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Abstract. Climate change is predicted to lead to major changes in terrestrial ecosystems. However, substantial differences in

climate model projections for given scenarios of greenhouse gas emissions, continue to limit detailed assessment. Here we

show, using a traditional Köppen-Geiger bioclimate classification system, that the latest CMIP6 Earth System Models actually

agree well on the fraction of the global land-surface that would undergo a major change per degree of global warming. Data

from ‘historical’ and ‘ssp585’ model runs are used to create bioclimate maps at various degrees of global warming, and to5

investigate the performance of the multi-model ensemble mean when classifying climate data into discrete categories. Using

a streamlined Köppen-Geiger scheme with 13 classifications, global bioclimate classification maps at 2K and 4K of global

warming above a 1901 - 1931 reference period are presented. These projections show large shifts in bioclimate distribution,

with an almost exclusive change from colder, wetter bioclimates to hotter, drier ones. Historical model run performance is

assessed and examined by comparison with the bioclimatic classifications derived from the observed climate over the same10

time period. The fraction (f ) of the land experiencing a change in its bioclimatic class as a function of global warming (∆T )

is estimated by combining the results from the individual models. Despite the discrete nature of the bioclimatic classification

scheme, we find only a weakly-saturating dependence of this fraction on global warming f = 1− e−0.14∆T , which implies

about 13% of land experiencing a major change in climate, per 1K increase in global mean temperature between the global

warming levels of 1 and 3K. Therefore, we estimate that stabilising the climate at 1.5K rather than 2K of global warming,15

would save over 7.5 million square kilometres of land from a major bioclimatic change.

1 Introduction

Understanding the impacts that climate change will have at a regional level yields vital information for adaptation to climate

change. Furthermore, quantifying the performance of climate models is important for the continued improvement of climate

models, and for understanding the areas where particular models under perform. There are substantial differences in climate20

model projections for given scenarios of greenhouse gas emissions (Masson-Delmotte et al., 2021). Climate change is predicted

to lead to major changes in terrestrial ecosystems (Pörtner et al., 2022).

Here we use the Köppen-Geiger (KG) bioclimate classification to examine and quantify changes in biome under various

levels of projected future global warming within the Coupled Model Intercomparison Project phase 6 (CMIP6) climate models
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(Eyring et al., 2016). CMIP6 is an international collaboration to run a standardised set of potential future scenarios with a range25

of climate models developed at various institutions. The results make a compelling case for the need to further prioritise climate

change mitigation policies. However, this may not be immediately clear to public or policy makers. Improved understanding

of the consequences of climate change is needed, and climate classification schemes can help in that respect.

The biome of a region is largely dictated by that region’s climate. Bioclimates are defined by the preferences of living

organisms. Bioclimate classification empirically separates regions of the globe based on climate data and the geographical30

distribution of biomes. The KG bioclimate classification scheme is one of the most established, first developed by Wladimir

Köppen (Köppen, 1884) and then enhanced by Rudolf Geiger. The original KG classification scheme consists of thirty separate

bioclimates based on dominant vegetation as type determined by Köppen’s experience as a botanist. These classifications are

based on monthly average temperature and precipitation at each location. The seasonality of these variables, combined with

threshold values, determines the bioclimate classification of the region (Peel et al., 2007). Classifications include hot and35

cold deserts - regions where there is no rainfall, and tropical rainforests - regions where minimum temperature and threshold

precipitation is met.

Bioclimate classification systems, such as the KG and Holdridge schemes (Lugo et al., 1999), have been used to map regions

and even the entire globe. These maps have been created using observational (Kottek et al., 2006) as well as climate model data,

the latter including CMIP5 (Rahimi et al., 2020; Phillips and Bonfils, 2015) and CMIP6 climate models (Kim and Bae, 2021).40

Despite the changes and updates suggested by various authors, the classification scheme as originally developed by Köppen,

and updated by Geiger is still a highly popular climate classification system. Although bioclimate maps for specific years

(such as 2100) have previously been created (Beck et al., 2018), an area that is less explored are global KG climate maps at

specific levels of global warming. To remove the leading order uncertainty that arises from different climate model sensitivities

to radiative forcing (Sherwood et al., 2020; Nijsse et al., 2020), and to make our results relevant to the Paris climate targets45

(Paris-Agreement), here we look at changes in KG classification at different levels of global warming (1.5K, 2K, and 4K). A

streamlined KG scheme is also implemented to visually demonstrate the impacts of warming on global biome distribution.

