Temperature sensitivity of dark CO₂ fixation in temperate forest soils

Rachael Akinyede^{1,2}, Martin Taubert¹, Marion Schrumpf², Susan Trumbore², Kirsten Küsel^{1,3}

¹Aquatic Geomicrobiology, Institute of Biodiversity, Friedrich Schiller University Jena, Dornburger Str. 159, 07743 Jena, Germany

²Department for Biogeochemical Processes, Max Planck Institute for Biogeochemistry, Hans-Knöll Str. 10, 07745 Jena, Germany

³German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Puschstraße 4, 04103 Leipzig, Germany

10 Correspondence to: Kirsten Küsel (<u>kirsten.kuesel@uni-jena.de</u>)

Supplementary information

Supplementary methods

5

15

Determination of natural 14C isotope signatures of the beech and spruce soil.

The radiocarbon signature of the bulk soil samples was measured using the accelerator mass spectrometry (AMS) with a 3-MV Tandetron ion accelerator (HVEE, Amersfoort, Netherlands) according to Steinhof et al. (2017). As with the 13 C isotope ratios, radiocarbon ratios were reported as the % deviation of the 14 C/ 12 C ratio but from the international oxalic acid universal standard (ox1) in Δ^{14} C. All Δ^{14} C value of the sample was then corrected appropriately as previously described (Trumbore, 2009; Mook and Van der Plicht, 1999). The measured bulk 14 C values of the beech and spruce soils are described in Table S1.

20
$$\Delta^{14}C = \left[\frac{\frac{^{14}C}{^{12}C}sample - 25}{0.95\frac{^{14}C}{^{12}C}ox1 - 19 \times exp^{\left(y - \frac{1950}{8267}\right)}}\right] \times 1000$$

(S1)

Supplementary figures

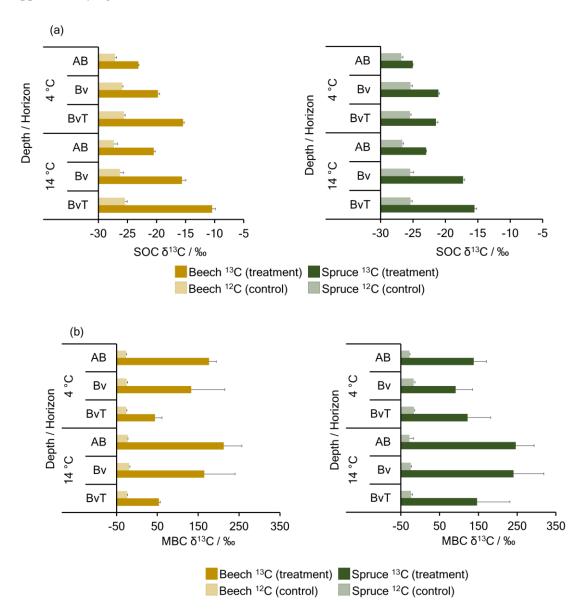


Figure S1: δ¹³C enrichment of SOC and MBC in soil microcosms supplemented with 2% ¹³CO₂ together with ¹²CO₂ labelled controls at 4 and 14 °C. Shown are (A) ¹³C signal in SOC and (B) ¹³C signal in MBC after 21 days of incubation with 2% ¹³CO₂ at 4 and 14°C across three horizons in beech (yellow bars) and spruce (green bars) soils. Incubations with ¹³C labelled CO₂ (treatment) are denoted with filled bars while incubations with ¹²C (control/natural abundance) are denoted by shaded bars. Error bars indicate the standard deviation of incubations from three replicate soil cores.

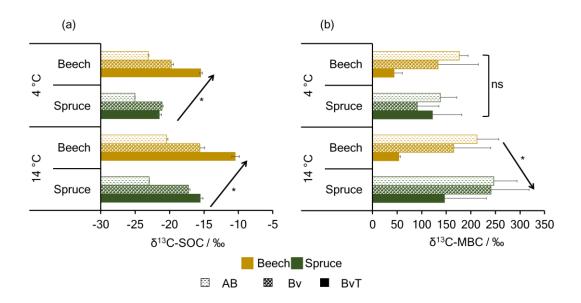


Figure S2: δ^{13} C signals of SOC and MBC in soil microcosms supplemented with 2% 13 CO₂ at 4 and 14 $^{\circ}$ C from beech and spruce soils. Shown are (A) 13 C signal in SOC and (B) 13 C signal in MBC after 21 days of incubation with 2% 13 CO₂ at 4 and 14 $^{\circ}$ C across three horizons in beech (yellow bars) and spruce (green bars) soils. Error bars indicate the standard deviation of incubations from three replicate soil cores. * denote p < 0.05, ns denote not significant.

