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Abstract. The ability to constrain the mechanisms that transport organic carbon into the deep ocean is complicated
by the multiple physical, chemical, and ecological processes that intersect to create, transform, and transport
particles in the ocean. In this manuscript we develop and parameterize a data-assimilative model of the multiple
pathways of the biological carbon pump (NEMURO&gcp). The mechanistic model is designed to represent sinking
particle flux, active transport by vertically migrating zooplankton, and passive transport by subduction and vertical
mixing, while also explicitly representing multiple biological and chemical properties measured directly in the field
(including nutrients, phytoplankton and zooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and
Z34Thorium). Using 30 different data types (including standing stock and rate measurements related to nutrients,
phytoplankton, zooplankton, and non-living organic matter) from Lagrangian experiments conducted on 11 cruises
from four ocean regions, we conduct an objective statistical parameterization of the model and generate one million
different potential parameter sets that are used for ensemble model simulations. The model simulates in situ
parameters that were assimilated (net primary production and gravitational particle flux) and parameters that were
withheld (**Thorium and nitrogen isotopes) with reasonable accuracy. Model results show that gravitational flux of
sinking particles and vertical mixing of organic matter from the euphotic zone are more important biological pump
pathways than active transport by vertically migrating zooplankton. However, these processes are regionally
variable, with sinking particles most important in oligotrophic areas of the Gulf of Mexico and California Current,
sinking particles and vertical mixing roughly equivalent in productive coastal upwelling regions and the subtropical
front in the Southern Ocean, and active transport an important contributor in the Eastern Tropical Pacific. We
further find that mortality at depth is an important component of active transport when mesozooplankton biomass is
high, but it is negligible in regions with low mesozooplankton biomass. Our results also highlight the high degree of
uncertainty, particularly amongst mesozooplankton functional groups, that is derived from uncertainty in model
parameters. Indeed, variability in BCP pathways between simulations for a specific location using different
parameter sets (all with approximately equal misfit relative to observations) is comparable to variability in BCP
pathways between regions. We discuss the implications of these results for other data assimilation approaches and

for studies that rely on non-ensemble model outputs.
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1. INTRODUCTION

Marine phytoplankton in the surface ocean are responsible for approximately half of the world’s photosynthesis
(Field et al., 1998). However, as a result of their short lifetimes and active grazing by a diverse suite of
zooplankton, most of the carbon dioxide fixed by phytoplankton will be respired back into the surface ocean on time
scales of days to weeks (Steinberg and Landry, 2017). Long-term sequestration of this biologically-fixed carbon
dioxide requires that the organic matter produced by marine autotrophs be transported into the deep ocean through a
suite of processes collectively referred to as the biological carbon pump (BCP) (Boyd et al., 2019; Ducklow et al.,
2001; Volk and Hoffert, 1985). The BCP is estimated to transport 5 — 13 Pg C yr! into the deep ocean (Laws et al.,
2011; Laws et al., 2000; Siegel et al., 2014; Henson et al., 2011). Our ability to constrain the magnitude of this
globally important process (and its response to anthropogenic forcing) more accurately is hampered, however, by the
diverse spatiotemporal scales over which these processes act and difficulties in quantifying rates in a heterogeneous

three-dimensional ocean (Siegel et al., 2016; Burd et al., 2016; Boyd, 2015).

Attempts to predict future changes in the BCP are also complicated by the diverse pathways of organic matter
flux into the deep ocean (Henson et al., 2022). Most research of the BCP has focused on sinking particles (Turner,
2015; Buesseler and Boyd, 2009; Martin et al., 1987; Honjo et al., 2008), which include diverse biologically-
produced material such as dead phytoplankton and zooplankton, fecal pellets, crustacean molts, and mucous feeding
structures (Smayda, 1970; Kirchner, 1995; Bruland and Silver, 1981; Fowler and Small, 1972; Small et al., 1979;
Alldredge, 1976; Hansen et al., 1996; Lebrato et al., 2013). Slowly-sinking and suspended particles are also
reshaped into rapidly-sinking marine snow through abiotic aggregation processes (Passow et al., 1994; Burd and
Jackson, 2009; Jackson, 2001; Alldredge, 1998). These sinking particles are continually transformed, remineralized,
and modified by a community of particle-attached bacteria and protists and suspension- and flux-feeding
mesozooplankton (Stukel et al., 2019a; Poulsen and Kiorboe, 2005; Steinberg et al., 2008; Simon et al., 2002; Boeuf
etal., 2019).

Organic matter is also transported into the deep ocean through active transport by vertically migrating
zooplankton and nekton (Steinberg et al., 2000; Longhurst et al., 1990; Archibald et al., 2019; Bianchi et al., 2013a)
and by passive transport of dissolved and particulate organic matter that is subducted by ocean currents or mixed
into the deep ocean (Levy et al., 2013; Carlson et al., 1994). The global magnitudes of these processes are highly
uncertain because they are difficult to constrain from in situ measurements. Active transport is commonly believed
to be responsible for a relatively small proportion (~10-20%) of the biological pump (Archibald et al., 2019;
Hannides et al., 2009; Steinberg et al., 2000). However, if mortality at depth is included as part of active flux, it can
be an important and at times dominant source of export, although such estimates are highly uncertain (Kelly et al.,
2019; Kiko et al., 2020; Hernandez-Leon et al., 2019). Similarly, investigations of the importance of passive
transport initially focused on the role of refractory dissolved organic matter (Carlson et al., 1994; Copin-Montégut
and Avril, 1993). Recent studies, however, highlight the importance and spatiotemporal variability of passive
transport of particles via subduction, eddy mixing, mixed-layer shoaling, and vertical diffusion (Levy et al., 2013;
Omand et al., 2015; Stukel et al., 2018b; Stukel and Ducklow, 2017; Resplandy et al., 2019). These passive
transport processes can be driven both by large-scale flows and by meso- and submesoscale circulation near fronts

and eddies (Resplandy et al., 2019; Llort et al., 2018; Omand et al., 2015; Stukel et al., 2017).
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Numerical models are essential tools for investigating such processes that act across multiple spatiotemporal
scales and integrate multiple physical, chemical, and biological drivers. Such models have, for instance, been
crucial in elucidating spatial and temporal decoupling of phytoplankton production and sinking particle export
(Plattner et al., 2005; Henson et al., 2015), quantifying spatial variability in the relative importance of different BCP
pathways (Nowicki et al., 2022), determining the temporal horizon over which anthropogenic signals appear in the
world ocean (Schlunegger et al., 2019), quantifying regional variability in subduction of organic matter (Levy et al.,
2013), inverting oxygen, nutrient, and carbon standing stock measurements to estimate global carbon export rates
(Schlitzer, 2000; Schlitzer, 2002), and predicting climate change impacts on plankton communities and the BCP
(Dutkiewicz et al., 2013; Hauck et al., 2015; Bopp et al., 2005; Oschlies et al., 2008; Yamamoto et al., 2018).
Models have also been used to investigate the role of vertically migrating zooplankton in strengthening oxygen
minimum zones (Bianchi et al., 2013a), meso- and submesoscale hotspots of particle subduction (Resplandy et al.,
2019), and the impact of glacial/interglacial changes in iron deposition on the BCP (Parekh et al., 2006). Such
investigations would be difficult or even impossible to undertake without models. Nevertheless, the models for
varying processes differ substantially, and few are able to investigate the full potential parameter space or quantify
the accuracy of simulated energy flows through multiple trophic levels. While accurate simulation of physical
circulation is critical for simulating marine biogeochemistry (Doney et al., 2004), objective parameterization of
biogeochemical models lags substantially behind similar approaches for physics. Indeed, the inability to constrain
biogeochemical relationships accurately may be the primary limitation on our ability to objectively evaluate
biogeochemical models (Anderson, 2005; Franks, 2009; Follows and Dutkiewicz, 2011; Ward et al., 2013). Recent
advances in formal assimilation of biogeochemical properties into ocean models are beginning to allow objective
model parameterization, a crucial first step for treating models as testable hypotheses (Xiao and Friedrichs, 2014a;
Mattern and Edwards, 2019; Kaufman et al., 2018; Ford et al., 2018; Kriest et al., 2017; Shen et al., 2016; Oschlies,
2006; Devries and Weber, 2017; Nowicki et al., 2022). Nevertheless, most of these approaches rely only on the
assimilation of surface chlorophyll and/or other phytoplankton properties, thus leading to potentially high
inaccuracies in parameterizing zooplankton dynamics (Shropshire et al., 2020; Loptien and Dietze, 2015). This is
particularly important, because inaccurate parameterizations of mesozooplankton may lead to qualitatively and
quantitatively inaccurate export dynamics (Cavan et al., 2017; Anderson et al., 2013). Accurate simulation of the
BCP likely requires a focus on assimilation of data types crossing multiple trophic levels and both ecological and

biogeochemical parameters.

In this study, we modify an existing, widely used biogeochemical model (NEMURO, Kishi et al., 2007) to
focus specifically on the multiple pathways of the biological carbon pump. We refer to the new model as
NEMUROgcp. We have three distinct goals in creating NEMUROgcp. The first is to mechanistically model the
multiple BCP pathways (sinking particles, active transport by vertical migrants, and passive transport of organic
matter by ocean circulation and mixing). Our second goal is to enable direct comparability between model results
and field measurements of standing stocks and rates. This allows the model to act as a synthetic tool using diverse
measured variables to enhance investigation of underlying and unmeasured processes (Dietze et al., 2013). Our
third goal is a model that can be run efficiently in multiple physical configurations to allow extensive data
assimilation and hypothesis testing. NEMUROgcp is designed with a “core” nitrogen-based module (including all
biological components, nutrients, detritus, dissolved organic matter, and oxygen) that includes all three pathways of

the BCP, along with submodules (that can be turned on or off) that model the carbon system, 2**Th dynamics, and
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nitrogen isotopes. Here, we perform a Markov Chain Monte Carlo statistical data assimilation to develop ensemble
parameterizations of NEMUROgcp using 30 distinct types of field measurements from 49 Lagrangian experiments.
We then investigate the model’s ability to predict withheld measurements, conduct sensitivity analyses, and use the

model to investigate the BCP in four ocean regions.
2. METHODS
2.1. Core NEMUROszcr model

NEMUROgcp was developed from the NEMURO class of models originally developed for the North Pacific
(Kishi et al., 2011; Kishi et al., 2007; Yoshie et al., 2007) and includes several modifications adapted by Shropshire
et al. (2020) that allow the model to be compared more directly to common field measurements. It also includes

three optional modules that can be toggled on and off (the carbon system, nitrogen isotopes, and 2**Th).

