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Abstract. Satellite microwave remote sensing techniques can be used to monitor vegetation optical depth
(VOD), a metric which is directly linked to vegetation biomass and water content. However, these large-
scale measurements are still difficult to reference against either rare or not directly comparable field
observations. So far, in-situ estimates of canopy biomass or water status often rely on infrequent and time-
consuming destructive samples, which are not necessarily representative of the canopy scale. Here, we
present a simple technique based on Global Navigation Satellite Systems (GNSS) with the potential to
bridge this persisting scale gap. Because GNSS microwave signals are attenuated and scattered by
vegetation and liquid water, placing a GNSS sensor under a vegetated canopy and measuring changes in
signal strength over time can provide continuous information on VOD, and thus on vegetation biomass
and water content. We test this technique at a forested site in Southern California for a period of 8 months.
We show that variations in GNSS signal to noise ratios reflect the overall distribution of biomass density
in the canopy and can be monitored continuously. For the first time, we show that this technique can
resolve diurnal variations in VOD and canopy water content at hourly to sub-hourly time steps. Using a
model of canopy transmissivity to assess these diurnal signals, we find that temperature effects on the
vegetation dielectric constant, and thus on VOD, may be non-negligible at the diurnal scale or during
extreme events like heatwaves. Sensitivity to rainfall and dew deposition events also suggests that canopy
water interception can be monitored with this approach. The technique presented here has the potential to
resolve two important knowledge gaps, namely the lack of ground truth observations for satellite-based

VOD, as well as the need of a reliable proxy to extrapolate isolated and labour-intensive in-situ
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measurements of biomass, canopy water content, or leaf water potential. We provide recommendations
for deploying such off-the-shelf and easy-to-use systems at existing ecohydrological monitoring networks

such as FluxNet or SapfluxNet.

1. Introduction

Complementary to observations in the visible and near-infrared spectrum, microwave-based remote
sensing of the vegetation can be used to obtain information on aboveground biomass and vegetation water
content (Konings et al., 2019;Frappart et al., 2020). Such information is essential to improve our
understanding of how ecosystems respond and adapt to both natural and anthropogenic changes, including
for instance droughts, deforestation, or global warming. However, while satellite products can provide a
global picture, their algorithms also need to be calibrated and evaluated against other reference
measurements, thus raising the need for ground truth observations. In the case of vegetation optical depth
(VOD), which is one of the main microwave observables for vegetation, a network of continuously
gathered ground truth data does not exist yet (Li et al., 2021). In this introduction, we provide a quick
introduction to microwave observations, highlight current applications of VOD, and review recent
attempts to compare satellite VOD against other data. We then present a ground-based technique relying
on Global Navigation Satellite Systems (GNSS) with the objective to address the lack of ground-based
VOD observations.

Microwave remote sensing methods are broadly categorized as either passive or active. Passive
instruments (like radiometers) measure the amount of microwave radiation that is naturally emitted by
the Earth, whereas active instruments (like radars) transmit a specific radio signal and measure the
properties of the backscattered (reflected) signal. In both cases, the measured signals (brightness
temperature or backscatter) depend on various factors, but in particular on the emissivity/reflectivity of
the surface, and the transmissivity (y) of the vegetation, which acts as a layer of temporally changing
opacity between the ground and the atmosphere. The transmissivity of vegetation is typically controlled
by factors influencing both its dielectric constant (e.g. vegetation water content and temperature) and its
structure (density, shape, size, and distribution of the vegetation elements in the canopy). The vegetation
2
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optical depth (VOD) is a single parameter condensing all these different contributions and, in combination
with the incidence angle (), is used to express the canopy transmissivity as a function of the incidence

angle:

-VoD

y = @ cosé (1)

This formulation of the transmissivity is the expression of a Beer-Lambert’s law, where VOD represents
an attenuation coefficient (specific to the observation wavelength and polarization) and the term 1 /cos 6

accounts for the path length through the canopy, such that VOD (as defined here) only relates to the

(a supprimé: as

vertical path. Higher VOD values indicate that the canopy is less transparent to electromagnetic waves.

It is worth noting that this definition of VOD is mainly inherited from the perspective of microwave
remote sensing algorithms, where VOD has to be estimated in order to obtain other variables of interest
such as soil moisture (Jackson et al., 1982;Jackson and Schmugge, 1991;0we et al., 2008). Because both
field campaigns and theoretical considerations showed that in-situ estimates of VOD can be related to
vegetation water content and biomass (Ulaby and Jedlicka, 1984;Schmugge and Jackson, 1992;Paloscia
and Pampaloni, 1992), this sparked interest in the development of more robust and long-term estimates
of satellite-based VOD. Global maps of VOD have since become available from numerous satellite
microwave sensors (Moesinger et al., 2020;Chaubell et al., 2020) but can hardly be validated, as
systematic ground-based VOD observations do not exist at the moment. Only a few studies have managed
to compare satellite-based VOD against in situ observations. Most notably, Tian et al. (2016) have found
a good agreement between satellite-based VOD and in situ measurements of green biomass in African
Sahel. Instead, the majority of studies assessing or using satellite-based VOD have relied on comparisons
with other remotely sensed variables (e.g. Grant et al., 2016) or model-data fusion products. For instance,
Rodriguez-Fernandez et al. (2018) have compared VOD from the SMOS satellite against optical
vegetation indices, lidar tree height and different aboveground biomass benchmark maps. Consistent with
other studies , their results show that VOD is often a better proxy for tree height and biomass, compared
to optical greenness indices (such as NDVI or EVI). Thus, VOD has been increasingly used to monitor
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changes in aboveground biomass and terrestrial carbon sequestration at the inter-annual and seasonal time

scales (Brandt et al., 2018;Wigneron et al., 2020;Fan et al., 2019).

In addition to providing information on long-term biomass changes, VOD has also been shown to exhibit
significant short-term variability, which is thought to be related to changes in relative vegetation water
content (Feldman et al., 2021). Using observations from the AMSR-E satellite, Konings and Gentine
(2016) found significant variations between midnight and midday VOD which may put an invaluable
constrain on plant response to water stress at the ecosystem-scale (Lee et al., 2013;Konings et al., 2021).
Further studies also highlighted intercepted water (due to either rainfall or dew) as a potential factor
explaining diurnal variations in VOD (Xu et al., 2021). Using a ground-based radiometer, Holtzman et
al. (2021) showed that VOD variations over the course of a day could be linearly related to in-situ
measurements of leaf water potential. This is consistent with a previous study by Momen et al. (2017)
which found good agreement between satellite-based VOD and leaf water potential measurements across
three different U.S. sites. Measurements with active microwave sensors have also shown that radar
backscatter exhibits diurnal variations which can be related to both dew and relative water content

(Vermunt et al., 2021;Konings et al., 2017b).

Considering some advantages of microwave-range compared to visible-range observations!, such studies
have demonstrated the interest of VOD for monitoring vegetation dynamics from space (Konings et al.,
2021). However, they have also revealed our limited ability to (1) validate space-borne VOD observations
and (2) disentangle the multitude of factors which may affect them across a wide range of ecosystems
and climatic conditions. Established eco-hydrological measurement networks (e.g. FluxNet or
SapFluxNet) can provide most of the necessary collocated observations in terms of meteorological

parameters, water fluxes, canopy structure, and biomass (e.g. Momen et al., 2017), but only few of these

! Microwave remote sensing has two key interesting properties, first it is relatively independent of cloud cover and solar
illumination conditions, second it is not only sensitive to the surface of the observed material but also to its content, up to a
certain penetration depth. Drawbacks include a lower energy and longer wavelength, which usually translates into coarser
spatial and/or radiometric resolutions, and some difficulty in disentangling the many different factors contributing to the
measured signal (i.e. the ground versus the vegetation contributions, the surface roughness, the material’s temperature, and its
moisture content).
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sites have ever been equipped with microwave radiometers or active radars, and if so, usually for limited
periods of time. Yet, continuous in-situ VOD observations at these sites could also serve as a particularly
useful indirect proxy to interpolate and gap-fill the sparse and labour-intensive measurements of biomass
and leaf water status. There is thus a need for a cheap and robust method to obtain ground-based VOD

measurements over a wide variety of already monitored sites.

