
Modelling the impact of wood density dependent tree mortality on
the spatial distribution of Amazonian vegetation carbon
Mathilda Hancock1, Stephen Sitch1, Fabian J. Fischer2, Jérôme Chave2, Michael O’Sullivan3,
Dominic Fawcett1, and Lina M. Mercado1,4

1College of Life and Environmental Sciences, University of Exeter, EX4 4RJ, Exeter, UK
2Laboratoire Évolution et Diversité Biologique (UMR5174) Bâtiment 4R1, 118 route de Narbonne, 31062 CEDEX 9,
Toulouse, France
3College of Engineering, Mathematics and Physical Sciences, University of Exeter, EX4 4QF, Exeter, UK
4UK Centre for Ecology and Hydrology, Benson Lane, Wallingford, OX10 8BB, UK

Correspondence: Mathilda Hancock (mathilda.hancock@outlook.com)

Abstract. Spatially heterogeneous plant mortality rates are an important predictor of the distribution of vegetation carbon in

Amazonia. Reproducing the spatial gradients of vegetation carbon in Amazonia and the observed decline in the intact Amazo-

nian carbon sink since 1990 is a challenge faced by dynamic global vegetation models (DGVMs). In this paper, we implement

spatially variable mortality rates in TRIFFID, the DGVM currently coupled to the Joint UK Land Environment Simulator

(JULES), and compare with the standard model which assumes a homogeneous mortality rate. Spatially variable gridded fields5

of Amazonian tree mortality are created using a well-known relationship between mortality and wood density, and three inde-

pendent wood density maps. The diversified mortality scheme substantially improves the representation of vegetation carbon

in TRIFFID when compared to observations, with a 90% reduction in model bias and an increase in the Pearson correlation

coefficient with observed biomass. JULES now captures the observed variability of both mortality and vegetation carbon to

a greater extent, demonstrating the potential of using easily-measured traits, like wood density, to add spatial and functional10

diversity into DGVMs. Despite this, the spatial variation of vegetation carbon simulated with the new mortality fields (with

standard deviation 15 MgCha−1) is still less than half of the variation in the observed data (standard deviation 35 MgCha−1).

Future work should consider the effects of additional processes, like fire, drought and the phosphorus cycle, on the simulated

distribution of vegetation carbon in the Amazon.

Copyright statement. TEXT15

1 Introduction

The Amazon forest is hugely important for regional and global carbon cycles (Brienen et al., 2015; Avitabile et al., 2016;

Steffen et al., 2018), biodiversity (Myers et al., 2000; Ter Steege et al., 2016) and hydrological cycles (Zemp et al., 2014;

Badger and Dirmeyer, 2016). This diverse ecosystem is estimated to contain between 6700 and 16000 tree species (Ter Steege
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et al., 2013, 2016; Cardoso et al., 2017), most of which are extremely rare (Ter Steege et al., 2013). As well as taxonomic20

diversity, there is great spatial diversity in the environmental properties affecting the Amazon forest (including soil charac-

teristics (Quesada et al., 2010), climate (Malhi and Wright, 2004) and anthropogenic disturbance (Bullock et al., 2020)). In

conjunction with this environmental heterogeneity and with changes in species composition comes a high diversity of plant

functional traits (Chave et al., 2009; Fyllas et al., 2009). Such variations are strong predictors of the distribution of above

ground biomass (AGB) in Amazonia (Baker et al., 2004; Malhi et al., 2015; Johnson et al., 2016). Estimates from forest plots25

and remote sensing suggest that Amazonia stores almost half of the above ground carbon in global tropical forests (Malhi et al.,

2006; Saatchi et al., 2007; Avitabile et al., 2016). Between 1990 and 2007, intact Amazonian forests acted as a net carbon sink

(Brienen et al., 2015), but the size of this large intact sink is declining (Brienen et al., 2015; Hubau et al., 2020), and regions of

the wider Amazon forest (including disturbed forests) could already act as a source (Gatti et al., 2021; Harris et al., 2021).

There is a general spatial trend in the diverse plant strategies across Amazonia. More dynamic forests with fertile soils are30

found in the south-west, selecting for fast growing species with high mortality rates (Quesada et al., 2012). Here, AGB is lower

and more heterogeneous (Mitchard et al., 2014; Rödig et al., 2017). In the northern and eastern Amazon, soil is less fertile and

its physical properties improve (meaning deeper, non-waterlogged soils with shallow slopes) (Quesada et al., 2010), selecting

for slow growing and low mortality species (Quesada et al., 2012). These forests have high AGB (Malhi et al., 2006; Mitchard

et al., 2014; Avitabile et al., 2016). Meanwhile, the fringes of the Amazon forest and the south-east have high mortality rates and35

lower AGB due to the interlinking effects of anthropogenic disturbance and climate anomalies (Bullock et al., 2020; Esquivel-

Muelbert et al., 2020). The mean mortality rate varies between these regions by up to a factor of two (Esquivel-Muelbert et al.,

2020).

Wood density is an important plant trait linking the above trends in mortality and AGB across Amazonia. Forest communities

in the south-west tend to contain species with lower wood density, and community averaged wood density increases towards40

the north-east (Baker et al., 2004; Chave et al., 2006; Mitchard et al., 2014). Wood density variation accounts for 45% or 30%

of AGB variation (depending on the model of biomass used) (Baker et al., 2004). Additionally, studies across the Neotropics

have found a negative relationship between wood density and both mortality (Muller-Landau, 2004; Nascimento et al., 2005;

Poorter et al., 2008; Wright et al., 2010; Kraft et al., 2010; Greenwood et al., 2017; Esquivel-Muelbert et al., 2020) and growth

rates (Nascimento et al., 2005; Poorter et al., 2008; Wright et al., 2010; Francis et al., 2017). This is the basis for the wood45

economics spectrum; species at the “conservative” end are slow growing, have low mortality rates and allocate carbon to

create dense wood, with thicker non-conducting fibre walls (Chave et al., 2009), and narrower, more densely packed vessels

(McCulloh et al., 2011). At the other extreme, fast growing “acquisitive” species have higher mortality rates and less dense

wood.

There are many ways in which higher wood density could offer an advantageous resource-use strategy. The first advantage50

is mechanical strength, as higher wood density is strongly correlated with wood elasticity to bending and rupture in laboratory

(Chave et al., 2009) and field measurements (Van Gelder et al., 2006). Secondly, higher wood density may confer resistance to

drought induced mortality (Greenwood et al., 2017) by increasing hydraulic safety (Fu and Meinzer, 2019). In a study of 59

species, Liang et al. (2021) found that lethal water potential becomes more negative with increasing wood density. High density
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wood could instead be advantageous because it enables trunks to have lower surface area for the same mechanical strength,55

possibly leading to lower rates of maintenance respiration (Larjavaara and Muller-Landau, 2010). For acquisitive species with

shorter lifespans, the long term benefit of low maintenance cost is smaller than the short-term benefit of low wood construction

cost (i.e. low wood density). Trunk respiration is poorly understood and more data are needed to support this hypothesis.

