
Response to reviewers for BG-2022-92: “Controls of intermodel uncertainty in land 

carbon sink projections” 

 

List of most relevant changes made in the manuscript: 

 

• Discussion on the definition of the sensitivity of NBP to CO2 (sCO2) plus additional 

supplementary figures to provide more context to our results from Figs. 7 and 8.   

• Clarification edits to the manuscript and Figs. 3 and 8 to better convey the main 

insights obtained from the analysis.   

 

Referee #1: 

 

Padrón et al report an analysis of drivers of the terrestrial carbon sink in the CMIP6 

ensemble scenario SSP126 where warming is limited to 2 oC. This is a useful study of the 

latest CMIP model results in a policy relevant scenario, showing that terrestrial carbon sink 

projections by 2100 (cumulative NBP) in the ensemble vary from 56 to 207 Pg C, mean 144 

and standard deviation 47 Pg C. Using linear regression Padrón et al partition this 

variability among sensitivity to CO2, temperature (T), soil moisture (SM), and differences in 

baseline temperature and soil moisture. Their methods show that the greatest proportion of 

this variance is explained by sensitivity to T and SM combined, with sensitivity to CO2 as the 

second most important driver of variability. Based on these results, they conclude that the 

gamma feedback (climate) is greater than the beta feedback (physiological) under this 

policy-relevant scenario and thus climate sensitivities require the greatest attention. They 

also show compensating drivers of cumulative NBP variability such that reduction of 

uncertainty in response to one driver would not greatly reduce overall NBP variability.  

Overall this is a well written and executed study. The analysis of the relatively low- warming 

SSP126 scenario is timely and to my knowledge has not been done before. I have several 

comments and criticisms that I hope will help to make the analysis and conclusions more 

robust and impactful. First, I think that for a number of reasons the method has low-biased 

the estimation of the impact of CO2 sensitivity on NBP variability. Second, I encourage a 

little more quantification and thought into exactly what is quantified and communicated 

 

We appreciate the overall positive evaluation of our manuscript.  

 

To clarify, we do not conclude that the gamma feedback is greater than the beta feedback, but 

rather that model differences in the sensitivities of NBP to climate (related to gamma) 

contribute more to the land carbon sink intermodel spread than what model differences in the 

sensitivity of GPP to CO2 (related to beta) do.  

 

First: underestimation of the impact of CO2 sensitivity on NBP variability. CO2 sensitivity is 

estimated as the sensitivity of GPP to CO2 in the 1 % per year increases in CO2 simulations 

(1pctCO2-bgc) in which CO2 ranges from 350 to 800 ppm. This method assumes 1) the CO2 

sensitivity of NBP is the same as that for GPP, 2) that CO2 sensitivity is linear across the 

range 350 to 800 ppm, and 3) that there are no interactions between CO2 sensitivity and 

either T or SM. It is likely that all three of these assumptions will low- bias the estimate of the 

impact of model CO2 sensitivity on cross-model NBP variability. 

 

While GPP sensitivity to CO2 is likely the main driver of NBP sensitivity to CO2, as asserted 

in the current ms, the assumption ignores potential changes in turnover rates that can also 

occur in response to CO2, which can be substantial. Using cross-model GPP sensitivity to 



CO2 will result in a lower correlation with NBP variability than using NBP sensitivity to 

CO2. Further, for T and SM sensitivity, NBP is used, biasing results in favor of T and SM 

sensitivity. Comparing the sensitivities of GPP to CO2 to NBP to T and SM is not a like-for-

like comparison. Sensitivity of NBP to CO2 should be estimated and used in the regression 

analysis. 

 

We appreciate the insight, and now expanded the text to include this point. We also include 

in the supplement figures like Fig. 8 when using the sensitivity of NBP to CO2 instead of the 

sensitivity of GPP for the analysis. 

 

When using the sensitivity of NBP to CO2, it is important to note that model differences can 

arise from (i) differences in the sensitivity of GPP to CO2, (ii) differences in the sensitivities 

of RA, RH and DIS to CO2 (i.e., the point of the reviewer), but also from (iii) differences 

across models in their sensitivities of RA, RH and DIS to temperature and soil moisture. 