Here, we propose to use microwave signals from existing Global Navigation Satellite Systems (GNSS)
to monitor the transmissivity and VOD of a vegetation canopy. The experimental setup consists in a pair
of GNSS receivers, one placed on a tripod below a forest canopy, and one located above the canopy with
an unobstructed view of the sky (Fig. 1). Here, canopy is understood as the portion of vegetation lying
above the sensor (in our case, this excludes the forest floor and ground vegetation). The main idea is that
the difference in measured signal strength between the two instruments will yield information on the
opacity of the canopy. Fortunately, many survey-grade GNSS receivers available on the market can be
configured to log signal strengths, making it relatively easy to implement such a system. The GNSS
microwave signals fall in the L-band (1-2 GHz), similar to frequencies used by the SMOS and SMAP
satellites for calculating VOD. Nowadays, four major GNSS constellations (GPS, GLONASS, Galileo,
and BeiDou) represent about a hundred of orbiting satellites, such that about 20 to 40 satellites may be
visible and individually tracked from the ground at any given time and from any location in the world.
Set-ups similar to the one shown in Fig. 1 have been tested before, for instance Rodriguez-Alvarez et al.
(2012) used it to estimate the canopy water content of a walnut tree stand and Camps et al. (2020) used it
to estimate VOD in a beech forest and make comparisons with optical indices. Kurum and Farhad (2021)
also tested it with mobile GNSS antennas and Zribi et al. (2017) used it to monitor sunflower canopies.
Over the last decades, GNSS-based monitoring of the Earth’s surface has been demonstrated in a wide
variety of domains ranging from oceanography to hydrology. While we rely here on the attenuation of
the direct GNSS signal through the canopy, it is worth noting that other GNSS-based techniques, such as
GNSS reflectometry, have been used to monitor soil moisture, snow height, vegetation water content, and
biomass (Larson et al., 2009;Small et al., 2010;Chew et al., 2014;Egido et al., 2014;Larson, 2016;Chew
and Small, 2018;Ruf et al., 2018;Santi et al., 2019;Carreno-Luengo et al., 2020;Guerriero et al., 2020;Pan
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et al., 2020;Munoz-Martin et al., 2022). GNSS reflectometry relies on GNSS signals that are reflected

from the Earth’s surface and which are weaker than the open-sky GNSS signals used as reference here.
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140  Figure 1. Instrument setup for measuring GNSS-based VOD. Each instrument consists of an antenna and a GNSS receiver.

The goal of this study is to demonstrate the potential of ground-based GNSS receivers for monitoring
VOD, dry aboveground biomass, and water content continuously. In Section 2, we describe the
measurements conducted at the study site and outline a simple canopy transmissivity model which is later
145 wused to estimate canopy density and water content from VOD measurements. Section 3 presents the raw
GNSS measurements and the processing approach used to transform these into a canopy-averaged VOD
time series. Section 4 compares the obtained seasonal and diurnal VOD time series against other in-situ

and satellite measurements. Section 5 provides an example of retrieval algorithm for aboveground

Ca supprimé: analysed

N AN




155

160

165

170

175

biomass and canopy water content. Finally, section 6 summarizes the main conclusions and provides

some recommendations with respect to future deployments at existing ecohydrological sites.

2. Data and methods
2.1 Site set up

The experiment consists of a reference site which has an unobstructed view of the sky, and a forested site
which is located under a semi-closed forest canopy (Fig. 1). The open-sky reference site is located on the
roof of a building of the California Institute of Technology in Pasadena, California (34.13624°, -
118.12693°), and the forested site is located in the Huntington Library botanical garden, some 1.7 km
away (34.12404° -118.11582°). The forested site is non-irrigated, with trees of about 5 to 15m height.
Tree species surrounding the antenna are mainly Coast Live Oaks (quercus agrifolia Née) and the
understory is herbaceous. The overall climate is Mediterranean with weather conditions usually clear,
daily maximum temperatures between 25°C and 35°C, and low relative humidity. At each site a Septentrio
PolaRx5e GNSS receiver, connected to a PolaNt-x MF right-hand circular polarized (RHCP) GNSS
antenna, measured multi-constellation (GPS, GLONASS, Galileo, BeiDou) GNSS signals over the period

of May 13 to December 10, 2020, with a logging rate of 15 seconds. Power loss at the site from June 15"
to July 1% caused a data gap of 17 days. The raw GNSS data was quality-checked using the ‘teqc’ pre-

processing software, publicly available at the UNAVCO website (www.unavco.org/software). The

satellites’ azimuth and elevation angles are also computed with teqc. Weather data is measured at the
reference site by a station of the Total Carbon Column Observing Network (http:/tccon-
weather.caltech.edu/). Weather data acquisition was interrupted from July 15% to 26%. Rainfall was
measured with a tipping-bucket at the DPW HQ station (Skm from the forested site) by the Department
of Public Works of the City of Los Angeles (https://dpw.lacounty.gov/wrd/rainfall/).

2.2 Leaf water content

Forty-eight leaf samples were collected from two live oaks closest to the GNSS antenna on October 18,
2020, at 7am, 12pm and 5pm using a 2m long pruner. For each tree we equally sampled the same three

different parts of the crown. Unless otherwise stated below, we followed the protocol advised in Mullan
7
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and Pietragalla (2012). Leaves were weighed on-site immediately after being sampled (fresh weight; FW)
and stored individually in cooled glass vials. They were then transported to the lab where about 1 cm of
water was added to each vial to cover the leaves’ petioles. Turgid weight (TW) was measured after 12
hours in a refrigerator (and in darkness). Then, the leaves were dried at 80°C for a period of 24 hours,
after which dry weight (DW) was measured. Relative leaf water content (RLWC, in percent) is calculated

as.

FwW-DwW
TW-DW

RLWC =

-100 )

We also calculate the gravimetric moisture content of the leaf (my, in g g!), a variable that is later used

to model the leaf dielectric constant.

FW-Dw
my=———
Fw

3)

2.3 Canopy transmissivity model

We use a dielectric mixing model of the canopy transmissivity to investigate the potential roles of canopy
volumetric density, water content, and temperature on the GNSS-based VOD measurements. We use a
relatively simple formulation which only considers the attenuating effect of the canopy on the direct signal
power and represents the canopy as a homogeneous layer, assumed to consist of randomly distributed
elements (Ulaby and Jedlicka, 1984;Ulaby and Long, 2014;Guglielmetti et al., 2007). The transmissivity
of the canopy is expressed as a function of a bulk canopy extinction coefficient (x,), canopy height (h, in

meters), and the incidence angle.

—2kKeh

Yy = e cosé (4)

We define a fixed average canopy height of 7 meters based on field observations. Neglecting scattering,
the extinction coefficient is related to the complex index of refraction of the canopy layer (n) (Ulaby

and Long, 2014).

_2T

ke =20m; 5)
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where A, is the free-space wavelength (in meters). Note that this formulation and the overall concept of
bulk coefficients is applicable only when the inclusions in the canopy (i.e. the pockets of water within the
vegetation tissues) are smaller in size compared to the observation wavelength (here 1, = 19 cm for the
GPS L1 frequency), so that scattering effects are small enough to be neglected (also see Jackson and
Schmugge, 1991;Ulaby and Long, 2014). While this may be true for leaves, this assumption may not hold
for larger elements such as branches and trunks. However, using a more complex theoretical scattering

model, Guerriero et al. (2020) showed (for the case of a poplar forest) that the RHCP GNSS signals

(a supprimé: right-hand circular polarized (RHCP)

measured below a forest canopy are dominated by coherent attenuation whereas only the left-hand circular
polarized (LHCP) signals (which most geodetic ground-based GNSS antennas are designed to reject) are
dominated by volume scattering. The complex index of refraction is calculated from the dielectric

constant of the canopy layer (g.) (Ulaby and Long, 2014).

ng = —Zm{ JEE} 6)
The canopy is constituted of two main phases; the surrounding air, which makes up most of the canopy
volume, and the vegetation material. The dielectric of the canopy &, is calculated using a two-phase
refractive mixing approach (Ulaby and Long, 2014, Eq. 4.45).
JEe = Vveg fEveg + (1 Vreg) fEair @)
where v, represents the vegetation volumetric density, a parameter that may vary as a function of the
growth cycle and is defined as the volume fraction of the vegetation material within the canopy (on the
order of 0.0001-0.01 m3/m?). This parameter is not to be confused with other measures of vegetation
density like crown volume (i.e. including empty space) per m? for instance. The term (1 - v,,eg) \/a is
practically equal to 1 with no imaginary part such that Eq. 7 can be rewritten as (Ulaby and Long, 2014,
Eq. 11.89).
ny =~ —im{\/%} Vpeg 8)
The dielectric of the vegetation (&,¢4) incorporates a real and an imaginary part, namely the dielectric
permittivity and the dielectric 10ss (€yeg = €peg — i€1eg). Both depend on various factors, but most
importantly on the considered wavelength, the vegetation water content, as well as the plant water’s

temperature and ionic conductivity. Here we model &,4 using the semi-empirical model for vegetation
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introduced by Ulaby and El-rayes (1987) and valid over the range 0.2-20 GHz. This model is derived
from an observational dataset of corn leaves, and has been successfully used for a wide range of species,
including trees (e.g. Chuah et al., 1995). The model expresses the dielectric of the vegetation €,.4 as a
function of its gravimetric moisture (my), its temperature, and its salinity. The numerous equations are

not reported here but can be found for instance in Ulaby and El-rayes (1987) and,Ulaby and Long (2014).