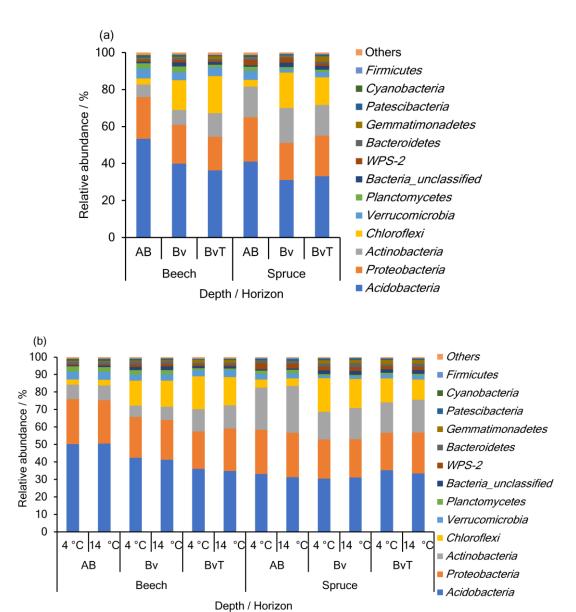


Figure S3: Bacterial community composition from beech and spruce soil. Shown are phylum-level relative abundances of assigned sequences for (A) the beech and spruce bulk soils and for (B) beech and spruce soils incubated with 2% ¹³CO₂ at 4 and 14°C. Bar plots are represented by three replicate soil cores per depth. Taxonomic assignment of OTUs is based on the SILVA database implemented on the MOTHUR sequence analysis pipeline. Data represent 3 replicate soil cores per depth for the beech and spruce soils.

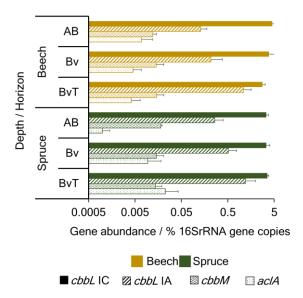


Figure S4: Abundance of chemolithoautotrophic marker genes potentially involved in dark CO₂ fixation in the beech and spruce bulk soi profiles. Shown are the abundances of RuBisCO (cbbL IA, cbbL IC, and cbbM) and ATP citrate lyase (aclA) genes in the beech and spruce bulk soils. Data acquired by qPCR. The scale on the x-axis is logarithmic (base 10). Error bars indicate the standard deviation of incubations from three replicate soil cores.

Table S1: The Δ¹⁴C signatures of SOC (‰) measured for soil cores obtained from beech and spruce soil plots at the
Hummelshain forest. Each reported value represents the mean of three replicate soil cores taken from bulk soils during the sampling campaign.

Plot	Depth (Horizon)	Δ ¹⁴ SOC (‰)	
	AB	-2.68 ± 7.48	
-	Bv	-61.00 ± 30.96	
Beech	BvT	-170.10 ± 0.75	
	AB	16.64 ± 18.18	
بو	Bv	-92.98 ± 28.82	
Spruce	BvT	-201.89 ± 76.59	

Table S2: Geochemical properties of soil cores obtained from beech and spruce soil plots at the Hummelshain forest measured under two temperature conditions. Soil organic carbon (SOC), Total nitrogen (TN), carbon/nitrogen (C/N) ratio, microbial biomass carbon (MBC), Moisture, and 16S rRNA gene copies reported for 3 depths definitions for the beech and spruce soils at 4 and 14 °C. Each reported value represents the mean of three replicate soil cores taken after the soil incubation period.

