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Abstract. The ability to constrain the mechanisms that transport organic carbon into the deep ocean is complicated 10 

by the multiple physical, chemical, and ecological processes that intersect to create, transform, and transport 

particles in the ocean.  In this manuscript we develop and parameterize a data-assimilative model of the multiple 

pathways of the biological carbon pump (NEMUROBCP).  The mechanistic model is designed to represent sinking 

particle flux, active transport by vertically migrating zooplankton, and passive transport by subduction and vertical 

mixing, while also explicitly representing multiple biological and chemical properties measured directly in the field 15 

(including nutrients, phytoplankton and zooplankton taxa, carbon dioxide and oxygen, nitrogen isotopes, and 

234Thorium).  Using 30 different data types (including standing stock and rate measurements related to nutrients, 

phytoplankton, zooplankton, and non-living organic matter) from Lagrangian experiments conducted on 11 cruises 

from four ocean regions, we conduct an objective statistical parameterization of the model and generate one million 

different potential parameter sets that are used for ensemble model simulations.  The model simulates in situ 20 

parameters that were assimilated (net primary production and gravitational particle flux) and parameters that were 

withheld (234Thorium and nitrogen isotopes) with reasonable accuracy.  Model results show that gravitational flux of 

sinking particles and vertical mixing of organic matter from the euphotic zone are more important biological pump 

pathways than active transport by vertically migrating zooplankton.  However, these processes are regionally 

variable, with sinking particles most important in oligotrophic areas of the Gulf of Mexico and California Current, 25 

sinking particles and vertical mixing roughly equivalent in productive coastal upwelling regions and the subtropical 

front in the Southern Ocean, and active transport an important contributor in the Eastern Tropical Pacific.  We 

further find that mortality at depth is an important component of active transport when mesozooplankton biomass is 

high, but it is negligible in regions with low mesozooplankton biomass.  Our results also highlight the high degree of 

uncertainty, particularly amongst mesozooplankton functional groups, that is derived from uncertainty in model 30 

parameters.  Indeed, variability in BCP pathways between simulations for a specific location using different 

parameter sets (all with approximately equal misfit relative to observations) is comparable to variability in BCP 

pathways between regions. We discuss the implications of these results for other data assimilation approaches and 

for studies that rely on non-ensemble model outputs.   
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1. INTRODUCTION 35 

Marine phytoplankton in the surface ocean are responsible for approximately half of the world’s photosynthesis 

(Field et al., 1998).  However, as a result of their short lifetimes and active grazing by a diverse suite of 

zooplankton, most of the carbon dioxide fixed by phytoplankton will be respired back into the surface ocean on time 

scales of days to weeks (Steinberg and Landry, 2017).  Long-term sequestration of this biologically-fixed carbon 

dioxide requires that the organic matter produced by marine autotrophs be transported into the deep ocean through a 40 

suite of processes collectively referred to as the biological carbon pump (BCP) (Boyd et al., 2019; Ducklow et al., 

2001; Volk and Hoffert, 1985).  The BCP is estimated to transport 5 – 13 Pg C yr-1 into the deep ocean (Laws et al., 

2011; Laws et al., 2000; Siegel et al., 2014; Henson et al., 2011).  Our ability to constrain the magnitude of this 

globally important process (and its response to anthropogenic forcing) more accurately is hampered, however, by the 

diverse spatiotemporal scales over which these processes act and difficulties in quantifying rates in a heterogeneous 45 

three-dimensional ocean (Siegel et al., 2016; Burd et al., 2016; Boyd, 2015).   

Attempts to predict future changes in the BCP are also complicated by the diverse pathways of organic matter 

flux into the deep ocean (Henson et al., 2022).  Most research of the BCP has focused on sinking particles (Turner, 

2015; Buesseler and Boyd, 2009; Martin et al., 1987; Honjo et al., 2008), which include diverse biologically-

produced material such as dead phytoplankton and zooplankton, fecal pellets, crustacean molts, and mucous feeding 50 

structures (Smayda, 1970; Kirchner, 1995; Bruland and Silver, 1981; Fowler and Small, 1972; Small et al., 1979; 

Alldredge, 1976; Hansen et al., 1996; Lebrato et al., 2013).  Slowly-sinking and suspended particles are also 

reshaped into rapidly-sinking marine snow through abiotic aggregation processes (Passow et al., 1994; Burd and 

Jackson, 2009; Jackson, 2001; Alldredge, 1998).  These sinking particles are continually transformed, remineralized, 

and modified by a community of particle-attached bacteria and protists and suspension- and flux-feeding 55 

mesozooplankton (Stukel et al., 2019a; Poulsen and Kiorboe, 2005; Steinberg et al., 2008; Simon et al., 2002; Boeuf 

et al., 2019).   

Organic matter is also transported into the deep ocean through active transport by vertically migrating 

zooplankton and nekton (Steinberg et al., 2000; Longhurst et al., 1990; Archibald et al., 2019; Bianchi et al., 2013a) 

and by passive transport of dissolved and particulate organic matter that is subducted by ocean currents or mixed 60 

into the deep ocean (Levy et al., 2013; Carlson et al., 1994).  The global magnitudes of these processes are highly 

uncertain because they are difficult to constrain from in situ measurements.  Active transport is commonly believed 

to be responsible for a relatively small proportion (~10-20%) of the biological pump (Archibald et al., 2019; 

Hannides et al., 2009; Steinberg et al., 2000).  However, if mortality at depth is included as part of active flux, it can 

be an important and at times dominant source of export, although such estimates are highly uncertain (Kelly et al., 65 

2019; Kiko et al., 2020; Hernández-León et al., 2019).  Similarly, investigations of the importance of passive 

transport initially focused on the role of refractory dissolved organic matter (Carlson et al., 1994; Copin-Montégut 

and Avril, 1993).  Recent studies, however, highlight the importance and spatiotemporal variability of passive 

transport of particles via subduction, eddy mixing, mixed-layer shoaling, and vertical diffusion (Levy et al., 2013; 

Omand et al., 2015; Stukel et al., 2018b; Stukel and Ducklow, 2017; Resplandy et al., 2019).  These passive 70 

transport processes can be driven both by large-scale flows and by meso- and submesoscale circulation near fronts 

and eddies (Resplandy et al., 2019; Llort et al., 2018; Omand et al., 2015; Stukel et al., 2017). 
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Numerical models are essential tools for investigating such processes that act across multiple spatiotemporal 

scales and integrate multiple physical, chemical, and biological drivers.  Such models have, for instance, been 

crucial in elucidating spatial and temporal decoupling of phytoplankton production and sinking particle export 75 

(Plattner et al., 2005; Henson et al., 2015), quantifying spatial variability in the relative importance of different BCP 

pathways (Nowicki et al., 2022), determining the temporal horizon over which anthropogenic signals appear in the 

world ocean (Schlunegger et al., 2019), quantifying regional variability in subduction of organic matter (Levy et al., 

2013), inverting oxygen, nutrient, and carbon standing stock measurements to estimate global carbon export rates 

(Schlitzer, 2000; Schlitzer, 2002), and predicting climate change impacts on plankton communities and the BCP 80 

(Dutkiewicz et al., 2013; Hauck et al., 2015; Bopp et al., 2005; Oschlies et al., 2008; Yamamoto et al., 2018).  

Models have also been used to investigate the role of vertically migrating zooplankton in strengthening oxygen 

minimum zones (Bianchi et al., 2013a), meso- and submesoscale hotspots of particle subduction (Resplandy et al., 

2019), and the impact of glacial/interglacial changes in iron deposition on the BCP (Parekh et al., 2006).  Such 

investigations would be difficult or even impossible to undertake without models.  Nevertheless, the models for 85 

varying processes differ substantially, and few are able to investigate the full potential parameter space or quantify 

the accuracy of simulated energy flows through multiple trophic levels.  While accurate simulation of physical 

circulation is critical for simulating marine biogeochemistry (Doney et al., 2004), objective parameterization of 

biogeochemical models lags substantially behind similar approaches for physics.  Indeed, the inability to constrain 

biogeochemical relationships accurately may be the primary limitation on our ability to objectively evaluate 90 

biogeochemical models (Anderson, 2005; Franks, 2009; Follows and Dutkiewicz, 2011; Ward et al., 2013).  Recent 

advances in formal assimilation of biogeochemical properties into ocean models are beginning to allow objective 

model parameterization, a crucial first step for treating models as testable hypotheses (Xiao and Friedrichs, 2014a; 

Mattern and Edwards, 2019; Kaufman et al., 2018; Ford et al., 2018; Kriest et al., 2017; Shen et al., 2016; Oschlies, 

2006; Devries and Weber, 2017; Nowicki et al., 2022).  Nevertheless, most of these approaches rely only on the 95 

assimilation of surface chlorophyll and/or other phytoplankton properties, thus leading to potentially high 

inaccuracies in parameterizing zooplankton dynamics (Shropshire et al., 2020; Löptien and Dietze, 2015).  This is 

particularly important, because inaccurate parameterizations of mesozooplankton may lead to qualitatively and 

quantitatively inaccurate export dynamics (Cavan et al., 2017; Anderson et al., 2013).  Accurate simulation of the 

BCP likely requires a focus on assimilation of data types crossing multiple trophic levels and both ecological and 100 

biogeochemical parameters. 

In this study, we modify an existing, widely used biogeochemical model (NEMURO, Kishi et al., 2007) to 

focus specifically on the multiple pathways of the biological carbon pump.  We refer to the new model as 

NEMUROBCP.  We have three distinct goals in creating NEMUROBCP.  The first is to mechanistically model the 

multiple BCP pathways (sinking particles, active transport by vertical migrants, and passive transport of organic 105 

matter by ocean circulation and mixing).  Our second goal is to enable direct comparability between model results 

and field measurements of standing stocks and rates.  This allows the model to act as a synthetic tool using diverse 

measured variables to enhance investigation of underlying and unmeasured processes (Dietze et al., 2013).  Our 

third goal is a model that can be run efficiently in multiple physical configurations to allow extensive data 

assimilation and hypothesis testing.  NEMUROBCP is designed with a “core” nitrogen-based module (including all 110 

biological components, nutrients, detritus, dissolved organic matter, and oxygen) that includes all three pathways of 

the BCP, along with submodules (that can be turned on or off) that model the carbon system, 234Th dynamics, and 
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nitrogen isotopes.  Here, we perform a Markov Chain Monte Carlo statistical data assimilation to develop ensemble 

parameterizations of NEMUROBCP using 30 distinct types of field measurements from 49 Lagrangian experiments.  

We then investigate the model’s ability to predict withheld measurements, conduct sensitivity analyses, and use the 115 

model to investigate the BCP in four ocean regions.   

2. METHODS 

2.1. Core NEMUROBCP model 

 NEMUROBCP was developed from the NEMURO class of models originally developed for the North Pacific 

(Kishi et al., 2011; Kishi et al., 2007; Yoshie et al., 2007) and includes several modifications adapted by Shropshire 120 

et al. (2020) that allow the model to be compared more directly to common field measurements.  It also includes 

three optional modules that can be toggled on and off (the carbon system, nitrogen isotopes, and 234Th).   