 

GPP generally increases with increasing CO2 in the 1pctCO2-bgc simulations. This increase 

in GPP results in indirect effects of CO2 on RA due to enhanced root respiration associated 

with greater belowground plant biomass, and on RH due to enhanced microbial 

decomposition of fresh carbon due to greater supply of foliar and root-derived labile soil 

carbon, and to increased microbial priming of old soil organic matter fueled by this increased 

supply of labile soil carbon (Gao et al., 2020). On the other hand, the magnitude of the 

changes in RA, RH and DIS in each model following the increase in GPP also strongly 

depend on the models’ sensitivity of these fluxes to temperature and soil moisture (Todd-

Brown et al., 2013; Varney et al., 2020). 

 

The indirect effects of CO2 on RA, RH and DIS are ignored when using sCO2 as the 

sensitivity of GPP to CO2, whereas the contribution of model differences in their sensitivity 

to climate are partially attributed to differences in sCO2 when using the sensitivity of NBP of 

CO2. To be comprehensive we now show the results of our analysis when using both the 

sensitivity of GPP and of NBP to CO2. 
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The CO2 response over 350 to 800 ppm is likely not linear in these models, it almost 

certainly is not at the leaf scale which drives model CO2 responses. The SPP126 simulations 

max out at 446 ppm. There is likely saturation in the CO2 response for many models 

somewhere between 450 and 800 ppm. CO2 sensitivities should be estimated over the range 

of CO2 concentrations that preserve linearity over the range 350 – 446 (i.e. concentrations 



can be higher but responses must be linear over the range). A supplemental figure showing 

NBP against CO2 for the 1pctCO2-bgc simulations would be useful. 

 

We agree with this point. We expanded the text and now include the suggested figure in the 

supplement. We now use a range approximately between 375 and 500 ppm (the SSP126 

range is 400 to 471 ppm) within which the response is relatively linear, while still counting 

with a sample size of 30 annual values to estimate sCO2 without being overly affected by 

internal climate variability. If we were to take fewer annual values from the single simulation 

for each model, particularly dry/wet and hot/cold anomalies during those years resulting from 

natural variability could lead to a biased estimate of sCO2.   

 

There are interactions between CO2 and T and SM. Interactions with T are likely the most 

important for this discussion. At high T it is well known that CO2 can alleviate some of the 

reductions in photosynthesis due to interactive effects on photo- respiration. This could 

alleviate GPP reductions in high T years that I’m not sure would be removed by detrending 

NBP. I’m not sure there is an easy way to account for this, and that is OK. But some 

acknowledgment of this effect and some attempt to quantify it would help make results more 

robust. 

 

Interesting point. We now acknowledge it in the manuscript as another process that is only 

indirectly represented when trying to explain differences across models in their land C sink 

projections. Potential model differences in the alleviating effect of CO2 at high temperatures 

are implicitly captured within differences in sT.  

 

We additionally compute sT and sSM from the 1pctCO2-rad simulations to exclude the 

alleviating effect of CO2 given that vegetation experiences constant CO2 at pre-industrial 

level in these simulations. However, in this case we expect differences in sT and sSM 

compared to those derived from the SSP126 simulations, given that the background CO2 

concentration and climate conditions are different. We now also include in the supplement a 

Figure like Fig. 8 when using sT and sSM derived from the 1pctCO2-rad simulations.  

  

Second: encourage more thought into exactly what is quantified and communicated. I suggest 

quantifying statement in the abstract, cumulative NBP variability etc. Also, as well as putting 

these numbers in the context of current annual emissions, I think it might also be useful to 

present them as a proportion of the assumed emissions in the SSP126 scenario (if someone 

has calculated those). 

 

Thanks for the suggestions. We now include more quantitative statements in the abstract. We 

also indicate that the intermodel spread of ~150 PgC corresponds to approximately 40% of 

the remaining carbon budget to limit global warming below 2°C (with a 50% likelihood) 

according to Table SPM.2 of IPCC (2021). 