The core of NEMUROgcp is nitrogen-based and includes 19 state variables (Table 1): 3 nutrients (nitrate,
ammonium, and silicic acid), 2 phytoplankton (small phytoplankton and diatoms), 5 zooplankton (protistan
zooplankton, small non-vertically-migrating mesozooplankton, small vertically-migrating mesozooplankton, large
non-vertically-migrating mesozooplankton, large vertically-migrating mesozooplankton), 2 dissolved organic pools
(labile dissolved organic nitrogen and refractory dissolved organic nitrogen), 4 non-living particulate pools (small
particulate nitrogen, large particulate nitrogen, small opal, and large opal), two chlorophyll state variables (one
associated with small phytoplankton, the other with diatoms), and oxygen. As in Shropshire et al. (2020), the small
and large mesozooplankton are defined based on size (<1-mm and >1-mm, respectively) rather than trophic status to
allow direct comparison to common size-fractionated measurements. Relative to the original NEMURO model, key
changes include: 1) An explicit chlorophyll module (based on Li et al., 2010) that allows direct comparison to in situ
chlorophyll measurements and gut pigment measurements made with herbivorous zooplankton; 2) Division of
dissolved organic matter into refractory and labile dissolved organic nitrogen to simulate subduction of refractory
molecules; 3) Division of detrital pools into slowly and rapidly sinking particles to simulate more accurately the
gravitational pump; 4) Division of mesozooplankton into epipelagic resident taxa and vertical migrants to simulate
active transport by diel vertical migrators; and 5) Addition of a dissolved oxygen state variable that potentially limits
heterotrophic growth in the mesopelagic ocean. NEMUROgcp also modifies key transfer functions by, for instance,
allowing protists to feed on diatoms, since protistan grazers are often important diatom grazers (e.g., Landry et al.,
2011). The transfer functions linking state variables in NEMUROgcp are shown in Fig. 1 and explained in detail in
the online supplement. The 103 parameters in NEMUROgcp are explained in Supp. Table. S1.

Diel vertical migration is incorporated into NEMUROgcp via two alternate formulations (only the first one is
used in this study). The first formulation is designed for computational efficiency when the model is run in a
euphotic zone only configuration (NEMUROgcp ruronry). In NEMUROgcp ruronLy diel vertically migrating taxa
(LZpvm and PZpywm) only feed at night. During the day, their mortality and respiration do not contribute to detritus
and dissolved nutrient pools, but rather are treated as a loss of nitrogen from the model. The second formulation
includes a true diel vertical migration model based on the model of Bianchi et al. (2013a) for use when the model
explicitly represents mesopelagic layers. In this formulation (NEMUROgcp pym), vertically-migrating zooplankton

swim toward a target depth with a swimming speed of 3 cm s™! (speed decreases as zooplankton approach the target
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depth). During the day, the target depth is defined as the depth of the 10~ W m™ isolume. At night, the target depth
is defined as the mean depth of phytoplankton biomass. NEMUROgcppvm also includes a biological diffusion term
that ensures that LZpyvm and PZpywm are dispersed around the target depth rather than accumulating within a single

model layer.
2.1.1. Optional carbon system submodule

The carbon system in NEMUROgcp includes dissolved inorganic carbon (DIC) and alkalinity as state variables.
DIC is produced whenever there is net biological utilization of organic carbon and consumed whenever there is net
biological production of organic carbon at fixed stoichiometric ratios of C:N = 106:16 (mol:mol). Calculation of
other carbon system parameters (pH and partial pressure of CO,) and air-sea CO; gas exchange are calculated using

procedures described in Follows et al. (2006).
2.1.2. Optional 2**Th submodule

The #*4Th submodule is based on the model of Resplandy et al. (2012). It adds a dissolved 2**Th state variable,
as well as state variables associated with 2**Th bound to each of the nitrogen-containing particulate state variables
(i.e., each phytoplankton, zooplankton, and detritus state variable). Dissolved 2**Th is produced from the decay of
238 (which is assumed to be proportional to salinity, Owens et al., 2011). Dissolved >**Th adsorbs onto the
aforementioned particulate pools following second-order rate kinetics. Particulate 2**Th is returned to the dissolved
pool through both desorption and destruction of particulate matter. 2**Th is also lost from the dissolved and

particulate phases through radioactive decay.
2.1.3. Optional >N submodule

The nitrogen isotopes submodule is based on the NEMURO+'SN model of Stukel et al. (2018a), following an
earlier isotope model by Yoshikawa et al. (2005). The !N submodule adds an additional 13 state variables that
simulate the concentration of 1N in each nitrogen-containing state variable (nitrate, ammonium, all phytoplankton
and zooplankton groups, both detritus classes, and both dissolved organic nitrogen pools). Isotopic fractionation
occurs with most biological processes including nitrate uptake, ammonium uptake, exudation of organic matter by
phytoplankton, excretion and egestion by zooplankton, remineralization of detritus and dissolved organic nitrogen,

and nitrification.
2.2. Physical framework for model simulations

NEMUROgcp was developed so that it can be implemented in any physical framework. In this study, we used a
simple one-dimensional physical framework to simulate the water column associated with Lagrangian experiments
from which we derived our field data (see below). While this oversimplifies a system in which advection and
diffusion play important roles in re-distributing biological and chemical properties, we believe it is a reasonable
short-term approximation, especially because we are explicitly simulating results from in sifu Lagrangian
experiments. In Lagrangian experiments, advection should play a reduced to negligible role in re-shaping plankton
time-series, although we note that Lagrangian drifters (see below) explicitly track only the mixed layer, which may

not be transported by the same currents as deeper layers. The use of a one-dimensional model does, however, allow
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us to perform more than one million simulations for each of the 49 Lagrangian experiments, something that would
not be possible with a three-dimensional model grid. Our physical model framework simulates the euphotic zone
with variable vertical spacing that increases with depth, chosen to match sampling depths from the field programs.
Vertical layers are centered at 2, 5, 8, 12, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150,
and 160 m, although for each Lagrangian experiment we only model depths above the 0.1% light level (which
varied from 27 to 150 m). We simulate vertical mixing as a simple diffusive process using vertical eddy diffusivity
coefficients that vary with depth and are estimated for each Lagrangian experiment using Thorpe-scale analyses
from field measurements (Gargett and Garner, 2008). Initial and boundary conditions were determined from field
measurements, although we sometimes had to estimate initial conditions from relationships with other measured
parameters because all state variables were not measured for all experiments (e.g., if diatom biomass was not
determined, we estimated it from a relationship between diatom biomass and total phytoplankton biomass). We ran
the model for 30 days with constant vertical diffusion rates. While 30 days is an arbitrary model run time, it was
chosen for multiple reasons: 1) it is long enough to reduce sensitivity to initial conditions, 2) it is the longest time
period for which we would expect quasi-steady state conditions to be maintained in our study regions, 3) it allows
sufficient time for parameter sets to potentially drive some taxa to near extinction (i.e., it allows time for
unreasonable parameter sets to, for instance, lead to competitive dominance of small phytoplankton and drive
diatoms to extinction). We recognize that maintaining constant physical forcing introduces inaccuracy to our
simulations and hence expect model-data mismatches, particularly during dynamic conditions (e.g., upwelling)
when the system changes more rapidly. Model outputs were evaluated on the 30" day of the model simulation and
fluxes associated with different BCP pathways were quantified at the base of the euphotic zone (0.1% light level)
which varied between study sites. Since we only simulate the euphotic zone, the model was run in

NEMUROgcp euponLy configuration.
2.3. Field data

Field data come from 49 short-term (~4-day) Lagrangian experiments conducted on 11 different cruises (Fig. 2)
in the California Current Ecosystem (CCE) (Ohman et al., 2013), in the Costa Rica Dome (CRD) in the Eastern
Tropical Pacific (Landry et al., 2016a), in the Gulf of Mexico (GoM) (Gerard et al., in review), and at the Chatham
Rise near the subtropical front in the Southern Ocean as part of the Salp Particle export and Oceanic Production
(SalpPOOP) Cruise (Décima et al., in review). On these cruises a consistent sampling strategy involved utilization
of an in situ incubation array with satellite-enabled surface drifter and 1x3-m “holey-sock™ drogue centered at 15-m
depth in the mixed layer (Landry et al., 2009). Samples for rate measurement experiments (see below) were
incubated in polycarbonate bottles placed in mesh bags at 6 — 8 depths spanning the euphotic zone on the incubation
array (Landry et al., 2009). On 10 of the cruises, an identically-drogued sediment trap array was deployed to capture
sinking particles (Stukel et al., 2015).

We assimilated a broad suite of standing stock and rate measurements across multiple trophic levels that
included: 466 measurements of NOs~ concentration and 423 measurements of NH4* concentration (Knapp et al.,
2021); 422 measurements each of silicic acid and 84 measurements of biogenic silica (Krause et al., 2016; Krause et
al., 2015); 455 chlorophyll @ measurements (Goericke, 2011); 193 measurements of small phytoplankton biomass by
a combination of epifluorescence microscopy and flow cytometry (Taylor et al., 2012; Selph et al., 2021); 193
measurements of diatom biomass by epifluorescence microscopy (Taylor et al., 2012; Taylor et al., 2016); 193
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measurements of protistan zooplankton biomass by epifluorescence microscopy and/or light microscopy of Lugol’s
stained samples (Freibott et al., 2016); 44 measurements each of vertically-integrated <1- and >1-mm epipelagic-
resident mesozooplankton biomass; 43 measurements each of vertically-integrated <1- and >1-mm diel-vertically-
migrating mesozooplankton biomass; 413 measurements of particulate organic nitrogen and 28 measurements of
dissolved organic nitrogen (Stephens et al., 2018); 342 measurements of net primary productivity by either H'*CO5
or H'*COs™ uptake methods (Morrow et al., 2018; Yingling et al., 2021); 149 measurements of nitrate uptake by
incorporation of ’NO;" (Kranz et al., 2020; Stukel et al., 2016); 50 measurements of silicic acid uptake by
incorporation of *2Si (Krause et al., 2015); 248 measurements each of whole phytoplankton community growth rates
and whole phytoplankton community mortality rates due to protistan grazing determined by chlorophyll analyses of
microzooplankton dilution experiments (Landry et al., 2009; Landry et al., 2021); 53 measurements each of small
phytoplankton growth rates and small phytoplankton mortality rates due to protistan grazing determined by high-
pressure liquid chromatography pigment analyses of microzooplankton dilution experiments combined with flow
cytometry and epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 53 measurements each of
diatom growth rates and diatom mortality rates due to protistan grazing determined by high-pressure liquid
chromatography pigment analyses of microzooplankton dilution experiments combined with flow cytometry and
epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 41 measurements each of vertically-
integrated <1-mm and >1-mm nighttime mesozooplankton grazing rates by the gut pigment method (Décima et al.,
2016; Landry and Swalethorp, 2021); 41 measurements each of vertically-integrated <l-mm and >1-mm daytime
mesozooplankton grazing rates by the gut pigment method (Décima et al., 2016; Landry and Swalethorp, 2021); 37
measurements of sinking nitrogen using sediment traps (Stukel et al., 2019b; Stukel et al., 2021); 19 measurements
of sinking biogenic silica using sediment traps (Krause et al., 2016; Stukel et al., 2019b); and 475 measurements of
photosynthetically-active radiation. Each of the above measurements was typically the mean of measurements taken
at a specific depth (or vertically-integrated) on multiple days of the Lagrangian experiment, thus allowing us to also
quantify uncertainties for all measurements. Each of the above measurements also directly maps onto a specific
standing stock or process in the model enabling direct model-data comparisons. Field data are listed in Supp. Tables

