused with the threshold limit “detlim” referred as “experimental detection 

limit”. How this threshold is defined? I see that the “detlim” depends on indeces i,j,k and 

that k-index is not an option for the observations; why? I think the authors should 

provide more explanations regarding the “detlim” threshold, because the cost function 

decrease (after several iterations) largely depends on this (at least this is what I 

understand from the definitions of J(p) and error_i,j,k at the end of page 7). 



The experimental detection limit varies for each measurement type.  For 

instance, for particulate nitrogen the observational detection limit was 0.2 mmol 

N m-3.  This means that when values are below this (i.e., a measurement of 0 

mmol N m-3, we have no knowledge of whether the actual value was 0.001, 0.01, 

or 0.1 mmol N m-3).  Thus we cannot penalize the model if it returns any value 

less than the detection limit when the observation is also less than the detection 

limit.  So if, for instance, the observation was 0.1, but the model returned a result 

of 0.02 we cannot say that there is any model mismatch at all (since both are less 

than the detection limit).  In practice, the actual value of detlim for each 

measurement was not very important to our results, because observations were 

seldom less than detlim.  However, this formal definition is necessary with log-

normally distributed errors, because occasionally the reported observation value 

was zero (or even negative, in the case of NPP) and since the model can never 

take on values less than or equal to zero, this would lead to an infinite cost.   

5) Overall, in the data assimilation Section 2.4, it is not clear to me which model 

variables consist the control vector e.g., is it the same with the model state vector 

described in Table 1 (or not)? Please clarify. 

Just to be clear, since terminology can vary across disciplines, we assume that 

“control vector” is used here to denote the adjustable variables or parameters 

that determine the model’s predictions and hence model-data misfit.  As such 

our control vector is the set of 102 model parameters that we allow to vary (given 

in Supp. Table 1).  This is essentially all parameters except for TLIM (the 

temperature dependence of growth, grazing, and respiration rates), which we 

chose not to allow to vary because it is both fairly well constrained from 

measurements and because allowing it to vary would obfuscate interpretations 

of variability in other parameters.  We note, however, that model results also 

depend on the initial conditions, boundary conditions (at the base of the 

euphotic zone), and physical forcing (temperature, vertical diffusivity, and 

surface irradiance), which we prescribe directly from field measurements and 

hence do not allow to vary. 

6) P18, L669-670 “our work shows that very different parameter sets can result in similar cost 

function values, despite generating distinctly different model outputs”. This is an interesting 

result, but what does it means exactly (especially here where the cost function is 

different wrt variational approaches)? Please elaborate. 

Most medium- to high-complexity biogeochemical models still utilize an 

approach in which a model run with a single biogeochemical parameter set is 

used to reach their conclusions.  Sometimes this parameter set is determined by 



manually “tuning” the model to approximately match a set of observations, while 

other times the parameter set is determined through formal data assimilation 

that seeks to find the parameter set that produces a global (or more frequently a 

local) minimum in a cost function relating model output to observations.  Both of 

these approaches, however, seek to find a single “best” set of model parameters 

that can then be used for a model run, which will be used to interrogate aspects 

of the marine system (e.g., in our case to understand the different pathways of 

the biological carbon pump).  Our study shows that in a high-dimensional system 

(as all medium- to high-complexity biogeochemical models are) distinctly 

different sets of parameters can match the observations equally well but 

produce very different model results.  Indeed, all of the parameter sets identified 

by our OEPMCMC approach had approximately identical values of the cost function, 

but some produced model ecosystems in which mixing was the dominant 

pathway of vertical carbon transport while others produced ecosystems with 

sinking particles as the dominant pathway.  With either a typical “tuning” 

procedure or a more formal variational data assimilation approach, investigators 

would arrive at a single parameter set that would predict either that the 

ecosystem was dominated by mixing or by sinking particles (or perhaps a 50/50 

split) that would give them a false certainty about the behavior of the ecosystem.  

An ensemble approach, using different biogeochemical parameter sets, is 

necessary to diagnose this model uncertainty.  We now explain this further: 

“For instance, different sets of parameters (all with approximately equivalent 

mismatch to our extensive suite of field measurements) predicted distinctly 

different functioning of the BCP in the CCE coastal region (with some parameter 

sets suggesting that subduction is most important and others suggesting that 

sinking particles are most important, Fig. 9b) and in the Costa Rica Dome (where 

some parameter sets suggested sinking was responsible for almost all carbon 

export, compared to other parameter sets that suggested almost equal 

importance of active transport, Fig. 9d).  The results of a typical variational-

adjoint data-assimilation approach (or any approach that determines results 

from a single “best” parameter set) would have selected only one of these 

possible parameter sets and assumed that it accurately depicted the ecosystem; 

our results more accurately quantify this true uncertainty.” 

