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Abstract. Vegetation attenuates the microwave emission from the land surface. The strength of this attenuation is quantified 

in models in terms of the parameter Vegetation Optical Depth (VOD), and is influenced by the vegetation mass, structure, 15 

water content, and observation wavelength. Earth observation satellites operating in the microwave frequencies are used for 

global VOD retrievals, enabling the monitoring of vegetation status at large scales. VOD has been used to determine above-

ground biomass, monitor phenology or estimate vegetation water status. VOD can be also used for constraining land surface 

models or modelling wildfires at large scale. Several VOD products exist differing by frequency/wavelength, sensor, and 

retrieval algorithm. Numerous studies present correlations or empirical functions between different VOD datasets and 20 

vegetation variables such as normalised difference vegetation index, leaf area index, gross primary production, biomass, 

vegetation height or vegetation water content. However, an assessment of the joint impact of land cover, vegetation biomass, 

leaf area, and moisture status on the VOD signal is challenging and has not yet been done.  

This study aims to interpret the VOD signal as a multi-variate function of several descriptive vegetation variables. The results 

will help to select certain VOD wavelengths for specific applications and can guide the development of appropriate observation 25 

operators to integrate VOD with large-scale land surface models. Here we use VOD from the Land Parameter Retrieval Model 

(LPRM) of Ku-, X- and C-bands of the harmonised VODCA dataset and level 3 L-band derived from SMOS and SMAP 

sensors. Within a multivariable regression random forest model for simulating these VOD signals, leaf area index, live-fuel 

moisture content, above-ground biomass, and land cover are able to explain up to 0.95 of the variance (coefficient of 

determination). Thereby, the variance in L-band VOD is reproduced spatially and for Ku-, X- and C-band VOD spatially as 30 

well as temporally. Analyses of accumulated local effects demonstrate that Ku-, X- and C-band VOD is mostly sensitive to 

leaf area index and L-band VOD to above-ground biomass. However, for all VODs the global relationships with vegetation 

properties are non-monotonic and complex and differ with land cover type. This indicates that the use of simple global 

regressions to estimate single vegetation properties (e.g. above-ground biomass) from VOD is over-simplistic. 

 35 

1 Introduction 

Vegetation Optical Depth (VOD) describes the attenuation by the vegetation layer of microwave radiation emitted by the Earth. 

Quantifying this effect is important for an accurate retrieval of surface soil moisture from passive microwave satellite 

observations (Wang, 1985; Njoku and Entekhabi, 1996). In the radiative transfer equation for microwave emissions, the opacity 

of the vegetation layer (i.e. the VOD) is also commonly referred to as τ (Jackson et al., 1982). VOD can be retrieved e.g. from 40 

the passive microwave radiative transfer equation using measurements of passive microwaves (Jackson and Schmugge, 1991; 

https://doi.org/10.5194/bg-2022-85
Preprint. Discussion started: 13 April 2022
c© Author(s) 2022. CC BY 4.0 License.



2 

 

Owe et al., 2008; Sawada et al., 2016). However, it is not directly measurable and verifiable with in-situ measurements, which 

is why different authors have correlated VOD with different vegetation properties to understand what VOD is sensitive to. 

Generally, the opacity of passive microwaves in the vegetation layer increases with increasing vegetation water content but 

this relationship varies with vegetation structure including leaf and woody components and wavelength (Jackson and 45 

Schmugge, 1991; Wigneron et al., 1993; Njoku and Entekhabi, 1996). Based on radiometer measurements over various crops 

and a wide range of wavelengths (0.8 – 30 cm), Jackson and Schmugge (1991) report a clear linear relationship of VOD to 

vegetation water content (VWC): 

VOD = b * VWC, (1) 

where the parameter b depends on vegetation type and wavelength. The authors find that b exponentially decreases with 50 

increasing wavelength, which implies that vegetation opacity (the VOD) is smaller for longer wavelengths (i.e. L-band) than 

for shorter wavelengths (i.e. Ku-, X- and C-bands). The vegetation water content can also be expressed as a product of above-

ground biomass (AGB) and a relative water content parameter, often referred to as live-fuel moisture content (LFMC) (Konings 

et al., 2019): 

VOD = b * AGB * LFMC. (2) 55 

Based on those relationships, many studies use VOD to estimate AGB or other vegetation properties. For example, Liu et al. 

(2015) use Ku-band VOD to estimate long-term changes in global AGB, finding a gain of above-ground biomass carbon 

considering forest and non-forest vegetation for 1993-2012. (Rodríguez-Fernández et al. (2018) correlate spatial patterns in 

AGB and yearly averaged values of L-band VOD from the Soil Moisture and Ocean Salinity mission with the INRA-CESBIO 

algorithm (SMOS-IC) for Africa with correlation coefficients up to 0.85. They find linear relationships between VOD and 60 

AGB within single land cover classes, but the relationship across land cover classes is shown to be nonlinear, with a weaker 

nonlinearity for L-band VOD compared to Ku-/X-/C-band VOD. Chaparro et al. (2018) use L-band from the Soil Moisture 

Active Passive mission (SMOS) derived with the Multi-Temporal Dual Channel Algorithm (MT-DCA) to determine crop 

biomass of the north-center of the USA. Both Rodríguez-Fernández et al. (2018) and Chaparro et al. (2018) find better results 

for pixels with higher homogeneity, not just for land cover types but even for plant types, implying that relationships between 65 

VOD and vegetation properties change with land cover and plant types. Li et al. (2021b) find high correlation of L-band VOD 

and AGB leading to the conclusion that longwave VOD is more sensitive to woody parts of the vegetation than shortwave 

VOD. However, Konings et al. (2021) show that the relation between L-band VOD and AGB dominates in space but that 

short-term temporal dynamics in VOD are dominated by VWC. As a proxy for vegetation water status, VOD can be related to 

LFMC or VWC or both (Fan et al., 2018; Konings et al., 2019; Frappart et al., 2020) and can be used to estimate leaf water 70 

potential (Konings and Gentine, 2017; Momen et al., 2017; Zhang et al., 2019).  

Furthermore, VOD is frequently compared with other vegetation properties such as canopy greenness, leaf area index (LAI), 

or plant productivity. For example, VOD shows similar temporal patterns to normalised difference vegetation index (NDVI) 

and LAI (Liu et al., 2011; Momen et al., 2017; Bousquet et al., 2021). In spatial comparisons, the vegetation indices and 

variables tend to saturate over densely vegetated areas. This saturation is less distinct for VOD (Rodríguez-Fernández et al., 75 

2018) due to the ability of microwaves to penetrate deeper into the vegetation layer. VOD can therefore provide complementary 

information to the usually visible-infrared based metrics, e.g. for assessments of land surface phenology (Jones et al., 2011). 