The core of NEMUROBCP is nitrogen-based and includes 19 state variables (Table 1): 3 nutrients (nitrate, 

ammonium, and silicic acid), 2 phytoplankton (small phytoplankton and diatoms), 5 zooplankton (protistan 

zooplankton, small non-vertically-migrating mesozooplankton, small vertically-migrating mesozooplankton, large 125 

non-vertically-migrating mesozooplankton, large vertically-migrating mesozooplankton), 2 dissolved organic pools 

(labile dissolved organic nitrogen and refractory dissolved organic nitrogen), 4 non-living particulate pools (small 

particulate nitrogen, large particulate nitrogen, small opal, and large opal), two chlorophyll state variables (one 

associated with small phytoplankton, the other with diatoms), and oxygen.  As in Shropshire et al. (2020), the small 

and large mesozooplankton are defined based on size (<1-mm and >1-mm, respectively) rather than trophic status to 130 

allow direct comparison to common size-fractionated measurements.  Relative to the original NEMURO model, key 

changes include: 1) An explicit chlorophyll module (based on Li et al., 2010) that allows direct comparison to in situ 

chlorophyll measurements and gut pigment measurements made with herbivorous zooplankton; 2) Division of 

dissolved organic matter into refractory and labile dissolved organic nitrogen to simulate subduction of refractory 

molecules; 3) Division of detrital pools into slowly and rapidly sinking particles to simulate more accurately the 135 

gravitational pump; 4) Division of mesozooplankton into epipelagic resident taxa and vertical migrants to simulate 

active transport by diel vertical migrators; and 5) Addition of a dissolved oxygen state variable that potentially limits 

heterotrophic growth in the mesopelagic ocean.  NEMUROBCP also modifies key transfer functions by, for instance, 

allowing protists to feed on diatoms, since protistan grazers are often important diatom grazers (e.g., Landry et al., 

2011).  The transfer functions linking state variables in NEMUROBCP are shown in Fig. 1 and explained in detail in 140 

the online supplement.  The 103 parameters in NEMUROBCP are explained in Supp. Table. S1. 

 Diel vertical migration is incorporated into NEMUROBCP via two alternate formulations (only the first one is 

used in this study).  The first formulation is designed for computational efficiency when the model is run in a 

euphotic zone only configuration (NEMUROBCP,EUPONLY).  In NEMUROBCP,EUPONLY diel vertically migrating taxa 

(LZDVM and PZDVM) only feed at night.  During the day, their mortality and respiration do not contribute to detritus 145 

and dissolved nutrient pools, but rather are treated as a loss of nitrogen from the model.  The second formulation 

includes a true diel vertical migration model based on the model of Bianchi et al. (2013a) for use when the model 

explicitly represents mesopelagic layers.  In this formulation (NEMUROBCP,DVM), vertically-migrating zooplankton 

swim toward a target depth with a swimming speed of 3 cm s-1 (speed decreases as zooplankton approach the target 
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depth).  During the day, the target depth is defined as the depth of the 10-3 W m-2 isolume.  At night, the target depth 150 

is defined as the mean depth of phytoplankton biomass.  NEMUROBCP,DVM also includes a biological diffusion term 

that ensures that LZDVM and PZDVM are dispersed around the target depth rather than accumulating within a single 

model layer. 

2.1.1.  Optional carbon system submodule  

The carbon system in NEMUROBCP includes dissolved inorganic carbon (DIC) and alkalinity as state variables.  155 

DIC is produced whenever there is net biological utilization of organic carbon and consumed whenever there is net 

biological production of organic carbon at fixed stoichiometric ratios of C:N = 106:16 (mol:mol).  Calculation of 

other carbon system parameters (pH and partial pressure of CO2) and air-sea CO2 gas exchange are calculated using 

procedures described in Follows et al. (2006).   

2.1.2. Optional 234Th submodule   160 

The 234Th submodule is based on the model of Resplandy et al. (2012).  It adds a dissolved 234Th state variable, 

as well as state variables associated with 234Th bound to each of the nitrogen-containing particulate state variables 

(i.e., each phytoplankton, zooplankton, and detritus state variable).  Dissolved 234Th is produced from the decay of 

238U (which is assumed to be proportional to salinity, Owens et al., 2011).  Dissolved 234Th adsorbs onto the 

aforementioned particulate pools following second-order rate kinetics.  Particulate 234Th is returned to the dissolved 165 

pool through both desorption and destruction of particulate matter.  234Th is also lost from the dissolved and 

particulate phases through radioactive decay.   

2.1.3. Optional 15N submodule  

The nitrogen isotopes submodule is based on the NEMURO+15N model of Stukel et al. (2018a), following an 

earlier isotope model by Yoshikawa et al. (2005).   The 15N submodule adds an additional 13 state variables that 170 

simulate the concentration of 15N in each nitrogen-containing state variable (nitrate, ammonium, all phytoplankton 

and zooplankton groups, both detritus classes, and both dissolved organic nitrogen pools).  Isotopic fractionation 

occurs with most biological processes including nitrate uptake, ammonium uptake, exudation of organic matter by 

phytoplankton, excretion and egestion by zooplankton, remineralization of detritus and dissolved organic nitrogen, 

and nitrification.   175 

2.2. Physical framework for model simulations 

NEMUROBCP was developed so that it can be implemented in any physical framework.  In this study, we used a 

simple one-dimensional physical framework to simulate the water column associated with Lagrangian experiments 

from which we derived our field data (see below).  While this oversimplifies a system in which advection and 

diffusion play important roles in re-distributing biological and chemical properties, we believe it is a reasonable 180 

short-term approximation, especially because we are explicitly simulating results from in situ Lagrangian 

experiments.  In Lagrangian experiments, advection should play a reduced to negligible role in re-shaping plankton 

time-series, although we note that Lagrangian drifters (see below) explicitly track only the mixed layer, which may 

not be transported by the same currents as deeper layers.  The use of a one-dimensional model does, however, allow 
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us to perform more than one million simulations for each of the 49 Lagrangian experiments, something that would 185 

not be possible with a three-dimensional model grid.   Our physical model framework simulates the euphotic zone 

with variable vertical spacing that increases with depth, chosen to match sampling depths from the field programs.  

Vertical layers are centered at 2, 5, 8, 12, 20, 25, 30, 35, 40, 45, 50, 55, 60, 70, 80, 90, 100, 110, 120, 130, 140, 150, 

and 160 m, although for each Lagrangian experiment we only model depths above the 0.1% light level (which 

varied from 27 to 150 m).  We simulate vertical mixing as a simple diffusive process using vertical eddy diffusivity 190 

coefficients that vary with depth and are estimated for each Lagrangian experiment using Thorpe-scale analyses 

from field measurements (Gargett and Garner, 2008).  Initial and boundary conditions were determined from field 

measurements, although we sometimes had to estimate initial conditions from relationships with other measured 

parameters because all state variables were not measured for all experiments (e.g., if diatom biomass was not 

determined, we estimated it from a relationship between diatom biomass and total phytoplankton biomass).  We ran 195 

the model for 30 days with constant vertical diffusion rates.  While 30 days is an arbitrary model run time, it was 

chosen for multiple reasons: 1) it is long enough to reduce sensitivity to initial conditions, 2) it is the longest time 

period for which we would expect quasi-steady state conditions to be maintained in our study regions, 3) it allows 

sufficient time for parameter sets to potentially drive some taxa to near extinction (i.e., it allows time for 

unreasonable parameter sets to, for instance, lead to competitive dominance of small phytoplankton and drive 200 

diatoms to extinction).  We recognize that maintaining constant physical forcing introduces inaccuracy to our 

simulations and hence expect model-data mismatches, particularly during dynamic conditions (e.g., upwelling) 

when the system changes more rapidly.  Model outputs were evaluated on the 30th day of the model simulation and 

fluxes associated with different BCP pathways were quantified at the base of the euphotic zone (0.1% light level) 

which varied between study sites.  Since we only simulate the euphotic zone, the model was run in 205 

NEMUROBCP,EUPONLY configuration. 

2.3. Field data 

Field data come from 49 short-term (~4-day) Lagrangian experiments conducted on 11 different cruises (Fig. 2) 

in the California Current Ecosystem (CCE) (Ohman et al., 2013), in the Costa Rica Dome (CRD) in the Eastern 

Tropical Pacific (Landry et al., 2016a), in the Gulf of Mexico (GoM) (Gerard et al., in review), and at the Chatham 210 

Rise near the subtropical front in the Southern Ocean as part of the Salp Particle export and Oceanic Production 

(SalpPOOP) Cruise (Décima et al., in review).  On these cruises a consistent sampling strategy involved utilization 

of an in situ incubation array with satellite-enabled surface drifter and 1×3-m “holey-sock” drogue centered at 15-m 

depth in the mixed layer (Landry et al., 2009).  Samples for rate measurement experiments (see below) were 

incubated in polycarbonate bottles placed in mesh bags at 6 – 8 depths spanning the euphotic zone on the incubation 215 

array (Landry et al., 2009).  On 10 of the cruises, an identically-drogued sediment trap array was deployed to capture 

sinking particles (Stukel et al., 2015).   

We assimilated a broad suite of standing stock and rate measurements across multiple trophic levels that 

included: 466 measurements of NO3
- concentration and 423 measurements of NH4

+ concentration (Knapp et al., 

2021); 422 measurements each of silicic acid and 84 measurements of biogenic silica (Krause et al., 2016; Krause et 220 

al., 2015); 455 chlorophyll a measurements (Goericke, 2011); 193 measurements of small phytoplankton biomass by 

a combination of epifluorescence microscopy and flow cytometry (Taylor et al., 2012; Selph et al., 2021); 193 

measurements of diatom biomass by epifluorescence microscopy (Taylor et al., 2012; Taylor et al., 2016); 193 
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measurements of protistan zooplankton biomass by epifluorescence microscopy and/or light microscopy of Lugol’s 

stained samples (Freibott et al., 2016); 44 measurements each of vertically-integrated <1- and >1-mm epipelagic-225 

resident mesozooplankton biomass; 43 measurements each of vertically-integrated <1- and >1-mm diel-vertically-

migrating mesozooplankton biomass; 413 measurements of particulate organic nitrogen and 28 measurements of 

dissolved organic nitrogen (Stephens et al., 2018); 342 measurements of net primary productivity by either H13CO3
- 

or H14CO3
- uptake methods (Morrow et al., 2018; Yingling et al., 2021); 149 measurements of nitrate uptake by 

incorporation of 15NO3
- (Kranz et al., 2020; Stukel et al., 2016); 50 measurements of silicic acid uptake by 230 

incorporation of 32Si (Krause et al., 2015); 248 measurements each of whole phytoplankton community growth rates 

and whole phytoplankton community mortality rates due to protistan grazing determined by chlorophyll analyses of 

microzooplankton dilution experiments (Landry et al., 2009; Landry et al., 2021); 53 measurements each of small 

phytoplankton growth rates and small phytoplankton mortality rates due to protistan grazing determined by high-

pressure liquid chromatography pigment analyses of microzooplankton dilution experiments combined with flow 235 

cytometry and epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 53 measurements each of 

diatom growth rates and diatom mortality rates due to protistan grazing determined by high-pressure liquid 

chromatography pigment analyses of microzooplankton dilution experiments combined with flow cytometry and 

epifluorescence microscopy (Landry et al., 2016b; Landry et al., 2021); 41 measurements each of vertically-

integrated <1-mm and >1-mm nighttime mesozooplankton grazing rates by the gut pigment method (Décima et al., 240 

2016; Landry and Swalethorp, 2021); 41 measurements each of vertically-integrated <1-mm and >1-mm daytime 

mesozooplankton grazing rates by the gut pigment method (Décima et al., 2016; Landry and Swalethorp, 2021); 37 

measurements of sinking nitrogen using sediment traps (Stukel et al., 2019b; Stukel et al., 2021); 19 measurements 

of sinking biogenic silica using sediment traps (Krause et al., 2016; Stukel et al., 2019b); and 475 measurements of 

photosynthetically-active radiation.  Each of the above measurements was typically the mean of measurements taken 245 

at a specific depth (or vertically-integrated) on multiple days of the Lagrangian experiment, thus allowing us to also 

quantify uncertainties for all measurements.  Each of the above measurements also directly maps onto a specific 

standing stock or process in the model enabling direct model-data comparisons.  Field data are listed in Supp. Tables 

S2 – S4.   