 

7) P19, L690-692 “A further study (Anugerahanti et al., 2020) simultaneously perturbed 
physical circulation fields and the biogeochemical model and found that results were most 

sensitive to variability in the biological model”. Vervatis et al., (2021a) and (2021b) 

performed ensemble simulations, using a 3D high-resolution ocean physics and 



biogeochemical coupled model, to investigate unresolved scales and processes, 

perturbing (1) only ocean physics, (2) only BGC sources and sinks, and (3) both physics 

and BGC simultaneously, and found that uncertainties in physical forcing and 

parameterizations have larger impact on chlorophyll spread (and other BGC variables) 

than uncertainties in ecosystem sources and sinks. Moreover, this had an impact on 

increment analysis correction and on empirical consistency between model-data 

misfits, using various datasets (e.g., SST, SLA, total CHL and/or class-based PFTs). I think 

part of this information would improve the quality of the paper. This is merely a 

suggestion and I leave it up to the authors to decide if it is relevant to their work. 

Thank you for pointing us to these recent studies.  We have added their results to 

our discussion.    

Minor comments: 

1) P1, L26. Please avoid acronyms in the abstract e.g., CCE. 

Thank you for noting this.  We will correct in the revised version. 

2) P7, L250. Do you mean N_O,i,j instead of N_M,i,j? 

Yes, thank you for catching this.  We had originally used ‘M’ for measurement and 

changed to ‘O’ for observation, but clearly missed one spot.   

Best regards, 

V. Vervatis 
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Anonymous Reviewer #2:  

Summary and recommendation: This study uses a 1-dimensional ecosystem model to 

assimilate data from Lagrangian experiments in the Costa Rica Dome, California 

Current, Southern Ocean (Chatham Rise) and Gulf of Mexico. The authors use a Monte 

Carlo approach to assess the uncertainty in model predictions, compare the model 

predictions to observations within each region, and assess the export mechanisms 

(gravitational, mixing, and migration) in each region within their model. They find that 

the gravitational pump is most important in most regions, followed by the mixing 

pump and then the migration pump. The manuscript is well written and the results are 

clearly presented for the most part, so I recommend publication subject to minor 

revisions to address the points below. 

The main strength of this study is that it uses a wide variety of in-situ data (rates, 

biomass, chemical tracers etc.) from several different ecosystems, which allows the 

many (>100) parameters of their model to be reasonably constrained, and that they 

use a MCMC approach to quantify the uncertainty in their model predictions. One 

weakness of this study is that the model is 1-dimensional and neglects horizontal 

transport and connectivity, as well as only resolving the euphotic zone, but this 

weakness is thoroughly discussed by the authors. Another weakness that is not as well 

addressed is why the model was not used for predictions outside the assimilation 

regions. I was hoping that the authors could also provide results from their model for 

regions that were not assimilated into the model, i.e. to extrapolate to other regions so 

as to produce global maps of export by these different mechanisms, or at least maps of 

export ratio. Without such an extrapolation to larger time and space scales the study is 

interesting but lacks a prediction that can be compared to other export models (except 

in the 4 regions that provided data that was assimilated into the model, on short 

timescales). It is also odd that the authors fail to mention the data-assimilation model 

of DeVries and Weber (2017), given their relatively thorough review of other 

assimilation models in the introduction and elsewhere, as well as the recent study by 

Nowicki et al (2022) with a quite similar title. Some other minor issues are noted below. 

The main reason that we do not extrapolate the model to other regions in its 

current form is that the simulations that we conducted require incredibly 

detailed and robust ecosystem analyses spanning physics, biogeochemistry, and 

ecology in order to prescribe accurate initial conditions, boundary conditions, 

and forcing.  There are very few programs that have sufficiently measured all of 

these processes simultaneously.  We thus believe that the appropriate way to 

extrapolate these results to other regions is to conduct fully-coupled four-

dimensional ensemble simulations based on the parameter sets determined in 

this study.  That will require re-coding the model into a global circulation model 



(e.g., HYCOM or MITgcm) and conducting hundreds of global simulations.  We 

thus consider it beyond the scope of this manuscript but hope to address it in a 

future study. 

Thank you for reminding us of the DeVries and Weber (2017) study.  We had 

focused on data assimilation with fully mechanistic models, but we agree that 

the DeVries and Weber (2017) study, which uses satellite remote sensing to force 

a more simplified model of the biological pump, utilizes an interesting data 

assimilation approach that is certainly worth discussing in the context of our 

manuscript.  We did not cite the Nowicki et al. (2022) study for the simple reason 

that it had not been published (and we hence were completely unaware of it) 

when we submitted this manuscript.  We now cite these studies in multiple 

locations in the manuscript, as appropriate.  

 

- Lines 70-95: This discussion is missing the pioneering data assimilation models of 

Schlitzer (e.g. 2000; 2002) as well as the more recent work by DeVries and Weber (2017) 

and Nowicki et al. (2022). 