S2 —S4.
2.4. Data assimilation and objective model parameterization approach

Using the available datasets described above, our goal was to develop an automated and objective model
parameterization method that would allow us to generate an ensemble of parameter sets for hypothesis testing or as
prior distributions in future data assimilation studies. We refer to this approach as objective ensemble
parameterization with Markov Chain Monte Carlo (OEPmcmc). We began by log-transforming most field
measurements to normalize the data (some measurements, e.g. growth rates that can be positive or negative, were

not transformed). We then defined a cost function:

sttes Npr,i

B error; j
J(p) = ¥ /_NLEL Z NDTl Z No,; ; (uncl,k>

where Ngies Was the number of different sampling locations (i.e., 4 = CCE, CRD, GoM, and Chatham Rise), Nig;

was the number of Lagrangian experiments conducted at location 7, Npr; was the number of data types that were

measured at site 7, No;; was the number of distinct observations of data type j at location i, and:
7
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model; j, — obs; j, if model;;, > detlim;;, or obs;;, > detlim,;

error; jj = , . .
Lk 0 if model,; j, < detlim;;, and obs;, < detlim;;

where model;; is the model result corresponding to observation obs;;«, and detlim; ; is the detection limit for data
type j. This is equivalent to stating that there is no model data discrepancy if both the observation and the

corresponding model result are below the experimental detection limit. Observational uncertainty was defined as:

Oijk

Vs ijk

unc; j = max < ,EprnciJ-‘k)

where o, is the standard deviation of multiple samples taken for the distinct observation k& of data type j at location
i (i.e., 0i;1s the standard deviation of multiple measurements taken at the same depth over the course of a
Lagrangian experiment), Ng;;« is the number of samples associated with observation & of data type j at location i,
and ExpUnc;j is the experimental uncertainty (e.g., instrument accuracy) of observation k of data type j at location
i. We chose to use the maximum of these two terms because, in most cases, the standard error of repeated
measurements was greater than experimental uncertainty (and inherently incorporates experimental uncertainty).
However, in some cases (e.g., if three measurements of nitrate at 12 m depth on a particular Lagrangian experiment
reported the same value), the standard error of the measurements was an unrealistically low estimate of true

uncertainty.

The cost function, J(p), gives equal weight to all measurement types within a specific Lagrangian experiment
(e.g., if a Lagrangian experiment has 10 measurements of sinking nitrogen flux and 100 measurements of
chlorophyll, J(p) gives each of those measurement types equal weight). It also gives different locations a weight
proportional to the square root of the number of Lagrangian experiments at that site. That decision was made so that
a more heavily sampled region (i.e., CCE) can provide more constraint to the model, while preventing that region
from overwhelming the model results. We note that this is a comparatively weak cost function (relative to, for
instance, likelihood), because it normalizes to the number of measurements. We chose a weak cost function,
because it reflects the fact that uncertainty in initial conditions and physical forcing introduces model data misfit that

is unassociated with parameter choice.

To investigate the parameter space, we performed a Markov Chain Monte Carlo search (Metropolis et al.,
1953). We first defined allowable ranges for all parameter values based on laboratory and field experiments,
combined with results from prior model simulations (Supp. Table S1). These allowable ranges were broad and often
spanned several orders of magnitude for a particular parameter. We then defined an initial guess for each parameter
based primarily on values used in other NEMURO models (Kishi et al., 2007; Shropshire et al., 2020; Yoshie et al.,
2007). We first ran 30-day simulations for all 49 Lagrangian experiments using the initial parameter values and
calculated the cost function based on J(p;). We then perturbed the parameter set by adding to each parameter a
random number drawn from a normal distribution with mean of 0 and standard deviation equal to a jump length of
0.02 times the width of the allowable range for that parameter. When newly selected values fell outside the
allowable range, we mirrored them across the boundary. For many of the variables expected to follow a log-normal
distribution (e.g., phytoplankton half-saturation constants), we log-transformed prior to the MCMC search. We then
re-ran the 30-day model for all Lagrangian experiments and calculated a new cost associated with this parameter set,

J(ps). We chose whether or not to accept this parameter set based on the relative cost functions of J(p;) and J(p,). If
8
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J(p2) was less than J(p;) we automatically accepted the new parameter set as a viable solution. If J(p,;) was greater

than J(p;), we accepted it with probability:

prob = eO.SX(](pn)—](pn+1))

We walked through the parameter solution space for a total of 1.1 million iterations (discarding the first 100,000
iterations as a “burn-in” period before the cost function stabilized at a relatively low value). In this way, we
explored the correlated uncertainty in all parameters of the core model, except the temperature sensitivity
coefficient. We chose not to vary the temperature sensitivity coefficient (TLIM), because it is fairly well-
constrained from experimental measurements and most model rates were directly correlated to TLIM; hence
changes in TLIM lead to commensurate changes in so many other rate parameters that allowing it to vary would
have made calculation of mean values of other parameters (e.g., maximum growth or grazing rates) almost

meaningless.

We also saved model results associated with the BCP (e.g., sinking particle flux, net primary production,

subduction rates, active transport) for the model simulations associated with each parameter set.
3. RESULTS
3.1. Objective model parameterization

In our Markov Chain Monte Carlo (MCMC) exploration of the solution space, the cost function evaluated at our
initial guess was 972. Over the first ~100,000 iterations of the MCMC procedure, the cost function declined to
approximately 100 and remained near this value for the remainder of the MCMC procedure (1 million additional
simulations). We thus considered the first 100,000 iterations to be a “burn-in” period, and all results are based on
the subsequent 1,000,000 solution sets. For this analysis set, the mean cost function was 98.2 with 95% confidence
interval = 83.8 — 115.3. For comparison, we also conducted an undirected MCMC exploration of the solution space
(i.e., every solution was accepted regardless of relative change in cost function) that yielded a mean cost function of
3197 (C.I. = 1270 — 5657) after the burn-in period, with a minimum value of 740 (across the 1,000,000 simulations).
The OEPmemc procedure thus determined a set of 1,000,000 solutions for which the cost function was substantially

reduced relative to either our initial parameter guess or a random sample of the solution space.

We investigated the 1,000,000 OEPwmcwmc solution sets to determine which parameters were well or poorly
constrained by the data (Supp. Tables S1 and S2). We focus here on how well the field observations allowed the
OEPwMmcmc approach to constrain the parameters relative to prior estimates of allowable ranges. This is distinct from
the question of which parameters are most well constrained because some parameters were well known from prior
knowledge (e.g., phytoplankton maximum growth rates) while others are poorly known (e.g., phytoplankton half-
saturation constants). Some parameters were very well constrained by the data. Ten of the 101 variables were
constrained to within 10% of their allowed range (for log-transformed variables, 10% of their log-transformed
parameter space). Six of the 10 well-constrained variables were associated with phytoplankton bottom-up forcing,
while only two parameters associated with zooplankton were well constrained by the data (the Ivlev constants for
protistan grazing on small and large phytoplankton). The most well-constrained parameter was the ammonium half-

saturation constant for small phytoplankton which was assumed to vary from 0.001 — 1 mmol NHs" m™ and was
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constrained by the OEPymcmc procedure to a 95% C.I. of 0.0011 - 0.0065 mmol NH4* m™3. For metazoan
zooplankton, all parameters except Ivlev constants had 95% C.I.s that spanned >60% of the allowable range, and
many exceeded 90% of the allowable range. Overall, 25 parameters had 95% C.I.s that spanned >60% of the
allowable range, suggesting that those parameters were more strongly constrained by our prior estimates than by the

field data (Supp. Table S1).

Next, we highlight analyses of bottom-up forcing on small phytoplankton (Fig. 3) and correlation of large
phytoplankton (i.e., diatoms) bottom-up forcing with other model dynamics (Fig. 4) as examples of typical patterns
of correlation among parameters. Small phytoplankton parameters were generally well-constrained by the extensive
datasets of phytoplankton growth rates, net primary production, and phytoplankton biomass (as assessed
microscopically and/or by chlorophyll analyses). For instance, although we allowed the maximum growth rate of
small phytoplankton (Vmax,sp) to vary from 0.1 to 1 d!, the OEPmcmc procedure constrained Vimaxse to 0.22 to 0.64
(at the 95% C.1.). The least well constrained parameter related to small phytoplankton growth was the half-
saturation constant for nitrate uptake, which varied from 0.011 to 1.3 mmol N m?. Several of these phytoplankton
parameters were also correlated in predictable manners. For instance, Vmax,sp Was negatively correlated with the
initial-slope of the photosynthesis-irradiance curve (asp, correlation coefficient (p) = -0.15), because increased
maximum growth rates and stronger light dependence (i.e., a slower rate of increase in photosynthesis with
increasing light) offset each other to maintain similar realized growth rates under typical light-limited conditions.
Vmax,sp Was also positively correlated with the mortality rate (mortsp, p=0.25), because commensurate changes in

Vmax,sp and mortsp maintain similar net growth rates for small phytoplankton.

Parameters associated with large phytoplankton were typically less well-constrained, although they did differ
from parameters associated with small phytoplankton in several predictable ways. For instance, the maximum
growth rate of large phytoplankton (Vmax.p, mean = 0.72 d!, 95% C.I. was 0.43 — 0.99 d!) was greater than the
maximum growth rate of small phytoplankton (mean = 0.37 d"', 95% C.I. was 0.22 — 0.64 d'') despite the fact that
we used identical allowable ranges of 0.1 — 1 d"'. The half-saturation rate for large phytoplankton uptake of nitrate
(Knop= 1.6 mmol N m™) was also substantially greater than Knosp (0.25 mmol N m™), although their half-
saturation constants for ammonium uptake were similar. Unsurprisingly, the maximum growth rate of large
phytoplankton was strongly correlated with the maximum grazing rate of protistan zooplankton on large
phytoplankton (gmaxszp, p=0.35), because grazing by protistan zooplankton is often the dominant source of
mortality for all phytoplankton (including diatoms). More surprisingly, Vmax,Lp had an even stronger correlation
with the maximum grazing rate of epipelagic-resident large (>1-mm) mesozooplankton on small phytoplankton
(gmax,pzrES P, p = 0.43). We believe that this arises from a correlation between large mesozooplankton standing
stock and gmax pzres,sp. Since small phytoplankton are often the most abundant potential prey item, higher
Zmax,pzrES,sp Values allow large mesozooplankton (which preferentially graze large phytoplankton) to sustain higher
biomass and prevent large phytoplankton from escaping grazing pressure, thus requiring a higher maximum growth

rate to maintain their biomass.