KG classification maps at 1.5K, 2K, and 4K of global warming above reference period levels (taken as the 1901 – 1931

global mean temperature) are presented. Due to the 30 different classifications in the traditional KG scheme, it can be difficult

to identify the changes in bioclimate classification so we present a novel “streamlined” classification system that allows for50

easy identification of bioclimate change, with a naming scheme that is more intuitive. To quantify this, classification change

matrices are also given. By comparing the classifications given by models under the historical experimental run to the known

historical observational values, and by assessing model deviation from their initial classifications, we gain insight into the

performance and behaviours of individual models as well as the multi-model ensemble mean.

We show there are large shifts in bioclimate distribution under global warming, with an almost exclusive change from colder,55

wetter bioclimates to hotter, drier ones. Specifically we find the fraction (f ) of the land experiencing a change in its bioclimatic

class has a weakly-saturating dependence on global warming f = 1−e−0.14∆T , which implies about 13% of land experiencing

a major change in climate, per 1K increase in global mean temperature between the global warming levels of 1 and 3K.
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2 Methods

2.1 Köppen-Geiger classification scheme60

The Köppen-Geiger (KG) classification scheme has been described extensively in other publications (Peel et al., 2007; Beck

et al., 2018). The scheme has also undergone many alterations. Here we follow (Peel et al., 2007), whose criteria for each

classification are given in Table 1.

Classification Criteria Classification Criteria

A Tmin ≥ 18˚C D Tmin ≤ 0˚C, Tmax ≥ 10˚C

F Pmin ≥ 6 cm month−1 W Pswet > 10*Pwdry

S Pmin ≥ 100-(Pyear*10/25) S 3*Psdry <Pwwet, Psdry < 4

W Pmin <100-(Pyear*10/25) F Neither W nor S

B Pyear*10 <10*Pthresh a Tmax ≥ 22˚C, Months above 10˚C ≥ 4

W Pyear*10 <5*Pthresh b Tmax <22˚C, Months above 10˚C ≥ 4

S Pyear*10 ≥ 5*Pthresh c 0 <Months above 10˚C <4, not A or B or D

h Tavg ≥ 18˚C d Tmin <-38˚C, 0 <Months above 10˚C <4

k Tavg <18˚C E Tmax <10˚C

C 0˚C < Tmin <18˚C, Tmax ≥ 10˚C T 0˚C < Tmax <10˚C

W Pwdry <Pswet/10 F 0˚C ≥ Tmax

S Pwwet > 3*Psdry, Psdry <4

F Neither W nor S

a Tmax ≥ 22˚C, Months above 10˚C ≥ 4

b Tmax <22˚C, Months above 10˚C ≥ 4

c 0 <Months above 10˚C <4, not A or B

Table 1. Classification criteria for the Köppen-Geiger classification scheme. Tmin = Average temperature of month with lowest average

temperature. Tmax = Average temperature of month with highest average temperature. Pmin = Average precipitation of driest month. Pmax

= Average precipitation of wettest month. Tavg = Mean annual temperature. Pyear = Mean annual precipitation. Pthresh varies according

to the following rules (if 70% of Pyear occurs in winter then Pthresh = 2 x Tavg, if 70% of Pyear occurs in summer then Pthresh = 2 x

Tavg + 28, otherwise Pthresh = 2 x Tavg + 14). , Psdry = precipitation of the driest month in summer, Pwdry = precipitation of the driest

month in winter, Pswet = precipitation of the wettest month in summer, Pwwet = precipitation of the wettest month in winter. In the northern

Hemisphere Summer is defined as AMJJAS and Winter as ONDJFM, the opposite is true for the Southern hemisphere. Due to overlapping

criteria, dry (B) climates are prioritised above all others. Temperature is in ˚C and precipitation is cm month−1 and cm year−1. Here we

follow (Peel et al., 2007).

These classifications have three differences to those described by (Köppen, 1936). First, C and D climates follow a 0˚C

threshold instead of -3˚C (Russell, 1931). Secondly, BW and BS are distinguished using a 70% threshold for precipitation65
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seasonality (Peel et al., 2007). Finally, climates C and D subclassifications s and w are made mutually exclusive (Peel et al.,

2007). In this analysis, each month is set to have the same length of time – one twelfth of a year.