2.4. Data assimilation and objective model parameterization approach 250 

 Using the available datasets described above, our goal was to develop an automated and objective model 

parameterization method that would allow us to generate an ensemble of parameter sets for hypothesis testing or as 

prior distributions in future data assimilation studies.  We refer to this approach as objective ensemble 

parameterization with Markov Chain Monte Carlo (OEPMCMC).  We began by log-transforming most field 

measurements to normalize the data (some measurements, e.g. growth rates that can be positive or negative, were 255 

not transformed).  We then defined a cost function: 

𝐽(𝑝) =
1

∑ √𝑁𝐿𝐸,𝑖

∑
√𝑁𝐿𝐸,𝑖

𝑁𝐷𝑇,𝑖
∑

1

𝑁𝑂,𝑖,𝑗
∑ (

𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘

𝑢𝑛𝑐𝑖,𝑗,𝑘
)

2
𝑁𝑂,𝑖,𝑗

𝑘=1

𝑁𝐷𝑇,𝑖

𝑗=1

𝑁𝑠𝑖𝑡𝑒𝑠

𝑖=1

 

where Nsites was the number of different sampling locations (i.e., 4 = CCE, CRD, GoM, and Chatham Rise), NLE,i 

was the number of Lagrangian experiments conducted at location i,  NDT,i was the number of data types that were 

measured at site i, NO,i,j was the number of distinct observations of data type j at location i, and: 260 
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𝑒𝑟𝑟𝑜𝑟𝑖,𝑗,𝑘 =
𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 − 𝑜𝑏𝑠𝑖,𝑗,𝑘   if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘  or  𝑜𝑏𝑠𝑖,𝑗,𝑘 > 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗  

                   0                    if  𝑚𝑜𝑑𝑒𝑙𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗,𝑘  and  𝑜𝑏𝑠𝑖,𝑗,𝑘 < 𝑑𝑒𝑡𝑙𝑖𝑚𝑖,𝑗
 

where modeli,j,k is the model result corresponding to observation obsi,j,k, and detlimi,j,k is the detection limit for data 

type j.  This is equivalent to stating that there is no model data discrepancy if both the observation and the 

corresponding model result are below the experimental detection limit.  Detection limits varied depending on 

measurement type.  In practice the actual value of detlimi,j,k was not very important to our results, because 265 

observations were seldom less than detlimi,j,k.  However, this formal definition is necessary with log-normally 

distributed errors, because occasionally the reported observational value was zero (or even negative). 

Observational uncertainty was defined as: 

𝑢𝑛𝑐𝑖,𝑗,𝑘 = max (
𝜎𝑖,𝑗,𝑘

√𝑁𝑆,𝑖,𝑗,𝑘

, 𝐸𝑥𝑝𝑈𝑛𝑐𝑖,𝑗,𝑘) 

where σi,j,k is the standard deviation of multiple samples taken for the distinct observation k of data type j at location 270 

i (i.e., σi,j,k is the standard deviation of multiple measurements taken in the same depth layer over the course of a 

Lagrangian experiment), NS,i,j,k is the number of samples associated with observation k of data type j at location i, 

and ExpUnci,j,k is the experimental uncertainty (e.g., instrument accuracy) of observation k of data type j at location 

i.  We chose to use the maximum of these two terms because, in most cases, the standard error of repeated 

measurements was greater than experimental uncertainty (and inherently incorporates experimental uncertainty).  275 

However, in some cases (e.g., if three measurements of nitrate at 12 m depth on a particular Lagrangian experiment 

reported the same value), the standard error of the measurements was an unrealistically low estimate of true 

uncertainty.  We note that observational uncertainty can result from both instrument error and representativity error, 

and while we explicitly incorporate instrument error, we do not directly include all sources of representativity error.  

Representativity error refers to error due to unresolved scales and processes, observation-operator error, and errors 280 

associated with pre-processing and quality control (Janjić et al., 2018).  Since our data is derived from direct in situ 

measurements, the latter two sources of representativity error are likely much less significant than errors resulting 

from unresolved scales and processes.  Because we incorporate the standard deviation of multiple measurements 

taken at different depths and sampling times within a model layer in our measurement uncertainty, we include this 

dominant source of representativity error. 285 

 The cost function, J(p), gives equal weight to all measurement types within a specific Lagrangian experiment 

(e.g., if a Lagrangian experiment has 10 measurements of sinking nitrogen flux and 100 measurements of 

chlorophyll, J(p) gives each of those measurement types equal weight).  It also gives different locations a weight 

proportional to the square root of the number of Lagrangian experiments at that site.  That decision was made so that 

a more heavily sampled region (i.e., CCE) can provide more constraint to the model, while preventing that region 290 

from overwhelming the model results.  We note that this is a comparatively weak cost function (relative to, for 

instance, likelihood), because it normalizes to the number of measurements.  We chose a weak cost function, 

because it reflects the fact that uncertainty in initial conditions and physical forcing introduces model data misfit that 

is unassociated with parameter choice. 
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 To investigate the parameter space, we performed a Markov Chain Monte Carlo search (Metropolis et al., 295 

1953).  We first defined allowable ranges for all parameter values based on laboratory and field experiments, 

combined with results from prior model simulations (Supp. Table S1).  These allowable ranges were broad and often 

spanned several orders of magnitude for a particular parameter.  We then defined an initial guess for each parameter 

based primarily on values used in other NEMURO models (Kishi et al., 2007; Shropshire et al., 2020; Yoshie et al., 

2007). We first ran 30-day simulations for all 49 Lagrangian experiments using the initial parameter values and 300 

calculated the cost function based on J(p1).  We then perturbed the parameter set by adding to each parameter a 

random number drawn from a normal distribution with mean of 0 and standard deviation equal to a jump length of 

0.02 times the width of the allowable range for that parameter.  When newly selected values fell outside the 

allowable range, we mirrored them across the boundary.  For many of the variables expected to follow a log-normal 

distribution (e.g., phytoplankton half-saturation constants), we log-transformed prior to the MCMC search.  We then 305 

re-ran the 30-day model for all Lagrangian experiments and calculated a new cost associated with this parameter set, 

J(p2).  We chose whether or not to accept this parameter set based on the relative cost functions of J(p1) and J(p2).  If 

J(p2) was less than J(p1) we automatically accepted the new parameter set as a viable solution.  If J(p2) was greater 

than J(p1), we accepted it with probability: 

𝑝𝑟𝑜𝑏 = 𝑒0.5×(𝐽(𝑝𝑛)−𝐽(𝑝𝑛+1)) 310 

We walked through the parameter solution space for a total of 1.1 million iterations (discarding the first 100,000 

iterations as a “burn-in” period before the cost function stabilized at a relatively low value).  In this way, we 

explored the correlated uncertainty in all parameters of the core model, except the temperature sensitivity 

coefficient.  We chose not to vary the temperature sensitivity coefficient (TLIM), because it is fairly well-

constrained from experimental measurements and most model rates were directly correlated to TLIM; hence 315 

changes in TLIM lead to commensurate changes in so many other rate parameters that allowing it to vary would 

have made calculation of mean values of other parameters (e.g., maximum growth or grazing rates) almost 

meaningless. 

 We also saved model results associated with the BCP (e.g., sinking particle flux, net primary production, 

subduction rates, active transport) for the model simulations associated with each parameter set.   320 

3. RESULTS  

3.1. Objective model parameterization  

In our Markov Chain Monte Carlo (MCMC) exploration of the solution space, the cost function evaluated at our 

initial guess was 972.  Over the first ~100,000 iterations of the MCMC procedure, the cost function declined to 

approximately 100 and remained near this value for the remainder of the MCMC procedure (1 million additional 325 

simulations).  We thus considered the first 100,000 iterations to be a “burn-in” period, and all results are based on 

the subsequent 1,000,000 solution sets.  For this analysis set, the mean cost function was 98.2 with 95% confidence 

interval = 83.8 – 115.3.  For comparison, we also conducted an undirected MCMC exploration of the solution space 

(i.e., every solution was accepted regardless of relative change in cost function) that yielded a mean cost function of 

3197 (C.I. = 1270 – 5657) after the burn-in period, with a minimum value of 740 (across the 1,000,000 simulations).  330 
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The OEPMCMC procedure thus determined a set of 1,000,000 solutions for which the cost function was substantially 

reduced relative to either our initial parameter guess or a random sample of the solution space.   

We investigated the 1,000,000 OEPMCMC solution sets to determine which parameters were well or poorly 

constrained by the data (Supp. Tables S1 and S2).  We focus here on how well the field observations allowed the 

OEPMCMC approach to constrain the parameters relative to prior estimates of allowable ranges.  This is distinct from 335 

the question of which parameters are most well constrained because some parameters were well known from prior 

knowledge (e.g., phytoplankton maximum growth rates) while others are poorly known (e.g., phytoplankton half-

saturation constants).  Some parameters were very well constrained by the data.  Ten of the 101 variables were 

constrained to within 10% of their allowed range (for log-transformed variables, 10% of their log-transformed 

parameter space).  Six of the 10 well-constrained variables were associated with phytoplankton bottom-up forcing, 340 

while only two parameters associated with zooplankton were well constrained by the data (the Ivlev constants for 

protistan grazing on small and large phytoplankton).  The most well-constrained parameter was the ammonium half-

saturation constant for small phytoplankton which was assumed to vary from 0.001 – 1 mmol NH4
+ m-3 and was 

constrained by the OEPMCMC procedure to a 95% C.I. of 0.0011 - 0.0065 mmol NH4
+ m-3.  For metazoan 

zooplankton, all parameters except Ivlev constants had 95% C.I.s that spanned >60% of the allowable range, and 345 

many exceeded 90% of the allowable range.  Overall, 25 parameters had 95% C.I.s that spanned >60% of the 

allowable range, suggesting that those parameters were more strongly constrained by our prior estimates than by the 

field data (Supp. Table S1).  We note that some well-constrained parameters were constrained by the data to fall 

within narrow bands near the middle of their prior allowable range (e.g.,Vmax,SP, Fig. 3) and others were constrained 

to the edges of their allowable ranges (e.g., αSP, Fig. 3).  While the latter case shows sensitivity of our model to our 350 

chosen priors, we do not consider this a flaw.  Instead, it demonstrates that the data is providing strong constraint on 

the possible values of these parameters and effectively providing guidance for constraining these parameters in 

future studies.   

Next, we highlight analyses of bottom-up forcing on small phytoplankton (Fig. 3) and correlation of large 

phytoplankton (i.e., diatoms) bottom-up forcing with other model dynamics (Fig. 4) as examples of typical patterns 355 

of correlation among parameters.  Small phytoplankton parameters were generally well-constrained by the extensive 

datasets of phytoplankton growth rates, net primary production, and phytoplankton biomass (as assessed 

microscopically and/or by chlorophyll analyses).  For instance, although we allowed the maximum growth rate of 

small phytoplankton (Vmax,SP) to vary from 0.1 to 1 d-1, the OEPMCMC procedure constrained Vmax,SP to 0.22 to 0.64 

(at the 95% C.I.).  The least well constrained parameter related to small phytoplankton growth was the half-360 

saturation constant for nitrate uptake, which varied from 0.011 to 1.3 mmol N m-3.  Several of these phytoplankton 

parameters were also correlated in predictable manners.  For instance, Vmax,SP was negatively correlated with the 

initial-slope of the photosynthesis-irradiance curve (αSP, correlation coefficient (ρ) = -0.15), because increased 

maximum growth rates and stronger light dependence (i.e., a slower rate of increase in photosynthesis with 

increasing light) offset each other to maintain similar realized growth rates under typical light-limited conditions.  365 

Vmax,SP was also positively correlated with the mortality rate (mortSP, ρ=0.25), because commensurate changes in 

Vmax,SP and mortSP maintain similar net growth rates for small phytoplankton. 