Some correlations were unexpected. For instance, the initial slope of the photosynthesis-irradiance curve (orp)
was positively correlated with the remineralization rate of labile dissolved organic nitrogen to NH4" (refuec ponNu,
p=0.31). Both of these parameters were strongly constrained by the OEPumcmc procedure (orp had an allowable prior
range of 0.001 — 0.04 m> W-' d"! but had a posterior 95% C.1. of 0.008 — 0.03 m?> W-! d*!; refsec. ponnu had an
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allowable range of 0.005 — 0.3 d"! but a 95% C.1. of 0.005 — 0.01 d'"). It is not clear why these parameters would be
correlated, although it is likely related to the relative realized growth rates of large phytoplankton in the upper and
lower euphotic zone. High values of orp would promote higher realized growth rates in the deep euphotic zone;
high values of refuec pon,nu Would lead to higher realized growth rates in the nutrient-limited upper euphotic zone.
The Ikeda parameter for small mesozooplankton (Ikiz, d!'), which sets the basal respiration of small (<1-mm)
mesozooplankton was positively correlated with Vimaxrp (p = 0.12), Knuee (p = 0.16), and orp (p = 0.29). While the
first and third correlations are not surprising (both lead to increased large phytoplankton growth which would
support higher mesozooplankton respiration), it is surprising that Ik;z would be correlated with Ky rp since higher
half-saturation constants lead to lower realized phytoplankton growth rates. VmaxLp Was also negatively correlated
with the daytime mortality rate of small (<1-mm) vertically-migrating mesozooplankton at their mesopelagic resting
depth (mortaay,1zpvm, p = -0.35), which is opposite to what would be expected if large phytoplankton growth was
necessary to support mesozooplankton mortality, but may reflect an indirect effect of intraguild competition between
small mesozooplankton and protistan grazers (mortqay,.zovm Was also negatively correlated with the Ivlev constant
for small mesozooplankton grazing on protistan zooplankton (Ivizpym,sz, p = -0.27) which would indicate that

mesozooplankton increases when their feeding rate on protists increases).

While these are only a subset of the multiple correlations, they highlight the complex, and often
counterintuitive, relationships among many parameters. This analysis also clearly elucidates the importance of joint
parameter sensitivity analyses. For instance, when model sensitivity to maximum large vertically-migrating
mesozooplankton grazing rates on small phytoplankton (gmax pzres,sp) Was investigated with a maximum large
phytoplankton growth rate (VmaxLp) of ~0.6 d!, the analysis suggested that the model was only weakly sensitive to
ZmaxpzrEs.sp, and that the optimal value was near 0.03 d"!. However, when the same analysis was conducted with

Viax.Lp = ~1.0, the model was very sensitive t0 gmaxpzres.sp, and the optimal value was 0.1 — 0.2 d°\.
3.2. Model data comparison (assimilated data)

To determine whether the model was able to simulate assimilated measurements accurately, we compared
model-data results with respect to two key processes related to export: net primary production and sinking particle
flux at the base of the euphotic zone (Figs. 5 and 6, respectively). For most Lagrangian experiments, the model 95%
confidence interval bracketed the mean of the observed net primary production (Fig. 5). However, the model
substantially underestimated net primary productivity for several experiments in the CCE (e.g., 605-1, 605-3, 704-4,
810-5, and 1604-4) conducted in near-coastal regions with recently upwelled high-nitrate water. The model-data
discrepancy thus likely results from our assumption of a one-dimensional system with constant physics for 30-days.
In reality, these Lagrangian experiments were heavily influenced by coastal upwelling processes missing in our one-
dimensional model and experienced markedly non-linear dynamics as the water parcels were advected away from
the upwelling source and nutrients drawn down over time (e.g., Landry et al., 2009). Contemporaneous nutrient
input from directly below these water parcels was thus likely not the source of nitrogen supporting high production,
as is assumed by our one-dimensional physical framework. In less dynamic regions (e.g., GoM), the model more

faithfully simulated phytoplankton production.

The model did a reasonable job simulating sinking particle export flux from the euphotic zone (Fig. 6). For the

majority of experiments, observed export fell within the 95% confidence interval of the model simulations.
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However, the simulated export flux range was quite substantial for most cycles. Indeed, the 95% confidence
intervals for export flux at single locations using the 1,000,000 MCMC solutions were at times as large as the
confidence interval for mean observed flux across the 49 different Lagrangian experiments. This suggests that
uncertainty in parameter estimation for the model is as important a source of error for export flux as variability
between regions and seasons. The only region for which the model produced a stark bias in export flux relative to
the observations was the CRD, where the model consistently overestimated export flux. This is not surprising for
this region, because the CRD is dominated by Synechococcus, which contribute substantially less to export flux than
larger phytoplankton (Saito et al., 2005; Stukel et al., 2013). In other regions, model underestimates of export flux
were typically more notable than model overestimates (observations were seldom less than the lower bound of the

model’s 95% confidence interval).
3.3. Model data comparison (unassimilated data)

To assess the model’s ability to simulate state variables and processes not included in the assimilation dataset,
we utilized the thorium sorption and nitrogen isotope submodules and compared model results to measured total
water column 2*Th (Fig. 7), the C:>**Th ratio of sinking particles (Fig. 8a), and the 8'°N of sinking particles (Fig.
8b). NEMUROgcp accurately simulated many properties of 2**Th dynamics found in the field data. For instance, it
did a reasonable job of estimating the shape and magnitude of vertical profiles, notably simulating low »**Th activity
in surface waters and 2**Th activity close to equilibrium with 233U in deeper waters. The model also captured some
key aspects of inter- and intra-regional variability in 2**Th activity, including much lower 2**Th activity in coastal
regions of the CCE (e.g., Fig. 7a, c, ah) relative to offshore regions (e.g., Fig. 7e, ad, ac). The model also accurately
estimated the consistently high 2**Th activity found in the GoM. The greatest model-data mismatch with respect to
234Th activity was found in the CRD (Fig. 7ai — am). In this region, the model was fairly accurate at predicting
mixed layer 2**Th activity, but the model consistently underestimated >**Th activity in the deep euphotic zone. The
model was also reasonably effective at predicting the C:>**Th ratio of sinking particles. The model both accurately
estimated the mean value of sinking particle C:2**Th ratios (median observation = 7.2 pmol C dpm™!; median model
value for locations paired with observations = 7.7 pumol C dpm™') and the range of C:**Th values (observation = 2.2
—20.5 umol C dpm!; model = 4.1 — 30.0 pmol C dpm™). For most simulations, the modeled and observed C:***Th
ratios also showed very good agreement (Fig. 8a). However, the model consistently overestimated the C:2**Th ratio
of sinking particles in the CRD, a region where the model was particularly poorly constrained and predicted a wide
range of C:>**Th ratios. The model also substantially underestimated the C:?3*Th ratio for several sediment trap
collections in the GoM. Nevertheless, the overall model-data agreement with respect to 2*#Th dynamics is
reassuring, especially since key parameters (e.g., thorium sorption and desorption coefficients) were not estimated

by the OEPmcmc procedure but instead were taken directly from the literature.

The model was also able to accurately simulate the 3'°N of sinking particles, albeit with a more limited set of
observations available (note that we did not simulate nitrogen isotopes for Lagrangian experiments from the
SalpPOOP cruise, because the 3'°N of deep-water nitrate, an important boundary value, was unknown in this
region). The median observed 3'°N of sinking particles was 4.6 compared to a model estimate of 6.1, while the
observed range was 1.7 — 14.3 and the modeled range was 1.8 — 9.3 (Fig. 8b). The only simulation for which there

was a substantial mismatch between model result and observation was from a single experiment in the CRD for
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which one sediment trap replicate had a very high measured 3'°N value, while the other two replicates were near the

simulated value.
3.4. Sensitivity analysis

The OEPmcmc approach allowed us to investigate uncertainty associated with all three pathways of the BCP
(see the next two sections). First, we focus specifically on variability in model estimates of gravitational flux, as
these can be directly compared to field measurements. When comparing modeled gravitational flux for different
Lagrangian cycles, the median coefficient of variation (standard deviation / mean) was 0.49, with a range of 0.29 —
1.38. This represents substantial uncertainty in sinking particle flux due solely to different potential parameter
choices (Fig. 6). For instance, on the fifth Chatham Rise Lagrangian experiment (which was the experiment with
coefficient of variation closest to the median), the mean model predicted gravitational flux was 1.24 mmol N m? d!
with a standard deviation of 0.62 mmol N m? d"' and a 95% confidence interval from 0.29 to 2.6 mmol N m? d".
This shows that for a typical cycle, there was nearly an order of magnitude variability in export flux based solely on
uncertainty in model parameterization. For comparison, across the 49 Lagrangian experiments for which we have
sediment trap deployments near the base of the euphotic zone, the field observations of gravitational flux at the base
of the euphotic zone ranged from 0.22 — 6.3 mmol N m? d''. Thus, for a typical Lagrangian experiment, uncertainty
in model parameterization introduced slightly less uncertainty in gravitational flux than variability across the
multiple regions. For the fourth GoM Lagrangian experiment (the experiment with the highest coefficient of
variation), the mean model predicted gravitational flux was 0.23 mmol N m d'! with a standard deviation of 0.31
and a 95% confidence interval from 0.0069 — 1.07 mmol N m? d!. For this particular cycle, some likely parameter
sets predicted gravitational flux nearly equal to the mean measured gravitational flux across the diverse regions we
studied, while other likely parameter sets predicted export more than an order of magnitude lower than the lowest
observed flux. This high degree of uncertainty should be considered when results of a single model simulation are

considered and provides a strong argument for the importance of ensemble modeling.

To investigate the relationships among uncertainties in the three pathways of the BCP and uncertainties in
parameters, we computed the R? of ordinary least squares linear regressions of each BCP pathway as a function of
each parameter. This approach allows us to quantify the percentage of variability in the export pathway explained
by a linear relationship with a specific parameter. This is distinctly different from some traditional sensitivity
analysis approaches that either compute the derivative of a model output with respect to different parameters or vary
parameters by a fixed amount (e.g., £10%). Unlike those approaches, our R? approach explicitly accounts for the
certainty with which different parameters are constrained. For instance, a model may be very sensitive to the
maximum growth rate of diatoms; however, if that parameter is well constrained by laboratory experiments, field
data, and/or data assimilation, then parameter uncertainty may not be the dominant source of uncertainty in model
results. Our approach is thus well suited to determining which parameters especially merit future experimental

focus.

