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Abstract. Vegetation attenuates the microwave emission from the land surface. The strength of this attenuation is quantified 

in models in terms of the parameter Vegetation Optical Depth (VOD), and is influenced by the vegetation mass, structure, 15 

water content, and observation wavelength. Earth observation satellitessatellite sensors operating in the microwave frequencies 

are used for global VOD retrievals, enabling the monitoring of vegetation status at large scales. VOD has been used to 

determine above-ground biomass, monitor phenology or estimate vegetation water status. VOD can be also used for 

constraining land surface models or modelling wildfires at large scale. Several VOD products exist differing by 

frequency/wavelength, sensor, and retrieval algorithm. Numerous studies present correlations or empirical functions between 20 

different VOD datasets and vegetation variables such as normalised difference vegetation index, leaf area index, gross primary 

production, biomass, vegetation height or vegetation water content. However, an assessment of the joint impact of land cover, 

vegetation biomass, leaf area, and moisture status on the VOD signal is challenging and has not yet been done.  

This study aims to interpret the VOD signal as a multi-variate function of several descriptive vegetation variables. The results 

will help to select certain VOD wavelengthsat the most suitable wavelength for specific applications and can guide the 25 

development of appropriate observation operators to integrate VOD with large-scale land surface models. Here we use VOD 

from the Land Parameter Retrieval Model (LPRM) ofin Ku-, X- and C-bands offrom the harmonised VODCA dataset and 

level 3 L-band VOD derived from SMOS and SMAP sensors. Within a multivariable regression random forest model for 

simulating these VOD signals, leafLeaf area index, live-fuel moisture content, above-ground biomass, and land cover are able 

to explain up to 0.93% and 95% of the variance (Nash-Sutcliffe model efficiency coefficient of determination).) in 8-aily and 30 

monthly VOD within a multivariable random forest regression. Thereby, the variance in regression reproduces spatial patterns 

of L-band VOD is reproduced spatially and forspatial and temporal patterns of Ku-, X- and C-band VOD spatially as well as 

temporally.. Analyses of accumulated local effects demonstrate that Ku-, X- and C-band VOD isare mostly sensitive to leaf 

area index and L-band VOD to above-ground biomass. However, for all VODs the global relationships with vegetation 

properties are non-monotonic and complex and differ with land cover type. This indicates that the use of simple global 35 

regressions to estimate single vegetation properties (e.g. above-ground biomass) from VOD is over-simplistic. 

 

1 Introduction 

Vegetation Optical Depth (VOD) describes the attenuation by the vegetation layer of microwave radiation emitted byin the 

Earth.vegetation layer. Quantifying this attenuation effect is important for an accurate retrieval of surface soil moisture from 40 

passive microwave satellite observations (Wang, 1985; Njoku and Entekhabi, 1996). In the radiative transfer equation for 
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microwave emissions, the opacity of the vegetation layer (i.e. the VOD) is also commonly referred to as τ (Jackson et al., 

1982). VOD can be retrieved e.g. from the passive microwave radiative transfer equation using measurements of passive 

microwaves (Jackson and Schmugge, 1991; Owe et al., 2008; Sawada et al., 2016). However,However, VOD is a parameter 

in these microwave radiative transfer models for vegetation and hence it is not directly measurable and verifiable with in-situ 45 

measurements, which is why. Therefore, different authors have correlated VOD with different vegetation properties to 

understand what VOD is sensitive to.the sensitivity of VOD to vegetation properties (Jones et al., 2011; Rodríguez-Fernández 

et al., 2018; Konings et al., 2019a). Generally, the opacity of passive microwaves in the vegetation layer increases with 

increasing vegetation water content but this relationship varies with vegetation structure including leaf and woody components 

and wavelength (Jackson and Schmugge, 1991; Wigneron et al., 1993; Njoku and Entekhabi, 1996). Based on radiometer 50 

measurements over various crops and a wide range of wavelengths (0.8 – 30 cm), Jackson and Schmugge (1991) report a clear 

linear relationship of VOD to vegetation water content (VWC): 

VOD = b * VWC, (1) 

where the parameter b depends on vegetation type and wavelength. The authors find that b exponentially decreases with 

increasing wavelength, which implies that vegetation opacity (the VOD) is smaller for longer wavelengths (i.e. L-band) than 55 

for shorter wavelengths (i.e. Ku-, X- and C-bands). The vegetation water content can also be expressed as a product of above-

ground biomass (AGB) and a relative water content parameter, often referred to as live-fuel moisture content (LFMC) (Konings 

et al., 2019):where the parameter b depends on vegetation type and wavelength. The authors find that b exponentially decreases 

with increasing wavelength, which implies that vegetation opacity (the VOD) is smaller for longer wavelengths (i.e. L-band) 

than for shorter wavelengths (i.e. Ku-, X- and C-bands). The parameter b is usually kept constant which might be insufficient 60 

due to its possible dependency on polarization. In addition, neglecting surface soil roughness can lead to an underestimation 

of VOD, especially when the vegetation does not completely cover the ground (Togliatti et al., 2022). 

The vegetation water content can also be expressed as a product of above-ground biomass (AGB) and a relative water content 

parameter, often referred to as live-fuel moisture content (LFMC) (Konings et al., 2019b): 

VOD = b * AGB * LFMC. (2) 65 

Based on thosethese relationships, many studies use VOD to estimate AGB or other vegetation properties. For example, Liu 

et al. (2015) use Ku-band VOD to estimate long-term changes in global AGB, finding a gain of above-ground biomass carbon 

considering forest and non-forest vegetation for 1993-2012. (Rodríguez-Fernández et al. (2018)Rodríguez-Fernández et al. 

(2018) correlate spatial patterns in AGB and yearly averaged values of L-band VOD from the Soil Moisture and Ocean Salinity 

(SMOS) mission with the INRA-CESBIO algorithm (SMOS-IC) for Africa with correlation coefficients up to 0.85. They find 70 

linear relationships between VOD and AGB within single land cover classes, but the relationship across land cover classes is 

shown to be nonlinear, with a weaker nonlinearity for L-band VOD compared to Ku-/X-/C-band VOD. Chaparro et al. (2018) 

use L-band from the Soil Moisture Active Passive mission (SMOS) derived with the Multi-Temporal Dual Channel Algorithm 

(MT-DCA) to determine crop biomass of the north-center of thecentral USA. Both Rodríguez-Fernández et al. (2018) and 

Chaparro et al. (2018) find better results for pixels with higher homogeneity, not just for in land cover types butor even for 75 

plant types, implying that relationships between VOD and vegetation properties change with land cover and plant types. Li et 

al. (2021b) find high correlation of L-band VOD and AGB leading to the conclusion that longwave VOD is more sensitive to 

woody parts of the vegetation than shortwave VOD. However, Konings et al. (2021) show that the relation between L-band 

VOD and AGB dominates in space but that short-term temporal dynamics in VOD are dominated by VWC. As a proxy for 

vegetation water status, VOD can be related to LFMC or VWC or both (Fan et al., 2018; Konings et al., 2019; Frappart et al., 80 

2020)(Fan et al., 2018; Konings et al., 2019b; Frappart et al., 2020) and can be used to estimate leaf water potential (Konings 

and Gentine, 2017; Momen et al., 2017; Zhang et al., 2019).  

Furthermore, VOD is frequently compared with other vegetation properties such as canopy greenness, leaf area index (LAI), 

or plant productivity. For example, VOD shows similar temporal patterns to normalised difference vegetation index (NDVI) 
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and LAI (Liu et al., 2011; Momen et al., 2017; Bousquet et al., 2021). In spatial comparisons, the vegetation indices and 85 

variables tend to saturate over densely vegetated areas. This saturation is less distinct for VOD (Rodríguez-Fernández et al., 

2018) due to the ability of microwaves to penetrate deeper into the vegetation layer. Therefore, VOD can therefore 

provideprovides complementary information to the usually visible-infrared based metrics, e.g. for assessments of land surface 

phenology (Jones et al., 2011). MetricsFor example, metrics sensitive to biomass or water content shifts can be derived from 

VOD (Jones et al., 2011, 2014). VOD can also be used for assessing land surface phenology (Jones et al. 2011). VOD and 90 

temporal changes in VOD are also correlated with gross primary production (GPP) (Teubner et al., 2018), which allowedallows 

VOD to developbe used as a sink-drivenpredictor for GPP estimation approach based on VOD (Teubner et al., 2019, 2021; 

Wild et al., 2022). 