 

IPCC, 2021: Summary for Policymakers. In: Climate Change 2021: The Physical Science 

Basis. Contribution of Working Group I to the Sixth Assessment Report of the 

Intergovernmental Panel on Climate Change [Masson-Delmotte, V., P. Zhai, A. Pirani, S.L. 

Connors, C. Péan, S. Berger, N. Caud, Y. Chen, L. Goldfarb, M.I. Gomis, M. Huang, K. 

Leitzell, E. Lonnoy, J.B.R. Matthews, T.K. Maycock, T. Waterfield, O. Yelekçi, R. Yu, and 

B. Zhou (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, 

NY, USA, pp. 3−32, doi:10.1017/9781009157896.001. 

 



Why is the proportion of variance in NBP variability to CO2 sensitivity not quantified on ln 

354? 

 

We now rephrased the sentence to include this. 

 

I encourage the authors to think about what is best to present given this is a study of the 

global carbon cycle. Most figures are presented in the units per meter squared. When 

aggregating to broad zonal regions I suggest it is more informative to present results as the 

absolute sum across the whole area – this would make it easier to relate the regions and 

sensitivities directly to the global aggregate numbers. Finally, have differences in grid-

square area been taken into account when presenting the global aggregate drivers of NBP 

variability? 

 

Thanks for the suggestions. We modified Fig. 8 to express the units in carbon mass for the 

whole land area. For Figs. 6 and 7 expressing the data in gC m2 y-1 helps the visualization, 

and our goal of comparing models and drivers rather than comparing across regions. 

Nonetheless, we now make it more visible in the figures what percentage of the land area 

corresponds to each region instead of only mentioning this in the caption. Finally, we do 

consider differences in grid cell area according to latitude.     

 

Technical Comments: 

 

Title: suggest switching “controls” for “drivers” as control suggests some degree of 

intention. 

 

We incorporated this suggestion.  

  

While I see some of the benefits of the narrative style with the methods spread throughout the 

results (e.g. lns 157-164, 179-189, 263-283, etc), I think it is more practical to have the 

methods all in one place where they can be found easily and assessed side by side. 

 

Thanks for the suggestion. We consider this to be a matter of style and given that typically 

papers in Biogeosciences do not have a specific “Methods section”, we would prefer to keep 

the original narrative style. 

  

Fig 6: can probably go into the supplement. 

 

We appreciate the suggestion, but nonetheless consider it is useful to keep Fig. 6 in the 

manuscript to convey the message that the regression estimates can represent well intermodel 

differences in regional projected NBP.  

  

Fig 7: A little hard to read, I think the sensitivities could be presented more clearly if they 

were presented as in Fig 8. I recognise that would necessitate removal of uncertainties from 

the figure and I appreciate the effort made to quantify uncertainty but is clarity of 

communication is the trade off. 

 

We now also present the results from Fig. 7 as stacked bars in the supplement.   

 



Fig 8 as is could go to the supplement. Fig 8: Suggest adding a dot for the actual cumulative 

NBP. Also I really think this would be better off expressed in global sums rather than per 

meter squared. The white dot could be a little larger. 

 

We included the suggestions. 

 

Ln 30: There are several commentaries explaining why Wang et al 2020 is not a reliable 

analysis. 

 

We decided to remove this reference from the text. 

  

Ln 37: Are there other disturbances that release C directly back to the atmosphere? 

 

Not directly, but other disturbances can include changes in land cover like deforestation. 

 

Ln 61: Note the editor’s note for Keenan 2021 

 

Thanks for pointing this out. We removed this reference, as the article has been retracted. 

 

Ln 69: can delete “consider it important to instead”  

 

We rephrased the sentence. 