Parameters associated with large phytoplankton were typically less well-constrained, although they did differ 

from parameters associated with small phytoplankton in several predictable ways.  For instance, the maximum 
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growth rate of large phytoplankton (Vmax,LP, mean = 0.72 d-1, 95% C.I. was 0.43 – 0.99 d-1) was greater than the 370 

maximum growth rate of small phytoplankton (mean = 0.37 d-1, 95% C.I. was 0.22 – 0.64 d-1) despite the fact that 

we used identical allowable ranges of 0.1 – 1 d-1.   The half-saturation rate for large phytoplankton uptake of nitrate 

(KNO,LP = 1.6 mmol N m-3) was also substantially greater than KNO,SP (0.25 mmol N m-3), although their half-

saturation constants for ammonium uptake were similar.  Unsurprisingly, the maximum growth rate of large 

phytoplankton was strongly correlated with the maximum grazing rate of protistan zooplankton on large 375 

phytoplankton (gmax,SZ,LP, ρ=0.35), because grazing by protistan zooplankton is often the dominant source of 

mortality for all phytoplankton (including diatoms).  More surprisingly, Vmax,LP had an even stronger correlation 

with the maximum grazing rate of epipelagic-resident large (>1-mm) mesozooplankton on small phytoplankton 

(gmax,PZRES,SP, ρ = 0.43).  We believe that this arises from a correlation between large mesozooplankton standing 

stock and gmax,PZRES,SP.  Since small phytoplankton are often the most abundant potential prey item, higher 380 

gmax,PZRES,SP values allow large mesozooplankton (which preferentially graze large phytoplankton) to sustain higher 

biomass and prevent large phytoplankton from escaping grazing pressure, thus requiring a higher maximum growth 

rate to maintain their biomass.   

Some correlations were unexpected.  For instance, the initial slope of the photosynthesis-irradiance curve (αLP) 

was positively correlated with the remineralization rate of labile dissolved organic nitrogen to NH4
+ (refdec,DON,NH, 385 

ρ=0.31).  Both of these parameters were strongly constrained by the OEPMCMC procedure (αLP had an allowable prior 

range of 0.001 – 0.04 m2 W-1 d-1 but had a posterior 95% C.I. of 0.008 – 0.03 m2 W-1 d-1; refdec,DON,NH had an 

allowable range of 0.005 – 0.3 d-1 but a 95% C.I. of 0.005 – 0.01 d-1).  It is not clear why these parameters would be 

correlated, although it is likely related to the relative realized growth rates of large phytoplankton in the upper and 

lower euphotic zone.  High values of αLP would promote higher realized growth rates in the deep euphotic zone; 390 

high values of refdec,DON,NH would lead to higher realized growth rates in the nutrient-limited upper euphotic zone.  

The Ikeda parameter for small mesozooplankton (IkLZ, d-1), which sets the basal respiration of small (<1-mm) 

mesozooplankton was positively correlated with Vmax,LP (ρ = 0.12), KNH,LP (ρ = 0.16), and αLP (ρ = 0.29).  While the 

first and third correlations are not surprising (both lead to increased large phytoplankton growth which would 

support higher mesozooplankton respiration), it is surprising that IkLZ would be correlated with KNH,LP since higher 395 

half-saturation constants lead to lower realized phytoplankton growth rates.  Vmax,LP was also negatively correlated 

with the daytime mortality rate of small (<1-mm) vertically-migrating mesozooplankton at their mesopelagic resting 

depth (mortday,LZDVM, ρ = -0.35), which is opposite to what would be expected if large phytoplankton growth was 

necessary to support mesozooplankton mortality, but may reflect an indirect effect of intraguild competition between 

small mesozooplankton and protistan grazers (mortday,LZDVM was also negatively correlated with the Ivlev constant 400 

for small mesozooplankton grazing on protistan zooplankton (IvLZDVM,SZ, ρ = -0.27) which would indicate that 

mesozooplankton mortality increases when their feeding rate on protists increases).   

While these are only a subset of the multiple correlations, they highlight the complex, and often 

counterintuitive, relationships among many parameters.  This analysis also clearly elucidates the importance of joint 

parameter sensitivity analyses.  For instance, when model sensitivity to maximum large vertically-migrating 405 

mesozooplankton grazing rates on small phytoplankton (gmax,PZRES,SP) was investigated with a maximum large 

phytoplankton growth rate (Vmax,LP) of ~0.6 d-1, the analysis suggested that the model was only weakly sensitive to 

gmaxPZRES,SP, and that the optimal value was near 0.03 d-1.  However, when the same analysis was conducted with 

Vmax,LP = ~1.0, the model was very sensitive to gmaxPZRES,SP, and the optimal value was 0.1 – 0.2 d-1.   
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3.2. Model data comparison (assimilated data)  410 

To determine whether the model was able to simulate assimilated measurements accurately, we compared 

model-data results with respect to two key processes related to export: net primary production and sinking particle 

flux at the base of the euphotic zone (Figs. 5 and 6, respectively).  For most Lagrangian experiments, the model 95% 

confidence interval bracketed the mean of the observed net primary production (Fig. 5).  However, the model 

substantially underestimated net primary productivity for several experiments in the CCE (e.g., 605-1, 605-3, 704-4, 415 

810-5, and 1604-4) conducted in near-coastal regions with recently upwelled high-nitrate water.  The model-data 

discrepancy thus likely results from our assumption of a one-dimensional system with constant physics for 30-days.  

In reality, these Lagrangian experiments were heavily influenced by coastal upwelling processes missing in our one-

dimensional model and experienced markedly non-linear dynamics as the water parcels were advected away from 

the upwelling source and nutrients drawn down over time (e.g., Landry et al., 2009).  Contemporaneous nutrient 420 

input from directly below these water parcels was thus likely not the source of nitrogen supporting high production, 

as is assumed by our one-dimensional physical framework.  In less dynamic regions (e.g., GoM), the model more 

faithfully simulated phytoplankton production. 

The model did a reasonable job simulating sinking particle export flux from the euphotic zone (Fig. 6).  For the 

majority of experiments, observed export fell within the 95% confidence interval of the model simulations.  425 

However, the simulated export flux range was quite substantial for most cycles.  Indeed, the 95% confidence 

intervals for export flux at single locations using the 1,000,000 MCMC solutions were at times as large as the 

confidence interval for mean observed flux across the 49 different Lagrangian experiments.  This suggests that 

uncertainty in parameter estimation for the model is as important a source of error for export flux as variability 

between regions and seasons.  The only region for which the model produced a stark bias in export flux relative to 430 

the observations was the CRD, where the model consistently overestimated export flux.  This is not surprising for 

this region, because the CRD is dominated by Synechococcus, which contribute substantially less to export flux than 

larger phytoplankton (Saito et al., 2005; Stukel et al., 2013).  In other regions, model underestimates of export flux 

were typically more notable than model overestimates (observations were seldom less than the lower bound of the 

model’s 95% confidence interval).   435 

3.3. Model data comparison (unassimilated data)  

To assess the model’s ability to simulate state variables and processes not included in the assimilation dataset, 

we utilized the thorium sorption and nitrogen isotope submodules and compared model results to measured total 

water column 234Th (Fig. 7), the C:234Th ratio of sinking particles (Fig. 8a), and the δ15N of sinking particles (Fig. 

8b).  NEMUROBCP accurately simulated many properties of 234Th dynamics found in the field data.  For instance, it 440 

did a reasonable job of estimating the shape and magnitude of vertical profiles, notably simulating low 234Th activity 

in surface waters and 234Th activity close to equilibrium with 238U in deeper waters.  The model also captured some 

key aspects of inter- and intra-regional variability in 234Th activity, including much lower 234Th activity in coastal 

regions of the CCE (e.g., Fig. 7a, c, ah) relative to offshore regions (e.g., Fig. 7e, ad, ae).  The model also accurately 

estimated the consistently high 234Th activity found in the GoM.  The greatest model-data mismatch with respect to 445 

234Th activity was found in the CRD (Fig. 7ai – am).  In this region, the model was fairly accurate at predicting 

mixed layer 234Th activity, but the model consistently underestimated 234Th activity in the deep euphotic zone.  The 
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model was also reasonably effective at predicting the C:234Th ratio of sinking particles.  The model both accurately 

estimated the mean value of sinking particle C:234Th ratios (median observation = 7.2 µmol C dpm-1; median model 

value for locations paired with observations = 7.7 µmol C dpm-1) and the range of C:234Th values (observation = 2.2 450 

– 20.5 µmol C dpm-1; model = 4.1 – 30.0 µmol C dpm-1).  For most simulations, the modeled and observed C:234Th 

ratios also showed very good agreement (Fig. 8a).  However, the model consistently overestimated the C:234Th ratio 

of sinking particles in the CRD, a region where the model was particularly poorly constrained and predicted a wide 

range of C:234Th ratios.  The model also substantially underestimated the C:234Th ratio for several sediment trap 

collections in the GoM.  Nevertheless, the overall model-data agreement with respect to 234Th dynamics is 455 

reassuring, especially since key parameters (e.g., thorium sorption and desorption coefficients) were not estimated 

by the OEPMCMC procedure but instead were taken directly from the literature. 

The model was also able to accurately simulate the δ15N of sinking particles, albeit with a more limited set of 

observations available (note that we did not simulate nitrogen isotopes for Lagrangian experiments from the 

SalpPOOP cruise, because the δ15N of deep-water nitrate, an important boundary value, was unknown in this 460 

region).  The median observed δ15N of sinking particles was 4.6 compared to a model estimate of 6.1, while the 

observed range was 1.7 – 14.3 and the modeled range was 1.8 – 9.3 (Fig. 8b).  The only simulation for which there 

was a substantial mismatch between model result and observation was from a single experiment in the CRD for 

which one sediment trap replicate had a very high measured δ15N value, while the other two replicates were near the 

simulated value. 465 

3.4. Sensitivity analysis  

 The OEPMCMC approach allowed us to investigate uncertainty associated with all three pathways of the BCP 

(see the next two sections).  First, we focus specifically on variability in model estimates of gravitational flux, as 

these can be directly compared to field measurements.  When comparing modeled gravitational flux for different 

Lagrangian cycles, the median coefficient of variation (standard deviation / mean) was 0.49, with a range of 0.29 – 470 

1.38.  This represents substantial uncertainty in sinking particle flux due solely to different potential parameter 

choices (Fig. 6).  For instance, on the fifth Chatham Rise Lagrangian experiment (which was the experiment with 

coefficient of variation closest to the median), the mean model predicted gravitational flux was 1.24 mmol N m-2 d-1 

with a standard deviation of 0.62 mmol N m-2 d-1 and a 95% confidence interval from 0.29 to 2.6 mmol N m-2 d-1.  

This shows that for a typical cycle, there was nearly an order of magnitude variability in export flux based solely on 475 

uncertainty in model parameterization.  For comparison, across the 49 Lagrangian experiments for which we have 

sediment trap deployments near the base of the euphotic zone, the field observations of gravitational flux at the base 

of the euphotic zone ranged from 0.22 – 6.3 mmol N m-2 d-1.  Thus, for a typical Lagrangian experiment, uncertainty 

in model parameterization introduced slightly less uncertainty in gravitational flux than variability across the 

multiple regions.  For the fourth GoM Lagrangian experiment (the experiment with the highest coefficient of 480 

variation), the mean model predicted gravitational flux was 0.23 mmol N m-2 d-1 with a standard deviation of 0.31 

and a 95% confidence interval from 0.0069 – 1.07 mmol N m-2 d-1.  For this particular cycle, some likely parameter 

sets predicted gravitational flux nearly equal to the mean measured gravitational flux across the diverse regions we 

studied, while other likely parameter sets predicted export more than an order of magnitude lower than the lowest 

observed flux.  This high degree of uncertainty should be considered when results of a single model simulation are 485 

considered and provides a strong argument for the importance of ensemble modeling.    
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To investigate the relationships among uncertainties in the three pathways of the BCP and uncertainties in 

parameters, we computed the R2 of ordinary least squares linear regressions of each BCP pathway as a function of 

each parameter.  This approach allows us to quantify the percentage of variability in the export pathway explained 

by a linear relationship with a specific parameter.  This is distinctly different from some traditional sensitivity 490 

analysis approaches that either compute the derivative of a model output with respect to different parameters or vary 

parameters by a fixed amount (e.g., ±10%).  Unlike those approaches, our R2 approach explicitly accounts for the 

certainty with which different parameters are constrained.  For instance, a model may be very sensitive to the 

maximum growth rate of diatoms; however, if that parameter is well constrained by laboratory experiments, field 

data, and/or data assimilation, then parameter uncertainty may not be the dominant source of uncertainty in model 495 

results.  Our approach is thus well suited to determining which parameters especially merit future experimental 

focus. 