Recently, several new VOD datasets became available for X-band from the Advanced Microwave Scanning Radiometer – 

Earth Observing System sensor (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors (Du et al., 95 

2017; Wang et al., 2021), in L-band from SMOS (van der Schalie et al., 2016; Fernandez-Moran et al., 2017; Al Bitar et al., 

2017; Wigneron et al., 2018, 2021) and SMAP (Konings et al., 2017), or Ku-, X- and C-band. VOD was also retrieved jointly 

from several sensors (van der Schalie et al., 2017) as well asand harmonized long-term multi-sensor datasets (have been 

produced (e.g. Vegetation Optical Depth Climate Archive VODCA, Moesinger et al., 2020). A recent comparison study by Li 

et al. (2021) of different X-, C- and L-band VOD datasets and Moderate Resolution Imaging Spectroradiometer (MODIS) 100 

derived vegetation indices like NDVI and enhanced vegetation index (EVI) as well as tree height and AGB showed that X-

band VOD is more suitable to detect temporal variations of the green vegetation parts, especially for less densely vegetated 

areas, than C- and L-band VOD. Additionally, Li et al. (2021) as well as Moesinger et al. (2022) found time lags between 

VOD and vegetation indices and climate variables, showingwhich are not yet fully understood. This shows the need to include 

a further ecological parameters or vegetation property to improve thevariables which could account for a delayed response of 105 

VOD to temporal changes in the vegetation status. Toindices. Approaches with the ability to take consider into account VOD 

variations caused by vegetation water content have been developed, which are more complex than simple regression functions 

have been developed (e.g. Momen et al., 2017). Momen et al. (2017) were able to estimate VOD by using two predictors, LAI 

and leaf water potential. Teubner et al. (2019) linked VOD and GPP by using generalized additive models and the differential 

equation between VOD and AGB byAmong others, the studies by Momen et al. (2017) and Liu et al. (2015). Among others, 110 

these two studiesTeubner et al. (2019) show that the water content of the vegetation is not only influencing the relation between 

vegetation indices and VOD but also the relation between VOD and AGB. 

The increasing availability of VOD data for vegetation studies also increases the possibilities to assimilate or integrate VOD 

with ecosystem or land surface models (LSM) (Scholze et al., 2019; Kumar et al., 2020). Therefore, observation operators are 

needed that link the modelled vegetation properties with the satellite-retrieved VOD. Scholze et al. (2019) use athe sum of an 115 

empirical AGB function and a linear term for LAI to describe annual SMOS-IC L-band VOD within the Carbon Cycle Data 

Assimilation System (CCDAS) for estimating European carbon fluxes. Kumar et al. (2020) use CDF matching to convert 

VODCA X- and C-band VOD, and SMAP L-band VOD to LAI, which is then assimilated into the Noah-MP LSM. X- and L-

band VOD showed partially complementary improvements of the modelled land surface variables. Both studies by Scholze et 

al. (2019) and Kumar et al. (2020) find an improvement of the model results by incorporating passive microwave data, 120 

demonstrating the benefits of the vegetation information contained in VOD. In another model-data-fusion approach, Liu et al., 

2021 use VOD to derive plant hydraulic parameters for a soil-plant system model that accounts for the hydraulic state of the 

vegetation explicitly. However, as VOD reflects both dynamics in biomass and water content (Jackson and Schmugge, 1991; 

Konings et al., 2021), relations between VOD and AGB or LAI as observation operators are simplifications and demonstrate 

the need for a more detailed understanding of the effects of vegetation properties on VOD.  125 
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The increasing use of VOD for ecosystem studies (e.g. Dorigo, 2021)Dorigo et al., 2021) and land surface modelling poses 

the question how different vegetation properties affect VOD in both time and space. Hence, a more detailed investigation of 

the relative effects of vegetation properties on VOD could improve the understanding of the VOD signal in terms of 

interpretation of the corresponding vegetation status. Such investigations will also help to identify a suitable VOD dataset for 130 

a specific ecological application. in addition to the technical aspects of the datasets like the observation resolution depending 

on wavelength, errors and artefacts induced by the retrieval algorithm or the observation time depending on overpass times of 

the satellites.  Furthermore, due to the high temporal resolution and temporal coverage of VOD datasets (partly since 1987), 

global analyses of vegetation properties and status as well as land cover change can be conducted for enhanced understanding 

of long-term environmental changes and to improve model predictions.  135 

Here we aim to assess VOD in response to multiple vegetation properties at large (i.e. inter-continental) scales. We apply a 

multi-variate frameworkSpecifically, our objectives are to predict VOD from LFMC, LAI and AGB by using two machine 

learning approaches (random forest, regression approaches and to investigate the relationship between VOD and the predictors. 

This objective goes beyond previous empirical studies that compared VOD with vegetation properties based on bivariate 

correlations or regressions but not by estimating VOD within a multivariate framework.  140 

We use random forests (RF) and generalized additive model, models (GAM) to quantify sensitivities of VOD to and 

interactions with predict VOD from LFMC, LAI, AGB, and land cover. Generalized additive models and random forests are 

used to predict VOD from vegetation properties and accumulatedAccumulated local effect (ALE) curves are used to assess the 

sensitivities of VOD to these properties. ComparingWhile GAM is suitable to capture non-linear and non-monotonic 

relationships with additive effects of the predictors, RF can predict more complex interactions but is less suitable to capture a 145 

possible additive behavior. Therefore, comparing both machine learning algorithms gives insights into the structure of the 

relationship between VOD and vegetation properties and provides confidence in the findings. Additionally, we inspect how 

different temporal resolutions (i.e. 8-daily and monthly data) affect the relationships between VOD and vegetation properties 

for identifying the role of vegetation variables at quasi-weekly and seasonal time scales. The analyses are carried out for five 

VOD datasets, which differ in wavelength but were derived with the same algorithm (Land Parameter Retrieval Model, LPRM) 150 

(van der Schalie et al., 2016; van der Schalie et al., 2017) to exclude differences due to retrieval algorithms.  

2 Data and methods 

2.1 Datasets 

2.1.1 VOD data 

An overview of the datasets is given in Table 1 and Figure 1. All used VOD datasets are derived from passive sensors using 155 

the LPRM algorithm . . All used VOD datasets are derived from passive sensors using the LPRM algorithm (van der Schalie 

et al., 2016) to reduce the degrees of freedom of this analysis.  

The VODCA dataset (Moesinger et al., 2020) provides harmonised long-term records of shortwave VOD for Ku-, X- and C-

band (further named Ku-VOD, X-VOD and C-VOD, respectively), using data from the AMSR-E, AMSR-2, Special Sensor 

Microwave Imager (SSM/I), TRMM Microwave Imager (TMI), and Windsat sensors. Unfortunately, Ku-VOD is only 160 

available until 1st August 2017 due to a bias in the eleven brightness temperatures of AMSR-2 Ku-band VOD causing 

unexpected low values of the VOD retrievals after this date (Moesinger et al., 2020), which is not fixed in the version 01.0. 

Therefore, all datasets are analysed until 31st July 2017. 

Two LPRM-derived L-band VOD datasets are used as longwave VOD, one sensed with SMAP, the other with SMOS (Schalie 

et al., 2016, further named as SMAP L-VOD and SMOS L-VOD, respectively). The SMAP satellite was launched in January 165 

2015, and therefore SMAP L-VOD defines the start date of the analysis of all datasets.Two LPRM-derived L-band VOD 

datasets are used as longwave VOD, one sensed with SMAP, the other with SMOS (van der Schalie et al., 2016, further named 
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as SMAP L-VOD and SMOS L-VOD, respectively). The SMAP satellite was launched in January 2015, and therefore SMAP 

L-VOD defines the start date of the analysis of all datasets. 

All VOD datasets are provided as daily data with a spatial resolution of 0.25° on a global scale. As VOD generally decreases 170 

with increasing wavelength, the five VOD datasets have different dynamic ranges. As we are not interested in the absolute 

value but only the temporal dynamics and spatial patterns, the VOD datasets were globally normalised using minimum and 

maximum value to a range of 0 to 1 based on the available global data within the time span 2015-2017 to provide comparability. 

For normalising we use the scikit-learn function ‘MinMaxScaler’. The normalised VOD data form the basis for the subplots 

d)-h) of Figure 1. These maps of temporal averaged VOD data show different patterns and scales even after the normalisation 175 

process. This illustrates that VOD data derived from different wavelengths and sensors are not related to the same vegetation 

properties inducing the need for this study.  

2.1.2 Predictor data 

Following the relationship between VOD, LFMC, and AGB as shown in equationEquation 2, proxies related to biomass (AGB 

and LAI), water content (LFMC), and the structure parameter (plant types) are used as predictors for VOD. 180 

As proxies for woody and non-woody biomass, we used a map of AGB and a time series of LAI. The ESA CCI AGB map 

(Santoro and Cartus, 2019) for the year 2017 with 100 m spatial resolution is used as a predictor for woody biomass.. This 

AGB map describes the oven-dry mass of woody parts of living trees per pixel. Thereby only above-ground mass is considered, 

i.e. stem and bark as well as twigs and branches, but not stumps and roots. 

LAI is used as a proxy for canopy biomass. Specifically, we use the MOD15A2H version 6 dataset from MODIS, which is 185 

available at 500 m spatial and on a 8-daily temporal resolution on a global scale (Myneni et al., 2015). We excluded LAI 

retrievals under (partial) cloud cover, snow or high solar zenith angle.  