Metrics sensitive to biomass or water content shifts can be derived from VOD (Jones et al., 2011, 2014). VOD and temporal 

changes in VOD are also correlated with gross primary production (GPP) (Teubner et al., 2018), which allowed to develop a 

sink-driven GPP estimation approach based on VOD (Teubner et al., 2019, 2021; Wild et al., 2022). 80 

Recently, several new VOD datasets became available for X-band from the Advanced Microwave Scanning Radiometer – 

Earth Observing System sensor (AMSR-E) and Advanced Microwave Scanning Radiometer 2 (AMSR2) sensors (Du et al., 

2017; Wang et al., 2021), in L-band from SMOS (van der Schalie et al., 2016; Fernandez-Moran et al., 2017; Al Bitar et al., 

2017; Wigneron et al., 2018, 2021) and SMAP (Konings et al., 2017), or Ku-, X- and C-band from several sensors (van der 
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Schalie et al., 2017) as well as harmonized datasets (Vegetation Optical Depth Climate Archive VODCA, Moesinger et al., 85 

2020). A recent comparison study by Li et al. (2021) of different X-, C- and L-band VOD datasets and Moderate Resolution 

Imaging Spectroradiometer (MODIS) derived vegetation indices like NDVI and enhanced vegetation index (EVI) as well as 

tree height and AGB showed that X-band VOD is more suitable to detect temporal variations of the green vegetation parts, 

especially for less densely vegetated areas, than C- and L-band VOD. Additionally, Li et al. (2021) as well as Moesinger et al. 

(2022) found time lags between VOD and vegetation indices and climate variables, showing the need to include a further 90 

vegetation property to improve the response of VOD to temporal changes in the vegetation status. To take into account VOD 

variations caused by vegetation water content more complex than simple regression functions have been developed (e.g. 

Momen et al., 2017). Momen et al. (2017) were able to estimate VOD by using two predictors, LAI and leaf water potential. 

Teubner et al. (2019) linked VOD and GPP by using generalized additive models and the differential equation between VOD 

and AGB by Liu et al. (2015). Among others, these two studies show that the water content of the vegetation is not only 95 

influencing the relation between vegetation indices and VOD but also the relation between VOD and AGB. 

The increasing availability of VOD data for vegetation studies also increases the possibilities to assimilate or integrate VOD 

with ecosystem or land surface models (LSM) (Scholze et al., 2019; Kumar et al., 2020). Therefore, observation operators are 

needed that link the modelled vegetation properties with the satellite-retrieved VOD. Scholze et al. (2019) use a sum of an 

empirical AGB function and a linear term for LAI to describe annual SMOS-IC L-band VOD within the Carbon Cycle Data 100 

Assimilation System (CCDAS) for estimating European carbon fluxes. Kumar et al. (2020) use CDF matching to convert 

VODCA X- and C-band VOD, and SMAP L-band VOD to LAI, which is then assimilated into the Noah-MP LSM. X- and L-

band VOD showed partially complementary improvements of the modelled land surface variables. Both studies by Scholze et 

al. (2019) and Kumar et al. (2020) find an improvement of the model results by incorporating passive microwave data, 

demonstrating the benefits of the vegetation information contained in VOD. In another model-data-fusion approach, Liu et al., 105 

2021 use VOD to derive plant hydraulic parameters for a soil-plant system model that accounts for the hydraulic state of the 

vegetation explicitly. However, as VOD reflects both dynamics in biomass and water content (Jackson and Schmugge, 1991; 

Konings et al., 2021), relations between VOD and AGB or LAI as observation operators are simplifications and demonstrate 

the need for a more detailed understanding of the effects of vegetation properties on VOD.  

 110 

The increasing use of VOD for ecosystem studies (e.g. Dorigo, 2021) and land surface modelling poses the question how 

different vegetation properties affect VOD in both time and space. Hence, a more detailed investigation of the relative effects 

of vegetation properties on VOD could improve the understanding of the VOD signal in terms of interpretation of the 

corresponding vegetation status. Such investigations will also help to identify a suitable VOD dataset for a specific ecological 

application. Furthermore, due to the high temporal resolution and temporal coverage of VOD datasets (partly since 1987), 115 

global analyses of vegetation properties and status as well as land cover change can be conducted for enhanced understanding 

of long-term environmental changes and to improve model predictions.  

Here we aim to assess VOD in response to multiple vegetation properties at large (i.e. inter-continental) scales. We apply a 

multi-variate framework using machine learning approaches (random forest, RF and generalized additive model, GAM) to 

quantify sensitivities of VOD to and interactions with LFMC, LAI, AGB, and land cover. Generalized additive models and 120 

random forests are used to predict VOD from vegetation properties and accumulated local effect (ALE) curves are used to 

assess the sensitivities of VOD to these properties. Comparing both machine learning algorithms gives insights into the 

structure of the relationship between VOD and vegetation properties and provides confidence in the findings. Additionally, we 

inspect how different temporal resolutions (i.e. 8-daily and monthly data) affect the relationships between VOD and vegetation 

properties for identifying the role of vegetation variables at quasi-weekly and seasonal time scales. The analyses are carried 125 

out for five VOD datasets, which differ in wavelength but were derived with the same algorithm (Land Parameter Retrieval 

Model, LPRM) (van der Schalie et al., 2016; van der Schalie et al., 2017) to exclude differences due to retrieval algorithms.  
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2 Data and methods 

2.1 Datasets 

2.1.1 VOD data 130 

An overview of the datasets is given in Table 1 and Figure 1. All used VOD datasets are derived from passive sensors using 

the LPRM algorithm (van der Schalie et al., 2016).  

The VODCA dataset (Moesinger et al., 2020) provides harmonised long-term records of shortwave VOD for Ku-, X- and C-

band (further named Ku-VOD, X-VOD and C-VOD, respectively), using data from the AMSR-E, AMSR-2, Special Sensor 

Microwave Imager (SSM/I), TRMM Microwave Imager (TMI), and Windsat sensors. Unfortunately, Ku-VOD is only 135 

available until 1st August 2017 due to a bias in the eleven brightness temperatures of AMSR-2 causing unexpected low values 

of the VOD retrievals after this date (Moesinger et al., 2020), which is not fixed in the version 01.0. Therefore, all datasets are 

analysed until 31st July 2017. 