(a supprimé: ,

The purpose of the transmissivity and dielectric models described above is to provide a simple estimate
of the potential effects of canopy density, temperature and water content changes on canopy
transmissivity. It is important to note that this simple formulation neglects several aspects, including
volume scattering, which may be important in configurations with denser biomass (and also when

interpreting LHCP backscatter or LHCP signals). In Fig. 2, we illustrate the modelled VOD response (at

(a supprimé: R

the GPS L1 1.575 GHz frequency) to potential changes in vegetation water content, temperature, and
vegetation volumetric density. As expected, an increase in vegetation moisture content (Fig. 2a) leads to
a substantial increase of the vegetation’s dielectric permittivity and dielectric loss, which results in a lower
canopy transmissivity. Temperature influences the vegetation’s dielectric properties as well, although less
markedly (Fig. 2b). The ionic conductivity of the plant water is the main factor explaining the slight
dependency of the loss factor (and of VOD) to the temperature. Finally, vegetation volumetric density
within the canopy is also a parameter that strongly controls the transmissivity (Fig. 2c). Note that the
shape of these response curves (the response to temperature in particular) may change depending on the

considered frequency.
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Figure 2. Modelled VOD at the GPS L1 frequency (1.575 GHz). a-b) modelled responses of canopy VOD and the vegetation
material’s dielectric properties to changes in gravimetric moisture content and temperature. The bold lines in (a) are obtained
assuming a temperature of 10°C, with thin lines indicating 10°C increments. The bold lines in (b) are obtained assuming a
gravimetric moisture content of 0.4 gg', with thin lines indicating 0.1 gg' incr ts. ¢) delled resp of canopy VOD to
vegetation volumetric density. Canopy height is fixed at 7 meters and salinity to 8%e..

3. GNSS data processing
3.1 Raw SNR observations

Most survey-grade GNSS receivers commonly register signal-to-noise ratios (SNR, in decibel) which
express the magnitude of the received signal power from each satellite compared to the background noise
(Bilich et al., 2007). The quantity logged by the Septentrio receiver is the carrier-to-noise density ratio
(C/No a 1-Hz bandwidth (Larson and Nievinski, 2012).

The hemispherical plot in Fig. 3a illustrates the SNR values measured over the course of one single day

which we report as SNR for simplicit

assumin,

at the reference (open-sky) station for just one satellite of the GPS constellation (PRN2). GNSS satellites
are commonly identified by their pseudorandom code (PRN) which allows the receiver to determine
which satellite is being tracked, such that its azimuth and elevation can be calculated. Individual satellite
tracks repeat after a period that depends on the GNSS constellation (e.g. twice per sidereal day (23h56)
for GPS and every 10 sidereal days for Galileo). As is very commonly observed, the SNR increases as

the satellite rises up above the horizon (12PM mark), reaches its peak value at maximum elevation (2PM
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mark), where the antenna gain is the strongest, and decreases again until the satellite disappears from
view (5PM mark). As can be seen from Fig. 3b, the same satellite track observed from the forested site
shows numerous drops in SNR. Assuming a comparable level of background noise at the two sites, the
SNR difference between the two sites (ASNR, Eq. 9) reflects, for the most part, the transmissivity of the
canopy, expressed in decibels. As expected, it is mostly negative (Fig 1c-d), indicating attenuation by the

forest canopy.

ASNR = SNRForested - SNROpenSky (9)

Combining all available data (May to December 2021) from 102 individual GNSS satellites, we produce
a hemispherical map of the average ASNR (Fig. 4a), which matches the overall distribution of canopy
density as seen from the antenna location (Fig. 4b). Note that absolute SNR values vary from spacecraft
to spacecraft, as those have different (and occasionally time-varying) transmit powers. It is thus very
important to first pair the individual SNR measurements taken by the two receivers and only then, average

any ASNR values.
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It should be noted that while the SNR measurement is dominated by the contribution of the direct (line of
sight) signal, it also includes a comparatively weaker contribution from volume scattering and indirect
ground multipath reflections (Bilich et al., 2007;Smyrnaios et al., 2013), the latter of which may contain

information on soil water status for instance (Larson, 2016). Ground mpultipath often manifests itself as a

(a supprimé: M

periodic oscillation of the SNR which is caused by the successively constructive and destructive
interference from ground reflections, as a function the satellite’s elevation angle. Such periodic
oscillations, of a few dB, are barely visible for instance in Fig. 3d at the beginning and the end of the
SNRopensky time series (blue curve), where the roof’s floor acts as the reflector. However, while present
in our data, ground multipath represents a signal that is about one order of magnitude smaller than the
attenuations caused by the presence of trees in the line of sight. It is only in some favourable situations
(i.e. flat grasslands, open water bodies, ...), where large flat surfaces surrounding the antenna produce a
coherent structure in ground reflections, that multipath is strong enough to be reliably detected in SNR,
even though our GNSS systems are explicitly designed to reject such signals. Indeed, most geodetic-grade
antennas have metal ground planes and are much less sensitive to the predominantly left hand circular
polarized (LHCP) ground reflections of the transmitted right hand circular polarized (RHCP) signal (note
that in contrast, spaceborne GNSS reflectometry also relies on the LHCP signal). Thus, in our case, the
difference in SNR between the two sites is predominantly due to the attenuation of the direct RHCP signal
by the forest canopy and it is reasonable to assume that ground multipath effects are of second order. This
is also confirmed by a ASNR close to zero in the sky sectors where the canopy is either absent or very
sparse (Fig. 4). It is only when the incidence angle is larger than 80° that the majority of the reflected
GNSS signal is co-polarized (RHCP) (Smyrnaios et al., 2013). As a precaution, we discard all

observations with an incidence angle higher than 80° for the remainder of the analysis.
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Figure 4. (a) Sky plot illustrating the mean SNR difference between the open sky and the forested site for L1/L1C signals (n=2.17-107
observations, taken over an 8-month period). The mean value within each 2-degree equal area sky sector is shown. Some sky sectors

in (a) are obstructed by buildings at the reference site and are thus excluded from the analysis (towards the north-west and north-
east). (b) Hemispheric photograph taken from the perspective of the forested site antenna.

3.2 Transmissivity and vegetation optical depth

After conversion from decibel to linear scale (Eq. 10), the ASNR measurements are used as the
transmissivity estimate, and VOD is calculated from Eq. 11 (Eq. 1). Note that in our case, this represents

L-band VOD at RHCP polarization.

asNR
y=10"10 (10)
VoD = —ln(y) cos 6 (1D

The resulting hemispherical distribution of long-term mean transmissivity and VOD is reported in Fig.
Sa-b. In some cases, the instantaneous transmissivity values computed from the raw GNSS measurements

were higher than 1, leading to a VOD lower than zero,(about 8% of all measurements). This occurs

(a supprimé: ,

because individual SNR measurements unavoidably include some random noise as well as non-random
multipath interferences that can cause the measured signal power at the reference site to be transiently
lower than at the forested site. This especially occurs where there are gaps in the canopy and both antennas
have a clear line of sight to the satellite. To preserve the error structure of the measurements, we propose

to still use these yalues when computing temporal (i.e. daily or hourly) averages later in the paper, so that

(a supprimé: which is unphysical
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positive and negative errors can cancel out, avoiding a potential bias in our estimate of the average VOD
(Fig. 5b). While transmissivity has an obvious dependence on the incidence angle (Fig. 5¢), this is not the
case for VOD (Fig. 5d), as would be expected from Eq. 1. The strong anisotropy of the long-term VOD
pattern (Fig. 5b) reflects the heterogeneous structure of the canopy (Fig. 4b), with local mean VOD values
ranging from 0.16 to 2.46 (1% and 99 percentiles) depending on the azimuth and incidence angle. The
whole canopy average VOD is 0.79, which is similar to what is reported for evergreen broadleaf forests

at L-band (Konings et al., 2017a).
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Figure 5. Sky plot illustrating the mean canopy transmissivity (a) and mean VOD (b). The mean value within each 2-degree equal
area sky sector is shown. (c-d) The box plots show the distribution (5%, 25%, 50, 75™ and 99" percentiles) of all individual
tr issivity and VOD ts (n = 2.17-107) as a function of the incidence angle (relative to zenith).