 Our results show that the R2 values for BCP pathways regressed against most parameters were ~0.01 or less.  

However, some of the parameters were able to explain 10% of the variability in specific BCP pathways.  For 

instance, the linear mortality parameter for protistan zooplankton (mortSZ) explained 15% of the variability in 500 

gravitational particle export (positive correlation) and 18% of the variability in export due to vertical mixing 

(negative correlation).  These correlations reflect the importance of protistan zooplankton in controlling 

phytoplankton populations without producing rapidly sinking particles.  Multiple parameters had similar inverse 

correlations with gravitational particle export and export due to vertical mixing.  For example, the assimilation 

efficiency of small epipelagic-resident mesozooplankton, the Ivlev constant for large mesozooplankton feeding on 505 

small mesozooplankton, and the sinking speed of fast-sinking detritus all had positive correlations with gravitational 

flux; the maximum grazing rate of small epipelagic-resident mesozooplankton on protistan zooplankton, and the 

remineralization rate of fast-sinking detritus had negative correlations with gravitational flux.  The remineralization 

rate of fast-sinking detritus explained the highest proportion of variability in gravitational flux (45%).  Only two 

parameters (the maximum grazing rate of large vertically migrating mesozooplankton on small mesozooplankton 510 

and the Ivlev constant for large mesozooplankton feeding on small protists) explained >10% of the variability in 

active transport (19% and 18%, respectively, with both positively correlated with active transport).  Notably, none of 

the parameters most responsible for uncertainty in the BCP were related to phytoplankton bottom-up limitation.  We 

do not believe that this reflects a lack of importance of bottom-up processes in the BCP.  Rather, this reflects a much 

greater uncertainty in parameterizations for zooplankton and non-living organic matter, combined with the 515 

importance of these processes to the BCP (Cavan et al., 2017; Anderson et al., 2013). 

 As mentioned previously, two of the most important parameters for determining gravitational flux are the 

sinking speed (Lsink) and remineralization rate of fast-sinking particles to DON (refdec,LPON,DON).  Notably, these two 

parameters are strongly related to the remineralization length scale for these particles 

(RLS=Lsink/(refdec,LPON,DON+refdec,LPON,NH4)).  We illustrate the impact of variability in RLS on model gravitational 520 

flux by focusing on two Lagrangian experiments representative of the CRD (CRD-1) and upwelling-influenced 

regions of the CCE (1604-3).  RLS was strongly correlated with gravitational flux for each experiment (Pearson’s ρ 

= 0.62 for both experiments, p<<10-7).  The relationship was not perfectly linear, however (Supp. Fig. A1a,b).  

Particularly for the CRD experiment, but also for the CCE experiment, there was a threshold effect such that RLS 

was only weakly correlated with gravitational flux at RLS > ~150 m.  This resulted from higher RLS values leading 525 

to decreased recycling in the system and hence reduced primary production.  Comparison of the probability density 
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functions for RLS determined by the OEPMCMC procedure with probability density functions for only those 

parameter sets that accurately predicted gravitational flux for these cycles (to ±1 standard deviation of the observed 

value) show that gravitational flux was more accurately predicted for the CCE experiment with RLS values slightly 

higher than the overall average of the whole dataset (median for the entire dataset was 85 m; median for parameter 530 

sets that accurately predicted export for this cycle was 115 m, Supp. Fig. A1c), while it was more accurately 

predicted for the CRD experiment with RLS values lower than the average for the dataset (median RLS for accurate 

parameter sets = 57 m, Supp. Fig. A1d).  This highlights the sensitivity of the model to these parameters while 

suggesting differences in remineralization length scale between these specific regions, although we caution that RLS 

calculated above is only for fast-sinking detritus and does not account for the additional gravitational flux mediated 535 

by slowly sinking particles.   

3.5. Model results: Three pathways of export  

 We compared the relative magnitude of the three BCP pathways for all Lagrangian cycles and all OEPMCMC 

parameter sets (Fig. 9a).  Results showed that export was typically dominated by some combination of gravitational 

flux and/or mixing flux (i.e., eddy subduction + vertical mixing).  Active transport typically contributed a relatively 540 

small proportion of export from the base of the euphotic zone (mean = 2.8%, 95% C.I. = 0.02% - 16.5%).  Across 

the dataset, gravitational flux was the dominant export pathway (mean = 56.1%, 7.1% - 99.6%), although mixing 

was also an important source of export (mean = 41.1%, 0% - 92.3%).  The large confidence intervals for each of 

these fluxes highlight the uncertainty in our estimates of the BCP pathways.  They also, however, obscure distinct 

regional variability among the experiments analyzed in our study.   545 

 During upwelling-influenced experiments in the CCE, mixing and gravitational flux often contributed 

approximately equally to the BCP, with different parameter sets suggesting either dominance by mixing or 

gravitational flux.  For instance, during CCE cycle 1604-3 (Fig. 9b) gravitational flux contributed an average of 61% 

(29 – 84%) of export, while mixing was responsible for 35% (12 – 67%).  Not every CCE coastal cycle had a 

relatively even split, however, with some more dominated by sinking flux and others more dominated by mixing 550 

flux (e,g. CCE cycle 0605-3 which occurred during a dense coastal dinoflagellate bloom, Fig. 9g).  In oligotrophic 

regions of the CCE and GoM, export was typically dominated by sinking flux, with relatively minor contributions 

from both mixing and active transport.  For instance, during CCE cycle 1408-5 gravitational flux was responsible for 

86% (70 – 97%) of export (Fig. 9c), while during GoM cycle 5 sinking was responsible for 89% (66 – 98%) of 

export (Fig. 9e).  During CRD experiments, which had relatively high mesozooplankton biomasses relative to 555 

phytoplankton biomass, active transport was comparatively more important.  For instance, during CRD cycle 1, 

active transport averaged 6.5% (0.7 – 26%) of export and was more important than mixing flux (4.3%, 0.4 – 12%, 

Fig. 9d).  During the Chatham Rise experiments in the Southern Ocean, export patterns were comparable to those in 

the upwelling-influenced CCE, driven primarily by gravitational flux and mixing, with gravitational flux slightly 

more important.   560 

 Looking at patterns across regions and across the varying conditions on our Lagrangian experiments, the 

proportion of export driven by vertical mixing was correlated with vertical eddy diffusivity at the base of the 

euphotic zone (Spearman’s ρ = 0.64, p<10-6).  This is not surprising, since vertical diffusion drives particulate and 

dissolved organic matter flux across the euphotic zone.  Because sinking and vertical mixing were the two dominant 
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mechanisms of export, vertical eddy diffusivity also showed a strong inverse correlation with gravitational flux 565 

(Spearman’s ρ = -0.64, p<10-6).  Across all simulations, organic matter mixed out of the euphotic zone was 

relatively evenly split between DOM and POM, but variability in POM flux was greater (mean = 3.4 ± 6.9 mmol N 

m-2 d-1) than variability in DOM (mean = 4.6 ± 5.5 mmol N m-2 d-1).  For most simulations (72%), DOM mixing flux 

exceeded POM mixing flux.  However, POM mixing was greater for 66% of the simulations with total mixing flux 

>20 mmol N m-2 d-1.  Flux of fast-sinking particles exceeded that of slow-sinking particles at the euphotic zone base 570 

for 90.5% of simulations, with fast-sinking particles averaging of 2.3 mmol N m-2 d-1 (0.07 – 10.4 mmol N m-2 d-1) 

and slow-sinking particles averaging 0.35 mmol N m-2 d-1 (0.02 – 1.4 mmol N m-2 d-1).   

3.6. Model results: Diel vertical migration and active transport 

   In NEMUROBCP, active transport is driven by two processes: respiration/excretion and mortality at depth.  The 

former is parameterized as a temperature- and size-dependent function representing basal respiration and is 575 

comparatively well constrained by prior experimental work.  The latter is parameterized as a density-dependent 

function representing predator-induced mortality, a process that is highly uncertain because few studies have 

quantified zooplankton mortality in the mesopelagic ocean.  We fit linear regressions to log-transformed active 

transport plotted against log-transformed mesozooplankton biomass (Fig. 10a) to determine a power law relationship 

predicting active transport from mesozooplankton biomass: AT = aBc, where AT = active transport (mmol N m-2 580 

d-1), B = biomass (mmol N m-2), a = 0.0052 ± 6×10-6, and c = 1.29 ± 0.0004, R2 = 0.90, p<<10-9.  Similar 

relationships were also determined for the respiration/excretion component of active transport (E = aBc, a = 0.0037 ± 

4×10-6, b = 1.02 ± 0.0005, R2 = 0.87, p<<10-9) and the mortality component of active transport (M = aBc, a = 

0.00054 ± 10-6, b = 2.04 ± 0.001, R2 = 0.89, p<<10-9).  As expected, since excretion is density-independent while 

mortality is density-dependent, the exponent of the excretion power law was ~1 and the exponent of the mortality 585 

power law was ~2.  This led to mortality becoming a greater fraction of total active transport as mesozooplankton 

biomass increased (Fig. 10d).  The transition from active transport dominated almost entirely by respiration to active 

transport comprised mostly of mortality at depth occurred rapidly as biomass increased past ~5 mmol N m-2.  As a 

result of the density-dependent parameterization of mortality, daytime mortality also increased with increasing 

zooplankton biomass (m = aBc, where m is specific mortality (h-1) a = 2.6×10-4 ± 5×10-6, and b = 0.995 ± 0.001, R2 = 590 

0.68, p<<10-9).  This generated daily mortality rates (i.e., over a 12-h daytime period) of ~0.3% d-1 at a biomass of 1 

mmol N m-2 and ~6% d-1 at a biomass of 20 mmol N m-2 (Fig. 10e).  Overall mortality for vertically-migrating 

mesozooplankton was approximately evenly split between the epi- and mesopelagic, although this ratio was poorly 

constrained by the model (Fig. 10f).  For instance, 9% - 96% of large-mesozooplankton mortality occurred in the 

mesopelagic (at the 95% C.I.). 595 

 As suggested by the validation data, vertical migrator biomass was primarily found in the large (>1-mm) 

mesozooplankton size class.  The large mesozooplankton were also predominantly vertical migrators, while the 

small mesozooplankton were primarily epipelagic residents (Fig 10g).  Consequently, large mesozooplankton 

typically dominated active transport (Fig. 10h) even though small mesozooplankton usually contributed 

proportionally more to active transport than to biomass as a result of higher specific respiration rates (Fig. 10i).    600 