Given the evidence above, modelling mortality rates in the Amazon as spatially constant is not only unrealistic, but has

implications for AGB predictions (Delbart et al., 2010; Galbraith et al., 2013; Castanho et al., 2013; Rödig et al., 2017).60

In fact, multiple studies (Malhi et al., 2015; Johnson et al., 2016; Magnabosco Marra et al., 2018) highlight that mortality

rates are an important predictor of spatial variation in AGB across Amazonia. For example, data from long term forest plots

show that variation in mortality rates explains the lower biomass of seasonally dry tropical forests compared to humid forests

(Malhi et al., 2015). Johnson et al. (2016) use an expanded range of plots to show that stem mortality rates are the most

important predictor of AGB across the whole Amazon region, over woody net primary productivity (NPP). Dynamic global65

vegetation models (DGVMs) which use plant functional types (PFTs), like the DGVM used in this paper, often use spatially

and temporally constant mortality rates or woody residence times for each PFT, though some include processes like negative

carbon balance, aging and fire in their mortality models (Galbraith et al., 2013; Pugh et al., 2020). Previous studies (Delbart

et al., 2010; Castanho et al., 2013) have acknowledged the importance of adding spatially varying aspects of forest function

into DGVMs, and have demonstrated that this improves the simulated biomass distribution in Amazonia. Castanho et al. (2013)70

introduced a spatially variable woody residence time, among other parameters, into the Integrated Biosphere Simulator (IBIS).

The addition of spatially varying parameters improved the correlation of the simulated output with observed woody biomass

hugely (R=0.52) compared to a simulation with homogeneous parameters (R=-0.006). Delbart et al. (2010) found that the

DGVM ORCHIDEE could better reproduce observed patterns of woody AGB when mortality rates were calculated using a

prescribed relationship with woody NPP. This relationship was back-calculated from observations of woody NPP and carbon75

residence time. This showed, as a proof-of-concept, that correctly formulating mortality can improve AGB estimation, but it

would not be easy to extrapolate this approach to another DGVM without prescribing data in a similar way.

This paper focuses on the Joint UK Land Environment Simulator (JULES) (Best et al., 2011; Clark et al., 2011), which

is coupled to the TRIFFID DGVM (Top-down Representation of Interactive Foliage and Flora Including Dynamics) (Cox,

2001). JULES, within the UK Earth System Model, is included in the Coupled Model Intercomparison Project and the Inter-80

governmental Panel on Climate Change assessment reports (Zelinka et al., 2020) and strengthens estimations of present day

annual global carbon budgets (Friedlingstein et al., 2020). Carbon dynamics in JULES have previously been evaluated against

observed AGB, showing that JULES underestimates the spatial variation of AGB in Amazonia (Johnson et al., 2016). This may

be because spatially constant background mortality rates are prescribed to each PFT. In this work, we explore the impact of a

spatially varying mortality rate on the distribution of Amazonian vegetation carbon simulated by JULES. In the absence of a85

high resolution map of mortality rates across the Amazon forest, the relationship between species wood density and mortality

rate is exploited to generate input maps of mortality for JULES across Amazonia, which better reflect the 2-fold variation

in mean mortality rates between different Amazonian regions (Esquivel-Muelbert et al., 2020). Simulated AGB is evaluated

against observations of vegetation carbon based on remote sensing and forest inventories. The key questions addressed in this
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paper are: (1) Does adding a spatially varying, wood density dependent mortality rate improve the simulated spatial distribution90

of vegetation carbon? (2) Are other processes, apart from those implicit in the wood density – mortality relationship, needed to

correctly model mortality heterogeneity across Amazonia? (3) Can variation in mortality alone fully describe observed spatial

variability in above ground carbon stocks?

2 Methods

2.1 JULES model outline and new mortality scheme95

JULES is a land surface scheme incorporating carbon fluxes, hydrology, vegetation dynamics and plant physiology (Best et al.,

2011; Clark et al., 2011). In each land surface grid cell, the carbon fluxes for different PFTs are calculated mechanistically

by models of plant photosynthesis and respiration. The vegetation dynamics are then updated in TRIFFID (Cox, 2001), which

determines the net carbon available for growth and coverage spreading of each PFT, competition between PFTs and the result-

ing change in the fractional area coverage of each PFT. Carbon lost from the vegetation pool, through large-scale disturbance100

and litterfall, enters a soil model which calculates microbial respiration. Once the vegetation coverage and carbon have been

updated in TRIFFID, land surface properties are recalculated, allowing feedbacks when coupled to an earth system model.

Mortality is included in TRIFFID via the change in fractional coverage (ν) with time for a given PFT, in Eq. (1):

Cveg
dν

dt
= λΠν


1−

∑

j

cijνj


− γνCveg, (1)

where Π is the net primary productivity of the PFT of interest and λ is the spreading fraction, the proportion of carbon used105

for increasing its coverage. The competition coefficients, cij , determine the extent to which increased coverage of other PFTs

affects the PFT in question and are calculated as a function of PFT height (Harper et al., 2018). The important term in the

context of this study is the mortality rate, γ, which, for each PFT, determines the rate at which vegetation coverage is lost

through background mortality processes. It is usually set to a constant value for each PFT; for example in JULES version 5.4

this value is 0.007 yr−1 for the tropical broadleaf evergreen tree (BET-Tr) PFT. In order to allow γ to vary with location, here110

it was prescribed as an extra ancillary variable with a unique value at every simulated land point. The input mortality datasets

were derived from wood density data for Amazonia using relationships found in literature (see Sect. 2.2). It was only through

the variable γ in Eq. (1) that wood density could influence the vegetation carbon simulated by JULES.

The BET-Tr PFT is the dominant type in the Amazon (Harper et al., 2016, 2018), therefore, for the purpose of this study

only the mortality rate of this PFT was allowed to vary. To isolate the effects of introducing variable mortality into the domi-115

nant Amazonian PFT from other effects, we removed competition from the remaining 12 PFTs (8 natural and 4 agricultural,

described in (Harper et al., 2016, 2018)) by setting their mortality rates to very noncompetitive values.
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2.2 Wood density – mortality equations

Four equations describing the wood density – mortality relationship from literature applicable to tropical forests were tested in

this study (Table 1). They were selected because they are based on data collected in Amazonia or have been previously used120

for modelling in Amazonia. Wood density refers to the wood specific gravity, the ratio of the mass of wood with 0% moisture

content to its volume when water-saturated, in grams per centimetre cubed.

Table 1. The wood density – mortality models included in this study. The control mortality rate is the value originally used in JULES (Harper

et al., 2018). ρmax is the maximum wood density. Mortality (γ) is in units per year.

Mortality Model Equation Reference

M1 γ = 0.014+ 0.150
(
1− ρ

ρmax

)
(Moorcroft et al., 2001)

M2 γ = 0.029− 0.022ρ (Kraft et al., 2010)

M3 γ = 10
−2.66+ 0.255

ρ (King et al., 2006; Sakschewski et al., 2015)

M4 γ = 0.025
(
1− ρ

ρmax

)
(Maréchaux and Chave, 2017)

Control γ = 0.007 (Harper et al., 2018)

In M1 and M4, the wood density term is normalised by a maximum wood density, ρmax. The maximum wood density

attainable under the conditions of lignin and cellulose packing is around 1.5 gcm−3 (Siau, 1984; Chave et al., 2009), but a

more realistic value for maximum species wood density is 1.25 gcm−3, given that only 0.02% of species in the Global Wood125

Density Database have wood density greater than this value (Zanne et al., 2009). For the purposes of our large scale application,

this value was chosen to ensure no grid cell was assigned a negative mortality rate. The disadvantage of this method is that

the gradients of the two equations are effectively changed when ρmax is altered from the values presented in the original

papers (formerly in M1, ρmax = 0.9 gcm−3 and in M4, ρmax = 1.0 gcm−3). Despite this, the equations were included in the

experiment as extremes (M1 has a very large gradient and intercept compared to the others, whereas M4 has the lowest gradient130

and intercept) to explore the model sensitivity. The four equations used and the original versions of M1 and M4 are visualised

in Fig. A1.