Our results show that the R? values for BCP pathways regressed against most parameters were ~0.01 or less.
However, some of the parameters were able to explain 10% of the variability in specific BCP pathways. For
instance, the linear mortality parameter for protistan zooplankton (mortsz) explained 15% of the variability in

gravitational particle export (positive correlation) and 18% of the variability in export due to vertical mixing
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(negative correlation). These correlations reflect the importance of protistan zooplankton in controlling
phytoplankton populations without producing rapidly sinking particles. Multiple parameters had similar inverse
correlations with gravitational particle export and export due to vertical mixing. For example, the assimilation
efficiency of small epipelagic-resident mesozooplankton, the Ivlev constant for large mesozooplankton feeding on
small mesozooplankton, and the sinking speed of fast-sinking detritus all had positive correlations with gravitational
flux; the maximum grazing rate of small epipelagic-resident mesozooplankton on protistan zooplankton, and the
remineralization rate of fast-sinking detritus had negative correlations with gravitational flux. The remineralization
rate of fast-sinking detritus explained the highest proportion of variability in gravitational flux (45%). Only two
parameters (the maximum grazing rate of large vertically migrating mesozooplankton on small mesozooplankton
and the Ivlev constant for large mesozooplankton feeding on small protists) explained >10% of the variability in
active transport (19% and 18%, respectively, with both positively correlated with active transport). Notably, none of
the parameters most responsible for uncertainty in the BCP were related to phytoplankton bottom-up limitation. We
do not believe that this reflects a lack of importance of bottom-up processes in the BCP. Rather, this reflects a much
greater uncertainty in parameterizations for zooplankton and non-living organic matter, combined with the

importance of these processes to the BCP (Cavan et al., 2017; Anderson et al., 2013).

As mentioned previously, two of the most important parameters for determining gravitational flux are the
sinking speed (Lsink) and remineralization rate of fast-sinking particles to DON (refgec 1ron,pon). Notably, these two
parameters are strongly related to the remineralization length scale for these particles
(RLS=Lsink/(refuec,cron,pontreficc rronnms)). We illustrate the impact of variability in RLS on model gravitational
flux by focusing on two Lagrangian experiments representative of the CRD (CRD-1) and upwelling-influenced
regions of the CCE (1604-3). RLS was strongly correlated with gravitational flux for each experiment (Pearson’s p
= 0.62 for both experiments, p<<107). The relationship was not perfectly linear, however (Supp. Fig. Ala,b).
Particularly for the CRD experiment, but also for the CCE experiment, there was a threshold effect such that RLS
was only weakly correlated with gravitational flux at RLS > ~150 m. This resulted from higher RLS values leading
to decreased recycling in the system and hence reduced primary production. Comparison of the probability density
functions for RLS determined by the OEPwmcmc procedure with probability density functions for only those
parameter sets that accurately predicted gravitational flux for these cycles (to £1 standard deviation of the observed
value) show that gravitational flux was more accurately predicted for the CCE experiment with RLS values slightly
higher than the overall average of the whole dataset (median for the entire dataset was 85 m; median for parameter
sets that accurately predicted export for this cycle was 115 m, Supp. Fig. Alc), while it was more accurately
predicted for the CRD experiment with RLS values lower than the average for the dataset (median RLS for accurate
parameter sets = 57 m, Supp. Fig. Ald). This highlights the sensitivity of the model to these parameters while
suggesting differences in remineralization length scale between these specific regions, although we caution that RLS
calculated above is only for fast-sinking detritus and does not account for the additional gravitational flux mediated

by slowly sinking particles.
3.5. Model results: Three pathways of export

We compared the relative magnitude of the three BCP pathways for all Lagrangian cycles and all OEPmcmc
parameter sets (Fig. 9a). Results showed that export was typically dominated by some combination of gravitational
flux and/or mixing flux (i.e., eddy subduction + vertical mixing). Active transport typically contributed a relatively
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small proportion of export from the base of the euphotic zone (mean = 2.8%, 95% C.1. = 0.02% - 16.5%). Across
the dataset, gravitational flux was the dominant export pathway (mean = 56.1%, 7.1% - 99.6%), although mixing
was also an important source of export (mean = 41.1%, 0% - 92.3%). The large confidence intervals for each of
these fluxes highlight the uncertainty in our estimates of the BCP pathways. They also, however, obscure distinct

regional variability among the experiments analyzed in our study.

During upwelling-influenced experiments in the CCE, mixing and gravitational flux often contributed
approximately equally to the BCP, with different parameter sets suggesting either dominance by mixing or
gravitational flux. For instance, during CCE cycle 1604-3 (Fig. 9b) gravitational flux contributed an average of 61%
(29 — 84%) of export, while mixing was responsible for 35% (12 — 67%). Not every CCE coastal cycle had a
relatively even split, however, with some more dominated by sinking flux and others more dominated by mixing
flux (e,g. CCE cycle 0605-3 which occurred during a dense coastal dinoflagellate bloom, Fig. 9g). In oligotrophic
regions of the CCE and GoM, export was typically dominated by sinking flux, with relatively minor contributions
from both mixing and active transport. For instance, during CCE cycle 1408-5 gravitational flux was responsible for
86% (70 — 97%) of export (Fig. 9c), while during GoM cycle 5 sinking was responsible for 89% (66 — 98%) of
export (Fig. 9¢). During CRD experiments, which had relatively high mesozooplankton biomasses relative to
phytoplankton biomass, active transport was comparatively more important. For instance, during CRD cycle 1,
active transport averaged 6.5% (0.7 — 26%) of export and was more important than mixing flux (4.3%, 0.4 — 12%,
Fig. 9d). During the Chatham Rise experiments in the Southern Ocean, export patterns were comparable to those in
the upwelling-influenced CCE, driven primarily by gravitational flux and mixing, with gravitational flux slightly

more important.

Looking at patterns across regions and across the varying conditions on our Lagrangian experiments, the
proportion of export driven by vertical mixing was correlated with vertical eddy diffusivity at the base of the
euphotic zone (Spearman’s p = 0.64, p<10°). This is not surprising, since vertical diffusion drives particulate and
dissolved organic matter flux across the euphotic zone. Because sinking and vertical mixing were the two dominant
mechanisms of export, vertical eddy diffusivity also showed a strong inverse correlation with gravitational flux
(Spearman’s p = -0.64, p<10). Across all simulations, organic matter mixed out of the euphotic zone was
relatively evenly split between DOM and POM, but variability in POM flux was greater (mean = 3.4 + 6.9 mmol N
m2 d!) than variability in DOM (mean = 4.6 + 5.5 mmol N m?2 d!). For most simulations (72%), DOM mixing flux
exceeded POM mixing flux. However, POM mixing was greater for 66% of the simulations with total mixing flux
>20 mmol N m? d!. Flux of fast-sinking particles exceeded that of slow-sinking particles at the euphotic zone base
for 90.5% of simulations, with fast-sinking particles averaging of 2.3 mmol N m?2 d"!' (0.07 — 10.4 mmol N m2 d-!)

and slow-sinking particles averaging 0.35 mmol N m d"!' (0.02 — 1.4 mmol N m2 d™").
3.6. Model results: Diel vertical migration and active transport

In NEMURGO&gcp, active transport is driven by two processes: respiration/excretion and mortality at depth. The
former is parameterized as a temperature- and size-dependent function representing basal respiration and is
comparatively well constrained by prior experimental work. The latter is parameterized as a density-dependent
function representing predator-induced mortality, a process that is highly uncertain because few studies have

quantified zooplankton mortality in the mesopelagic ocean. We fit linear regressions to log-transformed active
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transport plotted against log-transformed mesozooplankton biomass (Fig. 10a) to determine a power law relationship
predicting active transport from mesozooplankton biomass: AT = aB¢, where AT = active transport (mmol N m™
d!), B = biomass (mmol N m), a=0.0052 £ 6x10, and ¢ = 1.29 £ 0.0004, R? = 0.90, p<<10°. Similar
relationships were also determined for the respiration/excretion component of active transport (E = aB¢, a=0.0037 £
4x10%, b =1.02 + 0.0005, R?> = 0.87, p<<10?) and the mortality component of active transport (M = aB¢, a =
0.00054 = 10°°, b=2.04 = 0.001, R = 0.89, p<<10~). As expected, since excretion is density-independent while
mortality is density-dependent, the exponent of the excretion power law was ~1 and the exponent of the mortality
power law was ~2. This led to mortality becoming a greater fraction of total active transport as mesozooplankton
biomass increased (Fig. 10d). The transition from active transport dominated almost entirely by respiration to active
transport comprised mostly of mortality at depth occurred rapidly as biomass increased past ~5 mmol N m2. As a
result of the density-dependent parameterization of mortality, daytime mortality also increased with increasing
zooplankton biomass (m = aB¢, where m is specific mortality (h'!) a =2.6x10* £ 5x10%, and b= 0.995 + 0.001, R? =
0.68, p<<10®). This generated daily mortality rates (i.e., over a 12-h daytime period) of ~0.3% d™! at a biomass of 1
mmol N m? and ~6% d! at a biomass of 20 mmol N m (Fig. 10e). Overall mortality for vertically-migrating
mesozooplankton was approximately evenly split between the epi- and mesopelagic, although this ratio was poorly
constrained by the model (Fig. 10f). For instance, 9% - 96% of large-mesozooplankton mortality occurred in the

mesopelagic (at the 95% C.1.).

As suggested by the validation data, vertical migrator biomass was primarily found in the large (>1-mm)
mesozooplankton size class. The large mesozooplankton were also predominantly vertical migrators, while the
small mesozooplankton were primarily epipelagic residents (Fig 10g). Consequently, large mesozooplankton
typically dominated active transport (Fig. 10h) even though small mesozooplankton usually contributed

proportionally more to active transport than to biomass as a result of higher specific respiration rates (Fig. 101).

It would be reasonable to assume that predator-induced mortality in the deep ocean would be negatively
correlated with the abundance of diel-vertical migrators, because high mortality would yield a competitive
advantage for epipelagic-resident zooplankton. For the full dataset, however, we found a negligible correlation
between the mesopelagic mortality term for large mesozooplankton (mortsay,pzpvm) and large mesozooplankton
biomass (Spearman’s p =-0.0077). When investigating this correlation for individual experiments, the correlation
was sometimes positive and sometimes negative. This lack of a correlation was driven by strong correlations
between the mortyay,pzovm and both the assimilation efficiency of these zooplankton and their maximum grazing rate
on smaller mesozooplankton. This led to a compensatory higher growth rate to offset the higher mortality rate and
consequently to a reasonably strong correlation between mortday,pzpvm and the magnitude of export attributable to

predation on large mesozooplankton in the deep ocean (p = 0.25).