3.3 Computation of VOD time series

Because changes in VOD over time may provide valuable information on the vegetation’s growth cycle
and water content, it is of great interest to investigate its temporal evolution. However, this is complicated
by the patterns of GNSS orbits, which change continuously. In Fig. 6a, we provide an overview of the
most frequent orbit patterns over our site and their mean revisit time, showing which sky sectors are most
often observed. While it takes about a day on average to cover most of the observable sky sectors (Fig.
6b, red curve), monitoring one specific section of the canopy every 1 or 2 hours would only be possible
over a narrow band where many satellite tracks coincide (Fig. 6a). Note that the location of the highly
sampled band (and the blind spot above it) depends on the site’s latitude (it is closer to zenith at higher
latitudes) and would be located on the opposite side in the Southern hemisphere. In practice, this means
that a continuous (gap-free) and robust VOD time series can only be obtained by aggregating data
collected at different azimuth and elevation angles (i.e. trading angular resolution for temporal coverage).
However, as different cross-sections within Fig. 5b are observed each day, the changing and irregular
sampling of the canopy introduces spurious variability in daily site-averaged VOD. When calculating
sub-daily (e.g. hourly) time series, this problem is even more important and will obfuscate most of the
potential real variability. For example, binning the raw GNSS-based VOD observations into hourly
averages produces a rather noisy time series with just seasonal trends visible (Fig. 7a-b, ‘VOD raw’). This
is because a lot of the variability in “VOD raw’ is caused by the fact that different areas of an heterogenous
canopy are observed every hour. This issue can also be diagnosed quantitatively. For instance, computing
the serial autocorrelation? of the raw VOD time series (Fig. 7¢) reveals periodicities likely not related to
ecohydrological processes but instead caused by the combined repeat times of the different GNSS

constellations.

2 The serial autocorrelation is calculated using the time series shown in Fig. 7a-b and is defined here as the Pearson correlation
coefficient between the time series at time t and t-1, where 1 is the lag.
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370  Figure 6. (a) Sky plot illustrating the mean revisit time (average number of hours until the next overpass within a given sky sector).
This includes the GPS, GLONASS, Galileo, and BeiDou constellations. (b) Average sampling statistics as a function of data

integration time. For instance, 84% of all observable

sky sectors are observed at least once after 24 hours of continuous

measurements (red curve). After 30 days of continuous measurement, 62% of all observable sKky sectors and hours of the day have

been observed at least once (yellow curve).

375

Here, we propose to address this sampling problem by subtracting from each individual VOD observation

the long-term average (similar to what is shown in Fig. 5b) taken at the same azimuth and incidence angle.

The goal is to subtract the angular heterogeneity in VOD, representing the uneven canopy distribution,

and only retain residuals from the locally averaged attenuation (Eq. 12). The long-term average at a given

incidence angle and azimuth (Eq. 13) is calculated inside a neighbourhood N that includes all

380 measurements within some chosen angular distance § from that point of interest (Eq. 14).

residual
VOD(Pi.ei.ti

VoD =

Ni:
385

=VO0D,,q,., — VODgGE" (12)

1

;Z;}:l (VODq;jeNi,ejeNi) (13)
haV(Ai - j) + COS(/L-) COS(A]-) haV(<pi - <pj) < haV(5) (14)

where the terms ¢;, 4;, and t; represent the azimuth, elevation, and time step of the point of interest (for

angles expressed in degrees, 1 = 90 — ). Equation 14 is the condition that determines if measurements

belong to the neighbourhood around the point of interest ‘i’. The left term in Eq. 14 is the formula for the
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haversine of the angle between any two points on a sphere. The right term is the haversine of a chosen

angle 6 which defines the extent of the neighbourhood.

An adequate value for § may be selected based on the autocorrelation of the VOD observations with

respect to the angular distance (Supplementary Fig. 1). The results suggest that there is a high consistency

Ca supprimé: is

of the VOD estimates up to an angular distance of about 0.5° to 1°. Supplementary Fig. 1 also provides
some indication of the repeatability of the measurements when taken at an interval of several days. As
can be expected, observations separated by a longer temporal interval are in lower agreement. The
selection of § is ultimately a compromise between obtaining an accurate long-term VOD average while

still retaining enough observations within the neighbourhood. In our case, we found that § = 0.5° seems

mean

" at each node of a fine
Pibi

to be an adequate value. To avoid excessive computations, we calculate VOD,

mean

hemispherical grid with a spacing of 0.1°. The VODg 5" value closest to each individual VOD,, g, is

then used in Eq. 12. Binning the calculated VOD gesiduals into hourly averages, we produce a processed

Ca supprimé: anomalies

time series of the average VOD (Fig. 7, ‘VOD processed’). To preserve the original absolute level of
VOD, the average VODg %" (across all ¢ and ) is added back to the residual time series (otherwise the
‘VOD processed’ time series would be centred around zero). The serial autocorrelation of that processed

time series (Fig. 7d) is now dominated by a more credible 24-hour cycle.
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Figure 7. (a) Hourly time series of VOD before and after reducing the impact of irregular sampling caused by the GNSS orbit
410 patterns. (b) Zoom on August, showing sub-daily variability in VOD. (c-d) Serial autocorrelation of the raw and processed VOD
time series.

4. GNSS-based vegetation optical depth
4.1 Seasonal changes

In Fig. 8, we compare processed daily VOD averages against other observations. Using quality-checked
415 30-meter satellite images from Sentinel 2 (Claverie et al., 2018), we calculate the enhanced vegetation

index (EVI) (Liu and Huete, 1995) at our site (Fig. 8a). EVI is a commonly used vegetation index and an
20
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overall proxy for vegetation greenness, health, and photosynthetic activity. Generally, we find that the
temporal evolution of VOD appears to lag behind that of EVI by about 2 months. This is consistent with
previous findings over drylands by Tian et al. (2016) who found a temporal shift (increasing as a function
of forest density) between satellite-based VOD and vegetation greenness. They suggest that this may be
explained by the longer growing season and later peak time of woody plants compared to the herbaceous
understory. Similar lags between peak NDVI and peak VOD have been observed in other regions of the
world from satellite data (Wang et al., 2020;Tian et al., 2018). The peak EVI in June coincides with the
maximum in available solar energy (Fig. 8b), and with an increase in VOD which could suggest a build-
up of biomass in the canopy. This is followed by a slow decline in EVI which does not occur in VOD
until the end of August. The gradual decline in vegetation activity and health over the summer is typical
of the region, and mainly a response to the overall increase in water stress resulting from warmer
temperatures, drier atmosphere, and low soil moisture after months with no rainfall. The 2020 summer
culminated with a record-breaking heatwave on September 6 (Fig. 8c), followed by a steady decline in

VOD during fall season where some minor shedding of leaves could be observed at the site.
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Sentinel 2 images (HLS v1.4, 30 meter resolution, https://hls.gsfc.nasa.gov/), (b) Solar and potential solar radiation observed at the
reference site, (¢) Air temperature observed at the reference site, and (d) precipitation totals measured at the closest rain gauge
station.

4.2 Diurnal cycle

Even though processed hourly VOD time series contain a certain amount of noise (e.g. Fig. 7b), they also
show a relatively strong 24-hour cycle (Fig. 7d). One way of obtaining a more robust and precise estimate
of that diurnal cycle is to calculate the average diurnal cycle from data aggregated over a long period of
time, for instance several days or even a whole month. This is what is done in Fig. 9a. The average diurnal
cycle of VOD is consistent with what would be expected from the perspective of plant physiology and its
response to water stress over the course of a typical day. VOD culminates in the early hours of the

morning, at around 5 to 6 AM, indicating a relatively “water-rich” canopy, because leaves and stems have
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been replenished with water overnight, and likely also due to the occasional presence of dew in the
canopy. This peak is followed by a gradual drop after sunrise (at about 6AM), concurrent with the onset
of photosynthesis and transpiration, as well as an increase in vapour pressure deficit (i.e. an increase in
atmospheric water demand). As a result, dew quickly evaporates and the vegetation starts losing more
water through transpiration, thus depleting canopy water content. Around noon, some equilibrium is
reached between plant water losses and plant water supply so that VOD becomes relatively stable. In the
evening, plant rehydration causes VOD to rise back.