It is important for regional-scale modelling that the equations used are based on taxonomically and spatially diverse data

from suitable locations. M1 was not derived from a directly measured correlation between wood density and mortality, but was

fitted to give reasonable mortality rates for early and late successional plant types. The mortality rates for early successional135

types were based on observations from a five year period after cutting and burning on one site in Venezuela (Uhl and Jordan,

1984). The late successional mortality was based on several sites across tropical South America (Swaine et al., 1987; Lugo and

Scatena, 1996). M1 was the only equation using data from disturbed forests. M2 was derived directly by fitting the relationship

between mortality and wood density (R2=0.39); an improvement on M1. The data are from only one site (Yasuní, Ecuador), but
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include 364 species (1–41,013 individuals per species) (Kraft et al., 2010). Wood density values for each species were taken140

from the Global Wood Density Database database (Zanne et al., 2009). M3 was obtained from a logarithmic fit (R2=0.62)

of mortality against wood density measurements taken from 21 species (1–4 individuals per species) from two forest sites in

Malaysia (King et al., 2006). The fact that the study sites did not match the location of this analysis is obviously a disadvantage;

however this equation is included in the mortality model used by Sakschewski et al. (2015) in LPJmL-FIT, specifically for

Amazonia. This equation merits inclusion here because it affords the opportunity to test whether a non-linear relationship can145

better reproduce biomass variation. Finally, in M4, the gradient parameter was tuned in the original publication (Maréchaux

and Chave, 2017) so that AGB, NPP, leaf area index and stem density outputs best reproduced observational data from two

plots in French Guiana; this equation is not based on direct observations of mortality data.

The strength of the relationship between wood density and mortality differs geographically but, reportedly, this may be due

to differences in sample size between the plots measured (Kraft et al., 2010). The slope of M2 is within the 95% confidence150

range of the coefficients for the two other Neotropical rainforest sites used in the same investigation (La Planada, Colombia,

and Barro Colorado Island, Panama), although the intercept is not. This offers some reassurance that the strength of the wood

density – mortality relationship is relatively stable over the simulated area. All equations were assumed to apply over Amazonia

in this study for simplicity and for want of comprehensive data on the strength of the relationship across the whole region.

2.3 Wood density data and regridding155

Three maps of wood density for the Amazon forest were used in this study. The derivation method impacted the range of wood

density values present in the maps, so the three datasets provided another means of testing the sensitivity of JULES outputs.

The first map of wood density was created by calculating the unweighted mean wood density for all species occurring in

each grid cell. Mean species values of wood density were taken from an update to the Global Wood Density Database (Zanne

et al., 2009). Species occurrence was predicted using species distribution models (SDMs) developed from occurrence records160

from the Global Biodiversity Information Facility (GBIF) (GBIF.org, 2021) and climatic layers. Henceforth this is called the

“SDM-based” map. The fact that mean wood density for each grid cell is not weighted by species abundance contributes to the

relatively low variation between cells, as extreme values are averaged out. This method was chosen because species abundance

data with wide coverage is difficult to source for Amazonia. Similar results were achieved in a map which only included the

hyperdominant Amazonian species (Ter Steege et al., 2013), suggesting that weighting by abundance may not increase the165

wood density variation dramatically.

To create the second map, global climate covariates (TerraClimate (Abatzoglou et al., 2018)), disturbance layers and a

subset of wood density pixels were used to train a regularised random forest (RF) model to predict wood density over the

region, utilising the “ranger” R package. Wood density for each 25 km pixel was calculated as the unweighted average value

for all species with measured occurrence in the pixel, with occurrence data from the GBIF (GBIF.org, 2021). Only pixels where170

occurring species were well-sampled were used to train the model. A spatial autocorrelation term was added and the map was

validated using buffered leave-one-out cross validation (Ploton et al., 2020). This will be referred to as the “RF-based” map of

6
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wood density. This and the previous map did not explicitly exclude species occurrence data from human modified forests, but

these forests are likely underrepresented in species collections.

The two maps above were regridded to match the resolution of the other ancillary data used in the modelling, 1.875◦175

longitude by 1.25◦ latitude. This was achieved with area weighted regridding, where the value of each new grid cell is the

mean of the overlapping source cells, weighted by their area of intersection with the new cell. New cells were masked when

over 50% of the overlapping source cells were blank due to missing data; this threshold best represented the forest extent in

the original maps.

The final wood density map was derived by spatial interpolation (kriging) of the mean wood density from 414 intact forest180

plots, using plot data from another study (Mitchard et al., 2014). This map will be referred to as the kriged map. Mitchard

et al. (2014) recorded mean wood density values weighted by species basal area, primarily from RAINFOR (Peacock et al.,

2007) and ATDN (Ter Steege et al., 2013) data, with species wood density values from the Global Wood Density Database

(Zanne et al., 2009). Notably, there are no data from disturbed forests. These observations were interpolated across the study

area by ordinary kriging with a spherical variogram model (“PyKrige” package in Python). It was validated using 5-fold cross185

validation with a coefficient of determination, R2=0.35.

2.4 JULES simulations over the Amazon forest

JULES was run over all Amazonian grid cells. Maps of mortality across Amazonia were generated by applying each of the

four equations in Table 1 to each of three observational wood density datasets (Sect. 2.3). This resulted in 12 different mortality

configurations, which were fed into JULES as ancillary data in 12 separate simulations. The results were compared against a190

control simulation, where mortality was spatially constant with the value for the BET-Tr PFT used in the original configuration

of JULES.

In this work, the earth system configuration of JULES, JULES-ES was used (Sellar et al., 2019). This is the configuration

used in the TRENDY version 8 ensemble, a group of models used to simulate net biome production under standard protocols

for annual Global Carbon Budget assessments (Friedlingstein et al., 2020). Specifically, the TRENDY S2 experiment was used195

(Sitch et al., 2015), where land use is kept at pre-industrial levels throughout the simulation period. However, a shorter main

run length was used, from 1900 to 2017, with 5 spin-up cycles from 1880 to 1900. The model was driven by meteorological

CRU-JRA55 forcing. The spatial resolution was 1.875◦ longitude by 1.25◦ latitude and an hourly timestep was used.

2.5 Model evaluation

A map of vegetation carbon created by Avitabile et al. (2016), based on remote sensing and field data, was used to test the200

success of adding spatially variable mortality rates into JULES and is henceforth called the Avitabile map. It is a fusion

of two pantropical biomass maps (Saatchi et al., 2011; Baccini et al., 2012), which were derived from Geoscience Laser

Altimeter System LiDAR remote sensing data, and calibrated with field observations. The maps are fused using bias removal

and weighted linear averaging in a model that was calibrated against an extensive reference dataset. The model parameters

7

https://doi.org/10.5194/bg-2022-87
Preprint. Discussion started: 12 April 2022
c© Author(s) 2022. CC BY 4.0 License.



were calibrated independently for several regions where the error patterns were deemed homogeneous in the original maps. It205

has 1 km resolution and combines data from 2000-2013, implicitly including disturbed and secondary forests in Amazonia.

An analysis comparing results to an alternative map of Amazonian biomass is included in Appendix B. The ESA CCI

Biomass product for 2017 (Santoro and Cartus, 2021) was created using allometric relationships between AGB, canopy height

and synthetic aperture radar (SAR) backscatter. L-band SAR data from ALOS-2 PALSAR-2 was merged with C-band SAR

data from Sentinel-1 to reduce error, but in Amazonia the L-band data dominated almost completely. The resulting map has210

100 m resolution.