The KG system has been applied to a broad spectrum of scientific interests, including to locally adjust an irradiation model

(Every et al., 2020), in hydrological studies (Peel et al., 2001), and in modelling the distribution of Lyme disease (Cox et al.,

2021).70

The outcome of competition between different plant types varies depending on the climatic conditions, such that the long-

term equilibrium biome (which is a mixture of different plant types) will also vary with the climate. This is the underlying

basis for bioclimatic schemes such as Koppen-Geiger, which is used here to classify the climate rather than to predict biome

shifts. Changes in the actually distribution of vegetation also depend on the direct effects of changes in carbon dioxide and

nitrogen availability, and may take decades to materialise (e.g. because the rate of climate change is significant compared75

to the characteristic multi-decadal timescales of a forest). These changes are best predicted with complex Dynamical Global

Vegetation Models (DGVMs), which are based-on detailed representations of plant physiology and demographic processes

(Argles et al., 2022). Although bioclimatic schemes are no substitute for DGVMs to predict vegetation changes, they have

the advantage of being transparently simple and offering a more intuitive demonstration of the nature of a projected climate

change. It is in this spirit that the Koppen-Geiger bioclimatic scheme is applied in this study.80

2.1.1 Streamlined Köppen-Geiger classification scheme

A key goal of bioclimatic classifications is to illustrate climate change in a way that is intuitive. To this end we designed

a simplified Köppen-Geiger scheme which combines classifications to make changes clearer in both scale and the nature

of projected transitions. Additionally, the new scheme implements a more traditional naming system. A breakdown of this

streamlined system, and the constituent traditional classifications involved in each of the thirteen streamlined classifications is85

given in Table 2.

Difference maps are also plotted to demonstrate the geographical locations of major transitions between bioclimatic classi-

fications. These difference maps plot the ten largest transitions globally (by total land area). Areas for which less than 66% of

the models agree are hatched, demonstrating that in these regions the results are less certain.

Classification change matrices are used to quantify bioclimate transitions in terms of global land area, at key levels of global90

warming. The columns represent the initial classification coverage, and the rows indicate the altered classification distribution.

Shading highlights the size of changes, in terms of the projected change as a fraction of the initial area of a given bioclimatic

class.

2.2 Climate Model and Observational Data

Historical observations of monthly mean temperature and precipitation are from the CRU TS v. 4.05 dataset (Harris et al.,95

2020). Analogous climate model data comes from the ‘historical’ CMIP6 experiments (Eyring et al., 2016). Models within the

CMIP6 multi-model ensemble were chosen which had readily available historical experiment data, and achieved a minimum

of 4K warming under the ssp585 scenario. These models are listed in Table 3.

4



Streamlined Classification Traditional Classifications

Desert BWh, BWk

Semi-Arid BSh, BSk

Tropical Rainforest AF

Tropical Monsoon AM

Tropical Savanna AW

Mediterranean CSa, CSb, CSc

Subtropical CWa, CWb, CWc, CFa

Oceanic CFb, CFc

Continental hot-summer DFa, DSa, DWa

Continental cold-summer DFb, DSb, DWb

Sub Arctic DFc, DFd, DSc, DSd, DWc, DWd

Arctic Tundra ET

Icecap EF

Table 2. Breakdown of the streamlined classification scheme and the assignment of traditional classifications within the new scheme.

CMIP6 model data was regridded to 0.5˚ by 0.5˚, the same spatial resolution as CRU TS observations. Antarctica was

excluded as observations are limited in this region, and we do not expect substantial changes in bioclimatic classification in100

this region.

The model output data is typically at a coarser resolution than the underlying 0.5˚ climatology. The anomaly corrected fields

therefore contain spatial variability that is solely due to the underlying climatology at scales which are not resolved by a model.

This also implies that the diagnosed changes in bioclimatic types (which are dependent on the model anomalies) tend to be

somewhat smoother at these finer spatial scales.105

2.3 Model performance assessment

Comparison of KG observed classifications with the CMIP6 models simulated classifications is made for the years 1901-2014.

To reduce the effect of short-term variability model and observational data are smoothed with a 30 year centred rolling mean.