It would be reasonable to assume that predator-induced mortality in the deep ocean would be negatively 

correlated with the abundance of diel-vertical migrators, because high mortality would yield a competitive 
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advantage for epipelagic-resident zooplankton.  For the full dataset, however, we found a negligible correlation 

between the mesopelagic mortality term for large mesozooplankton (mortday,PZDVM) and large mesozooplankton 

biomass (Spearman’s ρ = -0.0077).  When investigating this correlation for individual experiments, the correlation 605 

was sometimes positive and sometimes negative.  This lack of a correlation was driven by strong correlations 

between the mortday,PZDVM and both the assimilation efficiency of these zooplankton and their maximum grazing rate 

on smaller mesozooplankton.  This led to a compensatory higher growth rate to offset the higher mortality rate and 

consequently to a reasonably strong correlation between mortday,PZDVM and the magnitude of export attributable to 

predation on large mesozooplankton in the deep ocean (ρ = 0.25).   610 

4. DISCUSSION 

4.1. Biological carbon pump pathways 

Gravitational flux is by far the most well studied pathway of the BCP, because it is the only pathway for which 

direct in situ flux measurements are possible.  Nevertheless, incredibly sparse in situ sampling necessitates 

spatiotemporal extrapolation approaches to derive regional and global estimates of gravitational flux, including the 615 

use of forward models, inverse models, and satellite algorithms (e.g., Schlitzer, 2004; Laws et al., 2000; Hauck et 

al., 2015; Devries and Weber, 2017).  Satellite algorithms, as perhaps the most widely used and cited methods for 

deriving global estimates, deserve special attention.  These approaches have delivered widely varying estimates of 

the magnitude of gravitational flux, and indeed the algorithms underlying such estimates often differ in the 

fundamental relationship predicted between sinking particle flux and phytoplankton biomass and production (Laws 620 

et al., 2000; Siegel et al., 2014; Henson et al., 2011; Dunne et al., 2005).  Such studies typically estimate export flux 

from relationships with net primary production (or surface chlorophyll) and/or temperature because these properties 

are easily observable by satellite remote sensing.  These studies, however, have reached widely differing 

relationships about the relationships of these properties to export efficiency (e-ratio = gravitational flux / net primary 

productivity).  Indeed, the in situ data compiled here shows no significant dependence of export efficiency on NPP 625 

or temperature (Figure 11a), because export efficiency depends not just on temperature and phytoplankton 

production, but also the community composition of phytoplankton and zooplankton, physiological adaptations of 

important taxa, and a multitude of ecological interactions (Turner, 2015; Buesseler and Boyd, 2009; Guidi et al., 

2016).  Indeed, focusing only on the regions studied here, anomalously high Synechococcus abundances likely result 

in low export efficiency in the CRD (Stukel et al., 2013; Saito et al., 2005), salp blooms drive very high export in the 630 

Chatham Rise (Décima et al., in review), and the diatom Thalassiosira seems to play a particularly important role in 

export in the CCE (Preston et al., 2019; Valencia et al., 2021).  In the latter, diatom photophysiological health is a 

strong predictor of export (Brzezinski et al., 2015), although the diatoms likely sink mainly after grazing by 

metazooplankton (Morrow et al., 2018).   

Despite the diversity of processes that affect the BCP, many of which are not included in NEMUROBCP, our 635 

simulations reasonably reproduce the variability of export efficiency across the study regions, even though results 

for individual experiments are imprecise (Fig. 11).  One important process that drives variability in export efficiency 

is temporal decoupling of production and export (Henson et al., 2015; Laws and Maiti, 2019; Kahru et al., 2020).  

Despite the use of constant physical forcing throughout our 30-day simulations, they exhibit distinct temporal 

variability in biogeochemical properties.  We highlight results from one experiment in slightly aged, upwelled water 640 
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off the California coast, using 5 different evenly spaced parameter sets (i.e., the 200,000th, 400,000th, 600,000th, 

800,000th, and 1,000,000th parameter sets) chosen from our ensemble (Fig. 12).  In each of these simulations, net 

primary production increases early in the simulations, rapidly in some, more gradual in others (Fig. 12a).  Net 

primary production soon diverges in all of the simulations, however, with some gradually decreasing after the first 

week and others exhibiting blooms.  Gravitational flux was even more variable, with one simulation peaking almost 645 

immediately and others with substantial temporal lags between net primary production and export (Fig. 12b).  This 

led to substantial temporal variability in export efficiency (Fig. 12c) and quite complex relationships between 

gravitational flux and net primary production (Fig. 12d).   

Assessing the accuracy with which the model simulates export due to vertical mixing (variously called the eddy 

subduction pump, mixed layer pump, and/or physical pump) is more difficult.  Previous studies to quantify this 650 

process have either relied on indirect biogeochemical proxies (Stukel and Ducklow, 2017; Llort et al., 2018) or 

numerical models (Omand et al., 2015; Levy et al., 2013; Stukel et al., 2018b; Nowicki et al., 2022) to quantify 

these processes.  Our vertical mixing results should be considered with some caution due to our overly simplified 

one-dimensional physical framework, which conflates distinct processes including mesoscale subduction, diapycnal 

diffusing, mixed layer entrainment and detrainment, and gyre-scale Ekman pumping.  Nevertheless, it is reassuring 655 

that our simulations from the CCE, which showed that vertical mixing out of the euphotic zone was often similar in 

magnitude to gravitational flux and at times even higher, is similar to results based on a Lagrangian particle model 

developed for the region (Stukel et al., 2018b).  More realistic estimates for all regions could be derived by coupling 

NEMUROBCP and our parameter ensembles to a three-dimensional ocean simulation. 

The magnitude of active transport mediated by diel-vertically migrating zooplankton in the global ocean 660 

remains highly uncertain due to a paucity of measurements and the difficulty of constraining the amount of mortality 

occurring at depth.  Studies that include only respiration and/or excretion of zooplankton at depth typically find that 

active transport is a relatively small fraction of gravitational flux (Steinberg et al., 2000; Hannides et al., 2009).  

However, more recent studies that have attempted to incorporate mortality experienced in the deep ocean have 

derived much larger estimates of active transport (Kelly et al., 2019; Kiko et al., 2020; Hernández-León et al., 2019).  665 

These studies should be considered highly uncertain, however, because they necessarily make large assumptions 

about the amount of zooplankton mortality occurring in the deep ocean, where it has never been directly quantified.  

Results from our study, which does include mortality at depth, suggests that active transport is a quantitatively 

important, but never dominant component of carbon export out of the euphotic zone, in line with results from recent 

global estimates derived from a combination of satellite remote-sensing products and modeling approaches 670 

(Archibald et al., 2019; Nowicki et al., 2022). 

One aspect of the BCP that our current euphotic-zone only simulations do not address is sequestration 

efficiency in the mesopelagic (Kwon et al., 2009; Marsay et al., 2015; Buesseler and Boyd, 2009).  It is reasonable 

to surmise that the remineralization length scale will vary for different BCP pathways and be regionally variable as 

well.  With gravitational flux, typically ~50% of particles will sink 100 m beneath the euphotic zone before 675 

remineralization, although remineralization length scales are highly variable and the spatial patterns are poorly 

understood (Buesseler and Boyd, 2009; Marsay et al., 2015).  Meanwhile, vertically-migrating zooplankton typically 

reside at depths of 200 – 600 m during the day and hence respire the majority of their carbon dioxide at this depth 

(Bianchi et al., 2013b), although it is unclear how the inclusion of mortality at depth into our understanding of active 
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transport will affect the overall depth of penetration of actively transported carbon into the deep ocean.  Stukel et al. 680 

(2018b), suggested that subducted particles in the southern CCE are mostly remineralized near the base of the 

euphotic zone with little penetration into the mesopelagic, although in regions with deep convective mixing, 

signatures of subduction show substantial transport into the deep ocean (Omand et al., 2015; Llort et al., 2018).  

Nowicki et al. (2022) estimated that gravitational flux and active transport have similar sequestration time scales but 

that sequestration times for mixing were much shorter.  In contrast, Boyd et al. (2019) surmised that active transport 685 

may have the greatest sequestration efficiency, followed by vertical mixing, then gravitational flux, although their 

synthesis was only able to draw from the few studies that have quantified these processes and they note that 

determining the sensitivities of sequestration efficiencies to environmental drivers is crucial to predicting climate 

change impacts on marine carbon sequestration.  We believe that future incorporation of our model ensemble 

approach into three-dimensional coupled modeling frameworks could be an important step forward in understanding 690 

the magnitude and uncertainty in these processes. 

4.2. Data-assimilating biogeochemical models 

 Implicit to our OEPMCMC approach is the philosophical realization that our model (like all biogeochemical 

models) oversimplifies an incredibly complex system.  Hence, we accept that no single solution set will accurately 

simulate all aspects of the BCP.  Instead, we proposed a mechanistic-probabilistic approach that explicitly 695 

investigates the ecosystem uncertainty.  This contrasts with some other data-assimilation approaches (e.g., gradient-

based methods including the variational adjoint, Schartau et al., 2001; Friedrichs et al., 2007; Lawson et al., 1995) 

that seek to find a single solution that minimizes model-data misfit.  While the variational-adjoint approach is 

computationally efficient and allows objective determination of a single solution that can then be used for high-

resolution simulations (Mattern et al., 2017), our work shows that very different parameter sets can result in similar 700 

cost function values, despite generating distinctly different model outputs.  For instance, different sets of parameters 

(all with approximately equivalent mismatch to our extensive suite of field measurements) predicted distinctly 

different functioning of the BCP in the CCE coastal region (with some parameter sets suggesting that subduction is 

most important and others suggesting that sinking particles are most important, Fig. 9b) and in the Costa Rica Dome 

(where some parameter sets suggested sinking was responsible for almost all carbon export, compared to other 705 

parameter sets that suggested almost equal importance of active transport, Fig. 9d).  The results of a typical 

variational-adjoint data-assimilation approach (or any approach that determines results from a single “best” 

parameter set) would have selected only one of these possible parameter sets and assumed that it accurately depicted 

the ecosystem; our results more accurately quantify this true uncertainty.   

Our approach has similarities with other biogeochemical model ensemble approaches.  For instance, Doron et 710 

al. (2013) used an ensemble Kalman filter algorithm to assimilate surface chlorophyll data and determine regional 

variability in biogeochemical parameters for a simple ecosystem model.  Gharamti et al. (2017a; 2017b) used a 

modified approach to simultaneously estimate model parameters and state variable distributions to enable reasonably 

accurate ensemble predictions of modeled processes.  These Kalman filter approaches are widely used in physical 

sciences for state estimation, re-analyses, and prediction purposes, although the data-assimilating state variable 715 

updates sacrifice true dynamical consistency.  Meier et al. (2011) used dynamically consistent model ensembles 

generated from three different biogeochemical models forced with four climate projections and three different 

nutrient loading scenarios to investigate increasing hypoxia in the Baltic Sea.  Garnier et al. (2016) used a 
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probabilistic version of the NEMO/PISCES model to generate a 60-member ensemble simulation of chlorophyll in 

the North Atlantic that accounts for uncertainties in biogeochemical parameters and sub-grid scale processes.  Gal et 720 

al. (2014) conducted a single model ensemble approach similar to ours in which they perturbed the most sensitive 

parameters in their model to investigate whether trends associated with different nutrient loading scenarios were 

consistent across the ensemble, although their approach did not use data assimilation to determine the different 

parameter values used.  Nowicki et al. (2022), building on previous work in Devries and Weber (2017), used 

satellite-observed net primary production and phytoplankton size distributions to force a simple steady-state 725 

euphotic-zone food web model coupled to an organic matter transport and transformation model.  The combined 

modeling system includes 42 parameters that are optimized to minimize mismatch with a suite of observations using 

a quasi-Newton algorithm.  By making different assumptions related to the incorporated field data and optimizing 

parameters for each set of assumptions, the authors develop an ensemble of 124 ecosystem realizations.  Ramondenc 

et al. (2020) used the statistical model check engine to assimilate laboratory and in situ observations to 730 

probabilistically constrain parameters associated with scyphozoan growth and degrowth.  Vervatis et al. (2021a; 

2021b) conducted a model ensemble study of the Bay of Biscay in which they perturbed the atmospheric forcing, 

physical ocean parameterization, and biogeochemical sources and sinks (although in contrast to our model, they did 

not vary the parameters, but rather incorporated a spatiotemporally varying perturbation that acted directly on 

sources and sinks including photosynthesis, death, and grazing without modification to parameters).  They found 735 

that chlorophyll was most sensitive to changes in atmospheric forcing and also highlight that the ensemble results 

can lead to improved simulation of plankton functional types.  Anugerahanti et al. (2018) conducted a model 

ensemble approach in which, rather than modifying parameter values, they modified the functional form of key 

transfer functions associated with nutrient uptake, grazing, and mortality while simulating chlorophyll, nutrients, and 

primary production at 5 time-series sites.  They discovered that the model was especially sensitive to modifications 740 

to the grazing and mortality functions.  A further study (Anugerahanti et al., 2020) simultaneously perturbed 

physical circulation fields and the biogeochemical model and found that results were most sensitive to variability in 

the biological model.  The result of these ensemble approaches is a probabilistic estimate of model outputs that 

(hopefully) accurately reflects true uncertainty in the system.  Our OEPMCMC approach, by utilizing field data to 

automate the choice of parameter sets to be used in the model ensemble, allows us to generate one million different 745 

dynamically consistent model realizations that each fit the available data, while simultaneously exploring different 

regions of the solution space with regard to uncertainties in all of the modeled parameters.  We consider this to be a 

reasonable tradeoff for the increased computational expense of our approach (relative to the variational adjoint or 

Kalman filter approaches), while noting that each approach has distinct advantages or disadvantages for different 

applications.  750 

An additional novelty of our study is the variety of different data types assimilated into the model (30 different 

rate and standing stock measurement types).  Most data-assimilating biogeochemical models only incorporate data 

associated with nutrients and/or surface chlorophyll and other remotely-sensed parameters (e.g., Xiao and 

Friedrichs, 2014b; Mattern et al., 2014; Wang et al., 2012).  The incorporation of multiple data types spanning 

trophic levels and biogeochemical processes is important to model validation, because models can often reasonably 755 

simulate time series of one particular variable, with unrealistic dynamics of associated trophic levels.  Ciavatta et al. 