AGB was converted into vegetation carbon using a conversion factor of 0.5 (Chave et al., 2005). The maps were then

regridded following the method in Sect. 2.3. The regridded Avitabile and ESA CCI maps are shown in Fig. B1.

Model evaluation was also completed for intact forests, defined as grid cells containing forests with less than 20% dis-

turbance. Maps of disturbed forest fraction for 2017 were calculated from degraded forest (JRC (Vancutsem et al., 2021)),215

secondary forest (MapBiomas Amazonia C2 (MapBiomas, 2021)) and total forest extent (MapBiomas) data. They were regrid-

ded using the method outlined in Sect. 2.3. The raw data and masked forest extent are shown in Fig. C1.

An additional experiment was conducted to test whether the observed vegetation carbon could be captured by any range of

wood density. A linear regression was applied to the simulated vegetation carbon and the mortality rates of the corresponding

grid cells produced from M2–4. M1 was excluded because it led to vegetation dieback. The linear fit coefficients were used220

to back-calculate the mortality rates needed to produce the vegetation carbon in the Avitabile map, under the assumption that

mortality is its sole predictor. Then, the wood density distributions required to recreate the Avitabile map from each of M2–4

were back-calculated and compared to observed wood densities from Amazonia.

2.6 Statistical comparison

A measure of the “additional spatial variation” (ϕ) was used to show any spatial variation in the simulated vegetation carbon225

on top of the variation that already exists in the control simulation. Below, Cveg denotes vegetation carbon density and depends

on the grid cell location (x). Simulated vegetation carbon density is distinguished by a hat on the variable (Ĉveg), whereas the

observed quantity has no hat. A bar (e.g. ¯̂
Cveg) represents the mean over all locations. If, for example, Ĉveg is the output from

the M2 and RF-based wood density combination, and Ĉveg,c is the output from the control simulation:

ϕ = (Ĉveg − ¯̂
Cveg)− (Ĉveg,c− ¯̂

Cveg,c). (2)230

The equations below were used to test the degree of correspondence between the simulated (Ĉveg(x)) and observed (Cveg(x))

distributions of vegetation carbon. The absolute bias is defined as:

Bias(Ĉveg,Cveg) = | ¯̂Cveg − C̄veg|. (3)

CRMSD =

√√√√
∑N

x

[
(Ĉveg,x− ¯̂

Cveg)− (Cveg,x− C̄veg)
]2

N
(4)235
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In the definition for the centred root mean squared deviation (CRMSD) above, the sum is over each grid cell and N is the total

number of grid cells.

R =
∑N

x (Ĉveg,x− ¯̂
Cveg)(Cveg,x− C̄veg)
Nσ̂σ

(5)

The Pearson correlation coefficient (R), defined above, uses σ̂ and σ, the standard deviations of the simulated and observed

data, respectively.240

3 Results

3.1 Wood density and mortality maps for the Amazon forest

The original SDM-based wood density map (Fig. 1a) agrees well with the RF-based map (Fig. 1b), with R2 close to 0.9. The

range of wood density values in the RF-based map was 60% larger than the range of the SDM-based map. The regridded

versions of these maps are shown in Fig. 1d and Fig. 1e, respectively. The kriged map is shown in Fig. 1f, with the original plot245

data in Fig. 1c. Although it is less accurate, this map provides an even larger range of wood density values, since the basal area

weighting of the species means prevented the less abundant species (e.g. pioneer species with low wood density) from skewing

averages. This results in a map with a range three times larger than that of the regridded SDM-based map, and a higher mean

wood density (0.635 ± 0.048 (SD) gcm−3 compared to 0.580 ± 0.013 gcm−3 for the SDM-based map and 0.589 ± 0.017

gcm−3 for the RF-based map), perhaps reflecting the reduced importance of the pioneer species in the average.250

The four wood density – mortality equations produce similar spatial distributions of mortality rates (Fig. 2) with shifted

absolute values. M3 produces a mean mortality rate of ∼0.006 yr−1, similar to the homogeneous value of 0.007 yr−1 used in

the control simulations, and low spatial variability (Figs. 2c,g,k). The other equations result in higher mean mortality rates than

the homogeneous control rate. In all cases, mortality calculated from the kriged wood density data (Figs. 2i–l) has the largest

range and standard deviation (Table 2) and the SDM-based wood density map results in the least variation, as expected.255

3.2 Simulated vegetation carbon with spatially variable mortality rate fields

The control JULES simulation shows low spatial variation in vegetation carbon (Fig. 3a), with the highest values occurring

in north-western and south-western Amazonia. For all underlying wood density maps, simulations using M2-4 display similar

distributions of vegetation carbon to the control JULES output, while M1 causes total dieback. The main effect of using M2-4

is a change in the absolute values of vegetation carbon. Simulations using M3 closely match the control results (Figs. 3d,h,l),260

whereas those using M2 produce the lowest non-zero values, as expected, since the M2 mortality values are the highest after

M1 (as shown in Fig. 2 and Table 2).

The new mortality configurations shift the mean vegetation carbon and add up to 16 MgCha−1 of “additional spatial varia-

tion” (ϕ, equation 2), 9.5% of the mean vegetation carbon in the control result. The second effect is illustrated in Fig. 4, which

shows the spatial variation additional to that already present in the control simulation for the nine mortality configurations with265
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Figure 1. Wood density across the Amazon forest. (a) is a 25 km resolution map derived from the unweighted mean wood densities of

species occurring in each grid cell, estimated using SDMs (called the “SDM-based” map). (b) is a 25 km resolution map, predicted using a

regularised RF model with climate and disturbance as predictors (called the “RF-based” map). The points in (c) show the locations of 414

forest plots from (Mitchard et al., 2014), and the colour of each point reflects the basal area weighted mean wood density. (d) and (e) are the

regridded versions of (a) and (b), respectively. (f) is a kriged map of wood density interpolated from the 414 plots shown in (c).

non-zero results. A positive change in vegetation carbon compared to the mean over all grid cells is shown by red grid cells and

a negative change is shown in blue. The results using M3 (Figs. 4b,e,h) have the least change in the distribution of vegetation

carbon, while those using M2 have the most. Of the three wood density maps, the kriged maps (Figs. 4g–i) provide the most

extra variation because they include a greater range of wood density values. The most pronounced change is an increase in

the central-north and decrease in the central-south, in broad alignment with the gradient of mortality produced from the kriged270

wood density maps. Meanwhile, the change in the difference between south-eastern vegetation carbon and the mean is far less

pronounced.

3.3 Model evaluation

The distributions of vegetation carbon in simulations with spatially explicit mortality improve on the simulation with homoge-

neous mortality, but do not yet fully capture the observed trends across the Amazon. This is seen in difference maps between275

simulations using M2-4 with the SDM-based, RF-based and kriged wood density data and an observational dataset, in Fig.

5. The control simulation and that using M3 largely overestimate vegetation carbon, except in the north-east. All simulations
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Figure 2. Mortality rates across Amazonia, calculated by the four different equations relating wood density to mortality listed in Table 1. (a),

(e) and (i) use M1, (b), (f) and (j) use M2, and so on for the other two columns. (a) to (d) are calculated from the map of wood density in Fig.

1d, while (e) to (h) use the wood density map in Fig. 1e, and (i) to (l) use the kriged map in Fig. 1f. Note the different scale for each figure.

Table 2. The mean and standard deviation of mortality rates (in units per year) across Amazonia for the 12 new mortality configurations.