The ability of individual models in the CMIP6 ensemble to simulate KG classifications of observational data during the

historical period is assessed in two ways: (i) Percentage land area that a model has correctly classified for each year rela-110

tive to observations. (ii) Percentage change in land area classification at each year compared to the initial mean 1901-1931

classifications.
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Model Institution Frequency Nominal Resolution Publication

CanESM5 CCCma mon 100 km
(Swart et al., 2019d)

(Swart et al., 2019a)

CanESM5-CanOE CCCma mon 100 km
(Swart et al., 2019c)

(Swart et al., 2019b)

CESM2 NCAR mon 100 km
(Danabasoglu, 2019b)

(Danabasoglu, 2019a)

CESM2-WACCM NCAR mon 100 km
(Danabasoglu, 2019c)

(Danabasoglu, 2019d)

IPSL-CM6A-LR IPSL mon 100 km
(Boucher et al., 2018)

(Boucher et al., 2019)

UKESM1-0-LL Met Office Hadley Centre mon 100 km
(Tang et al., 2019)

(Good et al., 2019)

ACCESS-CM2 CSIRO-ARCCSS mon 250 km
(Dix et al., 2019b)

(Dix et al., 2019a)

AWI-CM-1-1-MR NCAR mon 100 km
(Danek et al., 2020)

(Semmler et al., 2019)

CAS-ESM2-0 UCI mon 100 km
(Chai, 2020)

(Cas, 2018)

EC-Earth3 EC-Earth-Consortium mon 100 km
(EC-Earth-Consortium, 2019b)

(EC-Earth-Consortium, 2019a)

EC-Earth3-Veg EC-Earth-Consortium mon 100 km
(EC-Earth-Consortium, 2019d)

(EC-Earth-Consortium, 2019c)

TaiESM1 AS-RCEC mon 100 km
(Lee and Liang, 2020b)

(Lee and Liang, 2020a)

Table 3. Details of the models used in this study.

2.4 Maps of KG classification versus global warming

Future KG classification maps under 1.5, 2 and 4K of annual mean global warming above reference period levels were created

from the CMIP6 ‘ssp585’ 2015-2100 future scenario. We used ssp585 because all models pass 4K under ssp585, which enables115

us to define changes in bioclimatic zones consistently for these different levels of global warming.

The timing of each warming level is found from the centred 30 year annual mean global surface air temperature above

the model’s reference temperature, here defined as 1901 – 1931. Monthly mean anomalies of precipitation and surface air

temperature are calculated relative to this same reference period. Model outputs are anomaly corrected to agree with the

observational over the period 1901-1931. This is done by calculating anomalies relative to that period for each model and then120
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adding these anomalies to the observational climatology. Multi-model ensemble mean KG classification maps are calculated

using the multi-model ensemble mean of the anomalous temperature and precipitation fields at each warming level. As usual

in climate modelling, we focus primarily on the ensemble mean, although we note that ensemble mean and ensemble median

climates have been found to be very similar (Sillmann et al., 2013; Kim et al., 2020; Li et al., 2021). These maps are hatched

to indicate where models disagree on the classification. A grid point is hatched if less than 66% of the models agree on the125

classification at the point.

3 Results and discussion

3.1 Model performance assessment

To gain insight into the behaviour of individual models, we create KG maps of individual models and compare these with maps

derived from the observed climate. As expected, there is variation in the classification distribution of models and the observa-130

tional data. For example, desertification in the Amazon is apparent in CanESM5 and CanESM5-CanOE models (Appendix A).

This may show that these models have a tendency towards reduced precipitation in the tropics when compared to other models.

Another area of disagreement between the models is the change of biome classification in northern Eurasia and America at

various levels of global warming. The multi-model ensemble mean model state however reduces the effect of individual model

discrepancies and compares favourably with observations.135
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Figure 1. The percentage land area change in K-G classification for each model versus year through the 20th century (without anomaly

correction). The equivalent trajectory based on the observed climate is shown for comparison in dark-grey. The dotted line shows the

trajectory derived from the ensemble mean climate .
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Figure 2. The percentage land area correctly classified (without anomaly correction).