A minor peak in VOD is observed at around 3pm, but remains difficult to explain without further
evidence. That peak might indicate a brief period of canopy rehydration, documented for instance in
Douglas firs (Cermak et al., 2007, their Figure 6), resulting from midday stomatal closure (Xiao et al.,
2021). The associated “midday depression” of transpiration and photosynthetic rates has been widely
documented (e.g. Faria et al., 1996;Kamakura et al., 2011). However, theory (Fig. 2b) also predicts that
VOD could slightly increase in response to higher canopy temperature, which would peak at about that

time of the day. In Section 5.2, we present an attempt to disentangle these two possible contributions.

Overall, our results agree with previous observations of a diurnal cycle in VOD and backscatter (e.g.
Konings et al., 2017b;Holtzman et al., 2021;Vermunt et al., 2021;Prigent et al., 2022). Such diurnal VOD
changes are consistent with our knowledge of canopy water storage dynamics, as derived from either
continuous direct measurements (Zhou et al., 2018), or from the imbalance between plant water losses
(i.e. transpiration) and plant water supply (i.e. measured with sap flow sensors) (Kocher et al.,
2013;Cermak et al., 2007). The leaf samples collected on the site in October also confirm that some intra-
day variability exists in relative leaf water content (Fig. 9b). Monitoring the diurnal cycle of plant water
status is interesting because it can provide key information on plant hydraulic traits (Konings and Gentine,
2016) and enables disentangling the effects of limitations in root water uptake, plant transpiration, and
water redistribution within the plant (Konings et al., 2021). In Fig. 9c, we investigate whether our method
would be able to monitor such physiologically-relevant changes, and in particular here, seasonal changes
in pre-dawn versus midday water status. We find midday VOD to be almost always lower than pre-dawn

VOD, a behaviour that is entirely consistent with field observations of pre-dawn and midday leaf water
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potentials (Martinez-Vilalta et al., 2014). Seasonally, both pre-dawn and midday VOD start to decrease
in September with the start of a very dry period during which VPD remains high even during the night.
Pre-dawn and midday VOD are significantly correlated with each other (r = 0.79), as is frequently
475 observed with leaf water potential, however, we note that this might also occur (at least partly) because
VOD is sensitive not only to relative changes in water content but also to potential seasonal changes in
the absolute amount of biomass present in the canopy (Momen et al., 2017). These mixed contributions
from both absolute biomass and its relative water content are even better illustrated in Fig. 9d, where we
find that the amplitude of the diurnal cycle in VOD becomes larger as denser sections of the canopy are
480 considered.
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Figure 9. (a) Average diurnal cycle for the month of August. Average VOD (black) is shown at a 15-minute sampling rate with
shaded areas delineating the 25" and 75" percentiles. VPD and surface wetness data from the TCCON weather station have hourly

485  resolution. (b) Average diurnal cycle for the month of October compared with in-situ measurements of relative leaf water content.
(c) Daily pre-dawn and midday VOD, calculated using all observations within the window 4AM-6AM and 12PM-2PM respectively.
(d) Diurnal VOD anomaly (centred around zero) measured for progressively denser classes of canopy (based on the long-term VOD
average, see Fig. 5b).
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5. Retrieval of canopy density and water content
5.1 Approach and algorithm

In the following, we demonstrate an approach to retrieve changes in canopy density and water content at
hourly resolution based on the transmissivity model presented in section 2.3. Combining Eq. 1, 4, 5, and

8 we obtain the following expression for modelled VOD:
2 N
VoD, = 2k,h = 27: [—Im{\/e,,ggt}] Vyeg, h 15)
Canopy height h is 7 meters, and A is the free-space wavelength. This leaves as free parameters: Vy,g,,
the time-dependent vegetation volumetric density (in m?m?®), and Eveg, » the time-dependent bulk

dielectric constant of the vegetation, which is itself a function of the (measured) temperature, (unknown)
water content (mg) and (unknown) salinity of the plant water (Ulaby and El-rayes, 1987). A similar
expression may be found for instance in Kerr and Wigneron (1995) or Guglielmetti et al. (2007).

Here, we use the canopy-averaged processed VOD time series (i.e., Fig. 7b) as the observed VOD. This
means that canopy density and water content are assumed to evolve homogeneously over the whole
canopy. If the forest canopy is very heterogeneous, this might not be a suitable approximation. For
instance, some groups of trees may evolve at different speeds, or individual trees may exhibit different
responses to water stress. If this is suspected, a retrieval may be performed for each individual tree,
potentially at the cost of retrieval accuracy since less observations will be available. In practice, this would
mean separating the field of view of the antenna into sub sectors (for instance based on data similar to
Fig. 4) and computing a processed VOD time series for each sub sector. However, and for the sake of
simplicity, this is not done here, and we perform only one retrieval for the whole canopy.

Disentangling the effects of changes in overall biomass density (v,¢,) versus variations of its water
content (m,) is one of the main challenges when trying to interpret and better understand VOD (Momen
et al., 2017;Konings et al., 2019). Because changes in biomass tend to unfold at a much slower pace than
changes in relative water content, a common strategy has been to assume that long-term changes in VOD
are mostly related to biomass, while short-term changes (and especially a diurnal signal) are most likely
due to variations in water content (e.g. Konings et al., 2016). In the retrieval detailed below, we will make

use of this assumption and allow v, to contain only low-frequency (long-term) changes. We also
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assume that the temperature of the canopy can be approximated by the air temperature. While leaf and air
temperatures are not necessarily equal, as documented by many field studies, an error of a few degrees is
negligible for the purpose of calculating &, (Fig. 2b) and our main purpose is only to gain a reasonable
representation of the seasonal and diurnal effects of temperature on the dielectric constant. We also note
that these temperature impacts on the dielectric are often neglected in other studies.

Finally, the plant water salinity is also unknown in our case, but most likely within a range of about 1 to
11 psu according to previous experience (Ulaby and Long, 2014). In the absence of any other data, we
assume that salinity is constant over the whole time period. In our retrieval algorithm, a range of a priori
values for vegetation water salinity is tested and the value yielding the best overall (season) fit to the
observed VOD data is selected as the most plausible. We note that salinity, in the context of the dielectric
model of Ulaby and El-rayes (1987), is meant to account for the ionic conductivity of the plant water (due
to both sugars and salts). Thus, the salinity yielding the best fit might not necessarily reflect the actual
(NaCl) salinity of the plant water.

Below, we summarize the retrieval algorithm step by step. The root mean square error between modelled
and observed VOD is always used as the cost function and optimization at steps #2 and #4 is carried with
a simplex search method. We define the search space for my, the gravimetric moisture content (water
mass / fresh mass), as [0.3, 0.7]. This is guided by the average values measured at the site (m,= 0.45 =
0.02 g g'!), and also by data from Scoffoni et al. (2014) for quercus agrifolia in the Los Angeles area
(mg=0.48 g g'"). The search space for v, (volume of vegetation material per m?) is loosely defined as

[0.0001, 0.01 m® m] based on the indications of Ulaby and Long (2014).

Algorithm
1. Select an a priori value for salinity.
2. For each 24-hour period, optimize v,,.4 (1 value for the entire 24-hour period) together with m,
(24 hourly values). The result is a time series of daily k and hourly m, covering the whole season

(Fig. 10a).
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3. Filter the time series of v, with a low-pass filter. Here we use a local regression filter (LOESS)
with £30 days width (Fig. 10a).

4. Optimize m, using the new v,,,4 values obtained at step #3 (Fig. 10b).

5. Filter the time series of m, to reduce the high-frequency noise. Here we use a LOESS filter with
12 hours width (Fig. 10b).

6. Evaluate the agreement between the modelled and observed canopy-averaged VOD time series

(with v,¢4 and my from steps #3 and #5) and determine an optimal salinity (Fig. 10c).