4. DISCUSSION
4.1. Biological carbon pump pathways

Gravitational flux is by far the most well studied pathway of the BCP, because it is the only pathway for which
direct in situ flux measurements are possible. Nevertheless, incredibly sparse in sifu sampling necessitates
spatiotemporal extrapolation approaches to derive regional and global estimates of gravitational flux, including the

use of forward models, inverse models, and satellite algorithms (e.g., Schlitzer, 2004; Laws et al., 2000; Hauck et
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al., 2015; Devries and Weber, 2017). Satellite algorithms, as perhaps the most widely used and cited methods for
deriving global estimates, deserve special attention. These approaches have delivered widely varying estimates of
the magnitude of gravitational flux, and indeed the algorithms underlying such estimates often differ in the
fundamental relationship predicted between sinking particle flux and phytoplankton biomass and production (Laws
et al., 2000; Siegel et al., 2014; Henson et al., 2011; Dunne et al., 2005). Such studies typically estimate export flux
from relationships with net primary production (or surface chlorophyll) and/or temperature because these properties
are easily observable by satellite remote sensing. These studies, however, have reached widely differing
relationships about the relationships of these properties to export efficiency (e-ratio = gravitational flux / net primary
productivity). Indeed, the in sifu data compiled here shows no significant dependence of export efficiency on NPP
or temperature (Figure 11a), because export efficiency depends not just on temperature and phytoplankton
production, but also the community composition of phytoplankton and zooplankton, physiological adaptations of
important taxa, and a multitude of ecological interactions (Turner, 2015; Buesseler and Boyd, 2009; Guidi et al.,
2016). Indeed, focusing only on the regions studied here, anomalously high Synechococcus abundances likely result
in low export efficiency in the CRD (Stukel et al., 2013; Saito et al., 2005), salp blooms drive very high export in the
Chatham Rise (Décima et al., in review), and the diatom Thalassiosira seems to play a particularly important role in
export in the CCE (Preston et al., 2019; Valencia et al., 2021). In the latter, diatom photophysiological health is a
strong predictor of export (Brzezinski et al., 2015), although the diatoms likely sink mainly after grazing by

metazooplankton (Morrow et al., 2018).

Despite the diversity of processes that affect the BCP, many of which are not included in NEMUROgcp, our
simulations reasonably reproduce the variability of export efficiency across the study regions, even though results
for individual experiments are imprecise (Fig. 11). One important process that drives variability in export efficiency
is temporal decoupling of production and export (Henson et al., 2015; Laws and Maiti, 2019; Kahru et al., 2020).
Despite the use of constant physical forcing throughout our 30-day simulations, they exhibit distinct temporal
variability in biogeochemical properties. We highlight results from one experiment in slightly aged, upwelled water
off the California coast, using 5 different evenly spaced parameter sets (i.e., the 200,000%, 400,000, 600,000™,
800,000, and 1,000,000 parameter sets) chosen from our ensemble (Fig. 12). In each of these simulations, net
primary production increases early in the simulations, rapidly in some, more gradual in others (Fig. 12a). Net
primary production soon diverges in all of the simulations, however, with some gradually decreasing after the first
week and others exhibiting blooms. Gravitational flux was even more variable, with one simulation peaking almost
immediately and others with substantial temporal lags between net primary production and export (Fig. 12b). This
led to substantial temporal variability in export efficiency (Fig. 12¢) and quite complex relationships between

gravitational flux and net primary production (Fig. 12d).

Assessing the accuracy with which the model simulates export due to vertical mixing (variously called the eddy
subduction pump, mixed layer pump, and/or physical pump) is more difficult. Previous studies to quantify this
process have either relied on indirect biogeochemical proxies (Stukel and Ducklow, 2017; Llort et al., 2018) or
numerical models (Omand et al., 2015; Levy et al., 2013; Stukel et al., 2018b; Nowicki et al., 2022) to quantify
these processes. Our vertical mixing results should be considered with some caution due to our overly simplified
one-dimensional physical framework, which conflates distinct processes including mesoscale subduction, diapycnal
diffusing, mixed layer entrainment and detrainment, and gyre-scale Ekman pumping. Nevertheless, it is reassuring

that our simulations from the CCE, which showed that vertical mixing out of the euphotic zone was often similar in
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magnitude to gravitational flux and at times even higher, is similar to results based on a Lagrangian particle model
developed for the region (Stukel et al., 2018b). More realistic estimates for all regions could be derived by coupling

NEMUROgcp and our parameter ensembles to a three-dimensional ocean simulation.

The magnitude of active transport mediated by diel-vertically migrating zooplankton in the global ocean
remains highly uncertain due to a paucity of measurements and the difficulty of constraining the amount of mortality
occurring at depth. Studies that include only respiration and/or excretion of zooplankton at depth typically find that
active transport is a relatively small fraction of gravitational flux (Steinberg et al., 2000; Hannides et al., 2009).
However, more recent studies that have attempted to incorporate mortality experienced in the deep ocean have
derived much larger estimates of active transport (Kelly et al., 2019; Kiko et al., 2020; Hernandez-Ledn et al., 2019).
These studies should be considered highly uncertain, however, because they necessarily make large assumptions
about the amount of zooplankton mortality occurring in the deep ocean, where it has never been directly quantified.
Results from our study, which does include mortality at depth, suggests that active transport is a quantitatively
important, but never dominant component of carbon export out of the euphotic zone, in line with results from recent
global estimates derived from a combination of satellite remote-sensing products and modeling approaches

(Archibald et al., 2019; Nowicki et al., 2022).

One aspect of the BCP that our current euphotic-zone only simulations do not address is sequestration
efficiency in the mesopelagic (Kwon et al., 2009; Marsay et al., 2015; Buesseler and Boyd, 2009). It is reasonable
to surmise that the remineralization length scale will vary for different BCP pathways and be regionally variable as
well. With gravitational flux, typically ~50% of particles will sink 100 m beneath the euphotic zone before
remineralization, although remineralization length scales are highly variable and the spatial patterns are poorly
understood (Buesseler and Boyd, 2009; Marsay et al., 2015). Meanwhile, vertically-migrating zooplankton typically
reside at depths of 200 — 600 m during the day and hence respire the majority of their carbon dioxide at this depth
(Bianchi et al., 2013b), although it is unclear how the inclusion of mortality at depth into our understanding of active
transport will affect the overall depth of penetration of actively transported carbon into the deep ocean. Stukel et al.
(2018b), suggested that subducted particles in the southern CCE are mostly remineralized near the base of the
euphotic zone with little penetration into the mesopelagic, although in regions with deep convective mixing,
signatures of subduction show substantial transport into the deep ocean (Omand et al., 2015; Llort et al., 2018).
Nowicki et al. (2022) estimated that gravitational flux and active transport have similar sequestration time scales but
that sequestration times for mixing were much shorter. In contrast, Boyd et al. (2019) surmised that active transport
may have the greatest sequestration efficiency, followed by vertical mixing, then gravitational flux, although their
synthesis was only able to draw from the few studies that have quantified these processes and they note that
determining the sensitivities of sequestration efficiencies to environmental drivers is crucial to predicting climate
change impacts on marine carbon sequestration. We believe that future incorporation of our model ensemble
approach into three-dimensional coupled modeling frameworks could be an important step forward in understanding

the magnitude and uncertainty in these processes.

4.2. Data-assimilating biogeochemical models

Implicit to our OEPmcmc approach is the philosophical realization that our model (like all biogeochemical

models) oversimplifies an incredibly complex system. Hence, we accept that no single solution set will accurately
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simulate all aspects of the BCP. Instead, we proposed a mechanistic-probabilistic approach that explicitly
investigates the ecosystem uncertainty. This contrasts with some other data-assimilation approaches (e.g., gradient-
based methods including the variational adjoint, Schartau et al., 2001; Friedrichs et al., 2007; Lawson et al., 1995)
that seek to find a single solution that minimizes model-data misfit. While the variational-adjoint approach is
computationally efficient and allows objective determination of a single solution that can then be used for high-
resolution simulations (Mattern et al., 2017), our work shows that very different parameter sets can result in similar
cost function values, despite generating distinctly different model outputs. For instance, different sets of parameters
(all with approximately equivalent mismatch to our extensive suite of field measurements) predicted distinctly
different functioning of the BCP in the CCE coastal region (with some parameter sets suggesting that subduction is
most important and others suggesting that sinking particles are most important, Fig. 9b) and in the Costa Rica Dome
(where some parameter sets suggested sinking was responsible for almost all carbon export, compared to other
parameter sets that suggested almost equal importance of active transport, Fig. 9d). The results of a typical
variational-adjoint data-assimilation approach (or any approach that determines results from a single “best”
parameter set) would have selected only one of these possible parameter sets and assumed that it accurately depicted

the ecosystem; our results more accurately quantify this true uncertainty.

Our approach has similarities with other biogeochemical model ensemble approaches. For instance, Doron et
al. (2013) used an ensemble Kalman filter algorithm to assimilate surface chlorophyll data and determine regional
variability in biogeochemical parameters for a simple ecosystem model. Gharamti et al. (2017a; 2017b) used a
modified approach to simultaneously estimate model parameters and state variable distributions to enable reasonably
accurate ensemble predictions of modeled processes. These Kalman filter approaches are widely used in physical
sciences for state estimation, re-analyses, and prediction purposes, although the data-assimilating state variable
updates sacrifice true dynamical consistency. Meier et al. (2011) used dynamically consistent model ensembles
generated from three different biogeochemical models forced with four climate projections and three different
nutrient loading scenarios to investigate increasing hypoxia in the Baltic Sea. Garnier et al. (2016) used a
probabilistic version of the NEMO/PISCES model to generate a 60-member ensemble simulation of chlorophyll in
the North Atlantic that accounts for uncertainties in biogeochemical parameters and sub-grid scale processes. Gal et
al. (2014) conducted a single model ensemble approach similar to ours in which they perturbed the most sensitive
parameters in their model to investigate whether trends associated with different nutrient loading scenarios were
consistent across the ensemble, although their approach did not use data assimilation to determine the different
parameter values used. Nowicki et al. (2022), building on previous work in Devries and Weber (2017), used
satellite-observed net primary production and phytoplankton size distributions to force a simple steady-state
euphotic-zone food web model coupled to an organic matter transport and transformation model. The combined
modeling system includes 42 parameters that are optimized to minimize mismatch with a suite of observations using
a quasi-Newton algorithm. By making different assumptions related to the incorporated field data and optimizing
parameters for each set of assumptions, the authors develop an ensemble of 124 ecosystem realizations. Ramondenc
et al. (2020) used the statistical model check engine to assimilate laboratory and in situ observations to
probabilistically constrain parameters associated with scyphozoan growth and degrowth. Vervatis et al. (2021a;
2021b) conducted an model ensemble study of the Bay of Biscay in which they perturbed the atmospheric forcing,
physical ocean parameterization, and biogeochemical sources and sinks (although in contrast to our model, they did

not vary the parameters, but rather incorporated a spatiotemporally varying perturbation that acted directly on
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sources and sinks including photosynthesis, death, and grazing without modification to parameters). They found
that chlorophyll was most sensitive to changes in atmospheric forcing and also highlight that the ensemble results
can lead to improved simulation of plankton functional types. Anugerahanti et al. (2018) conducted a model
ensemble approach in which, rather than modifying parameter values, they modified the functional form of key
transfer functions associated with nutrient uptake, grazing, and mortality while simulating chlorophyll, nutrients, and
primary production at 5 time-series sites. They discovered that the model was especially sensitive to modifications
to the grazing and mortality functions. A further study (Anugerahanti et al., 2020) simultaneously perturbed
physical circulation fields and the biogeochemical model and found that results were most sensitive to variability in
the biological model. The result of these ensemble approaches is a probabilistic estimate of model outputs that
(hopefully) accurately reflects true uncertainty in the system. Our OEPwycwmc approach, by utilizing field data to
automate the choice of parameter sets to be used in the model ensemble, allows us to generate one million different
dynamically consistent model realizations that each fit the available data, while simultaneously exploring different
regions of the solution space with regard to uncertainties in all of the modeled parameters. We consider this to be a
reasonable tradeoff for the increased computational expense of our approach (relative to the variational adjoint or
Kalman filter approaches), while noting that each approach has distinct advantages or disadvantages for different

applications.