In Figure 1 simulated classification changes from the CMIP6 historical runs are compared to those calculated from the

observed climate. The CMIP6 models broadly capture the degree of expected global classification change. All models show a

similar behaviour – a large change in classifications at the start of the observed period until 1940, the mid-century then presents

an approximately constant set of classification with very little change until 1980, where again all models display further changes

in climate classification. Although the multi-model ensemble mean follows the same pattern as the individual models and the140
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observational data, it shows a lesser degree of change throughout the observed time period. This reduced variation is inherent

to the nature of this ensemble mean; large changes in individual models have their impact reduced in the meaning process.

This may lead to the multi-model ensemble mean displaying a similar but mitigated and delayed trend ‘lagging’ the individual

models and the observational when creating discrete classes from climate data.

To assess the performance of individual models and their multi-model ensemble mean in classifying the bioclimate distri-145

bution according to observation-based KG for a particular year, the percentage land area correctly classified by each model

every year according to observation-based KG is shown in Figure 2. The results show that the ensemble mean is one of the best

performing for classification. This is in contrast to Figure 1 which showed the ensemble mean was one of the worst performing

for classification change. The reason is also likely due to the reduced variation in data resulting from the averaging process in

the creation of the multi-model ensemble mean dataset. The impact of ‘extreme’ values present in each model are averaged out150

in the multi-model ensemble mean provided they are distributed around the ‘true’ climate values. This would suggest that for

individual time points, the ensemble mean is likely to provide the the most reliable projection. The results from Figure 1 and

Figure 2 give insight into the behaviour of ensemble mean datasets and when their application is appropriate. Traditionally the

ensemble mean has been taken as the most likely scenario and therefore the most representative of the real-world climate. The

results presented here indicate that although the ensemble mean is appropriate for assessing model output at individual points,155

the ensemble mean does not accurately display the variability evident in observed climate data.

3.2 Maps of KG classification versus global warming

Figure 3 shows the multi-model ensemble model mean KG classification for 1.5K, 2K and 4K of global warming above

the reference period, as well as the no warming classifications. Plots for individual models for the reference period without

anomaly correction, and at 1K, 1.5K, 2K, 3K, and 4K of global warming with anomaly correction, are shown in appendix A160

under the traditional scheme, and Appendix B under the streamlined scheme. Comparison to the reference climate suggests

that there could be dramatic changes in bioclimate classification, particularly in the mid- to high latitudes, as the planet warms.

There is less agreement in classification at the boundaries of classified regions, this is expected as the models will likely be

split in classifying grid cells as one of two classifications. These changes become more apparent in Figure 4, which use the

streamlined KG classification scheme and highlights the ten largest bioclimatic shifts for each level of warming. Figure 4 again165

demonstrates less certainty at the classification change boundaries, however the degree of agreement between the models, even

at 4K of warming, is surprisingly high.
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2K above Reference Period

4K above Reference Period
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Figure 3. Maps of the original K-G classifications calculated from the multi-model ensemble mean for the reference period and 1.5K, 2.0K,

4.0K of global warming relative to the reference period. These were calculated from the SSP585 runs by anomaly correcting relative to the

observed reference climate. Hatching is present when less than 66% of models agree on a region’s classification.
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Figure 4. Multi-model ensemble mean difference maps highlighting the ten largest classification changes for 4K of warming above the refer-

ence period using the streamlined classification system. Hatching is present when less than 66% of models agree on a region’s classification

change.
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Figure 5. Multi-model ensemble mean difference matrices highlighting the classification changes for levels of warming above the reference

period of a) 1.5K, b) 2K, c) 4K, using the streamlined classification system.
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These shifts are almost exclusively from wetter and colder classes to drier and hotter ones as the global temperature increases.

This agrees strongly with the results found by Feng et al. (2014), which under CMIP5’s RCP8.5 scenario, suggested bioclimatic

shifts toward warmer and drier types across the global region with climate change. Large areas undergo desertification in the170

southern hemisphere. The majority of North America and Northern Eurasia has a shift towards warmer climates as Sub-arctic

gives way to continental cold summer, and continental cold summer is replaced by continental warm summer. All changes in

classification with the streamlined KG scheme are quantified in Figure 5. Although the KG scheme exclusively maps climate,

the biologic implications of these changes can be seen. The Sub-arctic region has historically been dominated by the boreal

forest (Kayes and Mallik, 2020) though there is evidence suggesting a slow northward migration of non-native warm-adapted175

tree species into historically boreal areas (Viacheslav et al., 2007; Boisvert-Marsh et al., 2014). However, the rate of global

warming far exceeds the rate of boreal migration due to limits on the tree’s ability to migrate (McKenney et al., 2007). With

the continued reduction of the sub-arctic bioclimate we predict a likely continuation of these trends. The indicated shift in the