Because vy, is kept constant only for the duration of a day, there is some high-frequency variability in
the v, time series that is obtained after step #2 (Fig. 10a). These sudden and unrealistic jumps of V¢4
also contaminate the estimates of m, (not shown). These problems are alleviated in step #3, where daily
estimates of v, are low-pass filtered, consistent with the assumption that changes in biomass usually

occur at a relatively slow pace. Note that although calibrating v, over a time period longer than a day

would also smooth the estimate, we found that optimizing v, at a daily time step and then applying a

low-pass filter was much more effective in mitigating the influence of outliers. A new hourly time series
of my is then obtained based on the filtered v, 4 time series in step #4 (Fig. 10b). Because the m, time
series is contaminated by some noise inherited from the VOD observations, some mild smoothing is
applied to my in step #5 (Fig. 10b). Steps #2 to #5 are repeated for different values of salinity and we

retain the optimum of the cost function as the most likely value (Fig. 10c). Here we find an optimum with

a salinity of 8.9 psu, which is a physically plausible value.
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Figure 10. (a) Time series of v,,., after steps #2 and #3. (b) Time series of m, after steps #4 and #5 with a zoom on a short period
for better visibility. (c) Root mean squared error obtained for various salinity values. (d) Scatter plot of the modelled versus observed
VOD. The data shown in (a), (b) and (d) is based on a salinity of 8.9 psu.

Before we interpret these results, some limitations to the presented approach need to be emphasized. First,
the dielectric model of Ulaby and El-rayes (1987) was originally developed for leaves, however, it is clear

that branches and stems also contribute to canopy extinction. To our advantage however, Kurum et al.

Ca supprimé: may

(2009a) have determined with numerical simulations (at L-band) that leaves do have a significant impact
on extinction, while branches have a dominant contribution only in terms of backscatter, and trunks have
anegligible impact on extinction. Steele-Dunne et al. (2012) arrived at similar conclusions and concluded

that leaf moisture is by far the dominant control on vegetation transmissivity at L-band for both

(a supprimé: (
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polarizations, (but see Ferrazzoli and Guerriero (1996) for a different perspective). Observations by
Mitzler (1994) in a deciduous forest also showed a clear dependence of the transmissivity to the presence
or absence of leaves in the canopy. It is assumed that the dielectric model of leaves and its sensitivity to
moisture, temperature, and salinity provides a sufficient approximation for the behaviour of the whole
crown (branches and stems included). However, the impact of intercepted water (due to dew deposition
or rainfall) is not explicitly represented and will thus be compensated for by an overestimation of the
retrieved gravimetric moisture content. There is unfortunately not enough empirical data in our case to

also retrieve intercepted water independently.

5.2 Results and interpretation

In Fig. 11a, the retrieval of gravimetric moisture content (my) is compared against observations of leaves
taken at the site on October 18. There is a bias of 0.04 g ¢! between the retrieval and the observations, a
surprisingly good performance given the assumptions made during the retrieval of mg, and the fact that
a few leaf samples are not necessarily representative of the entire canopy. The relative difference between
dawn and daytime values (about 0.03 g g'') is consistent between the retrieval and the observations. We
also find that the relationship between retrieved hourly m; and VPD becomes narrower (Fig. 11b)
compared to the relationship between hourly VOD and VPD (Fig. 11c). Even though this does not provide
any formal validation of the my retrieval, it does suggest that the retrieval is somewhat successful in
concentrating in my a response to atmospheric water demand that is consistent with observed plant

stomatal behaviour (e.g. Grossiord et al., 2020).
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Figure 11. Retrieved and measured values of gravimetric moisture content (m,) on October 18 (a). Scatter plots of the hourly values
of m (b) and VOD (c) against vapour pressure deficit (VPD), for the month of October (both correlations significant at p<0.01).

Dry aboveground biomass (AGB, kg m™) can be calculated by multiplying the retrieved volume of the
vegetation material (Vpeq - h, m’m?) with the average density of the dry leaf material (pg4,y). Here we use
leaf density to remain consistent with the model’s assumptions, but it is unknown if the density of leaves,
branches, wood, or some weighted average of all three would be more relevant at this stage. We use a

value of pgr, =630 kg m™ reported by Scoffoni et al. (2014) for quercus agrifolia.

AGB = Vveg h Pary (16)

Canopy water content (CWC) is then calculated as follows.

__ water weight _ cwce
my = fresh weight  CWC+AGB an
AGBm
CWe = g 18
(1-mg) ( )

The resulting time series are shown in Fig. 12a. For AGB, we obtain a mean value of 10.9 kg m? with
very little seasonal variations, as may be expected for an evergreen forest. Note that this estimate should
be interpreted with the awareness that VOD-based estimates of AGB likely do not weigh all canopy

constituents evenly. While L-band VOD is gsensitive to leaves, the sensitivity to branches and trunks

Ca supprimé: primarily

Jncreases at lower leaf moisture content (Steele-Dunne et al., 2012), or if leaves are entirely absent of

Ca supprimé: can also

course. Because in situ estimates of AGB are not available at our experimental site, we can only put this
value in context with the literature. Several studies have empirically linked VOD observations to global
AGB datasets that are based on satellite data and forest inventories (Avitabile et al., 2016). For instance,
using the exponential relationship calibrated at L-band by Vittucci et al. (2019), we obtain (for an average
VOD value of 0.79 at our site) an AGB of 13.8 kg m2, not so far from our estimate. Other results from

Brandt et al. (2018) suggest a linear relationship between AGB and L-band VOD, with a sensitivity of
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about 133 Mg ha'! per unit VOD, which would yield an AGB of 10.5 kg m at our site. Thus, existing
empirical relationships between VOD and AGB would suggest that the results obtained with the retrieval
algorithm and its simple model are reasonable.

In terms of canopy water content (CWC), which is a function of both m, and AGB, we find a long-term
mean of 12.1 kg m? at our site. As for AGB, it’s important to keep in mind that the CWC estimate does

not weigh all canopy constituents evenly. In particular, our retrieval assumes that the attenuation is

dominated by small canopy elements, even though the contribution of large elements (like large branches

or trunks) to CWC is likely not negligible. Comparisons with other studies are quite difficult here because

the relationship between VOD and vegetation water content is poorly known for forests. Many studies
over grasslands and croplands have demonstrated an empirical linear relationship of the form VOD = b -
CWC.However, b is also known to be vegetation- and time-dependent (Jackson and Schmugge, 1991;Van
de Griend and Wigneron, 2004) and it has been argued that such a linear relationship is not necessarily
appropriate for forests (Kurum et al., 2012;Le Vine and Karam, 1996). A mean CWC of 12.0 kg m? is in
broad agreement with the few studies which measured forest CWC. Recently, Kurum et al. (2021)
reported 7.3 — 25.6 kg m2 across various plots of a deciduous broadleaf forest in Manitoba (Canada) with
mean height of 10.9 m. Yilmaz et al. (2008) estimated CWC values ranging from about 2 to 10 kg m™? for
adeciduous forest in lowa (USA). In the SMAP soil moisture retrieval algorithm, vegetation water content
values are estimated from NDVI (Chan et al., 2013). Their resulting (unvalidated) global map suggests a
range of 6 to 18 kg m2 for various types of forest biomes.

In Fig. 12b-c, we investigate the temporal consistency (over the whole season) between the retrieved
CWC values at our site and satellite observations of the Normalized Difference Water Index (NDWI)
from Sentinel 2 (Gao, 1996;Claverie et al., 2018). NDWI is a good proxy for vegetation water content
and is based on optical and near-infrared measurements, thus providing fully independent observations
with respect to our retrieval. There are 24 days when NDWI observations are available, not flagged for
cloud cover, and concurrent with a CWC estimate (Fig. 12b). We find a relatively good agreement
between CWC and NDWI (r = 0.70), higher than the agreement between observed VOD and NDWI (r =
0.63). Interestingly, this agreement is quite dependent on the timing of the in-situ CWC (or VOD)
measurement (Fig. 12¢). For instance, comparing the 10:30 AM NDWI with the 12:30 PM CWC (or
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VOD) would yield a substantially lower (and statistically non-significant) correlation of r = 0.30 (0.32 for
VOD). This time-dependence of the agreement is a good indication that the diurnal cycle of CWC is well
captured and that VOD alone is not fully representing its dynamics.