Mortality Model Wood Density Map Mean Mortality ± SD

M1 Occurrence 0.0945 ± 0.0015

M1 Observation 0.0933 ± 0.0021

M1 Kriged 0.0878 ± 0.0058

M2 Occurrence 0.0166 ± 0.0003

M2 Observation 0.0163 ± 0.0004

M2 Kriged 0.0153 ± 0.0011

M3 Occurrence 0.0060 ± 0.0001

M3 Observation 0.0059 ± 0.0002

M3 Kriged 0.0056 ± 0.0004

M4 Occurrence 0.0134 ± 0.0003

M4 Observation 0.0132 ± 0.0003

M4 Kriged 0.0123 ± 0.0010

using M2 and M4 overestimate in the arc of deforestation and the north-west. Vegetation carbon is underestimated from the

north-east across to central Amazonia, especially in French Guiana and north-eastern Brazil. The statistical comparison in
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Figure 3. Maps of vegetation carbon for the present day (averaged 2008–2017) simulated by JULES. (a) shows the result from the original

JULES configuration with a homogeneous mortality rate. (b) to (m) show the vegetation carbon simulated when spatially explicit mortality

rates, based on a relationship with wood density, were included in JULES. (b), (f) and (j) used M1 to calculate the input mortality rates,

(c), (g) and (k) used M2, and so on for the other two columns (mortality equations are found in Table 1). The mortality rates used for the

simulations in (b) to (e) were calculated from the map of wood density in Fig. 1d, while (f) to (i) used the map in Fig. 1e, and (j) to (m) used

the kriged map in Fig. 1f.

Table 3 shows that the bias is lowest for the configuration with M2 and SDM-based wood density data (lower than the bias280

associated with the control by almost a factor of 10), and that the CRMSD and correlation coefficient are best for M4 with

kriged wood density data. The latter configuration increases the correlation coefficient to 0.24 from a value of 0.17 for the

control. The standard deviation of the regridded Avitabile data was 35 MgCha−1, most closely matched by the standard devia-

tion of the results using M4 with kriged wood density (15 MgCha−1). The new simulations perform similarly when compared

to vegetation carbon derived from the ESA CCI Biomass product (Fig. B2), though underestimation in the north-east is less285

pronounced and the correlation coefficient is increased in all cases (Table B1).

Overall, M2 and M4 with the kriged wood density data best replicate observations. The main improvement is a large re-

duction in bias, along with an increase in correlation and a reduction in the CRMSD. Although the mean values of simulated

vegetation carbon in the Amazon are much improved by the new mortality schemes, the new mortality fields are less effective

at redistributing the modelled vegetation carbon across the region to better match observations.290
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Figure 4. The additional spatial variation (ϕ) in simulated vegetation carbon resulting from the use of spatially-explicit mortality rates in

JULES. Grid cells where the vegetation carbon increased compared to the mean across all grid cells when spatially explicit mortality rates

were used in JULES are shown in red. Similarly, grid cells where the vegetation carbon decreased compared to the mean are shown in blue.

Results are for the present day (averaged 2008–2017). (a), (d) and (g) use M2, and so on for the other two columns. (a) to (c) used mortality

rates calculated from the map of wood density in Fig. 1d, while (d) to (f) used the map in Fig. 1e, and (g) to (i) used the kriged map in Fig.

1f.

Assuming that mortality is the sole predictor of vegetation carbon, an experiment was conducted using the linear fit in Fig. 6a

to back-calculate the mortality rates required to reproduce the Avitabile map. Mortality rates ranging from the impossible value

of -0.001 yr−1 to 0.0356 yr−1 are needed to capture the observed range of vegetation carbon. The high observed vegetation

carbon in the north-east necessitates the negative mortality rates. The inferred mortality maps were then used to back-calculate

the required wood density distributions according to the three non-zero wood density – mortality equations (Figs. 6b–d). The295
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Figure 5. The difference between the simulated vegetation carbon for present day (averaged 2008–2017) and the observed vegetation carbon,

derived from a fused biomass map based on remote sensing data (Avitabile et al., 2016). (a) shows the difference between the original JULES

configuration with homogeneous mortality and the observations. The equations used to create the mortality data for the remaining simulations

are indicated in the column titles. The mortality maps used in (b) to (d) are calculated from wood density map in Fig. 1d, while (e) to (g) use

the wood density map in Fig. 1e, and (h) to (j) use kriged wood density in Fig. 1f.

outlying values in the north-east in Fig. 6c were caused by the low back-calculated mortality rates. M2–4 predict high wood

densities in the north-east, aligning with areas of high observed vegetation carbon (Fig. B1). On the other hand, very low,

and even negative wood densities are predicted at the forest fringes, notably in the arc of deforestation; these areas show low

vegetation carbon in the observed map.

4 Discussion300

4.1 Analysis of the mortality maps

4.1.1 Wood density – mortality equations

In a large assessment of long term RAINFOR plots across the Amazon, Esquivel-Muelbert et al. (2020) found mean mortality

rates ranging from 0.028 yr−1 in the southern Amazon and 0.022 yr−1 in the western Amazon to 0.013 yr−1 and 0.014 yr−1

in the northern and central-eastern regions, respectively. While M2 and M4 produce mean mortality rates similar to these305

observations (e.g. 0.017 yr−1 and 0.013 yr−1 using the SDM-based map, as shown in Table 2), none of the mortality maps
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Table 3. Statistical comparison of the JULES simulations (with different mortality configurations) of vegetation carbon with the observational

Avitabile map. The absolute bias (MgCha−1), CRMSD (MgCha−1), Pearson correlation coefficient and standard deviation (MgCha−1) of

the simulated data are shown.

Mortality Model Wood Density Map Absolute Bias CRMSD Correlation Coefficient Standard Deviation

Control n/a 56.4 35.58 0.165 13.1

M1 Occurrence 112.3 35.31 0.071 0

M1 Observation 112.3 35.31 0.071 0

M1 Kriged 112.3 35.31 0.071 0

M2 Occurrence 6.1 35.81 0.163 14.0

M2 Observation 7.2 35.75 0.167 14.0

M2 Kriged 12.5 35.01 0.229 14.7

M3 Occurrence 61.4 35.41 0.174 12.8

M3 Observation 61.9 35.4 0.174 12.8

M3 Kriged 63.9 35.03 0.202 12.7

M4 Occurrence 22.6 35.62 0.172 13.7

M4 Observation 23.6 35.57 0.175 13.7

M4 Kriged 28.4 34.83 0.235 14.2

reproduce such a high degree of spatial variation. Esquivel-Muelbert et al. report a two-fold variation in regional mean mortality

rates, while the most variation achieved in Fig. 2 is a 37% increase from the lowest to the highest mortality grid cells, for the

kriged map with M4 (Fig. 2l).

The main differences in the simulations from the four wood density – mortality equations originate in their differing mean310

mortality rates and the range of mortality rates generated. M1 produced mean mortality rates as high as 0.0945 yr−1, far higher

than observations (Lugo and Scatena, 1996; McDowell et al., 2018; Esquivel-Muelbert et al., 2020), causing total dieback in

the simulations. This is likely because M1 was designed to reflect the mortality rates of early successional species as well as

late successional species (Moorcroft et al., 2001). Meanwhile, M3 gave results very similar to the case with homogeneous

mortality. This is because M3 produces a mean mortality rate close to the original constant rate used in JULES, and only315

12% of the observed range of mean mortality rates between different Amazonian regions. The small range simulated by this

equation may be due to the relatively small number of species it was based on. Additionally, almost half of the species were

from the non-Amazonian Dipterocarpaceae family and evidence suggests that the strength of the wood density – mortality

relationship depends on family (Kraft et al., 2010). Nonetheless, this equation may prove more suitable for regions with lower

wood density values because its non-linearity means that the rate of change of mortality with wood density is larger at low320

wood densities.
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Figure 6. (a) Linear trend (R2 = 0.73, p < 0.01) between simulated vegetation carbon and the mortality rates of the corresponding grid cells.