For live fuel moisture content, LFMC, we used a product derived from MODIS MCD43A2 Collection 6 reflectance data for 

three regions (California/western US,USA (derived from the MODIS tiles h08v04, h08v05 and h09v04), South Africa and 

Australia (Figure 1 b) at a 500 m spatial and on a 4-daily temporal resolution using the approach described in Yebra et al. 190 

(2018). AdditionallyYebra et al. (2018) use three radiative transfer models (RTM) for the simulation of spectra corresponding 

to different LFMC values. More specifically, they use PROSPECT 1 coupled to SAILH 1 and GeoSail to simulate the spectra 

of grasslands/ shrublands and forest, respectively. Based on these simulations three different look-up tables (LUT) were 

generated. For a given location they use the MODIS land cover product (MCD12Q1 Collection 5) to select the LUT 

corresponding to the specific fuel type characterising that location. That fuel specific LUT is used to invert the RTM and 195 

retrieve LFMC from the MODIS spectra. The results were evaluated with LFMC field measurements and the model achieved 

an explained variance of 58% and a RMSE of 40% for Australia (Yebra et al., 2018). For Europe, we used a Europeanthe 

LFMC product computedproduced by the European Union Joint Research Centre (JRC) forand which is included in the 

European Forest Fire Information System (EFFIS). This product uses also methods described infollows the same methodology 

as Yebra et al. (2018) but uses EFFIS’s fuel type map to select the LUT and MODIS MCD43A2 Collection 5 data to invert 200 

the RTM before 2016. Therefore, it isfor those years, the LFMC estimates are produced with a temporal resolution of 8 days. 

The LAI, LFMC, as well as the AGB datasets were resampled to 0.25° resolution to match the VOD spatial extent using a first 

order conservative remapping.  

We used the land cover map by the European Space Agency (ESA) Climate Change Initiative (CCI, ESA, 2017)ESA, 2017) 

and its continuation from the Copernicus Climate Change Service which provide yearly data for the period 1992-2018 at 300 205 

m spatial resolution. The land cover classes were converted to fractions of plant functional types and aggregated to 0.25° 

spatial resolution using the cross-walking approach as described in Poulter et al. (2015). Specifically, we made use of the 

fractions per 0.25° grid cell of broad-leaved evergreen (treeBE), needle-leaved evergreen (treeNE), deciduous trees (treeD), 

shrublands (shrub), croplands (crop), and herbaceous vegetation (herb). Deciduous trees were not further segregated into 
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broad- and needle-leaved trees as especially the latter would result in only a small sample when intersected with the VOD data. 210 

In another test, we also combined the fractional coverage of all tree PFTs (treeAll = treeBE + treeNE + treeD) and of short 

vegetation (short = shrub + herb + crop). 

 

Table 1: Overview of the used datasets used and their original technical attributes. 

Dataset Variable and unit Sensors 
Temporal coverage / 

resolution 

Spatial coverage / 

resolution 
Reference 

VODCA v01.0 Ku-VOD (-) AMSR-2, SSMI/I, 

TMI and Windsat 

scaled to AMSR-E 

1987-2017 / daily Global / 

0.25° 

Moesinger 

et al. (2020) X-VOD (-)* 1997-2018 / daily 

C-VOD (-)** 2002-2018 / daily 

SMAP L-VOD L-VOD (-) SMAP radiometer 2015-2019 / daily van der 

Schalie et 

al. (2016) 

SMOS L-VOD L-VOD (-) MIRAS 2010-2020 / daily 

ESA CCI AGB 

v1.0 

AGB (Mg/ha) PALSAR-2, 

Sentinel-1 (1A and 

1B), Landsat 

2017 / representative 

for one year 

Global /  

100 x 100 m 

Santoro and 

Cartus 

(2019) 

MOD15A2H 

v006 

LAI (-) MODIS sensors 2000-2020 /  

8-daily 

Global / 

500 x 500 m 

Myneni et 

al.(2015) 

MODIS-LFMC LFMC (%) MODIS sensors 2000-2019 /  

 

4-daily 

Regional / 

500 x 500 m 

Californiawestern 

USA, South 

Africa, Australia 

Yebra et al. 

(2018) 

8-daily Europe 

ESA CCI Land 

cover v2.0.7 

Plant functional 

types (PFT) 

derived from land 

cover classes 

AVHRR,  

PROBA-V, 

Envisat MERIS, 

SPOT-VGT 

1992-2018 / 

yearly 

Global / 

300 x 300 m 

ESA 

(2017)ESA 

(2017) 

* does not contain SSM/I ** does not contain SSM/I and TMI 215 

 

Figure 1: Overview of the datasets used a) Above-ground biomass (AGB) for 2017 based on the ESA CCI biomass dataset, b) Live 

Fuel Moisture Content (LFMC) derived from MODIS whereby grey indicates areas of non-available data, c) Leaf Area Index (LAI) 

derived from MODIS, d) Ku-band VOD (Ku-VOD) from VODCA, e) X-band VOD (X-VOD) from VODCA, f) C-band VOD (C-
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VOD) from VODCA, g) L-band VOD from SMAP (SMAP L-VOD), h) L-band VOD from SMOS (SMOS L-VOD), and i) the 220 
dominant land cover class for 2016 based on the ESA CCI land cover map. LAI, LFMC, and VOD maps are temporal averages over 

the period January 2015-July 2017. whereby the VOD maps are based on data scaled to 0-1 for the available range within the 

mentioned timespan. Note that LFMC is only available for California, Southernwestern USA, South Africa, Europe, and Australia.  

2.1.3 Data combination 

All datasets were cropped to the extent of the LFMC data (Australia, Europe, Californiawestern USA, South Africa) for further 225 

analyses. This implies that the ‘global’ models as stated in the following are indeed inter-continental models restricted to the 

spatial extent of the LFMC dataset. To provide comparability of the analyses of the different VOD datasets, only the 

overlapping timespan is used (January 2015-July 2017). The rather short time period does not impede the framework of this 

study, because instead of analysing coherent pixel time series this approach uses each time step of each pixel as an individual 

data point. The ESA CCI AGB map represents the year 2017, but we assume that the biomass does not dramatically change 230 

over two years. Therefore, the AGB values are kept constant for the whole time series. The PFT fractions are taken from the 

annual land cover maps for the respective years in 2015 to 2017 without any interpolation. During the analyses, models were 

trained and tested for 8-daily and monthly temporal resolutions of the LAI and LFMC time series. For the 8-daily resolution, 

only the VOD values matching the same timestamp of the MODIS LAI and LFMC products are used. For the monthly 

resolution, the mean VOD, LAI or LFMC within the regarding month were calculated. 235 

As a final step, pixels were excluded when the fractional coverage of bare ground or water exceeds 5 % to avoid the 

interpretation of marginal effects of bare soils or water on VOD. Models were specifically trained for single land cover classes. 

A threshold of 55 % was used to discern when a land cover class was dominant compared to the other classes.  

2.2 Regression methods 

To assess the influence of the vegetation variables on VOD, we applied two methods: generalized additive models (GAM) and 240 

random forest regressor (RF). Both methods are compared to evaluate if the relationship between the features and the predictor 

variable is rather simple additive assembled (adequately captured by GAM) or more complex (requires RF). GAM can 

represent non-linear and non-monotonic relations with single predictors whereby all predictors have a joined additive effect.To 

assess the influence of the vegetation variables on VOD, we applied two methods: generalized additive models (GAM) and 

random forest regressor (RF).  RF can represent more complex relations and interactions between the single predictors, but are 245 

not well suited for capturing additive structures in the data (Hastie et al., 2009). Another reason to use GAM simultaneously 

to RF is that models that are designed for short vegetation use just two predictors (LAI and LFMC). AGB is only representative 

for woody biomass of trees and can therefore not be included for short vegetation. While GAMs can utilise a small number of 

predictors, the application of RF with only two predictors will likely result in overfitting as the random choice of a predictor 

variable during the development of decision trees is very limited. Both methods allow the qualitative and quantitative 250 

assessment of the sensitivities of VOD to the predictors via Accumulated Local Effects (ALE, see chapter 2.5).  

The RF algorithm incorporates multiple independent decision trees, where the final prediction is the average prediction of the 

individual trees (Breiman, 2001; Hutengs and Vohland, 2016; Liang et al., 2018). Using the scikit-learn package (version 

24.1), (Pedregosa et al., 2011) multiple hyper-parameters can be tuned. During , which will define the RF model structure. The 

optimization of the hyper-parameter combination is crucial to achieve a well performing model. The scikit-learn package 255 

provides a grid-search using the scikit-learn function ‘RandomizedSearchCV’function ‘RandomizedSearchCV’ which enables 

for an automatized search for an optimized parameter set by splitting the multi-variate space of the hyper-parameters into a 

grid of parameter combinations which are then used to train a RF. During this grid-search for an exemplary dataset (predicting 

monthly inter-continental Ku-VOD with LAI, LFMC, AGB, and land cover), the minimum number of samples within a leaf 

(1 and 4), number of estimators (100, 200-2000 with 200-steps), maximum features (functions: ‘auto’, ‘sqrt’, ‘log2’), maximal 260 

depth (10-110 with 20-steps, None), and minimum samples split (2 and 10) were tested. For a detailed description of the 

available hyper-parameters and their effect on the result please refer to the documentation of the scikit-learn module 
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‘sklearn.ensemble.RandomForestRegressor’ (https://scikit-

learn.org/0.24/modules/generated/sklearn.ensemble.RandomForestRegressor.html). The best combinations were again tested 

with monthly inter-continental predictions of X-, C-, SMOS and SMAP L-VOD. Some combinations led to partly improved 265 

results compared to the scikit-learn default hyper-parameters, but also partly degraded results. We finally selected the following 

hyper-parameters: minimum samples within a leaf=1, number of estimators=100, maximum features=’auto’, maximal 

depth=None, minimum samples split=2 and criterion=mean squared error. This setup provided the best results across all tested 

models the best results.. The chosen maximum features parameter leads to the consideration of all features for all splits, thereby 

omitting one of the strengths of RF. This parameter may have been selected due to the low number of our chosen vegetation 270 

variables. However, RF is still able to capture complex relationships, which is our main focus. 