The diurnal dynamics of CWC are particularly strong, with a diurnal amplitude of 3.8 kg m on average,
meaning that 28% of the pre-dawn CWC is depleted over the course of the day (Fig. 12d). Such diurnal
variations may seem important for a forested ecosystem but are not entirely inconsistent with other
studies. Over a corn field in the Netherlands, (Vermunt et al., 2022) observed that midday vegetation
water content was decreased by 10-20% on average compared to pre-dawn levels and even by 35.4% on
a particularly warm day. The results of Mirfenderesgi et al. (2016), who investigated the transpiration and
sap flow dynamics of oaks in New Jersey with a hydrodynamic model, suggest a diurnal amplitude of
about 15% for just stem water storage. Matheny et al. (2017) also reconstructed a diurnal amplitude of
14.6% to 22.3% of the stem water storage from in situ sap flow measurements of red maple in Michigan.
Since our estimate of CWC also likely incorporates an additional contribution from dew (discussed in the

next section), an average CWC amplitude of 28% would not be unexpected.

We find that our retrieval of CWC is slightly lagged compared to the diurnal average VOD cycle (Fig.
12d). This lag is due to the diurnal cycle of temperature and its effect on the dielectric loss (and thus on
VOD), as represented in the dielectric model (Fig. 2b). The effect can also be seen in Fig. 10e which
focuses on the month of August. Here a minor peak in VOD can be observed at about 3PM, in the centre
of the midday depression (also see Fig. 8a). Our retrieval suggests that at least some of this peak is in fact
not related to rehydration but to a peak in diurnal temperature. In Fig. 13, we use the transmissivity model
(Eq. 15) to explore the influence of moisture and temperature on modelled VOD (by enforcing a
seasonally constant value for temperature and gravimetric moisture respectively). As temperature
increases during the day, it increases the dielectric loss and leads to a higher modelled VOD (Fig 13a),
thus counteracting the effect of moisture content changes to some extent. This effect was particularly
pronounced during the heatwave which struck the area from September 5 to 6 (Fig 13b). Here it can be
seen that there is relatively little response in terms of VOD during the heatwave, with even a minor

increase on September 5. Because it is taking the response of the dielectric loss to temperature into
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account, the retrieval algorithm compensates the effect of temperature with a marked CWC drop over that

(a supprimé: nceds to

period (e.g. see Fig. 10a), which makes sense from a physiological standpoint. Indeed, the record-breaking
heatwave was accompanied by VPD values of up to 8kPa on both days (compared to an average of 1kPa
the week before) and it would be very unlikely to see no response of CWC (and VOD) to such a level of
stress.

This modelled response of VOD to high temperatures emerges directly from the dielectric model of Ulaby
and El-rayes (1987). It is also predicted by another semi-empirical dielectric model of leaves proposed
by Matzler (1994), who confirmed such a temperature dependency with seasonal observations made in a
beech forest (although they did not control for potential moisture changes as a covariate). It is very
important to note that, at L-band, the magnitude as well as the direction of the dielectric loss’s dependence
on temperature is dependent on the temperature itself (Fig. 2b). For instance, at temperatures between 0
and 20°C the sensitivity of L-band VOD to temperature is negative (e.g. Schwank et al., 2021). We note
that this temperature dependency can be quite crucial when interpreting water stress from VOD
measurements. As water stress conditions often correlate with warm temperatures, one must be careful in
interpreting VOD time-series over a large dynamic range of canopy temperatures as VOD alone might

lead to unphysical interpretations, in our case an increase of canopy water in the middle of a heat wave.
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a Retrieval of canopy water content and dry aboveground biomass (from VOD)

22 - 12
20 |
o - 11
o« 18 - .
S
g 16 - ‘4 ” 0
gHr ( ~ ‘ M J [ f ‘ (
O ) Hﬂ” “ » | N\ ' JH ‘ J f \ W‘ H W‘ “\ \“
\ il N \ 1 [ ﬂ\ ! \ I HJ o
\ J I \ 1 Rl \ ”l ! \
10~ i “ 1“ }“ J ‘\ 1
| \
8 8
May JuI Aug Sep Nov
b 0.65 CWC compared with NDWI 13 c 09 Correlation of CWC and VOD with NDWI
(\“E 08 Sentinel 2 overpass time
0.64 2 P (10:30 AM)
« 112 = S
- . 0.7
@ 0.63 g i
£ § = r(CWC,NDWI)
S 062 111 o 5 .
(2] o 205 r(VOD,NDWI)
s P 3
0.61 e
=) 110 2 8 04
0.6 | —o— NDWI (10:30 AM) N 5 0.3
—e— CWC (10-11AM average) %
0.59 . . . . d9 O 02/, A
May Jun  Jul Aug Sep Oct Nov Dec 06:00 12:00 18:00
Hour of in-situ VOD measurement
Di | CW 1] th e Di I CWC (A 1]
1 iurnal CWC (all months) 16 iurnal CWC (August) 0.86
IE ‘E 15 CwC
2. 08 2 VoD 0.84
|5 T " ]
g 079 § 2. 082 @
S 12 B 8 5
[} 078 < o 12 shift due to =
® 8 ® Teffect on " 0.8 8
s 1 > Z 11 >
E shift due to 0.77 E 0.78
é T effecton " % 10
o 10 0.76 o 9 0.76
00:00 06:00 12:00 18:00 00:00 00:00 06:00 12:00 18:00 00:00
Hour Hour

Figure 12. (a) Retrieval of canopy water content (CWC) and dry aboveground biomass (AGB). (b) Comparison between NDWI
estimated from Sentinel 2 (HLS v1.4, 30 meter resolution, https:/hls.gsfc.nasa.gov/) and our retrieval of CWC at the same hour as
the Sentinel 2 overpass. (c) Correlation between Sentinel 2 NDWI and CWC / observed VOD at different hours of the day. (d) Long-
term average diurnal cycle of CWC and modelled VOD (as predicted in Eq. 15). (¢) Same as (d) but for the month of August only.
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Figure 13. Counteracting effects of leaf gravimetric moisture and temperature on diurnal VOD changes, as predicted by the
vegetation dielectric model of Ulaby and El-rayes (1987). (a) Modelled diurnal VOD response to leaf moisture and temperature,
averaged over the month of August. The VOD response to gravimetric moisture is estimated by setting temperature to its mean
value in the model (and inversely for the response to temperature) (b) Modelled hourly VOD response to moisture and temperature
in the context of the record-breaking heatwave of September 5" to 6.

5.3 Rainfall interception and dew

The only significant rainfall event during the measurement period occurred on May 18" (Fig. 14a). A
cumulated precipitation amount of 10.2 mm was measured on that day which coincided with an increase
in VOD of about 20% compared to the usual diurnal cycle. Within a few hours following rainfall, this
excess VOD quickly subsided but did not fully disappear until the day after. We could also establish that
signal strength was likely not affected by the presence of intercepted water on the antenna itself
(Supplementary Figure S2). These results indicate that L-band VOD is quite sensitive to intercepted
rainfall, as has been shown with X-band VOD observations from the AMSR-E satellite (Xu et al., 2021)

Ca supprimé:

as could already be inferred from other studies on

and from an in-situ radiometer (Schneebeli et al., 2011). The VOD anomaly also lasted longer compared

to the surface wetness measurements taken at the reference station (Fig. 14a). This is likely because the
surface wetness instrument is exposed to sunlight and an open atmosphere, such that its surface water
evaporates much faster compared to what happens in a forest canopy. If future research at eddy-
covariance tower sites can demonstrate that such VOD measurements are a good proxy for intercepted
water, this may provide a useful constraint to the partitioning of evapotranspiration fluxes into different

sources (i.e. evaporation versus transpiration).
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For completeness, we also investigate the effect of dew on our measurements in Fig. 14b-c. Unlike rainfall
events, dew events have smaller impacts on VOD and are more difficult to isolate from other sources of
variability. Thus, we focus on the retrieved CWC time series, as it is less influenced by day-to-day
variability in temperature compared to the VOD measurements (as discussed in the previous section). To
diagnose some possible effects of dew on CWC, we separate a two-month observational subset into two
samples based on the daily maximum relative humidity (RHmax). We use a threshold of 70% relative
humidity to distinguish nights with and without a potential for dew formation (Ritter et al., 2019). We
then calculate the average diurnal CWC cycles for each of these two subsets (Fig. 14b) and compare their
relative difference against the surface wetness measurements taken at the reference site (Fig. 14c).
Because the surface wetness sensor tends to saturate relatively quickly, we exclude nights where the
wetness sensor is stuck at its maximum value. While this does remove some nights where a lot of dew
deposition is occurring, it has the advantage of preserving the proportionality between CWC and the
wetness sensor measurements. We find a relatively good agreement between CWC and the wetness sensor
data (Fig. 14c), suggesting that dew deposition is reflected in our CWC retrieval. This finding is of
importance since dew deposition, even in southern California, would then influence and potentially bias
calculated differences between midnight and mid-day satellite-based VOD, which have been used to
interpret plant hydraulic behaviour (Konings and Gentine, 2016). The two-peaked structure in Fig. 14c
seems to be arising from the combination of individual dew accumulation events occurring either after
sunset or before sunrise. It is important to note that because the transmissivity model does not represent
surface water in a dedicated way (Schneebeli et al., 2011), the data in Fig. 14c should not be used to
derive actual dew amounts. Here we can only conclude that L-band VOD is likely influenced by dew
deposition, unlike Holtzman et al. (2021) who found no evidence for the impact of dew on VOD
measurements in an oak forest, but in agreement with conclusions from several other studies (Xu et al.,

2021;Schneebeli et al., 2011;Khabbazan et al., 2022).