(b) to (d) show the wood density data which would be needed to reproduce the observed vegetation carbon distribution in the Avitabile map

(Avitabile et al., 2016) if mortality is calculated using the equations in the figure titles. The white cells in (c) are masked because of the

negative mortality rates predicted by the regression in (a).

The spatial variation in mortality rates, and consequently in vegetation carbon, is higher using M2 and M4. M2 was directly

fitted to data from 364 species in 59 families, possibly explaining the wider range of mortality rates it produces. M4 provides a

similar range of mortality rates, and is indirectly based on wood density data, as the linear coefficient was tuned to reproduce

observations of AGB and other variables when used in the TROLL DGVM (Maréchaux and Chave, 2017). M4 is used as a325

background mortality rate in TROLL, whose mortality scheme also includes terms for carbon starvation and treefall, processes

not included in JULES-TRIFFID. Though wood density is thought to relate to many aspects of mortality, the wood density –

mortality link is insufficient to capture the total variation of mortality rates across Amazonia. This is due to missing mortality

processes, especially in human modified forests, which will be discussed later. But a secondary cause is that the wood density

– mortality relationships derived by regressions are weakened by the dilution effect. The slopes of these regressions are biased330

towards zero because of the substantial noise in the wood density and mortality data.

The maximum wood density value used in M1 and M4 affects the gradients of these equations. The maximum community-

averaged wood density could be even lower than the 1.25 gcm−3 used in this study. However, as shown by the dashed lines in

Fig. A1, the gradient of M4 is very similar to that of M2 when a lower maximum wood density of used, so would likely give

similar results. M1 produced unrealistically high mortality rates at both values of maximum wood density. Therefore it can be335

concluded that the choice of ρmax did not affect the conclusions of this research.

4.1.2 Wood density data

Figure 4 demonstrates that the source of wood density data strongly impacts the extra spatial variation in vegetation carbon.

Furthermore, there is potential to capture much of the observed variation in vegetation carbon by capturing gradients of wood

16

https://doi.org/10.5194/bg-2022-87
Preprint. Discussion started: 12 April 2022
c© Author(s) 2022. CC BY 4.0 License.



density (as shown by Fig. 6). It must be stated that the distribution of vegetation carbon in the Amazon forest is controlled by340

more than solely wood density and mortality, as discussed in Sect. 4.3. A robust model would include these processes as well

as accurately reflecting the spatial variation of mortality rates. Nonetheless, the greater spatial variation in vegetation carbon

simulated when a higher range of wood density values is used to calculate mortality fields (comparing Fig. 4a and Fig. 4g, for

example) shows potential for further improvements if the full range of observed wood density is accurately accounted for.

The SDM-based map has the smallest range due to several factors: the grid cells of the original map represent community-345

wide averages at a 25 km scale, which are then regridded to a much coarser scale; the averages are not weighted by species

abundance, causing further smoothing; and species occurrence is predicted by SDMs, which give potential and not actual

distributions. The first point is inescapable, as JULES is not an individual based model and requires a degree of averaging for

all input parameters. The regridding process used in the SDM- and RF-based maps reduced the wood density range by 28% and

36%, respectively. There is a trade-off between the accuracy of the regridded map (i.e. the faithful representation of the source350

cells by the new, larger grid cells) and its spatial heterogeneity. The area weighted regridding method chosen for this study

favours accuracy. To address the second point, spatially explicit species abundance data to weight the community mean would

be needed. Even though SDM-based maps generated by only including the 227 hyperdominant Amazonian species produced

similar results, this did not account for spatial variation in the dominance of these species, 73% of which are dominant within

only one or two regions (Ter Steege et al., 2013). The Amazon Tree Diversity Network (Ter Steege et al., 2013) provides355

abundance information for 1170 plots across Amazonia, and could be used in future to weight wood density pixels. The new

Brazilian National Forest Inventory (de Freitas et al., 2009) could also provide opportunities in this respect. Finally, the use of

SDMs smooths the community mean wood density because SDMs predict potential species occurrences in a given location.

These differ from actual species occurrences if dispersal limitations, inter-specific competition and non-equilibrium dynamics

are not considered (Maréchaux et al., 2021).360

The RF-based wood density map, derived from predictions by a regularised RF model, removes the challenges associated

with using SDMs, but does not greatly extend the wood density range. In contrast, the kriged wood density map clearly

provides additional spatial variation in vegetation carbon, which better matches observations (Table 3). This method is based

on wood density data weighted by species basal area for each plot. The kriging utilised all 414 plots available, meaning that

some 1.875◦ by 1.25◦ grid cells contained several plots representing data collected over 1 ha. When all but one randomly365

selected plot was filtered out in each grid cell, the results of the kriging remained relatively stable, though the low wood density

patch in the south-east was removed. The standard deviation of the kriged wood density map was very similar when all plots

were considered (0.048 gcm−3) to when only one plot per grid cell was considered (on average, 0.044 gcm−3). The wider

wood density range in the kriged map is more realistic, given that Quesada et al. (2012) found volume weighted wood density

plot averages from 0.49 to 0.73 gcm−3 in the Amazon. However, as noted in (Johnson et al., 2016), kriging is unsuitable for370

describing localised heterogeneity. The accuracy of the kriging was also relatively low, with R2=0.35, and it was based on data

from intact forests only. Explicitly including wood density data from human modified forests would further expand the wood

density range by increasing the representation of low wood density, early successional species. It is possible that a combination
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of the approaches used in the RF-based and kriged maps would be the best way forward, i.e. using a regularised RF model,

crucially including disturbance layers, trained on basal area weighted wood density pixels.375

4.2 Challenges with observed vegetation carbon

A large part of the analysis of the best mortality configuration relies on a comparison with observations of vegetation carbon.

The first challenge to note is that the observations include vegetation carbon in highly disturbed and secondary forests, whereas

human land use change was not included in these JULES simulations. Nevertheless our investigation sheds light on the effec-

tiveness of wood density dependent mortality fields for improving the distribution of vegetation carbon for old growth forests,380

as will be discussed in Sect. 4.3.

The Avitabile fused map was created to correct the problems in two previous biomass maps based on remote sensing,

including the use of continent-wide height allometries which contributed to underestimation in the north-east (Mitchard et al.,

2014). It was found to have a lower root mean square error than the two input maps and nearly zero bias. A comparison of

existing biomass maps (Zhang et al., 2019) for South America shows that the Avitabile map is in broad agreement with other385

datasets (Hu et al., 2016; Zhang et al., 2019). The uncertainties in the eastern Amazon are still relatively large (∼30 MgCha−1)

and this estimate does not include the uncertainty associated with classifying the errors in the input map, potentially a large

contribution (Avitabile et al., 2016). The lack of reference data from disturbed forests in the Avitabile et al. study may cause

errors in the arc of deforestation, where this map records more carbon than the ESA CCI product (see Fig. B1). Future analysis

could consider comparing JULES outputs to the upcoming GEDI L4B map of AGB, which will incorporate a larger number390

of observations of the tropics than used in the sources of the Avitabile map (Dubayah et al., 2020).