(2014) found that assimilation of light attenuation coefficient data improved model prediction of light attenuation 

coefficient data, but did not improve model estimates of surface chlorophyll, and even degraded model performance 
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in some regions.  Furthermore, assimilation of only noisy standing stock data can lead to model overfitting and 

inability to retrieve accurate model parameters, even in an idealized model (Löptien and Dietze, 2015).  The few 760 

studies that have attempted to incorporate many measurement types have focused on nutrient and phytoplankton 

parameters.  For instance, Kim et al. (2021) assimilated standing stock data associated with 9 model compartments 

along with net primary production and bacterial production into a model of an Antarctic coastal ecosystem but 

incorporated no metazoan zooplankton data.  In a model simulating three distinct open ocean regions, Luo et al. 

(2010) incorporated only one zooplankton parameter (mesozooplankton biomass) amongst 17 assimilated data types, 765 

mostly associated with non-living compartments.  By contrast, we incorporate an extensive suite of group-specific 

protistan grazing rate measurements and biomass and grazing rate measurements for each of our 4 metazoan 

zooplankton groups.  While these provide realistic bounds within which zooplankton dynamics can vary, 

zooplankton parameters still remain among the least constrained parameters in our model due to the difficulty of 

making zooplankton rate measurements (e.g., the paucity of grazing measurement relative to net primary 770 

production) and the fact that most zooplankton measurements (derived from net tows) inherently integrate over 

broad depth ranges.  The weak constraints on zooplankton processes are particularly important in light of multiple 

studies that have shown that even subtle changes in grazing formulations can fundamentally alter the 

biogeochemical behaviors of models (Sailley et al., 2015; Gentleman and Neuheimer, 2008; Schartau et al., 2017; 

Chenillat et al., 2021; Sailley et al., 2013; Prowe et al., 2012) and the crucial roles of metazoan zooplankton for 775 

multiple pathways of the BCP (Buitenhuis et al., 2006; Steinberg and Landry, 2017). 

4.3. Future directions 

We have highlighted some of the insight about the BCP that can be gleaned from our ensemble data 

assimilation approach.  However, as noted previously, there are many limitations associated with using a simplified 

one-dimensional physical framework, and indeed a large portion of our study goal was to set the stage for more 780 

advanced uses of NEMUROBCP and OEPMCMC.  One obvious future step is to incorporate NEMUROBCP into three-

dimensional circulation models.  Although NEMUROBCP was originally written in Matlab, we are currently adapting 

it to Fortran compatible with circulation models such as ROMS, HYCOM, and MITgcm.  Three-dimensional 

NEMUROBCP simulations may take different forms.  One approach would be to use different parameter sets from 

the data ensemble in independent model runs, to conduct three-dimensional global biogeochemical model 785 

ensembles.  Notably, our different parameter sets are equally supported by assimilated field data, yet some predict 

very different ecosystem states (e. g., they vary in relative proportion of large/small phytoplankton, in turnover times 

for biota, in partitioning of organic matter between the particulate and dissolved phase, etc.).  This ensemble 

modeling approach would thus allow quantification of BCP uncertainties in four dimensions.  An alternate approach 

would be to use parameter distributions from one-dimensional simulations as prior estimates of parameters for data-790 

assimilation in a three-dimensional model.  These prior estimates of each parameter (and the parameter covariance 

matrix) could be incorporated into the cost function for many different data-assimilation approaches.  Comparison to 

satellite-observed or in situ time-series data would add powerful additional constraints on parameter values. 

Another future use of the ensemble approach would be to simulate the results of specific Lagrangian 

experiments.  In the current study, we developed an ensemble of plausible parameter sets that could be used for 795 

global ensemble models in the future or as prior distributions for future studies, while also assessing the uncertainty 

in parameter values.  These goals informed our decision to conduct a joint parameter estimation that simultaneously 
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utilized data from all available experiments (rather than estimating different parameter values for each experiment or 

each region).  To simulate ecosystem dynamics for a specific experiment as accurately as possible, one would need 

to treat initial conditions and boundary values as unknown values to be determined during the optimization 800 

procedure.  As such, the cost function should formally be defined as a function of these unknown values: J(IC, BV, F, 

P) where IC represents the initial conditions (all state variables, all depths), BV is the boundary values (i.e., values of 

the state variables at the bottom boundary of the model), F is the physical forcing, and P is the parameter set.  While 

this introduces a large number of additional unknown variables to solve for, it also justifies use of a more stringent 

cost function (e.g., the likelihood function).  Thus to use NEMUROBCP to model a specific Lagrangian experiment 805 

(e.g., time-varying conditions during the North Pacific EXPORTS Lagrangian study, Siegel et al., 2021), we 

recommend treating our results for estimated global ranges of parameters as prior values in a Bayesian analysis to 

simultaneously constrain IC, BV, F, and P for that Lagrangian experiment.   

In the current study, we incorporated a broad suite of standing stock and rate measurements spanning nutrients, 

phytoplankton, zooplankton, and non-living organic matter, because our goal was to simultaneously constrain all 810 

parameters in the model while investigating overall uncertainty in model outputs.  However, Loptien & Dietze 

(2015) noted that specific parameters and processes can be better constrained if only the most relevant type of data is 

included.  We thus suggest that targeted choice of data types to assimilate could allow the use of OEPMCMC for 

investigation of specific processes that are difficult to directly measure in situ.  For instance, zooplankton mortality 

at depth has been hypothesized to be a potentially important component of the BCP (Kelly et al., 2019; Hernández-815 

León et al., 2019), but estimates of zooplankton mortality at depth are typically derived from either allometric 

relationships between zooplankton size and life span or estimates of mortality made in the upper ocean (Brett and 

Groves, 1979; Hirst and Kiørboe, 2002; Ohman and Hirche, 2001).  By incorporating only the data sources that offer 

the most constraint on zooplankton parameters (e.g., biomass and grazing rates of each zooplankton group), it may 

be possible to better constrain the fraction of mortality occurring in the deep ocean. 820 

NEMUROBCP was built off of the NEMURO family of models (Kishi et al., 2007), and here we only added 

extra state variables essential for modeling BCP pathways from the euphotic zone into the mesopelagic.  There are, 

of course, multiple additional processes that are important to simulating marine biogeochemistry and the BCP that 

are currently absent.  Some additional processes that we consider priorities and plan to implement in future versions 

of NEMUROBCP include variable stoichiometry of organic matter, N2 fixation, and additional realism in the 825 

microbial community.  Elemental stoichiometry (e.g., C:N:P) can vary substantially between different organic pools 

and across the different BCP pathways (Hannides et al., 2009; Singh et al., 2015), is predicted to change as a result 

of ocean acidification and/or increased temperature and stratification (Oschlies et al., 2008; Riebesell et al., 2007), 

and can affect the balance between carbon sequestration and nutrient supply and regeneration leading to potentially 

enhanced carbon sequestration and growing oxygen minimum zones in a future ocean (Michaels et al., 2001; 830 

Oschlies et al., 2008; Riebesell et al., 2007).  Adding variable stoichiometry to NEMUROBCP is simple but will 

require the addition of state variables associated with each model compartment that is allowed to vary in its 

elemental ratios, with substantial added computational costs.  N2 fixation is simultaneously a source of new 

production in the absence of upwelling and a process that can substantially alter elemental stoichiometry in the open 

ocean.  It could be introduced to the model through a state variable(s) simulating diazotrophs (Hood et al., 2001) or 835 

through implicit parameterization (Ilyina et al., 2013).  NEMUROBCP might also benefit from added realism in 

microbial dynamics.  The roles of heterotrophic bacteria in particle remineralization are currently included implicitly 
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in the model.  Explicit simulation of bacterial biomass and processes such as colonization of particles, microbial 

hotspots on sinking particles, production of hydrolytic enzymes, quorum sensing, and predator-prey dynamics with 

protists have the potential to more accurately simulate feedbacks that affect remineralization length scales in the 840 

ocean (Robinson et al., 2010; Simon et al., 2002; Mislan et al., 2014).  Additionally, the model currently includes 

only two phytoplankton, which were explicitly identified as diatoms and non-diatoms in this data-assimilation 

exercise.  The latter category subsumes a wide variety of different phytoplankton taxa into a group with transfer 

functions designed to simulate picophytoplankton (especially cyanobacteria).  It thus excludes the presence of 

mixotrophs, which are abundant and diverse bacterivores in the open ocean, can survive low-nutrient and low-light 845 

conditions by supplementing their nutritional budget with phagotrophy, and may have distinctly different 

biogeochemical roles due to their decreased reliance on dissolved nutrients (Stoecker et al., 2017; Jones, 2000). 

5. Conclusions 

 The data assimilation approach utilized here is a computationally feasible method for incorporating a diverse 

suite of in situ measurements to objectively define parameter sets for ensemble modeling of the BCP.  The 30 data 850 

types assimilated in this study improve constraints on ecosystem dynamics.  However, some parameters, especially 

those related to metazoan zooplankton, remain poorly constrained by available data, despite assimilation of 8 data 

types explicitly representing metazoan zooplankton rates and standing stocks.  This likely results from a 

combination of the inherently patchy nature of many mesozooplankton populations (i.e., high measurement 

uncertainty) and the vertically integrated nature of zooplankton net tows which obscures simple relationships 855 

between predator abundance, prey abundance, and grazing rates.   

 The three BCP pathways were spatiotemporally variable across four study regions.  Despite a very simple 

physical framework, distinct patterns were identified.  Active transport was only a dominant contributor to the BCP 

in the CRD, where simulations predicted it to be responsible for 20-40% of export from the euphotic zone.  Near the 

subtropical front of the Southern Ocean and in upwelling-influenced regions of the CCE, both gravitational flux and 860 

vertical mixing were important components of the BCP, with the relative importance of the two determined more by 

differences between parameter sets, than by differences between the conditions experienced during specific 

Lagrangian experiments.  In offshore oligotrophic regions of the CCE and the GoM >80% of export was usually 

attributable to gravitational flux, although mixing dominated in a few experiments.   