We thank you for pointing these out and now cite these articles in the revised 

manuscript. 

 

- Lines 136-145: Here two different configurations of the model are mentioned, one 

that only resolves the euphotic zone and one that resolves deeper layers that the 

zooplankton can migrate towards. This makes it sound like the model is run in both of 

these configurations, but then later (line 197) they say that only the euphotic zone 

configuration was used. So, I recommend to remove discussion of the other 

configuration to avoid confusion. 

This manuscript functions, in part, as a description of a new model system.  We 

thus believe it is appropriate to describe both configurations, even though we 

only actually use one.  However, in the revised draft, we make it more clear that 

we only used the euphotic zone-only configuration. 

 

- Figure 3: Some of the variables appear to have a peak probability that is at the limit of 

their allowable range. Does this represent a flaw in the model, or that the allowable 



range should be widened in order to better capture the values of these parameters in 

the model simulations? 

We do not consider this a flaw.  Instead, it demonstrates that the data is 

successfully constraining the possible solutions.  For example, consider the 

respiration term for small phytoplankton (resSP shown in Fig. 3).  This term 

represents the proportion of small phytoplankton biomass that is lost each day 

due to basal metabolism.  This term is uncertain, because it is not trivial to 

separate out phytoplankton respiration from respiration of other microbes in 

field measurements.  Hence, we assumed a priori that it could be anywhere 

between 0 and 0.1 d-1 (with an initial guess of 0.002 d-1).  Model results showed 

that values of resSP greater than ~0.01 are inconsistent with the observations.  

This thus puts a strong constraint on that parameter.  Similarly, consider the 

excretion parameter (excSP also in Fig. 3), which quantifies the proportion of the 

gross primary production of small phytoplankton that is excreted (i.e., active 

metabolic processes).  Based on prior results, we assumed that this parameter 

could take a value between 0 and 0.3 (with an initial guess of 0.135).  However, 

model results showed that values of excSP on the lower end of that range were 

inconsistent with the observations and that most likely excSP is > 0.25).  It is 

certainly possible to question whether or not our prior estimated ranges are the 

best choices (as with priors in Bayesian statistics there can always be critiques of 

what ranges should be allowable).  However, we chose ranges that we believed 

were ecological and biologically realistic based on a combination of field and 

laboratory measurements and previous model results and parameterizations.  

We believe that the posterior distributions of parameters derived from our 

ensemble approach provide important information for more objective priors in 

future work (i.e., in future projects incorporating new datasets, we will likely 

model the prior of excSP as a normal distribution with a mean of 0.27 and a 

standard deviation of 0.027 based on the results of the current manuscript’s 

analysis.  

 

- Discussion of the mixing pump in general: For the mixing pump especially (more so 

than the other export pathways) it is important on what timescale the material remains 

exported, and can therefore contribute to carbon sequestration. Since the authors are 

running short timescales experiments (30 days) they should clarify that their modeled 

export is over that time horizon, and would not necessarily be the same as export over 

the course of the year.  It should also be mentioned that the large-scale physical mixing 

pump (e.g. Ekman pumping) is not captured. The authors should speculate as to 

whether their model would provide an over- or underestimate- of the mixing pump 



export on timescales relevant to carbon sequestration (> 1 year). This discussion could 

augment what the authors already have in lines 622-631. 

The reviewer is certainly correct that our model gives little information about 

the long-term fate of carbon leaving the euphotic zone via the mixing pump.  In 

fact, it gives little information about the long-term fate of carbon leaving the 

euphotic zone via any mechanism; the model as currently formulated specifically 

asks the question of how much carbon is leaving the euphotic zone and by which 

process without quantifying the depth at which any of that carbon is 

sequestered and hence its long-term carbon storage potential.  We certainly 

expect that carbon sequestration temporal horizons will vary for each of the 

different export mechanisms (as an aside, we are looking at this in detail with 

datasets from the California Current Ecosystem using different approaches).  We 

believe that answering questions about the length of time that carbon is 

sequestered will require three-dimensional coupled runs (which we plan to do in 

the future).  We believe that we make this clear in lines 656-675:  

“One aspect of the BCP that our current euphotic-zone only simulations do not 

address is sequestration efficiency in the mesopelagic (Kwon et al., 2009; Marsay 

et al., 2015; Buesseler and Boyd, 2009).  It is reasonable to surmise that the 

remineralization length scale will vary for different BCP pathways and be 

regionally variable as well.  With gravitational flux, typically ~50% of particles will 

sink 100 m beneath the euphotic zone before remineralization, although 

remineralization length scales are highly variable and the spatial patterns are 

poorly understood (Buesseler and Boyd, 2009; Marsay et al., 2015).  Meanwhile, 

vertically-migrating zooplankton typically reside at depths of 200 – 600 m during 

the day and hence respire the majority of their carbon dioxide at this depth 

(Bianchi et al., 2013b), although it is unclear how the inclusion of mortality at 

depth into our understanding of active transport will affect the overall depth of 

penetration of actively transported carbon into the deep ocean.  Stukel et al. 