On the whole, the Avitabile map was deemed more suitable than other remote sensing products, which tend to saturate at high

biomass values (Turner et al., 2006; Le Toan et al., 2020). However, the ESA CCI Biomass product was also used to benchmark

these simulations as a potentially more accurate source for disturbed, low carbon regions. The new simulations have stronger

correlations with the ESA CCI observed map than with the Avitabile map, and a smaller difference in correlation between the395

best new result and the control simulation. Spatial patterns of over- and underestimation are similar, though underestimation in

the north-east is less pronounced.

4.3 Missing spatial variation

It was expected that adding a wood density dependent mortality term would improve the representation of Amazonian vege-

tation carbon in JULES, since previous research has shown that mortality rates (Malhi et al., 2015; Johnson et al., 2016) and400

wood density (Baker et al., 2004) are good predictors of biomass. This paper has shown that adding spatially varying mortality

rates, dependent on wood density, into JULES improves predictions for vegetation carbon by reducing the bias to around 10%

of its original value and by increasing the correlation with observations by around 40%. Future work will aim to improve

the accuracy of predictions even further by including other missing processes that impact vegetation carbon. We propose that

the remaining “missing” variation originates from non-mortality mechanisms like NPP and carbon allocation (i.e. variation in405

carbon input) and missing mortality processes (variation in carbon losses).
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The results in Fig. 6 give a good indication of where the “missing” processes above are most important in the Amazon. Indi-

vidual species measured in tropical South America have wood densities from 0.10 to 1.21 gcm−3 (Zanne et al., 2009), which

sets extreme bounds for feasible values of wood density, though a more realistic range would be smaller due to community av-

eraging. While the wood density pixels back-calculated from M2–4 are predominantly within the range for individual species,410

key regions of unrealistic values lie in the north-east and south-east. The high wood densities (and even negative mortality

rates) required in the north-east suggest that low mortality rates cannot capture the large biomass stores there. This is where

variation in the carbon input to the forest (e.g. through NPP gradients or carbon allocation) is likely especially important for

modelling vegetation carbon. Conversely, the negative wood density pixels predicted in the south-east suggest that additional

sources of tree mortality are not accounted for by the wood density – mortality link. A key missing factor here is likely human415

disturbance and land use change Bullock et al. (2020).

4.3.1 Non-mortality sources of variation

In the JULES simulations, regions of high simulated NPP correlated well with regions of high simulated vegetation carbon,

as is the case in many DGVMs (Johnson et al., 2016). However, in reality there is a weak (Johnson et al., 2016) and non-

linear relationship between above ground NPP and vegetation carbon in the tropics (Keeling and Phillips, 2007) and the two420

may even be negatively correlated in highly productive forests. Delbart et al. (2010) found that modelling mortality rates as

proportional to NPP1.32 allowed the ORCHIDEE model to better represent the pattern of biomass across old growth Ama-

zonian forests. The authors suggest that productivity-mortality-biomass covariation is linked to soil properties; physical soil

properties are correlated with mortality rates and soil fertility, particularly soil phosphorus concentration, is correlated with

NPP (Malhi et al., 2004; Quesada et al., 2012). A study using a canopy photosynthesis model calibrated for Amazonia has425

found that canopy phosphorus concentrations drive variations in GPP, which play a large role in predicting variations in wood

production (Mercado et al., 2011). The fertile soils in the south-west are productive, favouring fast growing species with low

wood density (Quesada et al., 2012). In contrast, soils in central and eastern Amazonia have lower fertility and good physical

properties (Quesada et al., 2010), promoting slow growth (Quesada et al., 2012), low mortality rates (Johnson et al., 2016)

and consequently selecting for tall (Feldpausch et al., 2011), high wood density trees which store a lot of carbon. Therefore430

the addition of the phosphorus cycle to land surface models, including JULES (Nakhavali et al., 2021) and ORCHIDEE (Sun

et al., 2021), is a very promising avenue for exploring vegetation carbon variation.

The fact that wood density-dependent mortality did not explain all spatial variation in vegetation carbon reflects results from

field measurements. As previously mentioned, Baker et al. (2004), found that wood density explained at most 45% of the

variation in AGB across 56 Amazonian mature forest sites. The basal area of large trees was another important predictor of435

AGB variation between these plots, but it did not vary significantly between regions. Quesada et al. (2012) used a broader range

of sites to report higher basal areas in forests in north-east than in south-west Amazonia, in a negative relationship with soil

fertility and a positive relationship with average dry season precipitation. High AGB plots had higher average wood density,

but plots with lower AGB had varying wood density, and here basal area strongly correlated with AGB. Stand basal area was

mainly controlled by the basal area per tree, showing that the stem diameter distribution of trees across the Amazon was an440
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important predictor of AGB, and was at least partially uncoupled from wood density. Additionally, allometric equations for

AGB require both stem diameter and tree height as well as wood density to accurately predict AGB (Chave et al., 2014), and

evidence suggests that wood density does not correlate with tree height (Francis et al., 2017). The allometry between stem

diameter and tree height also depends on region and climate, with trees in the Guiana shield displaying greater heights for

a given diameter than in the wider Amazon (Feldpausch et al., 2011), likely affecting carbon storage (Gora and Esquivel-445

Muelbert, 2021). Indeed, differences tree height help explain the regional variation AGB in Amazonia (Nogueira et al., 2008;

Feldpausch et al., 2012). Feldpausch et al. (2011) postulate that the regional differences in height allometry are in part due to

the effect of geological events in the last glacial maximum on species composition. Height is allowed to vary in JULES, but

future work should address whether realistic height distributions are simulated, and whether the allometric relationships used

to calculate it should vary in space.450

Wood density is positively correlated with biomass (Quesada et al., 2012), and there is mixed evidence linking high wood

density and slow growth (Nascimento et al., 2005; Wright et al., 2010; Francis et al., 2017). Wood density could act as a bridge

connecting NPP and mortality in a positive relationship in JULES, capturing the wood economics spectrum more fully. As

such, coupling high wood density with increased woody allocation and slow growth may amplify the extra spatial variation

between the south-western and eastern Amazon. More data are needed to fully understand the link between wood density and455

carbon allocation, but one example shows that among South African tree species, high wood density species have a lower

leaf:woody biomass ratio than low wood density species (Mensah et al., 2016).

4.3.2 Missing mortality

As previously mentioned, the wood density – mortality relationship is likely linked to stem mechanical strength, reduced

risk of drought-induced embolism and possibly resistance to pathogen attack (Chave et al., 2009). However, not all mortality460

processes are captured in this relationship; Kraft et al. (2010) find that wood density variation explains on average 40% of

mortality variation in a pantropical analysis.

The tree death is more commonly caused by windthrow in the dynamic, western Amazon (Negrón-Juárez et al., 2018;

Esquivel-Muelbert et al., 2020). This mode of mortality may be captured in the low wood densities found in the region (Fig. 1).

In the eastern-central and southern Amazon, Esquivel-Muelbert et al. (2020) report that a physiological cause of death, such as465

stress, senescence or hydraulic failure, is more likely. It is almost certain that fires, intensified by anthropogenic disturbance and

extreme drought play a large role in the spatial variation of mortality in the south-east too, especially at forest edges (Brando

et al., 2014). The mortality mechanisms dominating in these highly disturbed regions are very different from those in intact

forests, from which M2–4 were derived. For example, high wood density trees are often removed in selective logging (Gaui

et al., 2019). When grid cells containing a high proportion of disturbed forest are removed from the analysis in Fig. C1, the470

bias and CRMSD of the simulations compared to observations are further reduced (see Table C1), though areas of error still

remain in a belt from central-western to north-eastern Amazonia (Fig. C2).