GAMsGAM are a progression of standard linear regression models and generalized linear models (GLMsGLM) (Hastie and 

Tibshirani, 1987). In comparison to standard linear regression models, GLMsGLM use a link function to connect the mean 

response of the target variable with the predictors, which can also represent other distributions of the target variable besides 

the Gaussian distribution, like binomial, gamma or Poisson distributions (Nelder and Wedderburn, 1972). In addition, 275 

GAMsGAM incorporate smoothing functions for each predictor variable (Yee and Mitchell, 1991). This allows modeling non-

linear and non-parametric relationships between the target and predictor variables. A general GAM equation can be written 

as: 

𝑔(µ) = b𝑏 + ∑ 𝑓𝑗(𝑥𝑖)
𝑝
𝑖=1  ,           (3) 

with g() as link function, µ as mean response of target variable, b as intercept term, f() as smoothing functions, and x as 280 

predictor variables. Thereby, g(µ) represents the target variable, i.e. predicted VOD data, and f(xi) the predictors, i.e. the 

vegetation variables LAI, AGB, LFMC and land cover expressed as PFT data sets. Here the GAM is developed for a Gaussian 

distribution with an ‘identity’ link function and spline terms as smoothing functions using the Python package pyGAM (version 

0.8.0). (Servén et al., 2018).  

Both methods are compared to evaluate if the relationship between the features and the target variable is additive (adequately 285 

captured by GAM) or more complex (requires RF). GAM can represent non-linear and non-monotonic relations with single 

predictors whereby all predictors have a joint additive effect. RF can represent more complex relations and interactions 

between the single predictors, but are not well suited for capturing additive structures in the data (Hastie et al., 2009). Another 

reason to use GAM simultaneously to RF is that models that are designed for short vegetation use just two predictors (LAI and 

LFMC). The AGB dataset is only representative for woody biomass of trees and can therefore not be included for short 290 

vegetation. While GAM can utilise a small number of predictors, the application of RF with only two predictors will likely 

result in overfitting as the random choice of a predictor variable during the development of decision trees is very limited. Both 

methods allow the qualitative and quantitative assessment of the sensitivities of VOD to the predictors via Accumulated Local 

Effects (ALE, see chapter 2.5). 

2.3 Model experiments 295 

We applied two main classes of regression models to predict VOD. The first class are global models that use the PFTs from 

the land cover map in addition to the vegetation predictors LAI, LFMC, and AGB. This means that the individual maps of 

treeBE, treeBD, treeNE, treeND, shrub, crop, and herb are used as additional predictors. The second model class is comprised 

of land cover–specific models using LAI, LFMC, and AGB as inputs. These models are only applied to the spatial extent of 

one dominant land cover class. In models for short vegetation classes, AGB is not used as a predictor because this map is only 300 

representative of forest biomass. All model setups were trained both for GAM and RF, and using monthly as well as 8-daily 

values for each VOD dataset. Table 2 gives an overview of the models and the input data. 
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Table 2: List of tested models, with N = needleleaf, B = broadleaf, E = evergreen, D = deciduous, All = not differentiated, CCI PFT 

= ESA Climate Change Initiative Plant Functional Type; each model is run with GAM and RF as well as with datasets with 8-daily 305 
and monthly temporal resolution for each VOD dataset. The land cover-specific models are only trained and tested within a cross 

validation for pixels which are dominated by certain land cover (threshold PFT fraction > 0.55). 

 

2.4 Model evaluation 

For the evaluation of the models, 5-fold cross-validation is used. The same randomly computed folds are used for RF and 310 

GAM. The results are averages across all folds. The performance of the models is evaluated using the Nash-Sutcliffe model 

efficiency coefficient (NSE): 

𝑁𝑆𝐸 = 1 −
∑ (𝑎𝑖−𝑏𝑖)

2𝑛
𝑖=1

∑ (𝑎𝑖−�̅�)
2𝑛

𝑖=1

,           (4) 

with a as the true value, b as the predicted value and 𝑎 as mean of determination (R2) andobserved values, as well as the root 

mean squared error (RMSE) between the satellite-derived and the modelled VOD. R2NSE commonly ranges between 1 (perfect 315 

agreement) and 0, where the latter is the score for a model which solely predicts the mean of the reference data. Models that 

perform worse than this can also yield negative R2NSE values. In addition to the overall evaluation of the models, we evaluate 

the spatial distribution of R2NSE, i.e. R2NSE of the satellite and modelled VOD time series. 

 

2.5 Partial relationships: Accumulated Local Effects (ALE) 320 

The relationships and sensitivities of VOD to the predictors are examined via Accumulated Local Effects (ALE) plots (Apley 

and Zhu, 2020). ALE  Like the commonly used PDP plots are improvements over Partial Dependence Plots (PDP) (Friedman, 

2001; Kuhn-Régnier et al., 2021) but can be interpreted similarly, i.e. as a partial relationship between a(Friedman, 2001), they 

show the marginal effect of a single predictor and the target variable, takingon the model predictions. This marginal effect is 

reflected in the local gradient of the ALE plot; for example, a positive gradient indicates that an increase in the investigated 325 

predictor should lead to an increase in the predicted model outcome all other predictors being equal. While both techniques 

take into account all other predictors. Unlike PDPs,  to approximate the underlying relationship with the single investigated 

predictor, ALE  does not combine each plotted predictor value with all possible combinations of the other predictors. For 

ALE,Especially for correlated predictors, ALE plots are therefore more robust than PDPs (Kuhn-Régnier et al., 2021), as 

unlikely and unrealistic feature combinations are prevented. This is achieved by defining evenly spaced quantiles across the 330 

Land cover class/ 
Model name 

Spatial domain (defined by dominant land 
cover) 

Predictors 

Land cover-specific models 

treeAll CCI PFT treeAll > 55% AGB + LFMC + LAI 
treeNE CCI PFT treeNE> 55% AGB + LFMC + LAI 
treeBE CCI PFT treeBE > 55% AGB + LFMC + LAI 
treeB CCI PFT (treeBE + treeBD) > 55% AGB + LFMC + LAI 
treeN CCI PFT (treeNE + treeND) > 55% AGB + LFMC + LAI 
treeD CCI PFT (treeBD + treeND) > 55% AGB + LFMC + LAI 
treeE CCI PFT (treeBE + treeBD) > 55% AGB + LFMC + LAI 
shrub CCI PFT shrub > 55% LFMC + LAI 
crop CCI PFT crop > 55% LFMC + LAI 
herb CCI PFT herb > 55% LFMC + LAI 
short vegetation CCI PFT (shrub + crop + herb) > 55% LFMC + LAI 

Global model (including land coverdistinct CCI PFT data as predictoradditional predictors) 

global inter-continental (all grid cells in 
southernSouth Africa, Californiawestern 
USA, Australia, and Europe) 

AGB + LFMC + LAI + PFT treeNE + PFT treeND + PFT 
treeBE + PFT treeBD + PFT shrub + PFT crop + PFT 
herb 
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range of anthe examined feature are defined. Every suchpredictor. Each quantile is then combinedused with only the closest, 

existing value combinations of all other features. This procedure prevents unlikely and unrealistic feature combinations, which 

increases robustness, especially when features are strongly correlated. combinations of the other predictors to calculate the 

marginal effects. The  ALE  plots were generated from the final models, where all available data were used for training.  

To quantify the influence of the predictors on the target variable, (sensitivities), we calculated the amplitude of the  ALE  curve 335 

(ΔA).  

3 Results 

3.1 Performance of the models  

The different regression models used to predict satellite-derived VODs showed large differences in model performance in 

predicting VOD (-0.04 ≤ R²NSE ≤ 0.97; 0.004 ≤ RMSE ≤ 0.215) (Figure 2, Figure 2,and Figure S1 and S2 in supplement). 340 

This difference wasIn summary, these differences were dominated by  

1) the type of regression model (RF or GAM), , Figure 2 left subplots vs. right subplots, section 3.1.1);  

2) by the use of 8-daily or monthly VOD data,  (symbols in Figure 2, section 3.1.2);  

3) by the inclusion of land cover information as a predictor (land cover-specific vs. global models, section 3.1.3);  

4) by the wavelength of the predicted VOD (i.e. from Ku- to L-band),, section 3.1.4); and  345 

5) by the vegetation type to which the model is applied to, i.e. spatial variability of global model performance, which will be 

discussed in more detail in the following. (section 3.1.5). 
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Figure 2: Coefficient of determination (R², left) and Nash-Sutcliffe model efficiency coefficient (NSE, top) and RMSE (rightbottom) 350 
of random forest (RF) models (RF, left) and generalized additive models (GAM, right) using monthly (circle) or 8-daily (crosses) 

data. The global model uses PFTs as predictors, contrary to the land cover models, which were calibrated and applied only to the 

spatial extent of a certain dominant land cover class. Global model for short vegetation and tree cover usesshow results of the global 

model, but filtered by dominant land cover class. 