An additional novelty of our study is the variety of different data types assimilated into the model (30 different
rate and standing stock measurement types). Most data-assimilating biogeochemical models only incorporate data
associated with nutrients and/or surface chlorophyll and other remotely-sensed parameters (e.g., Xiao and
Friedrichs, 2014b; Mattern et al., 2014; Wang et al., 2012). The incorporation of multiple data types spanning
trophic levels and biogeochemical processes is important to model validation, because models can often reasonably
simulate time series of one particular variable, with unrealistic dynamics of associated trophic levels. Ciavatta et al.
(2014) found that assimilation of light attenuation coefficient data improved model prediction of light attenuation
coefficient data, but did not improve model estimates of surface chlorophyll, and even degraded model performance
in some regions. Furthermore, assimilation of only noisy standing stock data can lead to model overfitting and
inability to retrieve accurate model parameters, even in an idealized model (Loptien and Dietze, 2015). The few
studies that have attempted to incorporate many measurement types have focused on nutrient and phytoplankton
parameters. For instance, Kim et al. (2021) assimilated standing stock data associated with 9 model compartments
along with net primary production and bacterial production into a model of an Antarctic coastal ecosystem but
incorporated no metazoan zooplankton data. In a model simulating three distinct open ocean regions, Luo et al.
(2010) incorporated only one zooplankton parameter (mesozooplankton biomass) amongst 17 assimilated data types,
mostly associated with non-living compartments. By contrast, we incorporate an extensive suite of group-specific
protistan grazing rate measurements and biomass and grazing rate measurements for each of our 4 metazoan
zooplankton groups. While these provide realistic bounds within which zooplankton dynamics can vary,
zooplankton parameters still remain among the least constrained parameters in our model due to the difficulty of
making zooplankton rate measurements (e.g., the paucity of grazing measurement relative to net primary
production) and the fact that most zooplankton measurements (derived from net tows) inherently integrate over
broad depth ranges. The weak constraints on zooplankton processes are particularly important in light of multiple
studies that have shown that even subtle changes in grazing formulations can fundamentally alter the

biogeochemical behaviors of models (Sailley et al., 2015; Gentleman and Neuheimer, 2008; Schartau et al., 2017;
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Chenillat et al., 2021; Sailley et al., 2013; Prowe et al., 2012) and the crucial roles of metazoan zooplankton for
multiple pathways of the BCP (Buitenhuis et al., 2006; Steinberg and Landry, 2017).

4.3. Future directions

We have highlighted some of the insight about the BCP that can be gleaned from our ensemble data
assimilation approach. However, as noted previously, there are many limitations associated with using a simplified
one-dimensional physical framework, and indeed a large portion of our study goal was to set the stage for more
advanced uses of NEMUROgcp and OEPyeme. One obvious future step is to incorporate NEMUROgcp into three-
dimensional circulation models. Although NEMUROgcp was originally written in Matlab, we are currently adapting
it to Fortran compatible with circulation models such as ROMS, HYCOM, and MITgcm. Three-dimensional
NEMUROgcp simulations may take different forms. One approach would be to use different parameter sets from
the data ensemble in independent model runs, to conduct three-dimensional global biogeochemical model
ensembles. Notably, our different parameter sets are equally supported by assimilated field data, yet some predict
very different ecosystem states (e. g., they vary in relative proportion of large/small phytoplankton, in turnover times
for biota, in partitioning of organic matter between the particulate and dissolved phase, etc.). This ensemble
modeling approach would thus allow quantification of BCP uncertainties in four dimensions. An alternate approach
would be to use parameter distributions from one-dimensional simulations as prior estimates of parameters for data-
assimilation in a three-dimensional model. These prior estimates of each parameter (and the parameter covariance
matrix) could be incorporated into the cost function for many different data-assimilation approaches. Comparison to

satellite-observed or in situ time-series data would add powerful additional constraints on parameter values.

Another future use of the ensemble approach would be to simulate the results of specific Lagrangian
experiments. In the current study, we developed an ensemble of plausible parameter sets that could be used for
global ensemble models in the future or as prior distributions for future studies, while also assessing the uncertainty
in parameter values. These goals informed our decision to conduct a joint parameter estimation that simultaneously
utilized data from all available experiments (rather than estimating different parameter values for each experiment or
each region). To simulate ecosystem dynamics for a specific experiment as accurately as possible, one would need
to treat initial conditions and boundary values as unknown values to be determined during the optimization
procedure. As such, the cost function should formally be defined as a function of these unknown values: J(Ic, By, F,
P) where Ic represents the initial conditions (all state variables, all depths), By is the boundary values (i.e., values of
the state variables at the bottom boundary of the model), F is the physical forcing, and P is the parameter set. While
this introduces a large number of additional unknown variables to solve for, it also justifies use of a more stringent
cost function (e.g., the likelihood function). Thus to use NEMUROgcp to model a specific Lagrangian experiment
(e.g., time-varying conditions during the North Pacific EXPORTS Lagrangian study, Siegel et al., 2021), we
recommend treating our results for estimated global ranges of parameters as prior values in a Bayesian analysis to

simultaneously constrain /¢, By, F, and P for that Lagrangian experiment.

In the current study, we incorporated a broad suite of standing stock and rate measurements spanning nutrients,
phytoplankton, zooplankton, and non-living organic matter, because our goal was to simultaneously constrain all
parameters in the model while investigating overall uncertainty in model outputs. However, Loptien & Dietze

(2015) noted that specific parameters and processes can be better constrained if only the most relevant type of data is
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included. We thus suggest that targeted choice of data types to assimilate could allow the use of OEPwmcmc for
investigation of specific processes that are difficult to directly measure in sifu. For instance, zooplankton mortality
at depth has been hypothesized to be a potentially important component of the BCP (Kelly et al., 2019; Hernandez-
800 Ledn et al., 2019), but estimates of zooplankton mortality at depth are typically derived from either allometric
relationships between zooplankton size and life span or estimates of mortality made in the upper ocean (Brett and
Groves, 1979; Hirst and Kierboe, 2002; Ohman and Hirche, 2001). By incorporating only the data sources that offer
the most constraint on zooplankton parameters (e.g., biomass and grazing rates of each zooplankton group), it may

be possible to better constrain the fraction of mortality occurring in the deep ocean.

805 NEMUROgcp was built off of the NEMURO family of models (Kishi et al., 2007), and here we only added
extra state variables essential for modeling BCP pathways from the euphotic zone into the mesopelagic. There are,
of course, multiple additional processes that are important to simulating marine biogeochemistry and the BCP that
are currently absent. Some additional processes that we consider priorities and plan to implement in future versions
of NEMUROgcp include variable stoichiometry of organic matter, N, fixation, and additional realism in the

810 microbial community. Elemental stoichiometry (e.g., C:N:P) can vary substantially between different organic pools
and across the different BCP pathways (Hannides et al., 2009; Singh et al., 2015), is predicted to change as a result
of ocean acidification and/or increased temperature and stratification (Oschlies et al., 2008; Riebesell et al., 2007),
and can affect the balance between carbon sequestration and nutrient supply and regeneration leading to potentially
enhanced carbon sequestration and growing oxygen minimum zones in a future ocean (Michaels et al., 2001;

815 Oschlies et al., 2008; Riebesell et al., 2007). Adding variable stoichiometry to NEMUROgcp is simple but will
require the addition of state variables associated with each model compartment that is allowed to vary in its
elemental ratios, with substantial added computational costs. N fixation is simultaneously a source of new
production in the absence of upwelling and a process that can substantially alter elemental stoichiometry in the open
ocean. It could be introduced to the model through a state variable(s) simulating diazotrophs (Hood et al., 2001) or

820 through implicit parameterization (Ilyina et al., 2013). NEMUROgcp might also benefit from added realism in
microbial dynamics. The roles of heterotrophic bacteria in particle remineralization are currently included implicitly
in the model. Explicit simulation of bacterial biomass and processes such as colonization of particles, microbial
hotspots on sinking particles, production of hydrolytic enzymes, quorum sensing, and predator-prey dynamics with
protists have the potential to more accurately simulate feedbacks that affect remineralization length scales in the

825 ocean (Robinson et al., 2010; Simon et al., 2002; Mislan et al., 2014). Additionally, the model currently includes
only two phytoplankton, which were explicitly identified as diatoms and non-diatoms in this data-assimilation
exercise. The latter category subsumes a wide variety of different phytoplankton taxa into a group with transfer
functions designed to simulate picophytoplankton (especially cyanobacteria). It thus excludes the presence of
mixotrophs, which are abundant and diverse bacterivores in the open ocean, can survive low-nutrient and low-light

830 conditions by supplementing their nutritional budget with phagotrophy, and may have distinctly different

biogeochemical roles due to their decreased reliance on dissolved nutrients (Stoecker et al., 2017; Jones, 2000).

5. Conclusions

The data assimilation approach utilized here is a computationally feasible method for incorporating a diverse
suite of in situ measurements to objectively define parameter sets for ensemble modeling of the BCP. The 30 data
835 types assimilated in this study improve constraints on ecosystem dynamics. However, some parameters, especially
22
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those related to metazoan zooplankton, remain poorly constrained by available data, despite assimilation of § data
types explicitly representing metazoan zooplankton rates and standing stocks. This likely results from a
combination of the inherently patchy nature of many mesozooplankton populations (i.e., high measurement
uncertainty) and the vertically integrated nature of zooplankton net tows which obscures simple relationships

between predator abundance, prey abundance, and grazing rates.

The three BCP pathways were spatiotemporally variable across four study regions. Despite a very simple
physical framework, distinct patterns were identified. Active transport was only a dominant contributor to the BCP
in the CRD, where simulations predicted it to be responsible for 20-40% of export from the euphotic zone. Near the
subtropical front of the Southern Ocean and in upwelling-influenced regions of the CCE, both gravitational flux and
vertical mixing were important components of the BCP, with the relative importance of the two determined more by
differences between parameter sets, than by differences between the conditions experienced during specific
Lagrangian experiments. In offshore oligotrophic regions of the CCE and the GoM >80% of export was usually

attributable to gravitational flux, although mixing dominated in a few experiments.