Intermediate wood density values are recorded in the arc of deforestation (Fig. 1), suggesting that the species mix is not, on

average, particularly drought-tolerant, given that high wood density is correlated with resistance to drought-induced mortality
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(Greenwood et al., 2017). It could be that climate extremes in the south-east and north (Brando et al., 2014) (such as the record475

breaking drought and temperature anomalies recorded in the 2015 El Niño event (Jiménez-Muñoz et al., 2016)) are exceeding

the drought tolerances of the species present, which were selected under historical levels of moisture stress. Wood density is a

non-plastic trait (Chave et al., 2006), making it plausible that mortality rates are higher than the wood density – mortality link

would suggest.

It has been suggested that repeated droughts in north-eastern Amazonia during the Holocene shifted species composition480

towards more drought-tolerant communities (Maréchaux et al., 2015). As increasing present day water stress starts to trigger

composition change from lower to higher wood density species and/or to lower-statured species (Esquivel-Muelbert et al.,

2019), carbon stocks and dynamics could change dramatically. In other locations, where the Amazon is becoming more dy-

namic with increasing growth and mortality rates, species composition is shifting towards faster growing genera (Phillips et al.,

2008). Therefore, making spatially explicit and dynamic mortality maps which track potential wood density change could be485

an important avenue to follow in future JULES development. This could be linked to the addition of tree demography into

JULES (through the Robust Ecosystem Demography DGVM (Argles et al., 2020)), allowing multiple coexisting successional

stages (potentially with different wood density distributions) to more accurately represent composition change. It would also

be informative to test whether the simulated vegetation carbon distribution could be improved if average observed mortality

rates for each grid cell are input directly into the model, without the wood density step. For example, spatially varying woody490

residence times across Amazonia have been included in an average-individual model, with kriged data from a set of 34 1◦ x 1◦

grid cells, achieving some success (Castanho et al., 2013).

5 Conclusions

This work has shown that it is possible to include spatially explicit mortality rates for tropical tree PFTs in large-scale DGVMs,

despite the lack of tree mortality data with sufficient range and resolution for modelling. Mortality maps can instead be gener-495

ated using relationships with more easily measured plant traits; a particularly useful trait is wood density, used here to create

maps of mortality across Amazonia.

This research highlights that a wide range of mortality rates are needed to correctly model vegetation carbon in Amazonia,

particularly in disturbed forests and in the Guiana shield. For the JULES land surface scheme employed above, this emphasises

the importance of including mortality due to fire and drought, and of simulating early successional stages. The work also sug-500

gests that non-mortality influences on vegetation carbon are important, such as variations in productivity from the phosphorus

cycle, and variations in carbon allocation.

Implementing the improvements to PFT mortality schemes in vegetation models outlined in this paper would expand the

potential for accurately modelling the spatial distribution of vegetation carbon and the size of the vegetation carbon sink. This

method also opens up several avenues for further improvements, such as coupling mortality to growth rates, adding spatial505

diversity to drought and fire responses, and adding temporal dynamics to mortality rates via trait composition change.
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Code and data availability. JULES output for the 12 mortality configurations and control configuration, for present day, has been archived

at https://doi.org/10.5281/zenodo.6388019. The 12 mortality maps and the kriged wood density map are also found in this repository.

The SDM- and RF- based wood density maps have not yet been made publicly accessible because their creators, FJF and JC and collabo-

rators, are preparing to publish them separately in upcoming manuscripts.510

The JULES code and the Rose suite (suite u-cg769) for these simulations is available on the Met Office Science Repository System

(MOSRS; https://code.metoffice.gov.uk/ trac/jules). Free registration is required to access MOSRS.
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Appendix A
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Figure A1. A comparison of the four equations describing the wood density – mortality relationship used in this paper. Also included are the

original versions of M1 and M4, which have different maximum wood density (ρmax) values, as indicated in the legend. The wood density

data are simulated in this figure.
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Appendix B

Figure B1. Observational maps of vegetation carbon. (a) is derived from a map produced by Avitabile et al. (2016) which combines remote

sensing and forest inventory data. (b) is derived from the ESA CCI Biomass product (Santoro and Cartus, 2021). Both have been regridded

to match the resolution of the JULES driving data.
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Figure B2. The difference between the vegetation carbon for present day simulations (averaged 2008–2017) and that derived from the ESA

CCI Biomass product (Santoro and Cartus, 2021). (a) shows the difference between the original JULES configuration with homogeneous

mortality and the observations. The models used to create the mortality data for the remaining simulations are indicated in the column titles.

The mortality maps used in (b) to (d) are calculated from SDM-based wood density data, while (e) to (g) use RF-based wood density, and

(h) to (j) use kriged wood density.
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Table B1. Statistical comparison of the JULES simulations (with different mortality configurations) of vegetation carbon with the observa-

tional ESA CCI product. The absolute bias (MgCha−1), CRMSD (MgCha−1) and the Pearson correlation coefficient are shown.

Mortality Model Wood Density Map Absolute Bias CRMSD Correlation Coefficient

Control n/a 64.3 33.37 0.263

M1 Occurrence 104.4 34.33 0.202

M1 Observation 104.4 34.33 0.202

M1 Kriged 104.4 34.33 0.202 .

M2 Occurrence 14.0 33.49 0.263

M2 Observation 15.1 33.46 0.265

M2 Kriged 20.4 33.19 0.29

M3 Occurrence 69.4 33.38 0.259

M3 Observation 69.9 33.37 0.26

M3 Kriged 71.8 33.17 0.275

M4 Occurrence 30.6 33.36 0.269

M4 Observation 31.6 33.34 0.27

M4 Kriged 36.4 33.03 0.296
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Appendix C515

Figure C1. The fraction of the forest present in each grid cell that is disturbed. The total area of disturbed forest per grid cell is the sum

of secondary and degraded forest area, and non forested areas are masked. (a) shows the original dataset at 1 km resolution. (b) shows the

fraction of disturbed forest after regridding using the method in Sect. 2.3. (c) shows the remaining grid cells after those whose forested area

is over 20% disturbed are removed.
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(a) Control
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Figure C2. The difference between the vegetation carbon for the present day (averaged 2008–2017), simulated using different mortality

configurations, and that derived from the Avitabile et al. map (Avitabile et al., 2016) in largely undisturbed forests. (a) shows the difference

between the original JULES configuration with homogeneous mortality and the observational map. (b), (e) and (h) use mortality maps from

M2, and so on for the other two columns. The mortality maps in (b) to (d) are calculated from the SDM-based map of wood density, while

(e) to (g) use the RF-based wood density map, and (h) to (j) use the kriged wood density map.
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Table C1. Statistical comparison of the control JULES simulation and the nine non-zero simulations of vegetation carbon with different

mortality configurations after highly disturbed forests are filtered out and the vegetation carbon derived from the Avitabile map. The absolute

bias (MgCha−1), CRMSD (MgCha−1) and Pearson correlation coefficient are shown.

Mortality Model Wood Density Map Absolute Bias CRMSD Correlation Coefficient

Control n/a 48.6 30.57 0.124

M2 Occurrence 1.6 30.66 0.137

M2 Observation 0.5 30.60 0.139

M2 Kriged 4.9 29.73 0.232

M3 Occurrence 53.6 30.30 0.141

M3 Observation 54.2 30.29 0.141

M3 Kriged 56.1 29.80 0.190

M4 Occurrence 14.9 30.50 0.142

M4 Observation 16.0 30.45 0.145

M4 Kriged 20.8 29.57 0.236
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