 

Referee #2: 

 

This manuscript takes 11 ESMs from the CMIP6 archive and attempts to unravel the root 

causes of the uncertainty in the NBP simulated by each model over the (roughly) 2 deg 

warming scenario. The models' sensitivity to CO2 (through the 1 percent runs) and to 

temperature and soil moisture are investigated for both short and long timescales. I found the 

paper figures to be generally well designed (though see my comment about Fig 3) but the text 

could be confusing at times. There is a lot of rather convoluted steps/arguments in producing 

the T/SM/sT/sSM metrics and it sometimes was hard to understand exactly what they were 

telling me about the models. I think the paper is publishable, but needs revisions for clarity. 

An obvious target for clarity/context would be to discuss the results of this work in the 

context of previous efforts as discussed in the introduction (principally Arora et al. 2020). I 

found myself comparing this work to that paper and not understanding why they differed 

strongly in some cases. 

 

We appreciate the overall positive evaluation of our manuscript. We rephrased some 

sentences in the text to clarify what do sT and sSM represent and to explain their effect as 

drivers of differences in cumulative NBP.  

 

Our analysis is complementary to that of Arora et al. (2020) by focusing on the relevance of 

soil moisture and temperature for land carbon sink projections. Moreover, we provide more 

regional insights and address projections under a low emission scenario. Thus, most of our 

results are not directly comparable to those of Arora et al. (2020). Nevertheless, when 

possible, we don’t find strong differences with the insights from Arora et al. (2020) on why 

each model projects either a relatively low or high land C sink. For example, the contribution 

of sCO2 (GPP/c’) is similar in both studies for explaining differences across models. We 



believe there was a slight misunderstanding of two statements in our manuscript, as discussed 

in our reply to other comments below.  

  

Main comments: 

 

Fig 3: I found this to be a strange figure. So if a model has a positive correlation it counts 

towards the blue end of the colour scheme, whereby if it is negative it counts towards the red. 

However this seems to have no consideration of how positive or negative a model was. I think 

it would treat a model that is 0.9 the same as one that is 0.0009, which seems to be a bit too 

ambiguous. Also what if all 11 models are +0.0001 vs. all models are >0.9, as is they would 

appear the same in this figure but arguably the situation where all 11 are >0.9 is more 

interesting than the situation where the models are rather ambiguous (close to 0). I would 

suggest reconsidering this figure. 

 

We modified the figure and now show the ensemble mean correlation divided by the standard 

deviation to better illustrate the confidence in the sign of the relation and the intermodel 

discrepancy. The full picture of the actual correlations for each model are provided in Figs. 

S5 and S6.  

 

Deserts - how did you mask the deserts? I think the grid cell sizes of the ESM precludes 

removing many deserts, e.g. the Atacama. Instead it seems like only a few were removed  

(Sahara, around Middle East, and Gobi) but I am not sure why those made the cut but not, 

for example the deserts of western Australia or the US SW. What impact does it have keeping 

them in? Greenland makes sense since there is no vegetation at all but some of the world's 

dry regions have been fingered as influential in the global C cycle (e.g. Ahlström et al. 2015), 

so exactly where masking applies could have impact I would assume. 

 

Thanks for pointing this out. Masked grid cells now correspond to those with 2015–2100 

average GPP below 100 gC m-2 y-1. The resolution of the grid indeed plays a role in which 

grid cells are masked. The transition between semi-arid and desert regions likely depends on 

the resolution of each model. Precisely because of this, we regridded all models to the same 

grid and omitted the same grid cells to make them more comparable. 

 

Deserts and Greenland are now masked when plotting maps to improve visualization, 

however note that all grid cells are included when performing the multiple linear regression 

analysis and when estimating the contributions of the drivers to explain intermodel 

differences in cumulative NBP. 

 

Fire - Fire is mentioned on line 335 but ignored otherwise, why? I see you mention which 

models do fire in Table S1. 

 

We also refer to model differences in disturbance fluxes in the manuscript and in Fig. S2, but 

now clarify that this is strongly related to fire. We now also clarify that sT and sSM may 

indirectly account for model differences in fire emissions.        