Two LPRM-derived L-band VOD datasets are used as longwave VOD, one sensed with SMAP, the other with SMOS (Schalie 

et al., 2016, further named as SMAP L-VOD and SMOS L-VOD, respectively). The SMAP satellite was launched in January 140 

2015, and therefore SMAP L-VOD defines the start date of the analysis of all datasets. 

All VOD datasets are provided as daily data with a spatial resolution of 0.25° on a global scale. As VOD generally decreases 

with increasing wavelength, the five VOD datasets have different dynamic ranges. As we are not interested in the absolute 

value but only the temporal dynamics and spatial patterns, the VOD datasets were globally normalised using minimum and 

maximum value to a range of 0 to 1 based on the available global data within the time span 2015-2017 to provide comparability. 145 

For normalising we use the scikit-learn function ‘MinMaxScaler’.  

2.1.2 Predictor data 

Following the relationship between VOD, LFMC, and AGB as shown in equation 2, proxies related to biomass (AGB and 

LAI), water content (LFMC), and the structure parameter (plant types) are used as predictors for VOD. 

As proxies for woody and non-woody biomass, we used a map of AGB and a time series of LAI. The ESA CCI AGB map 150 

(Santoro and Cartus, 2019) for the year 2017 with 100 m spatial resolution is used as a predictor for woody biomass. This 

AGB map describes the oven-dry mass of woody parts of living trees per pixel. Thereby only above-ground mass is considered, 

i.e. stem and bark as well twigs and branches, but not stumps and roots. 

LAI is used as a proxy for canopy biomass. Specifically, we use the MOD15A2H version 6 dataset from MODIS, which is 

available at 500 m spatial and on a 8-daily temporal resolution on a global scale (Myneni et al., 2015). We excluded LAI 155 

retrievals under (partial) cloud cover, snow or high solar zenith angle.  

For live fuel moisture content, we used a product derived from MODIS Collection 6 for three regions (California/western US, 

South Africa and Australia) at a 500 m spatial and on a 4-daily temporal resolution using the approach described in Yebra et 

al. (2018). Additionally, we used a European product computed by the European Union Joint Research Centre (JRC) for the 

European Forest Fire Information System (EFFIS). This product uses also methods described in Yebra et al. (2018) but MODIS 160 

Collection 5. Therefore, it is produced with a temporal resolution of 8 days. 

The LAI, LFMC, as well as the AGB datasets were resampled to 0.25° resolution to match the VOD spatial extent using a first 

order conservative remapping.  

We used the land cover map by the European Space Agency (ESA) Climate Change Initiative (CCI, ESA, 2017) and its 

continuation from the Copernicus Climate Change Service which provide yearly data for the period 1992-2018 at 300 m spatial 165 

resolution. The land cover classes were converted to fractions of plant functional types and aggregated to 0.25° spatial 

resolution using the cross-walking approach as described in Poulter et al. (2015). Specifically, we made use of the fractions 

per 0.25° grid cell of broad-leaved evergreen (treeBE), needle-leaved evergreen (treeNE), deciduous trees (treeD), shrublands 
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(shrub), croplands (crop), and herbaceous vegetation (herb). Deciduous trees were not further segregated into broad- and 

needle-leaved trees as especially the latter would result in only a small sample when intersected with the VOD data. In another 170 

test, we also combined the fractional coverage of all tree PFTs (treeAll = treeBE + treeNE + treeD) and of short vegetation 

(short = shrub + herb + crop). 

 

Table 1: Overview of datasets used and technical attributes. 

Dataset Variable and unit Sensors 
Temporal coverage / 

resolution 

Spatial coverage / 

resolution 
Reference 

VODCA v01.0 Ku-VOD (-) AMSR-2, SSMI/I, 

TMI and Windsat 

scaled to AMSR-E 

1987-2017 / daily Global / 

0.25° 

Moesinger 

et al. (2020) X-VOD (-)* 1997-2018 / daily 

C-VOD (-)** 2002-2018 / daily 

SMAP L-VOD L-VOD (-) SMAP radiometer 2015-2019 / daily van der 

Schalie et 

al. (2016) 

SMOS L-VOD L-VOD (-) MIRAS 2010-2020 / daily 

ESA CCI AGB 

v1.0 

AGB (Mg/ha) PALSAR-2, 

Sentinel-1 (1A and 

1B), Landsat 

2017 / representative 

for one year 

Global /  

100 x 100 m 

Santoro and 

Cartus 

(2019) 

MOD15A2H 

v006 

LAI (-) MODIS sensors 2000-2020 /  

8-daily 

Global / 

500 x 500 m 

Myneni et 

al.(2015) 

MODIS-LFMC LFMC (%) MODIS sensors 2000-2019 /  

 

4-daily 

Regional / 

500 x 500 m 

California, South 

Africa, Australia 

Yebra et al. 

(2018) 

8-daily Europe 

ESA CCI Land 

cover v2.0.7 

Plant functional 

types (PFT) 

derived from land 

cover classes 

AVHRR,  

PROBA-V, 

Envisat MERIS, 

SPOT-VGT 

1992-2018 / 

yearly 

Global / 

300 x 300 m 

ESA (2017) 

* does not contain SSM/I ** does not contain SSM/I and TMI 175 

 

Figure 1: Overview of the datasets used a) Above-ground biomass (AGB) for 2017 based on the ESA CCI biomass dataset, b) Live 

Fuel Moisture Content (LFMC) derived from MODIS whereby grey indicates areas of non-available data, c) Leaf Area Index (LAI) 

derived from MODIS, d) Ku-band VOD (Ku-VOD) from VODCA, e) X-band VOD (X-VOD) from VODCA, f) C-band VOD (C-
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VOD) from VODCA, g) L-band VOD from SMAP (SMAP L-VOD), h) L-band VOD from SMOS (SMOS L-VOD), and i) the 180 
dominant land cover class for 2016 based on the ESA CCI land cover map. LAI, LFMC, and VOD maps are temporal averages over 

the period January 2015-July 2017. Note LFMC is only available for California, Southern Africa, Europe, and Australia.  

2.1.3 Data combination 

All datasets were cropped to the extent of the LFMC data (Australia, Europe, California, South Africa) for further analyses. 

This implies that the ‘global’ models as stated in the following are indeed inter-continental models restricted to the spatial 185 

extent of the LFMC dataset. To provide comparability of the analyses of the different VOD datasets, only the overlapping 

timespan is used (January 2015-July 2017). The rather short time period does not impede the framework of this study, because 

instead of analysing coherent pixel time series this approach uses each time step of each pixel as an individual data point. The 

ESA CCI AGB map represents the year 2017, but we assume that the biomass does not dramatically change over two years. 