Our ensemble approach highlights uncertainties around model estimates of the BCP that arise from imprecisely 865 

defined parameters.  Indeed, variability in many aspects of the BCP is as large comparing different (realistic) 

parameter sets within a specific location as it is across regions as distinctly different as the oligotrophic GoM and 

coastal CCE.  Notably, different realistic parameter sets from our ensembles predict very different export 

efficiencies (and hence magnitudes of the gravitational pump) despite similar net primary production.  This suggests 

that model validation against net primary production (or sea surface chlorophyll) data is insufficient to validate 870 

model skill in simulating BCP variability.  The explicit representation of thorium and nitrogen isotope dynamics in 

NEMUROBCP should aid in future model validation efforts.   
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Code Availability 

The core NEMUROBCP code is available on GitHub at: https://github.com/mstukel/NEMURO_BCP.  The code 875 

necessary to run the objective ensemble parameterization procedure can be found at: 

https://github.com/mstukel/OEP_MCMC_NEMURObcp. 

 

Data Availability 

Field data used in this manuscript is available on either the CCE LTER Datazoo repository 880 

(https://oceaninformatics.ucsd.edu/datazoo/catalogs/ccelter/datasets) or the Biological and Chemical Oceanography 

Data Management Office repository: https://www.bco-dmo.org/project/834957, https://www.bco-

dmo.org/project/819488, and https://www.bco-dmo.org/project/754878.  For ease of access it is also included in 

Supp. Tables S2-S4.  The data file containing all model outputs (from all ensembles) is too large to deposit but can 

be generated from the code on GitHub.  A summarized version (every 1000th iteration) is included as Supp. Table 885 

S5, summary statistics are given in Supp. Table S1, with the correlation and covariance matrices given in Supp. 

Table S6.   
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 1525 

 

 

Table 1.  State variables in NEMUROBCP 

 Abbreviation Description Units 

Core model   

 SP Small (non-diatom) phytoplankton mmol N m-3 

 LP Large phytoplankton (diatoms) mmol N m-3 

 SZ Small (protistan) zooplankton mmol N m-3 

 LZRES <1-mm epipelagic-resident mesozoopankton mmol N m-3 

 LZDVM <1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 PZRES >1-mm epipelagic-resident mesozoopankton mmol N m-3 

 PZDVM >1-mm diel-vertically-migrating mesozooplankton mmol N m-3 

 NO3 Nitrate mmol N m-3 

 NH4 Ammonium mmol N m-3 

 PON Slowly-sinking detritus mmol N m-3 

 LPON Rapidly-sinking detritus mmol N m-3 

 DON Labile dissolved organic nitrogen mmol N m-3 

 DONref Refractory dissolved organic nitrogen mmol N m-3 

 SI Silicic acid mmol Si m-3 
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 OP Slowly-sinking opal (biogenic silica) mmol Si m-3 

 LOP Rapidly-sinking opal (biogenic silica) mmol Si m-3 

 CHLPS Chlorophyll associated with small phytoplankton mg Chl a m-3 

 CHLPL Chlorophyll associated with large phytoplankton mg Chl a m-3 

 OXY Dissolved oxygen mmol O m-3 

Carbon submodule   

 DIC Dissolved inorganic carbon mmol C m-3 

 ALK Alkalinity mmol m-3 

234Thorium submodule  

 dTh Dissolved 234Th dpm L-1 

 SPTh 234Th adsorbed to small phytoplankton dpm L-1 

 LPTh 234Th adsorbed to large phytoplankton dpm L-1 

 SZTh 234Th adsorbed to small zooplankton dpm L-1 

 LZRESTh 234Th adsorbed to LZRES dpm L-1 

 LZDVMTh 234Th adsorbed to LZDVM dpm L-1 

 PZRESTh 234Th adsorbed to PZRES dpm L-1 

 PZDVMTh 234Th adsorbed to PZDVM dpm L-1 

 PONTh 234Th adsorbed to slowly-sinking detritus dpm L-1 

 LPONTh 234Th adsorbed to rapidly-sinking detritus dpm L-1 

Nitrogen isotope submodule  

 SPN15 15N in small phytoplankton mmol 15N m-3 

 LPN15 15N in large phytoplankton mmol 15N m-3 

 SZN15 15N in small zooplankton mmol 15N m-3 

 LZRESN15 15N in LZRES mmol 15N m-3 

 LZDVMN15 15N in LZDVM mmol 15N m-3 

 PZRESN15 15N in PZRES mmol 15N m-3 

 PZDVMN15 15N in PZDVM mmol 15N m-3 

 NON15 15N in nitrate mmol 15N m-3 

 NHN15 15N in ammonium mmol 15N m-3 

 PONN15 15N in slowly-sinking detritus mmol 15N m-3 

 LPONN15 15N in rapidly-sinking detritus mmol 15N m-3 

 DONN15 15N in labile DON mmol 15N m-3 

 DONREFN15 15N in refractory DON mmol 15N m-3 
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Figures 1530 

 

 

Figure 1 -   Schematic depiction of core NEMUROBCP model.  Arrows show transfer functions (orange = Si flux; 

blue = N flux).  Rectangles show state variables (SiOH3 = silicic acid; NO3 = nitrate; NH4 = ammonium; Opalsmall = 

small biogenic silica; Opallarge = large biogenic silica; DONref = refractory dissolved organic nitrogen; DONlabile = 1535 

labile dissolved organic nitrogen; PONsmall = small detritus; PONlarge = large detritus; DTM = diatoms; PS = small 

phytoplankton; Chll = diatom chlorophyll; chls = small phytoplankton chlorophyll; ZS = protistan zooplankton; ZLres 

= <1-mm metazoan zooplankton that are resident in the euphotic zone; ZLdvm = <1-mm diel-vertically-migrating 

metazoan zooplankton; ZPres = >1-mm metazoan zooplankton that are resident in the euphotic zone; ZPdvm = >1-mm 

diel-vertically-migrating metazoan zooplankton.  Oxygen is also a state variable but is not shown in this figure. 1540 
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Figure 2 – Locations of our in situ Lagrangian experiments (blue = California Current Ecosystem, Brown = Gulf of 

Mexico, Green = Costa Rica Dome, Magenta = Chatham Rise).  
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 1545 

Figure 3 – OEPMCMC parameter distributions for bottom-up control of small phytoplankton.  Line plots on top are 

probability density functions for individual parameters (see bottom for label and axes).  Colored plots are heat maps 

showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,SP, units = d-1), half-

saturation constant for nitrate uptake (KNO,SP, mmol N m-3), half-saturation constant for ammonium uptake (KNH,SP, 

mmol N m-3), initial-slope of the photosynthesis-irradiance curve (αSP, m2 W-1 d-1), photoinhibition parameter (βSP, 1550 

m2 W-1 d-1), respiration rate at 0°C (resSP, d-1), linear mortality term at 0°C (mortSP, d-1), excretion parameter (excSP, 

unitless), ammonium inhibition of nitrate uptake (inhNH,NO,SP, m3 mmol N-1). 
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Figure 4 – OEPMCMC parameter distributions for large phytoplankton and some other other model processes.  Line 1555 

plots on top are probability density functions for individual parameters (see bottom for label and axes).  Colored 

plots are heat maps showing joint parameter distributions.  Parameters are: maximum growth rate at 0°C (Vmax,LP, 

units = d-1), initial-slope of the photosynthesis-irradiance curve (αLP, m2 W-1 d-1), half-saturation constant for NH4
+ 

uptake (KNH,LP, mmol N m-3), maximum grazing rate of small zooplankton on large phytoplankton (gmax,SZ,LP, d-1). 

maximum grazing rate of large (>1-mm) epipelagic-resident mesozooplankton on small phytoplankton (gmax,PZRES,SP, 1560 

d-1), maximum grazing rate of large (>1-mm) vertically-migrating mesozooplankton on small (<1-mm) 

mesozooplankton (gmax,PZDVM,LZ, d-1), the Ikeda respiration parameter for small (<1-mm) mesozooplankton, daytime 

mortality rate for small (<1-mm) vertically-migrating mesozooplankton (mortday,LZDVM, m3 mmol N-1 d-1), 

remineralization rate of DON to NH4
+ (refdec,DON,NH, d-1). 

 1565 

 

  



 43 

 

Figure 5 – Model-data net primary production comparison.  Blue box plots show model results for each simulated 

Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow diamonds show observations 1570 

from Lagrangian experiments. 

 

 

Figure 6 – Model-data sinking particle export comparison at the base of the euphotic zone.  Blue box plots show 

model results for each simulated Lagrangian experiment, with whiskers extending to 95% confidence limits.  Yellow 1575 

diamonds show observations from sediment trap deployments (no observations were available for 9 experiments). 
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Figure 7 – Model-data water-column 234Th activity comparison.  Dark blue lines show mean vertical profile of 234Th 

activity from MCMC model simulations with lighter blue shading indicating 95% C.I.  Red diamonds show 1580 

observations.  Each panel is for a separate Lagrangian experiment. 
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Figure 8 – Model-data comparison of C:234Th ratio (a) and δ15N of sinking particles.  Color indicates region.  Error 

bars are ±1 standard deviation.  Black line is the 1:1 line.  Observations are derived from sediment trap 

measurements.   1585 
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Figure 9 – Triangle diagrams showing the proportion of export due to each biological carbon pump pathway at the base of the 

euphotic zone.  Locations near the upper apex of the triangle indicated dominance by sinking particles, locations near the bottom 1590 
left indicate dominance by active transport, locations near the bottom right show dominance by mixing.  Colors represent the 

proportion of total model simulations with export patterns falling within a specific proportion of different export pathways.    

Lines indicated contours showing a constant proportion of one BCP pathway (i.e., red lines are constant proportions of active 

transport, blue lines are constant proportions of gravitational flux, and purple lines are constant proportions of mixing flux).  a) 

results for all simulations, b) results for a typical CCE coastal site (1604-3), c) typical CCE oligotrophic site (1408-5), d) typical 1595 
Costa Rica Dome site (CRD-1), e) typical Gulf of Mexico site (GoM-5), f) typical Chatham Rise site (Salp-5), g) example of a 

CCE site (0605-3) dominated by mixing flux. 
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Figure 10 – Heatmaps of active transport (a), active transport due to excretion in the deep ocean (b), active transport due to 1600 
mesozooplankton mortality at depth (c), the fraction of active transport that was due to mortality at depth (d), and the daytime 

specific mortality experienced by mesozooplankton at their mesopelagic resting depths (e), all as a function of the total biomass 

of vertically-migrating mesozooplankton (i.e., sum of both size classes).  Black lines and equations in a, b, c, and d were 

determined from ordinary least squares regressions of log-transformed data (see text for regression statistics). (f) shows the 

probability density function for the fraction of large (>1 mm) mesozoolpankton mortality experienced during the day at their 1605 
mesopelagic resting depths. (g) and (h) show normalized histograms of log10-transformed zooplankton biomass and active 

transport, respectively.  Dashed blue line is small epipelagic-resident zooplankton, solid blue is small DVM zooplankton, dashed 

red is large epipelagic-resident zooplankton, solid red is large DVM zooplankton.  (i) shows the fraction of active transport 

mediated by large mesozooplankton (>1 mm) as a function of their fraction of total vertically-migrating mesozooplankton 

biomass.  Dashed gray line is the 1:1 line. 1610 
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Figure 11 – Gravitational flux at the base of the euphotic zone as a function of net primary production for in situ 

data (a) and model results (b).  Averages and standard deviations are shown for individual Lagrangian experiments.  

Nitrogen-based model results were converted to carbon units assuming a C:N ration of 106:16 (mol:mol).  1615 

Background in both figures is a heatmap of all model results (i.e., all Lagrangian experiments and all parameter 

sets).  Solid black lines show contours of constant e-ratio (=gravitational flux / net primary production).   

 

 

Figure 12 – Temporal variability in net primary production (a, mmol C m-2 d-1), gravitational flux (b, mmol N m-2 1620 

d-1), and export efficiency (c, unitless with a C:N conversion ratio of 106:16 mol:mol), along with a phase-space plot 

depicting the same data (d).  All plots are from Lagrangian experiment 1604-3 (CCE upwelling region).  Different 

colors are for simulations with ensemble parameter sets 2×105, 4×105, 6×105, 8×105, or 106.  