Amazon from tropical rainforest to savanna can also be seen, an expansion of white-sand savannas in the Amazon has already

been found (Flo, 2021).180

At 4K areas of classification change represent over 33% of land area. The change in % of total land-area in Figure 5c gives

some alarming perspectives, for example, at +4K Arctic Tundra is indicated to cover over a quarter less land-area than in in the

reference period. At 2K the models already project substantial changes to the global distribution of bioclimates; at 4K these

changes become even more pronounced.

In Table 4 we give the percentage change in global land area of each of the streamlined classifications per degree of warming185

assuming the dependence is linear up to 4K of warming. Linear dependence is a good approximation for most classifications

with all but three having r2 > 0.9. The three poorly fitting classifications, those for Mediterranean, subtropical, and continental

cold-summer bioclimates, may be transitory classifications whose peak or minimum land area coverage is within the 4K range

the linear equation is based on. Classifications predicted to decrease in global fraction under global warming (with good r2)

are tropical rainforest, oceanic, sub Arctic, Arctic tundra and icecap, the largest decrease of which globally is sub Arctic190

(2.03 %K−1). Classifications that increase under global warming with good certainty are desert, semi arid, tropical monsoon,

tropical savanna and continental hot-summer with the largest increase predicted to be continental hot-summer (2.18 %K−1).

Raw plots for these fits without lines fitted can be found in Appendix C2.

3.3 Sensitivity of bioclimate to global warming

Figure 6 displays a weakly-saturating increase with global warming, the fraction of land area that experiences a change in195

classification follows Eq. (1):

f = 1− e−k∆T (1)

where f is the fraction of land area that experiences a change in bioclimatic classification, ∆T is the global warming relative

to the reference period climate, and k is a fitting parameter. The mean response across the models suggests a value of k ∼ 0.14

K−1. This was calculated to have a coefficient of determination of 0.84. For the range of global warming of particular interest200
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Classification Change in global land area coverage (%) Coefficient of determination (r2)

per degree of warming (K)

Desert 0.30 %K−1 0.93

Semi Arid 0.35 %K−1 0.94

Tropical Rainforest -0.26 %K−1 0.96

Tropical Monsoon 0.09 %K−1 0.97

Tropical Savanna 1.01 %K−1 0.97

Mediterranean 0.07 %K−1 0.33

Subtropical 0.25 %K−1 0.20

Oceanic -0.35 %K−1 0.94

Continental Hot-Summer 2.18 %K−1 0.98

Continental Cold-Summer -0.25 %K−1 0.21

Sub Arctic -2.03 %K−1 0.97

Arctic Tundra -1.24 %K−1 0.95

Icecap -0.13 %K−1 0.99

Streamlined Total Change 10.85 %K−1 0.99

Traditional Total Change 11.91 %K−1 0.97

Table 4. Percentage change in the global land area of each of the streamlined classifications per degree of global warming. Change is based

on linear approximations of results from reference period to 4K of warming
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Figure 6. The percentage of land area projected to see a change in bioclimate as a function of global warming, using the traditional Köppen-

Geiger classification with anomaly correction. Note the robust agreement between models, which implies a multi-model ensemble mean

change which is well approximated by: f = 1− e−0.14∆T .
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to the Paris climate agreement (1 to 3 degrees of warming) the land area experiencing a change in bioclimatic classification

is approximately 13% of the global land per Kelvin of global warming. The total land area (neglecting Antarctica) is approxi-

mately 146 million square kilometres, so this implies a bioclimatic change for 18.9 million square kilometres of land per degree

of warming between 1K and 3K. This highlights the benefits of keeping global warming to 1.5K as opposed to 2K of warming,

as the 0.5K difference represents an additional bioclimatic change for over 7.5 million square kilometres of land. These biocli-205

matic changes being increases of 1% in land area of desert, tropical savanna and continental hot summer biomes. Sub-Arctic

and Arctic tundra decrease by 1 and 0.7% respectively. Between 1.5K and 2K there are relatively small or no changes between

the remaining classifications in figure 5a and figure 5b.