Therefore, the AGB values are kept constant for the whole time series. The PFT fractions are taken from the annual land cover 190 

maps for the respective years in 2015 to 2017 without any interpolation. During the analyses, models were trained and tested 

for 8-daily and monthly temporal resolutions of the LAI and LFMC time series. For the 8-daily resolution, only the VOD 

values matching the same timestamp of the MODIS LAI and LFMC products are used. For the monthly resolution, the mean 

VOD, LAI or LFMC within the regarding month were calculated. 

As a final step, pixels were excluded when the fractional coverage of bare ground or water exceeds 5 % to avoid the 195 

interpretation of marginal effects of bare soils or water on VOD. Models were specifically trained for single land cover classes. 

A threshold of 55 % was used to discern when a land cover class was dominant compared to the other classes.  

2.2 Regression methods 

To assess the influence of the vegetation variables on VOD, we applied two methods: generalized additive models (GAM) and 

random forest regressor (RF). Both methods are compared to evaluate if the relationship between the features and the predictor 200 

variable is rather simple additive assembled (adequately captured by GAM) or more complex (requires RF). GAM can 

represent non-linear and non-monotonic relations with single predictors whereby all predictors have a joined additive effect. 

RF can represent more complex relations and interactions between the single predictors, but are not well suited for capturing 

additive structures in the data (Hastie et al., 2009). Another reason to use GAM simultaneously to RF is that models that are 

designed for short vegetation use just two predictors (LAI and LFMC). AGB is only representative for woody biomass of trees 205 

and can therefore not be included for short vegetation. While GAMs can utilise a small number of predictors, the application 

of RF with only two predictors will likely result in overfitting as the random choice of a predictor variable during the 

development of decision trees is very limited. Both methods allow the qualitative and quantitative assessment of the 

sensitivities of VOD to the predictors via Accumulated Local Effects (ALE, see chapter 2.5).  

The RF algorithm incorporates multiple independent decision trees, where the final prediction is the average prediction of the 210 

individual trees (Breiman, 2001; Hutengs and Vohland, 2016; Liang et al., 2018). Using the scikit-learn package (version 

24.1), multiple hyper-parameters can be tuned. During a grid-search using the scikit-learn function ‘RandomizedSearchCV’ 

for an exemplary dataset (predicting monthly inter-continental Ku-VOD with LAI, LFMC, AGB, and land cover), the 

minimum number of samples within a leaf (1 and 4), number of estimators (100, 200-2000 with 200-steps), maximum features 

(functions: ‘auto’, ‘sqrt’, ‘log2’), maximal depth (10-110 with 20-steps, None), and minimum samples split (2 and 10) were 215 

tested. The best combinations were again tested with monthly inter-continental predictions of X-, C-, SMOS and SMAP L-

VOD. Some combinations led to partly improved results compared to the scikit-learn default hyper-parameters, but also partly 

degraded results. We finally selected the following hyper-parameters: minimum samples within a leaf=1, number of 

estimators=100, maximum features=’auto’, maximal depth=None, minimum samples split=2 and criterion=mean squared 

error. This setup provided across all tested models the best results. The chosen maximum features parameter leads to the 220 

consideration of all features for all splits, thereby omitting one of the strengths of RF. This parameter may have been selected 
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due to the low number of our chosen vegetation variables. RF is still able to capture complex relationships, which is our main 

focus. 

GAMs are a progression of standard linear regression models and generalized linear models (GLMs) (Hastie and Tibshirani, 

1987). In comparison to standard linear regression models, GLMs use a link function to connect the mean response of the 225 

target variable with the predictors, which can also represent other distributions of the target variable besides the Gaussian 

distribution, like binomial, gamma or Poisson distributions (Nelder and Wedderburn, 1972). In addition, GAMs incorporate 

smoothing functions for each predictor variable (Yee and Mitchell, 1991). This allows modeling non-linear and non-parametric 

relationships between the target and predictor variables. A general GAM equation can be written as: 

𝑔(µ) = b + ∑ 𝑓𝑗(𝑥𝑖)
𝑝
𝑖=1  ,           (3) 230 

with g() as link function, µ as mean response of target variable, b as intercept term, f() as smoothing functions, and x as 

predictor variables. Here the GAM is developed for a Gaussian distribution with an ‘identity’ link function and spline terms 

as smoothing functions using the Python package pyGAM (version 0.8.0).  

2.3 Model experiments 

We applied two main classes of regression models to predict VOD. The first class are global models that use the PFTs from 235 

the land cover map in addition to the vegetation predictors LAI, LFMC, and AGB. This means that the individual maps of 

treeBE, treeBD, treeNE, treeND, shrub, crop, and herb are used as additional predictors. The second model class is comprised 

of land cover–specific models using LAI, LFMC, and AGB as inputs. These models are only applied to the spatial extent of 

one dominant land cover class. In models for short vegetation classes, AGB is not used as a predictor because this map is only 

representative of forest biomass. All model setups were trained both for GAM and RF, and using monthly as well as 8-daily 240 

values for each VOD dataset. Table 2 gives an overview of the models and the input data. 

 

Table 2: List of tested models, with N = needleleaf, B = broadleaf, E = evergreen, D = deciduous, All = not differentiated, CCI PFT 

= ESA Climate Change Initiative Plant Functional Type; each model is run with GAM and RF as well as with datasets with 8-daily 

and monthly temporal resolution for each VOD dataset. 245 

 

2.4 Model evaluation 

For the evaluation of the models, 5-fold cross-validation is used. The same randomly computed folds are used for RF and 

GAM. The results are averages across all folds. The performance of the models is evaluated using the coefficient of 

determination (R2) and root mean squared error (RMSE) between the satellite-derived and the modelled VOD. R2 commonly 250 

Land cover class/ 
Model name 

Spatial domain (defined by dominant land 
cover) 