	Beech		Spruce				
Depth (Hor	izon)	AB	Bv	BvT	AB	Bv	BvT
SOC (%)	4 °C	0.89 ± 0.09	0.27 ± 0.10	0.12 ± 0.02	1.50 ± 0.05	0.23 ± 0.04	0.30 ± 0.14
	14 °C	0.89 ± 0.1	0.29 ± 0.11	0.13 ± 0.03	1.56 ± 0.04	0.25 ± 0.05	0.30 ± 0.14
TN (%)	4 °C	0.04 ± 0.003	0.03 ± 0.004	0.02 ± 0.002	0.07 ± 0.01	0.03 ± 0.002	0.03 ± 0.005
	14 °C	0.04 ± 0.001	0.03 ± 0.003	0.02 ± 0.003	0.08 ± 0.002	0.03 ± 0.002	0.03 ± 0.003
C/N ratio	4 °C	20.82 ± 0.64	10.12 ± 3.24	5.22 ± 0.51	19.99 ± 1.96	8.74 ± 1.37	9.32 ± 3.24
	14 °C	19.81 ± 2.54	10.62 ± 2.82	5.16 ± 0.93	19.23 ± 0.39	9.12 ± 1.44	9.25 ± 3.55
MBC (μg C gdw ⁻¹)	4 °C	54.91 ± 4.91	24.04 ± 2.61	12.72 ± 1.78	101.53 ± 19.5	28.97 ± 9.56	27.61 ± 8.50
	14 °C	47.61 ± 2.95	23.90 ± 7.06	15.81 ± 2.51	73.69 ± 17.81	13.12 ± 3.95	26.62 ± 5.86
Moisture (%)	4 °C	8.92 ± 1.68	11.09 ± 1.32	11.96 ± 2.48	7.71 ± 1.68	11.23 ± 2.83	11.29 ± 1.97
	14 °C	7.49 ± 1.3	7.31 ± 0.44	10.65 ± 1.31	7.12 ± 1.00	7.42 ± 0.75	10.72 ± 1.07
16S rRNA (copies/gdw ⁻¹)	4 °C	2.96 x 109 ± 9.69 x 108	8.49 x 108 ± 5.50 x 108	1.17 x 108 ± 4.27 x 108	2.19 x 109 ± 5.68 x 108	2.76 x 108 ± 1.32 x 108	2.92 x 108 ± 1.89 x 108
	14 °C	3.23 x 109 ± 7.41 x 108	8.67 x 108 ± 4.62 x 108	1.52 x 108 ± 1.02 x 108	2.54 x 109 ± 8.84 x 109	2.74 x 108 ± 1.06 x 108	2.98 x 108 ± 1.74 x 108

65

Table S3: Derived decomposition rates and the Q_{10} for the beech and spruce soils across depth. Decomposition rates (at 4 and 14 °C) were derived by adding the respective measured CO_2 fixation rates with the net respiration rates for all samples while the Q_{10} values were calculated as similarly done for the CO_2 fixation rates and the net respiration rates (Eq. (6) in method section 2.4). Each reported value represents the mean of three replicate soil cores taken after the soil incubation period. ND denotes values that were "not detected".

Plot	Depth (Horizon)	Decomposition rates (μg C gdw soil ⁻¹ d ⁻¹)		Q10
		4 °C	14 °C	Q10
Spruce Beech	AB	1.28 ± 0.63	2.92 ± 1.42	2.29 ± 0.02
	Bv	0.58 ± 0.49	1.23 ± 0.93	3.37 ± 1.34
	BvT	ND	0.14 ± 0.09	ND
	AB	0.91 ± 0.39	2.34 ± 0.92	2.59 ± 0.11
	Bv	0.13 ± 0.11	0.34 ± 0.01	3.89 ± 3.28
	BvT	0.41 ± 0.12	1.07 ± 0.07	2.63 ± 0.29

Table S4: Primers and adapter sequences used for two-step barcoding approach for Illumina MiSeq sequencing of the bacterial 16S rRNA genes.

Primer	Sequences (5' - 3')	References		
1st PCR step				
Bact_341F	[TCGTCGGCAGCGTCAGATGTGTATAAGAGACAG] CCTACGGGNGGCWGCAG		Klindworth al., 2013	et
Bact_785R	[GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAG] GACTACHVGGGTATCTAATCC		ui., 2013	
2 nd PCR step				
Index 1	CAAGCAGAAGACGGCATACGAGAT GTCTCGTGGGCTCGG	[i7]	Illumina [®]	
Index 2	AATGATACGGCGACCACCGAGATCTACAC TCGTCGGCAGCGTC	[i5]		

70 References

- Klindworth, A., Pruesse, E., Schweer, T., Peplies, J., Quast, C., Horn, M., Glöckner, F.O.: Evaluation of general 16S ribosomal RNA gene PCR primers for classical and next-generation sequencing-based diversity studies, Nucleic Acids Research, 41, 1–11, doi:10.1093/nar/gks808, 2013.
- Mook, W. G., Van der Plicht, J.: Reporting ¹⁴C activities and concentrations, Radiocarbon, 41, 227–239, 1999.
- Steinhof, A., Altenburg, M., Machts, H.: Sample Preparation at the Jena 14C Laboratory, Radiocarbon, 59, 815–830. doi:10.1017/RDC.2017.50, 2017.
 - Trumbore, S.: Radiocarbon and Soil Carbon Dynamics, Annual Review of Earth and Planetary Sciences, 37, 47–66. doi:10.1146/annurev.earth.36.031207.124300, 2009.