3.1.1 Effect of the type of regression model used for calibrating the models (RF vs. GAM) 355 

In general, RF performed better than GAM in predicting VOD, except for land cover-specific models for short vegetation 

classes where GAM reached similar or slightly higher performance than NSE (Figure 2 a vs. b) and similar RMSE compared 

to RF ((Figure 2 c vs d). Another exception occurs for SMOS L-VOD where GAM performed better regarding the land cover-

specific models for cropland and shrubland based on 8-daily data (see Figure S1, Figure S2 for corresponding RMSE results). 

In most cases, GAMs underestimated for all models). While all models tended to underestimate high VOD values., RF 360 

approximated them better than GAM. Based on these findings, in the following sections, we only refer to the results of RF 

models. If not stated otherwise, similar results were found for GAM. 

3.1.2 Effect of the temporal aggregation of the explanatorypredictor variables (8-daily vs. monthly data) 

Regression models based on monthly data hadusually exhibited higher R2NSE and lower RMSE than models based on 8-daily 

data (Figure S1comparison of circle and S2).crosses in Figure 2 and S1). The superior performance of monthly over 8-daily 365 

models increased with increasing wavelength. For example, the difference was especially large for the prediction of SMOS L-

VOD for which R²NSE doubled from 8-daily to monthly data (Figure S1).(Figure 2 a). The performance in predicting Ku-, X- 

or C-VOD was more similar or monthly data presented slightly higher performance than 8-daily data. Given the higher 

performance of models based on monthly data, the following description of results is based on thesemodels with monthly data, 

unless mentioned otherwise. Section 3.2 examines than the differences of VOD sensitivities to the predictors based on the 370 

considered time scale. 
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3.1.3 Effect of including land cover information as a predictor (global vs. land cover-specific models) 

Considering RF models based on monthly data, the global models (defined as models including fractional cover of PFTs as 

predictors, see Table 2) showed better model performances than the land cover-specific models (that were trained and applied 

only to one specific land cover).. The global models performed with an R2NSE of 0.85 to 0.95 and an RMSE of 0.01 to 0.03 375 

depending on VOD wavelength (Figure 2Figure 2). a and c). We also compared the model performance of a specific land 

cover type within the global model with the related land cover-specific model. Regarding RF models, theThe land cover-

specific RF models had an R² of a lower NSE (-0.09 to -0.59 lower) and a higher RMSE of (+0.006-0.03 higher) than the 

related land coverglobal model within the global models.same land cover. Considering GAMsGAM, land cover-specific 

models performed better within a certain land cover type than the global model for the same land cover type. This applies 380 

especially for land cover types with simpler vegetation structure, e.g. shrubland, herbaceous vegetation or broad-leaved 

evergreen trees, and less for more complex land cover types like the treeAlltree cover and short vegetation classes. These 

results indicate that the relationship between vegetation properties and VOD can be modelled with simpler relationships as 

represented by GAM only within a land cover type but that global relationships require more complex relationships as 

represented by RF. 385 

3.1.4 Effect of VOD wavelength 

In general, the R2NSE of predicting short-wavelength VOD was higher than for predicting L-VOD predictions and RMSE 

decreased from long to short wavelengths (Figure 2). All SMOS L-VOD models performed with a lower R2NSE and a higher 

RMSE than the other VOD models including SMAP L-VOD. For RF models based on 8-daily data, R2NSE was highest for 

Ku-VOD, followed by X-VOD and C-VOD (Figure S1).. For monthly data and GAMsGAM, the order in performance was 390 

slightly different between Ku-, X- and C-VOD for R2NSE and RMSE.  

In the global model, the land cover-specific model performance dependsdepended on the different VOD wavelengths. The 

prediction of monthly Ku-, X- and C-VOD using RF reached the highest performance for broad-leaved evergreen trees (0.95 

≤ R²NSE ≤ 0.97, 0.009 ≤ RMSE ≤ 0.013) and the lowest performance for croplands (0.82 ≤ R²NSE ≤ 0.85, 0.015 ≤ RMSE ≤ 

0.023). Predicting monthly SMAP L-VOD using RF had the highest performance in herbaceous vegetation (R²NSE = 0.93, 395 

RMSE = 0.016) and the lowest performance in deciduous trees (R²NSE = 0.74, RMSE = 0.031). RF prediction of monthly 

SMOS L-VOD attained the highest performance in herbaceous vegetation (R²NSE = 0.84, RMSE = 0.023) and the lowest 

performance in needle-leaved and deciduous trees and croplands (R²NSE ~ 0.6, 0.032 ≤ RMSE ≤ 0.059).  

3.1.5 Spatial variability in model performance 

The performance in predicting VOD shows large spatial differences (Figure 3). Across all VOD datasets, the prediction of 400 

VOD was best in Australia; followed by South Africa, Europe, and western USA (Figure S2). As for the global model results 

(chapter 3.1.4), the best performance was achieved in predicting Ku-, X-, and C-VOD and the lowest performance for SMOS 

L-VOD. This is indicated by the dominant colour distribution in Figure 3 and by the corresponding histograms (Figure S2), 

whereby the more right-skewed and narrower the distribution the better the prediction of all pixel time series (e.g. Ku-VOD 

for Australia).  405 

Several geographical patterns of high predictability (high R2, blue areas in Figure 3), like the cropland area inor low model 

performance appear for all VOD datasets. High model performance occur mainly in regions with croplands (e.g. south-western 

and south-eastern Australia, and ), large shrublands (e.g. northern Australia and central South Africa) and grasslands (north-

western and south-eastern South Africa and western Australia) (high NSE, blue areas in Figure 3). Regions in the south-

western USA show a poor predictabilityperformance (low R2NSE, red areas in Figure 3), e.g. southern California, are similar 410 

for all VOD datasets.).  
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Across all VOD datasets, the prediction of VOD was best in Australia; followed by South Africa, Europe, and California 

(Figure S3). As for the global 

Higher model results (chapter 3.1.4), the best performance was achieved in predicting Ku-, X-, and C-VOD and the lowest 

performance for SMOS L-VOD. This is indicated by the dominant colour distribution in Figure 3 and by the corresponding 415 

histograms (Figure S3), whereby the more right-skewed and narrower the distribution the better the prediction of all pixel time 

series (e.g. occurKu-VOD for Australia).  

Not only areas with a high crop fraction have high R2, but also areas with large shrub fractions, e.g. northern Australia and 

central South Africa, and high herbaceous fractions, like in north-western and south-eastern South Africa and western 

Australia. 420 

Pixels with largein regions with larger seasonality in LAI and LFMC (e.g. eastern Europe and northern part of California), 

show higher R2 results per pixel. Increasing pixelwestern USA) (Figure 4 c) and in pixels with homogenous land cover 

homogeneity also contributes to improved results. This implies worse results for than in pixels with a more heterogeneous 

pixels and in regions with less pronounced seasonality in LAI due to lack of defoliation (needleleaf, evergreen), or in LFMC 

due to more or less stable weather conditions or to more drought resistance of less plant-water sensitivity (Rao et al., 2022), 425 

such as the central areas of California, northern Europe and central Australia.land cover distribution (Figure 4 a and b). With 

increasing wavelength, the VOD of these areas iswith less pronounced seasonality was getting more difficult to predict. 

Additionally, regions with mean VOD values less than 0.1 and marginal changes over time tend to have low or even negative 

R2NSE. This is noticeable in central Australia and central South Africa. The comparison of the high R2Investigating the 

differences in the overall NSE based on all values (section 3.1, >3.1) with the grid cell based NSE in Figure 3 and S3 allows 430 

an insight if the RF models are able to represent not only spatial patterns but also time series. The comparison of the high 

overall NSE (>1.000 data samples) with the R2 in Figure 3 and S3NSE shown here (monthly time series January 2015 – July 

2017 resulting in a maximum time series of 31 months i.e. < 32 data samples) indicates that R2NSE seems to be sensitive to 

the data size, leading to small R2NSE when few data points are available. The reference and modelled mean VOD and the 

variance of VOD are highly correlated in space (Spearman correlation coefficient > 0.75) which shows that the models 435 

capturescapture the variability and spatial patterns of VOD. With higher mean VOD the R2NSE increases, e.g. such as for the 

tree-covered areas dominated by deciduous broadleaf trees. Whereby this finding is based on the VOD range constrained by 

the proceeded data preparation, it might be not valid for very high VOD values, e.g. in rainforests, which are not considered 

here. 

 440 
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Figure 3: Coefficient of determination (R2Nash-Sutcliffe model efficiency coefficient (NSE) per pixel for the global random forest 

model (PFTs included as predictor) based on monthly values. Rows indicating results for the different VOD datasets and columns 

the different regions as dictated by the availability of the LFMC dataset. 445 

 



 

16 

 

 

Figure 4: Spatial Nash-Sutcliffe model efficiency coefficient (NSE) based on the global random forest model computed with monthly 

data stratified by the land cover homogeneity of a pixel exemplary shown for a tree cover class a) plant functional type deciduous 

broadleaf trees (PFT treeBD) and b) for herbaceous vegetation (PFT herb). Note, that no data with 80-100% of these specific land-450 
cover classes are available. c) shows NSE stratified by the seasonality of LAI expressed as the intra-annual standard deviation of 

LAI. 