Predictors 

Land cover-specific models 

treeAll CCI PFT treeAll > 55% AGB + LFMC + LAI 
treeNE CCI PFT treeNE> 55% AGB + LFMC + LAI 
treeBE CCI PFT treeBE > 55% AGB + LFMC + LAI 
treeB CCI PFT (treeBE + treeBD) > 55% AGB + LFMC + LAI 
treeN CCI PFT (treeNE + treeND) > 55% AGB + LFMC + LAI 
treeD CCI PFT (treeBD + treeND) > 55% AGB + LFMC + LAI 
treeE CCI PFT (treeBE + treeBD) > 55% AGB + LFMC + LAI 
shrub CCI PFT shrub > 55% LFMC + LAI 
crop CCI PFT crop > 55% LFMC + LAI 
herb CCI PFT herb > 55% LFMC + LAI 
short vegetation CCI PFT (shrub + crop + herb) > 55% LFMC + LAI 

Global model (including land cover as predictor) 

global inter-continental (all grid cells in southern 
Africa, California, Australia, and Europe) 

AGB + LFMC + LAI + treeNE + treeND + treeBE + 
treeBD + shrub + crop + herb 
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ranges between 1 (perfect agreement) and 0, where the latter is the score for a model which solely predicts the mean of the 

reference data. Models that perform worse than this can also yield negative R2 values. In addition to the overall evaluation of 

the models, we evaluate the spatial distribution of R2, i.e. R2 of the satellite and modelled VOD time series. 

2.5 Partial relationships: Accumulated Local Effects (ALE) 

The relationships and sensitivities of VOD to the predictors are examined via Accumulated Local Effects (ALE) plots (Apley 255 

and Zhu, 2020). ALE plots are improvements over Partial Dependence Plots (PDP) (Friedman, 2001; Kuhn-Régnier et al., 

2021) but can be interpreted similarly, i.e. as a partial relationship between a predictor and the target variable, taking into 

account all other predictors. Unlike PDPs, ALE does not combine each plotted predictor value with all possible combinations 

of the other predictors. For ALE, evenly spaced quantiles across the range of an examined feature are defined. Every such 

quantile is then combined with the closest, existing value combinations of all other features. This procedure prevents unlikely 260 

and unrealistic feature combinations, which increases robustness, especially when features are strongly correlated. The ALE 

plots were generated from the final models, where all available data were used for training.  

To quantify the influence of the predictors on the target variable, we calculated the amplitude of the ALE curve (ΔA). 

3 Results 

3.1 Performance of the models  265 

The different regression models used to predict satellite-derived VODs showed large differences in model performance (-0.04 

≤ R² ≤ 0.97; 0.004 ≤ RMSE ≤ 0.2) (Figure 2, Figure S1 and S2 in supplement). This difference was dominated by 1) the type 

of regression model (RF or GAM), 2) by the use of 8-daily or monthly data, 3) by the inclusion of land cover information as a 

predictor (land cover-specific vs. global models, 4) the wavelength of the predicted VOD (i.e. from Ku- to L-band), and 5) by 

the vegetation type which the model is applied to, i.e. spatial variability of global model performance, which will be discussed 270 

in more detail in the following. 

 

Figure 2: Coefficient of determination (R², left) and RMSE (right) of random forest (RF) models using monthly data. The global 

model uses PFTs as predictors, contrary to the land cover models, which were calibrated and applied only to the spatial extent of a 

certain dominant land cover class. Global model short vegetation and tree cover uses results of the global model, but filtered by 275 
dominant land cover class. 

3.1.1 Effect of the type of regression model used for calibrating the models (RF vs. GAM) 

In general, RF performed better than GAM in predicting VOD, except for land cover-specific models for short vegetation 

classes where GAM reached similar or slightly higher performance than RF (Figure S1, Figure S2 for corresponding RMSE 
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results). In most cases, GAMs underestimated high VOD values. Based on these findings, in the following sections, we only 280 

refer to the results of RF models. If not stated otherwise, similar results were found for GAM. 

3.1.2 Effect of the temporal aggregation of the explanatory variables (8-daily vs. monthly data) 

Regression models based on monthly data had higher R2 and lower RMSE than models based on 8-daily data (Figure S1 and 

S2). The superior performance of monthly over 8-daily models increased with increasing wavelength. For example, the 

difference was especially large for the prediction of SMOS L-VOD for which R² doubled from 8-daily to monthly data (Figure 285 

S1). The performance in predicting Ku-, X- or C-VOD was similar or monthly data presented slightly higher performance than 

8-daily data. Given the higher performance of models based on monthly data, the following description of results is based on 

these, unless mentioned otherwise. 

3.1.3 Effect of including land cover information as a predictor (global vs. land cover-specific models) 

Considering RF models based on monthly data, the global models (defined as models including fractional cover of PFTs as 290 

predictors, see Table 2) showed better model performances than the land cover-specific models (trained and applied only to 

one specific land cover). The global models performed with an R2 of 0.85 to 0.95 and an RMSE of 0.01 to 0.03 depending on 

VOD wavelength (Figure 2). We also compared the model performance of a specific land cover type within the global model 

with the related land cover-specific model. Regarding RF models, the land cover-specific models had an R² of 0.09 to 0.59 

lower and RMSE of 0.006-0.03 higher than the related land cover within the global models. Considering GAMs, land cover-295 

specific models performed better within a certain land cover type than the global model for the same land cover type. This 

applies especially for land cover types with simpler vegetation structure, e.g. shrubland, herbaceous vegetation or broad-leaved 

evergreen trees, and less for more complex land cover types like the treeAll and short vegetation classes. 

3.1.4 Effect of VOD wavelength 

In general, the R2 of predicting short-wavelength VOD was higher than for L-VOD predictions and RMSE decreased from 300 

long to short wavelengths (Figure 2). All SMOS L-VOD models performed with a lower R2 and a higher RMSE than the other 

VOD models including SMAP L-VOD. For RF models based on 8-daily data, R2 was highest for Ku-VOD, followed by X-

VOD and C-VOD (Figure S1). For monthly data and GAMs, the order in performance was slightly different between Ku-, X- 

and C-VOD for R2 and RMSE.  

In the global model, the land cover-specific model performance depends on the different VOD wavelengths. The prediction of 305 

monthly Ku-, X- and C-VOD using RF reached the highest performance for broad-leaved evergreen trees (0.95 ≤ R² ≤ 0.97, 

0.009 ≤ RMSE ≤ 0.013) and the lowest performance for croplands (0.82 ≤ R² ≤ 0.85, 0.015 ≤ RMSE ≤ 0.023). Predicting 

monthly SMAP L-VOD using RF had the highest performance in herbaceous vegetation (R² = 0.93, RMSE = 0.016) and the 

lowest performance in deciduous trees (R² = 0.74, RMSE = 0.031). RF prediction of monthly SMOS L-VOD attained the 

highest performance in herbaceous vegetation (R² = 0.84, RMSE = 0.023) and the lowest performance in needle-leaved and 310 

deciduous trees and croplands (R² ~ 0.6, 0.032 ≤ RMSE ≤ 0.059).  