Previous studies of classification change with global warming have been regional, studies such as Kim and Bae (2021)

suggest a classification area change of approximately 15% of Asian monsoon regions at 2K of warming, regional assessments210

at the equator or in the southern hemisphere are likely to under represent global changes in classification however as the

majority of classification change is predicted to be north of 30°N (Feng et al., 2014). A quantitative distribution of climate

classification changes between global warming levels of 1.5K and 2K can be seen in Appendix C (note that this breakdown

uses the streamlined KG system and subsequently will not represent all changes included in Figure 6).

4 Conclusions215

Despite the difference in climate projections for given greenhouse gas emissions, we present strong evidence that climate

models agree well on the extent of bioclimatic change the global land-surface will undergo per degree of global warming. The

Köppen-Geiger scheme has been used to present the impact of global warming at 1.5K, 2K, and 4K of warming above reference

period levels in the form of climate maps – showing the global distribution of bioclimates, and as graphs and classification

change matrices, at various levels of warming.220

Bioclimate classifications are fundamentally climate classifiers, but they are designed to represent and correlate with biome

distribution. In this way the warming maps and classification changes represent tangible shifts in the global distribution of

ecosystems, giving insight into the nature of Earth at various levels of warming. This paper also uses the Köppen-Geiger

scheme as a method for climate model verification which is relevant to the impacts of climate change on ecosystems. The

Köppen-Geiger maps at levels of global warming demonstrate the impact that climate change could have. The transition225

matrices present an easily interpretable method for understanding and quantifying the scale of all classification changes. The

results presented by the maps and matrices predict large changes in global bioclimate distribution, with hotter, drier bioclimates

expanding and colder, wetter bioclimates shrinking and moving further towards the poles.

The combination of the techniques presented in this paper indicate that the impact of global warming on KG bioclimates

is roughly linear for levels of warming between 1 and 3K. We find that 13% of land could experience a substantial change in230

bioclimate per oC of global warming.
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Data availability. Based on publicly available CMIP6 data
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Figure A1. Maps of KG classifications for each model for the reference period (1901 - 1931), without anomaly correction.
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Figure A1. Continued.
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Figure A2. Maps of KG classifications for each model at +1K, with anomaly correction.
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Figure A2. Continued.
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Figure A3. Maps of KG classifications for each model at +1.5K, with anomaly correction.
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Figure A3. Continued.
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Figure A4. Maps of KG classifications for each model at +2K, with anomaly correction.
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Figure A4. Continued.
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Figure A5. Maps of KG classifications for each model at +3K, with anomaly correction.
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Figure A5. Continued.
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Figure A6. Maps of KG classifications for each model at +4K, with anomaly correction.
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Figure A6. Continued.
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Figure B1. Maps of streamlined KG classifications for each model for the reference period (1901 - 1931), without anomaly correction.

28



CAS-ESM2-0 EC-Earth3

EC-Earth3-Veg TaiESM1

Ensemble Mean Observational

Desert

Semi-Arid

Tropical 
Rainforrest

Tropical 
Monsoon

Tropical 
Savanna

Mediterranean

Subtropical

Oceanic

Continental 
hot-summer

Continental 
cold-summer

Sub Arctic

Arctic Tundra

Icecap

Figure B1. Continued.
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Figure B2. Maps of streamlined KG classifications for each model at +1K, with anomaly correction.
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Figure B2. Continued.
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Figure B3. Maps of streamlined KG classifications for each model at +1.5K, with anomaly correction.
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Figure B3. Continued.
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Figure B4. Maps of streamlined KG classifications for each model at +2K, with anomaly correction.
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Figure B4. Continued.
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Figure B5. Maps of streamlined KG classifications for each model at +3K, with anomaly correction.
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Figure B5. Continued.
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Figure B6. Maps of streamlined KG classifications for each model at +4K, with anomaly correction.
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Figure C1. Land area bioclimate classification change between 1.5K and 2K of global warming.
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Appendix D
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Figure D1. Land area distribution of individual streamlined classifications, Classifications that show large growth in their coverage include

Continental hot-summer and Tropical Savanna. Classifications that show major reductions include Icecap, Arctic Tundra, and Sub Arctic.
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