37



755

760

765
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Figure 14. Surface canopy water effects. (a) VOD response to a rainfall event. The S-minute time series are smoothed with a LOESS

filter (1.5 hour width). (b) Average diurnal CWC for nights with and without conditions favourable to dew deposition (solid versus
dashed line). (¢) Difference in CWC based on (b) compared against wetness sensor measurements (taken at the reference site).

6. Conclusions

In this paper we have demonstrated that a pair of GNSS receivers can be used to continuously measure
L-band VOD in a forest stand. Thanks to the diversity of GNSS satellite orbits, a hemispheric scan of the
canopy can be obtained, offering the opportunity to individually monitor specific trees, groups of trees,
or classes of canopy density. While continuous changes in GNSS orbit patterns and constellation
configurations complicate the analysis of raw observations, we provide here a relatively straightforward
solution to alleviate this problem and produce credible VOD time series. Pooling observations from the
four largest GNSS constellations (GPS, GLONASS, BeiDou, and Galileo), we show that VOD anomalies
can be resolved at hourly resolution. In particular, our approach is able to identify a diurnal cycle in VOD

which appears consistent with what has been reported in previous recent studies (Holtzman et al.,
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2021;Vermunt et al., 2021;Konings et al., 2017b). Here, obtaining such high-frequency (e.g. hourly) VOD
time series comes at the cost of angular resolution, since measurements taken at all azimuths and elevation
angles are aggregated into hourly averages. Because of the configuration of the GNSS orbits, users face
a trade-off between obtaining VOD estimates at high angular resolution (e.g. Figure 5b) versus obtaining
VOD time series at high temporal resolution (e.g. Figure 7b).

In a further step, we use existing simple models of canopy microwave transmissivity and vegetation
dielectric parameters (Ulaby and Long, 2014) to demonstrate the feasibility of using such GNSS-based
VOD observations to derive information on canopy water content and aboveground dry biomass (future
work could certainly explore more complex formulations). Owing to the limited number of ancillary in
situ measurements, this retrieval algorithm was not evaluated against long-term ground truth observations
and should be seen as a proof-of-concept. Still, the resulting dry aboveground biomass and CWC
estimates agree with what has been reported in similar studies. In addition, we show that the CWC
estimates are in good agreement with satellite observations of the research site (NDWI from Sentinel 2),
but only if the hourly CWC estimates are taken precisely at the time of the Sentinel-2 overpass. This
dependency of the agreement on the observation timing provides convincing and independent evidence
that the CWC time series derived from GNSS-based VOD contains valuable information. We also
investigate the potential effects of diurnal changes in temperature on the dielectric constant of the
vegetation and its impact on L-band VOD and the retrieved CWC. We show that temperature effects on
the vegetation dielectric at L-band are predicted to play a minor but non-negligible role and can modulate
VOD variability, especially for the case of diurnal variability as well as during extreme events such as
heatwaves. Our results suggest that diurnal variability in VOD due to water content could be dampened
and in some cases even be reverted by the variability in temperature. This is because temperatures > 20°C
cause an increase of the dielectric loss in saline water, causing VOD to increase over the day, in a direction
opposite to the expected effect of diurnal canopy dehydration. The magnitude of this temperature effect
is dependent on the microwave frequency and the ionic conductivity of the plant water according to the
empirical model of Ulaby and El-rayes (1987). Finally, we provide some evidence that GNSS-based VOD

is sensitive to surface canopy water, for the cases of both rainfall interception and dew deposition.
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Future work may focus on various aspects. Future deployments of GNSS-based measuring systems like
the one proposed here will be made at heavily monitored ecohydrological research sites in order to
facilitate cross-comparisons with other in situ data. At the time of writing, we have recently equipped
three forested FluxNet eddy-covariance sites with pairs of GNSS sensors, one in the U.S. (US-MOz) and
two in Switzerland (CH-Lae and CH-Dav). Based on these new deployments, we provide below a few
recommendations. The total cost to equip an existing research site was of about 2000 USD, with two
thirds of that amount dedicated to acquiring the scientific instruments. The reference instrument may be
placed at the top of a flux tower or at some other close location (i.e. < 5 km away) with the clearest
possible view of the sky. Positioning the subcanopy antenna is not subject to strong restrictions. It can
even be placed on the ground (without a tripod) as long as it is level and free from obstructions. We
suggest placing the antenna in direct view of frequently monitored trees and not too close to strong
reflectors (large tree trunks, buildings). The sampling characteristics discussed in section 3.2 and reported
in Fig. 6a may be helpful in guiding new installations. Over flat terrain, the maximum extent of the
observation footprint is dependent on the height of the vegetation (minus the subcanopy antenna height).
Assuming that measurements with an elevation angle lower than 10° are discarded, the footprint may be
roughly estimated as a circle with a radius of r = h/tan(10°), ie.r= 57 m for h = 10 m. We provide
further recommendations in Supplementary Table S1. Other future objectives should include an
evaluation of GNSS-based VOD estimates against other VOD measurements made by a tower-mounted
radar or radiometer. In particular, the degree to which GNSS-VOD at RHCP-polarization agrees with
other VOD estimates at horizontal (H) or vertical (V) polarization is unknown. For instance, previous
studies over forests have shown that H-pol VOD can differ from V-pol VOD, even though temporal
dynamics are similar (Schwank et al., 2021;Guglielmetti et al., 2008;Kurum et al., 2009b). Even though
our observations do not suggest it, we cannot yet exclude the possibility that GNSS-based VOD has some
type of bias compared to these other types of measurements (which do not constitute a reference per se).
The question of how to best process the GNSS data in order to obtain VOD time series also remains to be
explored. The initial solution provided in Section 3.3 may likely be refined to further reduce some of the
noise still present in sub-hourly GNSS-based VOD time series. Some additional information may also be

gained by using GNSS signals at multiple frequencies (we used here the most common signal, which is
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emitted at around 1.57 GHz, but individual constellations also broadcast signals at lower frequencies, up

to 1.17 GHz).

The results presented here suggest that GNSS-.VOD may have the potential to fill a key research gap in
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terms of linking satellite-based L-band VOD observations to ground observations. This contribution could
take place in several ways. For example, arrays of GNSS receivers deployed within the spatial footprint
of a satellite VOD grid cell (i.e. about 30 km) may serve to estimate a regional average VOD that would
be suitable as ground truth for the satellite products. In addition, long-term in-situ VOD observations
performed at existing ecohydrological research sites may serve to develop and evaluate retrieval
algorithms that aim to transform VOD into other relevant quantities of interest like aboveground biomass,

canopy water content, or leaf water potential. To the benefit of these research sites, GNSS-VOD provides
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a useful proxy to upscale and gap-fill time series of the time-consuming and labour-intensive
measurements of leaf water status and biomass. The ability to detect rainfall interception and dew
deposition at the scale of a whole canopy may also provide some key information to improve our
understanding of water, energy, and carbon fluxes at these sites. While GNSS-based monitoring of the

Earth system remains a relatively diverse and emerging research field, remote sensing of GNSS-VOD
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appears as a particularly promising application, because of its ability to address a series of research
objectives at a modest cost.
Code and data availability

Raw and processed GNSS data files are freely available upon request. Weather data is publicly available

at http://tccon-weather.caltech.edu/ and https://dpw.lacounty.gov/wrd/rainfall/. Harmonized Sentinel-2

data is publicly available at https:/hls.gsfc.nasa.gov/. The tecq software is publicly available at

https://www.unavco.org/software/data-processing/teqc/teqe.html.
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