Our ensemble approach highlights uncertainties around model estimates of the BCP that arise from imprecisely
defined parameters. Indeed, variability in many aspects of the BCP is as large comparing different (realistic)
parameter sets within a specific location as it is across regions as distinctly different as the oligotrophic GoM and
coastal CCE. Notably, different realistic parameter sets from our ensembles predict very different export
efficiencies (and hence magnitudes of the gravitational pump) despite similar net primary production. This suggests
that model validation against net primary production (or sea surface chlorophyll) data is insufficient to validate
model skill in simulating BCP variability. The explicit representation of thorium and nitrogen isotope dynamics in

NEMUROgcp should aid in future model validation efforts.
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Code Availability

The core NEMUROgcp code is available on GitHub at: https://github.com/mstukel/NEMURO_ BCP. The code

860 necessary to run the objective ensemble parameterization procedure can be found at:

https://github.com/mstukel/OEP_ MCMC_NEMURObcp.

Data Availability

Field data used in this manuscript is available on either the CCE LTER Datazoo repository

865 (https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets) or the Biological and Chemical Oceanography

Data Management Office repository: https://www.bco-dmo.org/project/834957, https://www.bco-

dmo.org/project/819488, and https://www.bco-dmo.org/project/754878. For ease of access it is also included in

Supp. Tables S2-S4. The data file containing all model outputs (from all ensembles) is too large to deposit but can
be generated from the code on GitHub. A summarized version (every 1000" iteration) is included as Supp. Table
870 S5, summary statistics are given in Supp. Table S1, with the correlation and covariance matrices given in Supp.

Table S6.
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LZpvm <1-mm diel-vertically-migrating mesozooplankton mmol N m™3
PZges >1-mm epipelagic-resident mesozoopankton mmol N m™
PZovm >1-mm diel-vertically-migrating mesozooplankton mmol N m™3
NO3 Nitrate mmol N m™
NH4 Ammonium mmol N m™3
PON Slowly-sinking detritus mmol N m
LPON Rapidly-sinking detritus mmol N m
DON Labile dissolved organic nitrogen mmol N m3
DONref Refractory dissolved organic nitrogen mmol N m™
Sl Silicic acid mmol Si m3

37



op
LOP
CHLps

CHLpL

(0)4%
Carbon submodule

DIC

ALK
24Thorium submodule

dTh

SPrh

LPh

SZth

LZRESth

LZDVMty,

PZRESt

PZDVM

PON,

LPON,

Slowly-sinking opal (biogenic silica)
Rapidly-sinking opal (biogenic silica)

Chlorophyll associated with small phytoplankton
Chlorophyll associated with large phytoplankton

Dissolved oxygen

Dissolved inorganic carbon
Alkalinity

Dissolved #%Th

234Th adsorbed to small phytoplankton
234Th adsorbed to large phytoplankton
234Th adsorbed to small zooplankton
234Th adsorbed to LZRES

234Th adsorbed to LZDVM

234Th adsorbed to PZRES

234Th adsorbed to PZDVM

234Th adsorbed to slowly-sinking detritus

234Th adsorbed to rapidly-sinking detritus

Nitrogen isotope submodule

SPn1s
LPn1s
SZn1s
LZRESn1s
LZDVMnis
PZRESn1s
PZDVMyis
NOnis
NHn1s
PONns1s
LPONNn1s
DONnis
DONREFy1s

5N in small phytoplankton
15N in large phytoplankton
15N in small zooplankton

5N in LZRES

5N in LZDVM

15N in PZRES

15N in PZDVM

15N in nitrate

15N in ammonium

15N in slowly-sinking detritus
15N in rapidly-sinking detritus
15N in labile DON

5N in refractory DON

38

mmol Si m3
mmol Si m3
mg Chl g m™3
mg Chla m3

mmol O m3

mmol C m3

mmol m3

dpmL?
dpm L?
dpm L?
dpmL?
dpmL?
dpm L?
dpm L?
dpm L?
dpmL?
dpm L?

mmol N m3
mmol N m3
mmol °N m3
mmol N m3
mmol N m3
mmol N m3
mmol °N m3
mmol N m3
mmol N m3
mmol N m3
mmol °N m3
mmol N m3

mmol N m-3



1510 Figures

4—/ !
‘ i [ A

v
—
NH, PS
> Chlg

Ve

l¥

y

=
5

Yy

v

Figure 1 - Schematic depiction of core NEMUROgcp model. Arrows show transfer functions (orange = Si flux;

blue = N flux). Rectangles show state variables (SiOH3 = silicic acid; NOj; = nitrate; NH4 = ammonium; Opalgman =
1515 small biogenic silica; Opaliarge = large biogenic silica; DON.¢ = refractory dissolved organic nitrogen; DONapite =

labile dissolved organic nitrogen; PONgman = small detritus; PONiqrge = large detritus; DTM = diatoms; PS = small

phytoplankton; Chl; = diatom chlorophyll; chl; = small phytoplankton chlorophyll; ZS = protistan zooplankton; ZL s

= <]-mm metazoan zooplankton that are resident in the euphotic zone; ZL4ym = <1-mm diel-vertically-migrating

metazoan zooplankton; ZP;.; = >1-mm metazoan zooplankton that are resident in the euphotic zone; ZP4gym = >1-mm
1520 diel-vertically-migrating metazoan zooplankton. Oxygen is also a state variable but is not shown in this figure.
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Figure 2 — Locations of our in situ Lagrangian experiments (blue = California Current Ecosystem, Brown = Gulf of
Mexico, Green = Costa Rica Dome, Magenta = Chatham Rise).
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Figure 3 — OEPymcmc parameter distributions for bottom-up control of small phytoplankton. Line plots on top are
probability density functions for individual parameters (see bottom for label and axes). Colored plots are heat maps
showing joint parameter distributions. Parameters are: maximum growth rate at 0°C (Viaxsp, units = d'!), half-
saturation constant for nitrate uptake (Kno,sp, mmol N m), half-saturation constant for ammonium uptake (Kn.sp,
mmol N m), initial-slope of the photosynthesis-irradiance curve (asp, m> W-! d!), photoinhibition parameter (Bsp,
m? W-! d1), respiration rate at 0°C (ressp, d'!), linear mortality term at 0°C (mortsp, d™!), excretion parameter (excsp,
unitless), ammonium inhibition of nitrate uptake (inhxuno sp, m®> mmol N1,
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Figure 4 — OEPyicmc parameter distributions for large phytoplankton and some other other model processes. Line
plots on top are probability density functions for individual parameters (see bottom for label and axes). Colored
plots are heat maps showing joint parameter distributions. Parameters are: maximum growth rate at 0°C (Vax,Lp,
units = d), initial-slope of the photosynthesis-irradiance curve (op, m?> W' d1), half-saturation constant for NHy
uptake (Knpp, mmol N m3), maximum grazing rate of small zooplankton on large phytoplankton (gmaxsz.Lp, d™)).
maximum grazing rate of large (>1-mm) epipelagic-resident mesozooplankton on small phytoplankton (gmax,pzrEs.sp,
d'"), maximum grazing rate of large (>1-mm) vertically-migrating mesozooplankton on small (<1-mm)
mesozooplankton (gmax pzovm.Lz, A1), the Ikeda respiration parameter for small (<1-mm) mesozooplankton, daytime
mortality rate for small (<I-mm) vertically-migrating mesozooplankton (mortgay.1 zpvm, m> mmol N! d*!),
remineralization rate of DON to NH4" (refyec ponnm, d7).
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Figure 5 — Model-data net primary production comparison. Blue box plots show model results for each simulated
Lagrangian experiment, with whiskers extending to 95% confidence limits. Yellow diamonds show observations

from Lagrangian experiments.
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Figure 6 — Model-data sinking particle export comparison at the base of the euphotic zone. Blue box plots show
model results for each simulated Lagrangian experiment, with whiskers extending to 95% confidence limits. Yellow
diamonds show observations from sediment trap deployments (no observations were available for 9 experiments).
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Figure 7 — Model-data water-column 2**Th activity comparison. Dark blue lines show mean vertical profile of 24Th

1560 activity from MCMC model simulations with lighter blue shading indicating 95% C.I. Red diamonds show
observations. Each panel is for a separate Lagrangian experiment.
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Figure 8 — Model-data comparison of C:2**Th ratio (a) and 8'>N of sinking particles. Color indicates region. Error

bars are +1 standard deviation. Black line is the 1:1 line. Observations are derived from sediment trap
1565 measurements.
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Figure 9 — Triangle diagrams showing the proportion of export due to each biological carbon pump pathway at the base of the
1570 euphotic zone. Locations near the upper apex of the triangle indicated dominance by sinking particles, locations near the bottom
left indicate dominance by active transport, locations near the bottom right show dominance by mixing. Colors represent the
proportion of total model simulations with export patterns falling within a specific proportion of different export pathways.
Lines indicated contours showing a constant proportion of one BCP pathway (i.e., red lines are constant proportions of active
transport, blue lines are constant proportions of gravitational flux, and purple lines are constant proportions of mixing flux). a)
1575 results for all simulations, b) results for a typical CCE coastal site (1604-3), c) typical CCE oligotrophic site (1408-5), d) typical
Costa Rica Dome site (CRD-1), e) typical Gulf of Mexico site (GoM-5), f) typical Chatham Rise site (Salp-5), g) example of a

CCE site (0605-3) dominated by mixing flux.
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Figure 10 — Heatmaps of active transport (a), active transport due to excretion in the deep ocean (b), active transport due to
mesozooplankton mortality at depth (c), the fraction of active transport that was due to mortality at depth (d), and the daytime
specific mortality experienced by mesozooplankton at their mesopelagic resting depths (e), all as a function of the total biomass
of vertically-migrating mesozooplankton (i.e., sum of both size classes). Black lines and equations in a, b, ¢, and d were
determined from ordinary least squares regressions of log-transformed data (see text for regression statistics). (f) shows the
probability density function for the fraction of large (>1 mm) mesozoolpankton mortality experienced during the day at their
mesopelagic resting depths. (g) and (h) show normalized histograms of logio-transformed zooplankton biomass and active
transport, respectively. Dashed blue line is small epipelagic-resident zooplankton, solid blue is small DVM zooplankton, dashed
red is large epipelagic-resident zooplankton, solid red is large DVM zooplankton. (i) shows the fraction of active transport
mediated by large mesozooplankton (>1 mm) as a function of their fraction of total vertically-migrating mesozooplankton

biomass. Dashed gray line is the 1:1 line.
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Figure 11 — Gravitational flux at the base of the euphotic zone as a function of net primary production for in situ
data (a) and model results (b). Averages and standard deviations are shown for individual Lagrangian experiments.

1595  Nitrogen-based model results were converted to carbon units assuming a C:N ration of 106:16 (mol:mol).
Background in both figures is a heatmap of all model results (i.e., all Lagrangian experiments and all parameter
sets). Solid black lines show contours of constant e-ratio (=gravitational flux / net primary production).
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1600  Figure 12 — Temporal variability in net primary production (a, mmol C m d!), gravitational flux (b, mmol N m-
d1), and export efficiency (c, unitless with a C:N conversion ratio of 106:16 mol:mol), along with a phase-space plot
depicting the same data (d). All plots are from Lagrangian experiment 1604-3 (CCE upwelling region). Different
colors are for simulations with ensemble parameter sets 2x10°, 4x10°, 6x10°, 8x10°, or 10°.
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