3.2 Relationships between VOD and vegetation properties 

3.2.1 Global (inter-continental) relationships 

The ALE plots in The effects of vegetation properties on VOD for all wavelengths on a monthly or a 8-daily data basis are 455 

shown in the ALE plots in Figure 5Figure 5 (Figure S4 – S7 for all global predictors based on monthly and 8-daily RF and 

GAM models) demonstrate the effects of vegetation properties on VOD for all wavelengths. For Ku-VOD, LAI and herbaceous 

land cover have the highest influence followed by AGB and LFMC with an amplitude of ΔA = 0.109, 0.054, 0.045 and 0.017, 

respectively. For X- and C-VOD the order of influence is LAI (ΔA = 0.072 for X-VOD; and 0.099 for C-VOD), AGB (ΔA = 

0.032; and 0.046), herbaceous land cover (ΔA = 0.029; and 0.031) and LFMC (ΔA = 0.017; and 0.028). 460 

 (Figure S3 and S4 for all global predictors and GAM). The amplitudes ΔA of the ALE curves can be used as a measure of the 

importance of a predictor for the estimation of VOD. The amplitudes ΔA are usually higher for monthly data than for 8-daily 

data (Figure 6 a) except for the relationship between AGB and SMOS L-VOD (Figure 6 c). This result indicates that the used 

predictors are of higher importance for monthly data than for 8-daily data. However, the high ΔA values in the global RF model 

based on 8-daily data for SMOS L-VOD and the relative low performance of this model (NSE=0.41) indicates that the 465 

influence of the used predictors might be overestimated. A predictor that could reproduce the main temporal dynamics in the 

8-daily SMOS L-VOD signal is indeed missing in the analysis. 

The order of ΔA of the predictors within a certain model are generally similar for 8-daily and monthly models. The coverages 

of trees are for all models the main contributors to the VOD predictions. LAI is the second most important predictor for Ku-

VOD and the most important for X- and C-VOD. For the L-VODs the importance of LAI is lower than for the short-wavelength 470 

VODs. The importance of AGB increases from low to middle importance for the shortwave VODs to the highest importance 

for the L-VODs. The coverages of short vegetation classes have middle to low influence on the VOD and decreases with 

increasing wavelength but as an exception the coverages of shrubs is the second- and third-most important predictor for 

monthly and 8-daily SMAP L-VOD, respectively. The ΔA of LFMC are increasing with wavelength, with low influence on 

Ku- and X-VOD and higher influence on L-VOD. An exception here is the 8-daily SMOS L-VOD model, where LFMC has 475 

also a low impact on the predictions, but given the low performance of this model, the estimates importance of LFMC on 

SMOS L-VOD might be unreliable. Interestingly, the amplitude of the ALE plots varies between wavelengths, within monthly 

and 8-daily models although these results are based on normalised data. For LAI and land cover a clear decrease of the ALE 

amplitude with increasing wavelength is visible, which corresponds to the fact that the magnitude of VOD value range 

decreases with increasing wavelength. For AGB and LFMC, the ALE amplitude increases with increasing wavelength. 480 

 

Given the similar shape of 8-daily and monthly based ALEs but with smaller amplitudes, we will focus on the examination of 

the monthly ALE curves. All VOD datasets show a positive relationship with LAI, but all curves saturate around an LAI value 
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of 2.3, which corresponds approximately to the 95%-ile of LAI in our dataset. (Figure 5 a). LAI has a much stronger effect on 

Ku-, X-, and C-VOD than on L-VOD. Interestingly, the relationship between LAI and SMAP L-VOD (ΔA 0.054) is more 485 

similar to the relationship of LAI and shortwave VODVODs e.g. X-VOD than for LAI andthe relationship with SMOS L-

VOD (ΔA 0.024)..  

The relationship with LFMC is more complex for all VOD datasets. From 0 % to 50 % LFMC, the relationships are negative 

with a negative spike at 50 % LFMC. Afterwards, VOD increases with increasing LFMC, which is most pronounced for SMOS 

L-VOD (overall ΔA = 0.05). However, SMAP L-VOD shows a strong negative relationship with LFMC after around 140 % 490 

LFMC (overall ΔA = 0.056).The relationship with LFMC is more complex for all VOD datasets (Figure 5 b). From 0 % to 50 

% LFMC, the relationships are negative with a negative spike at 50 % LFMC. Afterwards, VOD increases with increasing 

LFMC, which is most pronounced for SMOS L-VOD. However, SMAP L-VOD shows a strong negative relationship with 

LFMC after around 140 % LFMC. Generally, the relation within the last 95 %-percentile have to be interpreted with caution, 

because higher LFMC values also have a higher uncertainty (Yebra et al., 2018). In addition, the validation of the LFMC data 495 

set is impeded by uncertainties due to difficulties of comparison between measurements on the ground and what is detected 

by the satellite. Uncertainties in the used LFMC dataset arise from the temporal matching procedure of in-situ samples and 

MODIS data and from the canopy closure of the forest cover and the contribution of understory to the measured surface 

reflectance. However, these factors are difficult to quantify and can only be discussed in a qualitative manner, but they still 

might influence the results presented here. 500 

All VOD datasets show a similar increase with AGB until 120  Mg/ha (corresponding to the 95%-ilepercentile) but the 

relationships differ at higher AGB values. While (Figure 5 c). Ku-, X- and C-VOD show a decreasing relationshipdecrease 

with increasing AGB, above 120 Mg/ha but SMOS and SMAP L-VOD continue to increase (overall ΔA = 0.095 for SMOS L-

VOD; and 0.107 for SMAP L-VOD).. 

The relationships with land cover fractions are positive for most VOD datasets. As an example, we show here show the 505 

relationship with the fraction of herbaceousshrubland cover. Ku- and X-VOD show an almost (Figure 5 d). SMAP L-VOD 

shows a nearly monotonic increase with increasing herbaceousshrubland cover. On the other hand, C- and L-VOD (ΔA 0.025 

for SMAP; and ΔA 0.024 for The shortwave VODs and SMOS L-VOD) show a negative relationshipno relation with 

herbaceousshrubland cover at very lowbelow 10% coverage (up to ca. 0.15, corresponding approx. to the 40%-ile of 

herbaceous cover) but increase afterwards. show a positive relationship at higher coverage. SMOS L-VOD shows a non-510 

monotonic relationship with shrubland cover. 

Taken together, we find the following effects of vegetation properties on the different VOD datasets: SMOS L-VOD is most 

strongly affected by AGB (positive relationship), followed by tree cover and LFMC (positive relationship at LFMC > 50 %), 

short vegetation cover and LAI (positive relationship for LAI < 1.5), and herbaceous vegetation.). SMAP L-VOD is most 

strongly affected by AGB (positive relationship), followed by LAI (positive relationship for < 2.5), LFMC (negative 515 

relationship),) and shrubland cover, and herbaceous vegetation.LAI (positive relationship for LAI < 2.5). Ku-, X-, and C-VOD 

show very similar relationships and are most strongly affected by LAI (positive relationship),) and tree cover, followed by 

AGB (positive relationship up to 120  Mg/ha), herbaceousshort vegetation cover, and LFMC. The relationships with LFMC 

and herbaceous cover differ mostly between Ku- and X-VOD on the one hand and C-VOD on the other.  

Interestingly, the amplitude of the ALE plots varies between wavelengths. For LAI and land cover a clear decrease of the ALE 520 

amplitude with increasing wavelength is visible, which corresponds to the fact that the magnitude of VOD decreases with 

increasing wavelength. For AGB and LFMC, the ALE amplitude increases with increasing wavelength. 
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Figure 5: ALE plots of predicted normalised VOD with respect to ecosystem properties based on the global monthly or 8-daily RF 525 
model with plant functional type (PFT) of herbaceousshrubland vegetation (herbshrub) as an example of the influence of land cover 

fractions on VOD. Vertical lines indicate the quantiles of the data sample size 0.05, 0.25, 0.5, 0.75, and 0.95, respectively. 
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Figure 6: Regression plots of individual ALE amplitudes ΔA on a monthly data basis versus on a 8-daily data basis. Panel a) shows 

the ΔA of ALE curves from GAM and RF whereby panels b) to i) show only ΔA of RF models but colourised by different factors: 530 
‘global’ indicates the global models which use also PFT fractions as predictors and ‘LC-specific’ identifies the land cover-specific 

models which only use LAI, LFMC and AGB (for tree cover) as predictors and used data filtered for the specific land cover type. 

Note that c), f) and i) are zoomed in compared to the other subplots. Points located in the upper left corner indicate a higher influence 

of a specific predictor on the VOD prediction on an 8-daily time scale compared to the monthly time scale for a certain model. Points 

located on the 1:1 line indicate a constant influence on VOD regardless of the considered time scale. Points located in the lower right 535 
corner indicate a higher influence of a predictor on a monthly time scale. 
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Figure 7: Amplitudes of RF ALEs for 8-daily and monthly models. The prefix defines the model, e.g. ‘global’ indicates the ALEs of 

the global model, all other prefixes indicate land cover-specific models. The suffix defines the predictor (red = LAI, blue = LFMC, 

green = AGB, black = PFTs – only used within global models).  540 

3.2.2 Relationships ofwithin land cover-specific types 

In this chapter, we summarize the results of the RF models for relationships within a certain land cover type. The individual 

predictors in the land cover-specific models have a partially higher influence on the VOD prediction than in the global model 

because the land cover-related predictors are not used within the land cover specific models (Figure 5, Figure S4 – S15).Figure 

6 d). ALE amplitudes ΔA for monthly data are mostly larger than for 8-daily data with some exceptions for SMOS L-VOD 545 

(Figure 6 b). The order of the ΔA for the different VODs is in the land cover-specific models like in the global model with the 

highest values for SMOS L-VOD, followed by Ku- and SMAP L-VOD and X- and C-VOD.  