 

Smaller comments: 

 

Line 44: 'with drought-related observed decreasing trends in leaf area' consider rewording, 

confusing. 

 



We rephrased the sentence for clarity. 

 

Line 103: CanESM has an implict N cycle (empirical downregulation scheme see Arora and 

Scinocca 2016) 

 

Thanks for pointing this out. Our original statement is based on Table 2 from Arora et al. 

(2020), where it is mentioned that CanESM5 has no representation of the N cycle.   

 

L 160: This explanation is confusing. Perhaps spell it out in a bit more detail. 

 

We expanded the text for clarity. 

 

L 182: Why 22.5 degrees and not 25 or 30 or some other number? It just seems awfully 

precise for a seemingly arbitrary limit. 

 

Tropical regions are defined as those with latitudes lower than 23.43 degrees. Given that are 

employed grid has a resolution of 2.5 degrees, we choose the threshold of 22.5 degrees as the 

nearest one to the definition of tropical regions. We now also include in the supplement an 

additional figure when using a threshold of 30 degrees to distinguish which months are 

considered as the warm season.  

 

L 235: remind reader that both use CLM? 

 

We now also mention here that both models have CLM5 as their land surface model. 

 

L 290: 'underestimation of the land carbon sink modelled by NorESM2-LM and CanESM5,' 

where is this shown? I can't seem to see any figure where CanESM5 sticks out with an 

underestimation of the land C sink but it is mentioned here and line 357, indeed in Figure 1 it 

seems to have one of the highest cumulative NBP. What am I missing? 

 

This is referring to the comparison between the regression estimate and the projected land C 

sink from the ESM as shown in Fig. 6. This paragraph is not about comparing the land C sink 

across models. We expanded the text to clarify this point.   

 

CanESM5: Other papers (Arora et al. 2020) have suggested that CanESM5 has the largest 

land C uptake (at least for the 4X CO2 simulations) so it is surprising that it is suggested to 

be underestimated for the land C sink. Can you clarify how the same model appears to be on 

the low/high end depending on the analysis? I realize these are different scenarios but I 

would have assumed high CO2 sensitivity would follow in both (but be exaggerated in the 

4XCO2 run), but I don't see high CO2 sens in Fig 7. I assume I missed something here as you 

mention the Arora et al. paper in the intro but don't return to place your results in context of 

those other works. 

 

There is a slight misunderstanding. We do not suggest that CanESM5 underestimates the land 

C sink compared to other models. As mentioned in the reply above, in that part of the 

manuscript we just note that the regression estimate of the land C sink for CanESM5 is lower 

(underestimated) than the actual land C sink projected by CanESM5.  

 

It is indeed the case that CanESM5 shows a very high land C sink compared to other models, 

particularly while CO2 concentrations and temperatures are rising until approximately the 



year 2070 as shown in Fig. 1. Northern mid and high latitudes strongly contribute to the high 

land C sink in CanESM5 as shown in Fig. 2. Our findings suggest that the predominant 

reason for this high land C sink in CanESM5 is its sensitivity of NBP to T (sT in Fig. 7), 

rather than its sCO2. It is clear that CanESM5 has a more positive correlation of NBP and T 

over the Northern hemisphere compared to other models (Fig. S5), whereas its sCO2 is not at 

the high end of the ensemble (Fig. S4). These findings are consistent with the results from 

Fig. 8 in Arora et al. (2020) where CUE (somewhat related to sT) contributes more than 

GPP/c’ (related to sCO2) to the high land C sink projected by CanESM5.  

 

L 352: And assumedly many of them use Nemo for their ocean so model commonalities are 

not just atm/land. Never mind all who use Farquar photosynthesis etc 

 

This is true. However, the purpose of our statement is just to note that the two models with 

the lowest projected land C sink share the same atmospheric model, and the two with the 

highest projected sink share the same land model. We rephrased the sentence to clarify this. 

 

L 378: 'Outperfom' seems out of place, consider swapping it out with something like 'be more 

important than' 

 

Thanks for the suggestion. We rephrased the sentence.  
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