3.1.5 Spatial variability in model performance 

Several geographical patterns of high predictability (high R2, blue areas in Figure 3), like the cropland area in south-western 

and south-eastern Australia, and poor predictability (low R2, red areas in Figure 3), e.g. southern California, are similar for all 

VOD datasets.  315 

Across all VOD datasets, the prediction of VOD was best in Australia; followed by South Africa, Europe, and California 

(Figure S3). As for the global model results (chapter 3.1.4), the best performance was achieved in predicting Ku-, X-, and C-

VOD and the lowest performance for SMOS L-VOD. This is indicated by the dominant colour distribution in Figure 3 and by 
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the corresponding histograms (Figure S3), whereby the more right-skewed and narrower the distribution the better the 

prediction of all pixel time series (e.g. Ku-VOD for Australia).  320 

Not only areas with a high crop fraction have high R2, but also areas with large shrub fractions, e.g. northern Australia and 

central South Africa, and high herbaceous fractions, like in north-western and south-eastern South Africa and western 

Australia. 

Pixels with large seasonality in LAI and LFMC (e.g. eastern Europe and northern part of California), show higher R2 results 

per pixel. Increasing pixel land cover homogeneity also contributes to improved results. This implies worse results for more 325 

heterogeneous pixels and in regions with less pronounced seasonality in LAI due to lack of defoliation (needleleaf, evergreen), 

or in LFMC due to more or less stable weather conditions or to more drought resistance of less plant-water sensitivity (Rao et 

al., 2022), such as the central areas of California, northern Europe and central Australia. With increasing wavelength, the VOD 

of these areas is getting more difficult to predict. 

Additionally, regions with mean VOD values less than 0.1 and marginal changes over time tend to have low or even negative 330 

R2. This is noticeable in central Australia and central South Africa. The comparison of the high R2 based on all values (section 

3.1, >1.000 data samples) with the R2 in Figure 3 and S3 shown here (monthly time series January 2015 – July 2017 resulting 

in a maximum time series of 31 months i.e. < 32 data samples) indicates that R2 seems to be sensitive to the data size, leading 

to small R2 when few data points are available. The reference and modelled mean VOD and the variance of VOD are highly 

correlated in space (Spearman correlation coefficient > 0.75) which shows that the models captures the variability and spatial 335 

patterns of VOD. With higher mean VOD the R2 increases, e.g. such as for the tree-covered areas dominated by deciduous 

broadleaf trees. 
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Figure 3: Coefficient of determination (R2) per pixel for the global random forest model (PFTs included as predictor) based on 340 
monthly values. Rows indicating results for the different VOD datasets and columns the different regions as dictated by the 

availability of the LFMC dataset. 

 

3.2 Relationships between VOD and vegetation properties 

3.2.1 Global (inter-continental) relationships 345 

The ALE plots in Figure 4 (Figure S4 – S7 for all global predictors based on monthly and 8-daily RF and GAM models) 

demonstrate the effects of vegetation properties on VOD for all wavelengths. For Ku-VOD, LAI and herbaceous land cover 

have the highest influence followed by AGB and LFMC with an amplitude of ΔA = 0.109, 0.054, 0.045 and 0.017, respectively. 

For X- and C-VOD the order of influence is LAI (ΔA = 0.072 for X-VOD; and 0.099 for C-VOD), AGB (ΔA = 0.032; and 

0.046), herbaceous land cover (ΔA = 0.029; and 0.031) and LFMC (ΔA = 0.017; and 0.028). 350 
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All VOD datasets show a positive relationship with LAI, but all curves saturate around an LAI value of 2.3, which corresponds 

approximately to the 95%-ile of LAI in our dataset. LAI has a much stronger effect on Ku-, X-, and C-VOD than on L-VOD. 

Interestingly, the relationship between LAI and SMAP L-VOD (ΔA 0.054) is more similar to the relationship of LAI and 

shortwave VOD e.g. X-VOD than for LAI and SMOS L-VOD (ΔA 0.024).  

The relationship with LFMC is more complex for all VOD datasets. From 0 % to 50 % LFMC, the relationships are negative 355 

with a negative spike at 50 % LFMC. Afterwards, VOD increases with increasing LFMC, which is most pronounced for SMOS 

L-VOD (overall ΔA = 0.05). However, SMAP L-VOD shows a strong negative relationship with LFMC after around 140 % 

LFMC (overall ΔA = 0.056). 

All VOD datasets show a similar increase with AGB until 120 Mg/ha (corresponding to the 95%-ile) but the relationships 

differ at higher AGB values. While Ku-, X- and C-VOD show a decreasing relationship with AGB, SMOS and SMAP L-VOD 360 

continue to increase (overall ΔA = 0.095 for SMOS L-VOD; and 0.107 for SMAP L-VOD). 

The relationships with land cover fractions are positive for most VOD datasets. As an example, we here show the relationship 

with the fraction of herbaceous cover. Ku- and X-VOD show an almost monotonic increase with increasing herbaceous cover. 

On the other hand, C- and L-VOD (ΔA 0.025 for SMAP; and ΔA 0.024 for SMOS L-VOD) show a negative relationship with 

herbaceous cover at very low coverage (up to ca. 0.15, corresponding approx. to the 40%-ile of herbaceous cover) but increase 365 

afterwards.  

Taken together, we find the following effects of vegetation properties on the different VOD datasets: SMOS L-VOD is most 

strongly affected by AGB (positive relationship), followed by LFMC (positive relationship at LFMC > 50 %), LAI (positive 

relationship for LAI < 1.5), and herbaceous vegetation. SMAP L-VOD is most strongly affected by AGB (positive 

relationship), followed by LAI (positive relationship for < 2.5), LFMC (negative relationship), and herbaceous vegetation. Ku-370 

, X-, and C-VOD show very similar relationships and are most strongly affected by LAI (positive relationship), followed by 

AGB (positive relationship up to 120 Mg/ha), herbaceous vegetation cover and LFMC. The relationships with LFMC and 

herbaceous cover differ mostly between Ku- and X-VOD on the one hand and C-VOD on the other.  