ForIn models for specific tree cover types, AGB has the largest ΔA, followed by LFMC and LAI (Figure 7). The model for 

deciduous trees for 8-daily SMOS L-VOD data is an exception, in which LAI has the largest importance, followed by LFMC 

and AGB. Due to the poor performance of this model, this result might be questionable. 550 

Models for short vegetation types, usually have LAI as the most important predictor, followed by LFMC (Figure 7). Exceptions 

are the models for the herbaceous vegetation with 8-daily SMAP L-VOD, and 8-daily and monthly SMOS L-VOD, where 

LFMC has the highest importance. In general, for the tree cover models AGB and for short vegetation cover LAI has a higher 

influence on the predictions than LFMC. Nevertheless, the ΔA-LFMC regression line in Figure 6 h) indicates that LFMC has 

a similar effect on both time scales. This is contrary to AGB and LAI where the effect is higher for monthly than for 8-daily 555 

data. For short vegetation, the ALE plot between VOD and LFMC shows a similar form as in the global model with a drop 

around 50 % LFMC (Figure S6), which indicates that the global VOD-LFMC relationship is dominated by dynamics in short 

vegetation areas. Particularly, the drop is based on the herbaceous land cover type, which is also visible in the 8-daily based 



 

22 

 

models and in the GAM (Figure S6 and S8). The importance of LAI in predicting VOD decreases for herbaceous and shrubland 

cover models with increasing wavelength. A similar dependence occurs for LFMC for shrublands and monthly data above 560 

140 % LFMC. Globally, the positive relationship between VOD and LFMC in the range of 50 % and 140 % LFMC and the 

negative relationship at higher LFMC originates from croplands, because this decrease is only visible in the LFMC-ALE from 

the cropland model. 

In tree-covered areas (treeAll model), the LAI-ALE shows a slight positive relationshipthat VOD increases with VODLAI up 

to an LAI of ca.= 2 and is then a stable or slightly decreasingdecreases (Figure S5). The relation. The relation of VOD with 565 

LFMC is positive for Ku-, X-, and C-VOD but unimodal for both L-VODs. AGB is the dominant predictor for all tree-covered 

models but the relationship with VOD is non-linear and non-monotonic.monotonic.  

Comparing the ALEs of the treeAll andmodel with the models for individual forest type modelstypes (i.e. treeB, treeN, treeD, 

treeE, Figure S8),S5) shows that the influence of a specific forest type is partially recognizable within the treeAll ALEs. For 

example, the highly non-linear relationship between LFMC and VOD and LAI until LAI~2.0 is based on the VOD-LAI 570 

relationship of deciduous trees. The in the treeAll LFMC-ALEmodel is highly influenced by the relationship for needle-leaved 

and evergreen trees. The apparentdecline of SMOS L-VOD decrease with LFMC is also pronounced within most tree types 

but not within deciduous trees. The relationships with AGB-ALE for needle-leaved trees is less non-more linear in comparison 

to the other tree cover models. Deciduous and broad-leaved trees exhibit a more complex relationship with AGB than evergreen 

and needle-leaved trees. 575 

For short vegetation, LAI is the main influencing for all VODs. The amplitudes of ALE curves with AGB are highest for X-

VOD for deciduous trees (treeD ΔA = 0.175) and for SMOS L-VOD for broadleaved trees (treeB ΔA = 0.313). These results 

demonstrate that biomass is also an important predictor for short-wavelength VODs but that this importance varies with 

wavelength and shows a positive relationship with all VOD bands. The ALE plot between VOD and LFMC shows a similar 

form as in the global model with a drop around 50 % LFMC, which indicates that the global VOD-LFMC relationship is 580 

dominated by dynamics in short vegetation areas. Particularly, the drop is based on the herbaceous land cover type, which is 

also visible in the 8-daily based models and in the GAMs (Figure S10, S11, S14 and S15). Contrary to the global model, the 

land cover–specific models do not exhibit the clear dependency of the ALE amplitude to the wavelengths. The dependency of 

the ALE amplitude on wavelength is still visible in the LAI-ALE of the herbaceous and shrubland cover models, especially 

for LAI greater than 1 and more pronounced in the 8-daily based models than in the monthly based models. The same is true 585 

for the LFMC-ALE of the monthly based shrubland models above 140 % LFMC. The positive relationship between 50 % and 
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140 % LFMC and the following decrease (especially for the L-VOD LFMC-ALE) for short vegetation is influenced by 

cropland cover, because the decrease is only visible in the LFMC-ALE from the cropland modelforest type. 

Contrary to the global model, the land cover–specific models do not exhibit a clear dependency of the ALE amplitude on the 

wavelengths.  590 

 

Figure 8: ALE plots of normalised VOD to ecosystem properties based on land cover-specific monthly RF models. Shown models 

are based on pixels with a PFT treeAll fraction more than 0.55 (top), and for short vegetation (bottom). Vertical lines indicate the 

quantiles of the data sample size 0.05, 0.25, 0.5, 0.75, and 0.95, respectively. 

4 Discussion and conclusions 595 

4.1 Predictors and predictability of VOD 

The results demonstrate that for the global prediction of VOD, i.e. over different biomes, a more flexible modelling approach 

such as RF is better suited as opposed tothan an additive approach like GAM. The lower global performance of GAM suggests 

that local factors, e.g. intercepted or standing water or heterogeneous soil properties, and interactions between factors play a 

role in the dynamics of VOD, which were not considered and used as additional additive predictors.. In contrast, RF is partly 600 

able to account for this due to its ability of flexible modelling leading to betterwhich results. in higher model performance. 

The simpler structure of GAM compared to RF is, in most cases, insufficient to predict VOD, but within single land cover 

types a simpler additive approach like GAM is sufficient. This indicates that the relationship between VOD and ecosystem 

properties cannot be easily captured with global linear, monotonic, and bivariate regressions but requires accounting for the 

non-linear interactions between various ecosystem properties. The results imply that the set of predictors allows the estimation 605 

of the dynamics of short wavelength VODs at high temporal resolution (8-daily and monthly) with very good performance, 
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but the set of used predictors is insufficient to explain the dynamics in L-VOD due to ignoring local effects or possibly 

disregarded predictors.  

This conclusion is supported by the performance difference between the four studied regions. For example, Europe has a much 

more fragmented landscape than most areas in Australia causing mixed effects on VOD within the coarse 0.25° grid cells 610 

leading to a lower predictability in Europe than Australia. Even if PFT fractions are used as predictors, the mismatch between 

the coarse resolution and land cover complexity cannot be resolved. This is especially pronounced in the longwave VOD, for 

which the footprint is often significantly larger than 0.25° (> 40 km). A filtering of neighbouring grid cells would not then 

reduce the impact of the surrounding land cover. Local complex effects on VOD are likely related to land cover changes, 

intercepted, or standing water, or soil properties. For example, Saleh et al. (2006) showed for thea grassland test site that 615 

because of interception L-VOD intercepted water could double in value after a rainfall event.L-VOD after a rainfall event. 

Comparable to this finding, Wigneron et al. (1996) also reports a possible doubling in C-VOD due to interception at a wheat 

field. Although interception has reduced influence on the coarse resolution data (Baur et al., 2019; Wigneron et al., 2021) or 

might not impede temporal VOD analyses (Feldman et al., 2020), temporary flooding leads to an evident decrease in VOD. 

This is not only validchange in VOD. For example, a decreased L-VOD signal at flooding was recognised for short vegetation 620 

areas using K-VOD derived from the microwave radiometer of the Chinese satellite FY-3B (Liu et al., 2019), but also as well 

as for forests (Jones et al., 2011; Bousquet et al., 2021). These impacts ofusing AMSR-E K-VOD (Jones et al., 2011) or using 

SMOS-IC L-VOD (Bousquet et al., 2021). The effect of such local effectsevents on VOD implies that large-scale spatial 

relations between VOD and e.g. AGB (Liu et al., 2015; Rodríguez-Fernández et al., 2018; Mialon et al., 2020) will likely 

wrongly associate changes in VOD to changes in AGB, which might result in unrealistic estimates of local AGB dynamics. 625 

This conclusion is supported by the findings of Konings et al. (2021), who show that regional temporal anomalies of X- and 

L-VOD are mostly uncorrelated with temporal anomalies of AGB but show a higher correlation with root-zone soil moisture, 

an indicator for water stress and availability.  

The comparison of the global and the land cover-specific models highlights the complexity of the relation between VOD and 

vegetation properties. An interesting result is that the ALE amplitudes (i.e. sensitivity) increase with increasing wavelength in 630 

the global model but not in the land cover-specific model. The land cover-specific models only include pixels with a coverage 

> 55 % of the specific land cover type but do not use PFT fractions as predictors. This indicates that PFT fractions serve as a 

descriptor of vegetation structure and hence as a descriptor of land cover heterogeneity in the global model. This causesresults 

in a VOD-LAI relationship that varies by microwave wavelength, but. But this wavelength-dependency cannot be resolved 

within athe land cover-specific modelmodels, because it does notthose models cannot account for the impact of sub-pixel land 635 

cover heterogeneity. Furthermore, the differences in the VOD-AGB relationship between the global and the land cover-specific 

models also highlights that a monotonic AGB-VOD relationship is only valid over a large spatial scale but does not hold within 

a vegetation type or at smaller scales. The high model performance in regions with high biomass areas were enabled using 

PFT maps as predictors, which compensate for the saturating effect at high AGB. Similar to the VOD-LAI relationship, the 

relative sensitivity of the LFMC-ALE increases with increasing wavelength for the global models and it also shows that LFMC 640 

has relative more influence on an 8-daily time scale compared to the monthly time scale for the global as well as in the land 

cover-specific models.  