(2018b), suggested that subducted particles in the southern CCE are mostly 

remineralized near the base of the euphotic zone with little penetration into the 

mesopelagic, although in regions with deep convective mixing, signatures of 

subduction show substantial transport into the deep ocean (Omand et al., 2015; 

Llort et al., 2018).  Nowicki et al. (2022) estimated that gravitational flux and 

active transport have similar sequestration time scales, but that sequestration 

times for mixing were much shorter.  In contrast, Boyd et al. (2019) surmised that 

active transport may have the greatest sequestration efficiency, followed by 

vertical mixing, then gravitational flux, although their synthesis was only able to 

draw from the few studies that have quantified these processes and they note 

that determining the sensitivities of sequestration efficiencies to environmental 



drivers is crucial to predicting climate change impacts on marine carbon 

sequestration.  We believe that future incorporation of our model ensemble 

approach into three-dimensional coupled modeling frameworks could be an 

important step forward in understanding the magnitude, and uncertainty in 

these processes.” 

With respect to which aspects of the mixing pump are included, it is a little bit 

complex, because while we model a one-dimensional water column using only 

diffusive processes, the eddy diffusivity coefficient is based on Thorpe-scale 

analysis, which utilizes the magnitude and frequency of density instabilities to 

estimate shear-generated mixing.  Thorpe-scale analyses thus do not explicitly 

map onto any of the different mechanisms of the mixing pump (as defined by 

Body et al. 2019 or Levy et al. 2013) but can be impacted by all of them.  As with 

quantification of carbon sequestration timelines, we believe that three-

dimensional coupled modeling is necessary to explicitly look at the different 

aspects of the mixing pump.  We are not comfortable speculating as to whether 

the current approach over or underestimates the magnitude of the mixing pump, 

although we do note that the results derived for the CCE in this manuscript were 

not too dissimilar from results of an entirely independent approach (three-

dimensional Lagrangian particle tracking, Stukel et al. 2018).  We do, however, try 

to make these distinctions about the different mechanisms of the mixing pump 

(and the uncertainty associated with estimating the mixing pump in a one-

dimensional framework) clearer in the revised manuscript by stating: “Our 

vertical mixing results should be considered with some caution due to our overly 

simplified one-dimensional physical framework, which conflates distinct 

processes including mesoscale subduction, diapycnal diffusing, mixed layer 

entrainment and detrainment, and gyre-scale Ekman pumping”  We also state 

that: “More realistic estimates for all regions could be derived by coupling 

NEMUROBCP and our parameter ensembles to a three-dimensional ocean 

simulation.” 

 

- Figure 11: From this figure it is hard to assess how the model-predicted and observed 

export compare. It would be good to show a scatterplot of the correlation between 

modeled and observed export in one figure, in addition to what is shown here. 

Our goal with this figure was not to show model data matchups.  For an explicit 

comparison of how well the model sinking particle flux matched sediment trap 

data, we included Fig. 6.  The purpose of Fig. 11 is to show that the model 

accurately estimates a realistic spread in the relationship between gravitational 



flux and net primary productivity (e.g., both the model and the data agree that 

across a wide range of NPP export efficiency typically ranges between ~3% and 

50%, without a strong correlation between export and efficiency).  Since the 

reviewer is curious, we have created a scatterplot of model vs. observations 

(below), which can be included with the manuscript if requested.  However, we 

believe that Fig. 6 conveys more information.   

 

 

 

- Several times throughout the paper the acronym SalpPOOP is mentioned, but never 

defined. I assume this is the Southern Ocean experiment that is elsewhere referred to 

as Chatham Rise?? 

Yes, you are correct.  Thank you for noting that we forgot to define it.  We have 

defined in the revised draft.  The cruise acronym is Salp Particle expOrt and 

Oceanic Production 

- Line 643 ff: The study of Nowicki et al (2022) assessed the sequestration times of the 

different export pathways and is highly relevant to this discussion. 

As mentioned before, the Nowicki et al. (2022) study was not available when we 

submitted the manuscript.  It is, of course, highly relevant and we have 

incorporated its insights throughout the introduction and discussion. 



- Section 4.2: Again this discussion is oddly missing reference to the data assimilation 

studies of DeVries and Weber (2017) and Nowicki et al (2022) 

Agreed.  Our failure to include the DeVries and Weber study was a definite 

oversight.  The Nowicki study was simply not included because it had not been 

published when we submitted the manuscript.  Both are now cited. 
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