Interestingly, the amplitude of the ALE plots varies between wavelengths. For LAI and land cover a clear decrease of the ALE 

amplitude with increasing wavelength is visible, which corresponds to the fact that the magnitude of VOD decreases with 375 

increasing wavelength. For AGB and LFMC, the ALE amplitude increases with increasing wavelength. 
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Figure 4: ALE plots of predicted normalised VOD to ecosystem properties based on the global monthly RF model with plant 

functional type (PFT) of herbaceous vegetation (herb) as an example of the influence of land cover fractions on VOD. Vertical lines 

indicate the quantiles of the data sample size 0.05, 0.25, 0.5, 0.75, and 0.95, respectively. 380 

3.2.2 Relationships of land cover-specific models 

The individual predictors in the land cover-specific models have a partially higher influence on the VOD prediction than in 

the global model (Figure 5, Figure S4 – S15).  

For tree-covered areas (treeAll model), the LAI-ALE shows a slight positive relationship with VOD up to an LAI of ca. 2 and 

then a stable or slightly decreasing relation. The relation with LFMC is positive for Ku-, X-, and C-VOD but unimodal for 385 

both L-VODs. AGB is the dominant predictor but the relationship with VOD is non-linear and non-monotonic.  

Comparing the ALEs of the treeAll and the individual forest type models (i.e. treeB, treeN, treeD, treeE, Figure S8), the 

influence of a specific forest type is recognizable within the treeAll ALEs. For example, the highly non-linear relationship 

between VOD and LAI until LAI~2.0 is based on the VOD-LAI relationship of deciduous trees. The treeAll LFMC-ALE is 

highly influenced by the relationship for needle-leaved and evergreen trees. The apparent SMOS L-VOD decrease with LFMC 390 

is also pronounced within most tree types but not within deciduous trees. The AGB-ALE for needle-leaved trees is less non-

linear in comparison to the other tree cover models. Deciduous and broad-leaved trees exhibit a more complex relationship 

with AGB than evergreen and needle-leaved trees. 

For short vegetation, LAI is the main influencing predictor and shows a positive relationship with all VOD bands. The ALE 

plot between VOD and LFMC shows a similar form as in the global model with a drop around 50 % LFMC, which indicates 395 
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that the global VOD-LFMC relationship is dominated by dynamics in short vegetation areas. Particularly, the drop is based on 

the herbaceous land cover type, which is also visible in the 8-daily based models and in the GAMs (Figure S10, S11, S14 and 

S15). Contrary to the global model, the land cover–specific models do not exhibit the clear dependency of the ALE amplitude 

to the wavelengths. The dependency of the ALE amplitude on wavelength is still visible in the LAI-ALE of the herbaceous 

and shrubland cover models, especially for LAI greater than 1 and more pronounced in the 8-daily based models than in the 400 

monthly based models. The same is true for the LFMC-ALE of the monthly based shrubland models above 140 % LFMC. The 

positive relationship between 50 % and 140 % LFMC and the following decrease (especially for the L-VOD LFMC-ALE) for 

short vegetation is influenced by cropland cover, because the decrease is only visible in the LFMC-ALE from the cropland 

model. 

 405 

 

Figure 5: ALE plots of normalised VOD to ecosystem properties based on land cover-specific monthly RF models. 

Shown models are based on pixels with a PFT treeAll fraction more than 0.55 (top), and for short vegetation (bottom). 

Vertical lines indicate the quantiles of the data sample size 0.05, 0.25, 0.5, 0.75, and 0.95, respectively. 

4 Discussion and conclusions 410 

4.1 Predictors and predictability of VOD 

The results demonstrate that for the global prediction of VOD, i.e. over different biomes, a more flexible modelling approach 

such as RF is better suited as opposed to an additive approach like GAM. The lower global performance of GAM suggests that 

local factors play a role in the dynamics of VOD, which were not considered and used as additional additive predictors. In 

contrast, RF is partly able to account for this due to its ability of flexible modelling leading to better results. The simpler 415 

structure of GAM compared to RF is, in most cases, insufficient to predict VOD, but within single land cover types a simpler 
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additive approach like GAM is sufficient. This indicates that the relationship between VOD and ecosystem properties cannot 

be easily captured with global linear, monotonic, and bivariate regressions but requires accounting for the non-linear 

interactions between various ecosystem properties. The results imply that the set of predictors allows the estimation of the 

dynamics of short wavelength VODs at high temporal resolution (8-daily and monthly) with very good performance, but the 420 

set of used predictors is insufficient to explain the dynamics in L-VOD due to ignoring local effects or possibly disregarded 

predictors.  

This conclusion is supported by the performance difference between the four studied regions. For example, Europe has a much 

more fragmented landscape than most areas in Australia causing mixed effects on VOD within the coarse 0.25° grid cells 

leading to a lower predictability in Europe than Australia. Even if PFT fractions are used as predictors, the mismatch between 425 

the coarse resolution and land cover complexity cannot be resolved. This is especially pronounced in the longwave VOD, for 

which the footprint is often significantly larger than 0.25° (> 40 km). A filtering of neighbouring grid cells would not then 

reduce the impact of the surrounding land cover. Local complex effects on VOD are related to land cover changes, intercepted, 

or standing water, or soil properties. For example, Saleh et al. (2006) showed for the grassland test site that because of 

interception L-VOD could double in value after a rainfall event. Although interception has reduced influence on the coarse 430 

resolution data (Baur et al., 2019; Wigneron et al., 2021) or might not impede temporal VOD analyses (Feldman et al., 2020), 

temporary flooding leads to an evident decrease in VOD. This is not only valid for short vegetation areas (Liu et al., 2019), 

but also for forests (Jones et al., 2011; Bousquet et al., 2021). These impacts of local effects on VOD implies that large-scale 

spatial relations between VOD and e.g. AGB (Liu et al., 2015; Rodríguez-Fernández et al., 2018; Mialon et al., 2020) will 

likely wrongly associate changes in VOD to changes in AGB, which might result in unrealistic estimates of AGB dynamics. 435 

This conclusion is supported by the findings of Konings et al. (2021), who show that regional temporal anomalies of X- and 

L-VOD are mostly uncorrelated with temporal anomalies of AGB but show a higher correlation with root-zone soil moisture, 

an indicator for water stress.  

The comparison of the global and the land cover-specific models highlights the complexity of the relation between VOD and 

vegetation properties. An interesting result is that the ALE amplitudes (i.e. sensitivity) increase with increasing wavelength in 440 

the global model but not in the land cover-specific model. The land cover-specific models only include pixels with a coverage 

> 55 % of the specific land cover type but do not use PFT fractions as predictors. This indicates that PFT fractions serve as a 

descriptor of vegetation structure and hence as a descriptor of land cover heterogeneity in the global model. This causes a 

VOD-LAI relationship that varies by wavelength, but this wavelength-dependency cannot be resolved within a land cover-

specific model, because it does not account for the impact of sub-pixel heterogeneity. Furthermore, the differences in the VOD-445 

AGB relationship between the global and the land cover-specific models also highlights that a monotonic AGB-VOD 

relationship is only valid over a large spatial scale but does not hold within a vegetation type or at smaller scales.  