The high R2 results for high biomass areas were enabled using PFT maps as feature, which compensate for the saturating effect 

of AGB. Both LFMC and LAI vary in time and space and are strongly correlated. The temporal and spatial variation of our 

model is dominated by LAI, leading to a decreased influence of LFMC on shortwave VOD, which has a higher short-term 645 

variation than L-VOD. Both LFMC and LAI are strongly correlated. The temporal and spatial variation of our global models 

are dominated by LAI, leading to a lower influence of LFMC on shortwave VOD than of LAI. Although LFMC appears as 

the less important predictor for VOD than LAI in our models, the strong correlation of LAI and LFMC is nevertheless the 



 

25 

 

reason why in-situ measured LFMC show medium to strong correlations with VOD and can be used to estimate LFMC from 

short-wavelength VOD (Fan et al., 2018; Forkel et al., 2022). 650 

 

Globally, the L-band VOD is highly influenced by AGB, which is in agreement with the ability of longwave VOD to better 

penetrate dense vegetation and its higher sensitivity to the woody plant parts (Liu et al., 2011). However, the much lower 

predictability of L-VOD compared to Ku-, X-, and C-VOD indicates that L-VOD cannot be sufficiently explained by the 

combination of AGB, LAI, LFMC, and land cover. The performance in predicting L-VOD is much lower at pixel-level (Figure 655 

3) than computed across the full spatial and temporal extent of the data. Hence, the low performance in predicting L-VOD is 

mostly related to the temporal dynamics at pixel-level because our model correctly explains the spatial patterns. The low 

performance in predicting SMOS L-VOD might be caused by a noisy signal of the SMOS sensor (van der Schalie et al., 2017). 

Especially the daily raw L-VOD data, as used for the 8-daily analyses, can be very noisy (Wigneron et al., 2021). Vittucci et 

al. (2016) found moderate seasonal differences (but within the standard variation) of the SMOS L-VOD signal over boreal 660 

forest,forests located at higher latitudes than +20°, which are partly explainable due to the deciduous character of the forest 

but moreover because of random effects. The L-band signal, and also the C-band signal, is strongly disturbed by radio-

frequency interference (RFI, Liu et al., 2019)Liu et al., 2019). The spatial and temporal inconsistency of RFI complicates the 

RFI correction of the L-band (Wigneron et al., 2021). This indicates a noisy, or until now not fully understood, variation of 

the SMOS L-VOD, especially within the lower value range. Due to the uncertain proportion of noise and short-term changes 665 

of water content, Ebrahimi et al. (2018) averaged SMOS L-VOD over 15 days and Rodríguez-Fernández et 

al.(2018)Rodríguez-Fernández et al. (2018) even over 2 years to reduce related uncertainties of the VOD signal. Vaglio Laurin 

et al. (2020Vaglio Laurin et al. (2020) found a time lag of up to 6 months for mostly tree-covered areas in South America and 

Africa between SMOS L-VOD and ecosystem functional properties. in tree-covered areas in South America and Africa. This 

time lag shows that the relationsrelationships between SMOS L-VOD and vegetation properties need further investigation in 670 

densely-vegetated regions. In addition to the possible noisy signal of SMOS L-VOD, which might hamper the interpretation, 

errors within the L-VOD values can also be introduced by the retrieval algorithm itself. With the use of a tau-omega model, 

soil moisture and VOD are often retrieved simultaneously which can introduce errors in the VOD retrievals. Zwieback et al. 

(2019) found spurious correlations of soil moisture and VOD especially for sub-monthly time scales over forests. Besides that, 

the correctness of the retrieval product focuses on soil moisture at the cost of the VOD retrieval. The resulting error shifts from 675 

soil moisture to VOD are more prone to short-term changes and to higher VOD values (Feldman et al., 2021), which might 

contribute to the underestimation of high VOD values of our models and the reduced performance of the 8-daily models 

compared to the monthly models. A more robust L-VOD product might be achieved by analysing and adjusting the necessary 

degree of regularization for a VOD retrieval depending on time scale and land cover (Zwieback et al., 2019; Feldman et al., 

2021).  680 

An interesting finding is the higher sensitivity of L-VOD to LFMC than to LAI. This indicates that L-band indeed penetrates 

deeper in the canopy (low sensitivity to LAI) but is sensitive to the plant water status (i.e. LFMC). However, AGB and LFMC 

are insufficient predictors to reach high predictability of L-VOD. This might be caused by the fact that the AGB dataset used 

in this study does not contain any temporal information, and hence changes in AGB are not considered in our model. Using an 

alternative dataset (e.g. Xu et al., 2021), which provides a global time series of AGB could be a benefit for improving the 685 

understanding of temporal VOD variations. However, as we included annual land cover maps as predictors, our models do 

indeed account for land cover change such as deforestation which is strongly related to a change in AGB (Andela et al., 2013). 

The use of LFMC and LAI as a predictorpredictors might be insufficient for L-VOD. The used LFMC and LAI data used in 

our study waswere both derived from optical observation by MODIS, which in, the case of closed forest canopies, is only 

sensitive to the top of the canopy. in closed forest canopies. Root-zone soil moisture was used as a proxy for water availability 690 

in other studies (e.g. Konings et al., 2021), however, it is not an ideal predictor for vegetation water content, as some plants 
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can regulate their water potential or moisture content independent of soil moisture (Konings and Gentine, 2017; Hochberg et 

al., 2018). Therefore, it is necessary to further investigate the daily to seasonal temporal dynamics of L-VOD with respect to 

e.g. local and regional observations of water availability and plant water status.  

4.2 Towards developing advanced approaches to link VOD with vegetation properties 695 

The long time series, global coverage and multiple frequencies of VOD retrievals provide valuable information or can be used 

to derive vegetation properties at large scale or to evaluate and parametrize land surface models in data assimilation studies. 

Those applications of VOD require, however, a solid understanding of the biophysical controls on VOD. The relatively high 

effect of LAI on the short wavelength VODs indicates that data assimilation approaches that only use LAI for estimating the 

temporal dynamic of VOD (as they were used by Scholze et al., 2019 and Kumar et al., 2020) are valid approximations. This 700 

means that even models without an explicit representation of plant water status are suitable for VOD assimilation, but the 

observation operators need to take into account non-linear, non-additive, and local effects.The long time series, global coverage 

and multiple frequencies of VOD retrievals provide valuable information that can be used to derive vegetation properties at 

large scale or to evaluate and parametrize land surface models in data assimilation studies. However, those applications of 

VOD require a solid understanding of the biophysical controls on VOD. The relatively high effect of LAI on the short 705 

wavelength VODs indicates that data assimilation approaches that only use LAI for estimating the temporal dynamic of VOD 

(as they were used by Scholze et al., 2019 and Kumar et al., 2020) are valid approximations. This means that even models 

without an explicit representation of plant water status are suitable for VOD assimilation, but the observation operators need 

to take into account non-linear, non-additive, and local effects. 

LFMC or similar measures for plant water status have only recently been introduced into land surface models commonly used 710 

for global-scale simulations (e.g. Kennedy et al., 2019; Niu et al., 2020; Eller et al., 2020; Li et al., 2021a). LFMC has therefore 

not been used in assimilation studies so far. The long time series of especially Ku-VOD could help to constrain model 

simulations of LFMC or plant watersupport studies of plant water status but requirerequires a good representation of LAI 

dynamics. 

For observation operators for L-VOD, AGB should be the main predictor for spatial patterns. For example, Rodríguez-715 

Fernández et al. (2018) modelled C-VOD from AMSR-E as an empirical function of AGB.For observation operators for L-

VOD, AGB should be the main predictor for spatial patterns. Scholze et al. (2019) used the empirical function between VOD 

and AGB evaluated by Rodríguez-Fernández et al. (2018), to simulate L-VOD from AGB. Thereby, AGB was replaced with 

a function of net primary production and effective turnover time. However, temporal changes in L-VOD might result in an 

overestimation in dynamics of biomass production, turnover or biomass loss if effects ofthat are caused by changes in plant 720 

water status are not consideredmight result in an overestimation in dynamics of biomass production, turnover or biomass loss 

(Konings et al., 2021). Scholze et al. (2019) tried to avoid incorporating short-term changes due toin VWC and therefore 

averaged the VOD simulations to yearly means. The temporal dynamics should include the effect of plant water status, but 

further investigations on the drivers of the temporal dynamics of L-VOD are necessary to make full use of the data. 

Including a proxy for VWC and exploring the influence of short-term changes of vegetation properties on VOD, we assessed 725 

the temporal dynamics not only for L-VOD but also for Ku-, X-, and C-VOD, which will help to make explicit use of VOD 

temporal changes within modelling and assimilation studies.  
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