The high R2 results for high biomass areas were enabled using PFT maps as feature, which compensate for the saturating effect 

of AGB. Both LFMC and LAI vary in time and space and are strongly correlated. The temporal and spatial variation of our 

model is dominated by LAI, leading to a decreased influence of LFMC on shortwave VOD, which has a higher short-term 450 

variation than L-VOD.  

Globally, the L-band VOD is highly influenced by AGB, which is in agreement with the ability of longwave VOD to better 

penetrate dense vegetation and its higher sensitivity to the woody plant parts (Liu et al., 2011). However, the much lower 

predictability of L-VOD compared to Ku-, X-, and C-VOD indicates that L-VOD cannot be sufficiently explained by the 

combination of AGB, LAI, LFMC, and land cover. The performance in predicting L-VOD is much lower at pixel-level (Figure 455 

3) than computed across the spatial and temporal data. Hence, the low performance in predicting L-VOD is mostly related to 

the temporal dynamics because our model correctly explains the spatial patterns. The low performance in predicting SMOS 

L-VOD might be caused by noisy signal of the SMOS sensor (van der Schalie et al., 2017). Especially the daily raw L-VOD 

data, as used for the 8-daily analyses, can be very noisy (Wigneron et al., 2021). Vittucci et al. (2016) found moderate seasonal 
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differences (but within the standard variation) of the SMOS L-VOD signal over boreal forest, which are partly explainable due 460 

to the deciduous character of the forest but moreover because of random effects. The L-band signal, and also the C-band signal, 

is strongly disturbed by radio-frequency interference (RFI, Liu et al., 2019). The spatial and temporal inconsistency of RFI 

complicates the RFI correction of the L-band (Wigneron et al., 2021). This indicates a noisy, or until now not fully understood, 

variation of the SMOS L-VOD, especially within the lower value range. Due to the uncertain proportion of noise and short-

term changes of water content, Ebrahimi et al. (2018) averaged SMOS L-VOD over 15 days and Rodríguez-Fernández et 465 

al.(2018) even over 2 years to reduce related uncertainties of the VOD signal. Vaglio Laurin et al. (2020) found a time lag of 

up to 6 months for mostly tree-covered areas in South America and Africa between SMOS L-VOD and ecosystem functional 

properties. This time lag shows that the relations between SMOS L-VOD and vegetation properties need further investigation 

in densely-vegetated regions. 

An interesting finding is the higher sensitivity of L-VOD to LFMC than to LAI. This indicates that L-band indeed penetrates 470 

deeper in the canopy (low sensitivity to LAI) but is sensitive to the plant water status (i.e. LFMC). However, AGB and LFMC 

are insufficient predictors to reach high predictability of L-VOD. This might be caused by the fact that the AGB dataset used 

in this study does not contain any temporal information, and hence changes in AGB are not considered in our model. Using an 

alternative dataset (e.g. Xu et al., 2021), which provides a global time series of AGB could be a benefit for improving the 

understanding of temporal VOD variations. However, as we included annual land cover maps as predictors, our models do 475 

indeed account for land cover change such as deforestation which is strongly related to a change in AGB (Andela et al., 2013). 

The use of LFMC as a predictor might be insufficient for L-VOD. The LFMC data used in our study was derived from optical 

observation by MODIS, which in, the case of closed forest canopies, is only sensitive to the top of the canopy. Root-zone soil 

moisture was used as a proxy for water availability in other studies (e.g. Konings et al., 2021), however, it is not an ideal 

predictor, as some plants can regulate their water potential or moisture content independent of soil moisture (Konings and 480 

Gentine, 2017; Hochberg et al., 2018). Therefore, it is necessary to further investigate the daily to seasonal temporal dynamics 

of L-VOD with respect to e.g. local and regional observations of water availability and plant water status.  

4.2 Towards developing advanced approaches to link VOD with vegetation properties 

The long time series, global coverage and multiple frequencies of VOD retrievals provide valuable information or can be used 

to derive vegetation properties at large scale or to evaluate and parametrize land surface models in data assimilation studies. 485 

Those applications of VOD require, however, a solid understanding of the biophysical controls on VOD. The relatively high 

effect of LAI on the short wavelength VODs indicates that data assimilation approaches that only use LAI for estimating the 

temporal dynamic of VOD (as they were used by Scholze et al., 2019 and Kumar et al., 2020) are valid approximations. This 

means that even models without an explicit representation of plant water status are suitable for VOD assimilation, but the 

observation operators need to take into account non-linear, non-additive, and local effects. 490 

LFMC or similar measures for plant water status have only recently been introduced into land surface models commonly used 

for global-scale simulations (e.g. Kennedy et al., 2019; Niu et al., 2020; Eller et al., 2020; Li et al., 2021a). LFMC has therefore 

not been used in assimilation studies so far. The long time series of especially Ku-VOD could help to constrain model 

simulations of LFMC or plant water studies but require a good representation of LAI dynamics. 

For observation operators for L-VOD, AGB should be the main predictor for spatial patterns. For example, Rodríguez-495 

Fernández et al. (2018) modelled C-VOD from AMSR-E as an empirical function of AGB. Scholze et al. (2019) used the 

empirical function between VOD and AGB evaluated by Rodríguez-Fernández et al. (2018), to simulate L-VOD from AGB. 

Thereby, AGB was replaced with a function of net primary production and effective turnover time. However, temporal changes 

in L-VOD might result in an overestimation in dynamics of biomass production, turnover or biomass loss if effects of changes 

in plant water status are not considered (Konings et al., 2021). Scholze et al. (2019) tried to avoid incorporating short-term 500 

changes due to VWC and therefore averaged the VOD simulations to yearly means. The temporal dynamics should include 
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the effect of plant water status, but further investigations on the drivers of the temporal dynamics of L-VOD are necessary to 

make full use of the data. 

Including a proxy for VWC and exploring the influence of short-term changes of vegetation properties on VOD, we assessed 

the temporal dynamics not only for L-VOD but also for Ku-, X-, and C-VOD, which will help to make explicit use of VOD 505 

temporal changes within modelling and assimilation studies.  
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