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Abstract. Over the last decades, land ecosystems removed from the atmosphere approximately one third of anthropogenic 

carbon emissions, highlighting the importance of the evolution of the land carbon sink for projected climate change. 

Nevertheless, the latest cumulative land carbon sink projections from eleven Earth system models participating in the Coupled 10 

Model Intercomparison Project Phase 6 (CMIP6) show large differences, evenan intermodel spread of 151 PgC (i.e., ~15 years 

of current anthropogenic emissions) for a policy-relevant scenario with mean global warming by the end of the century below 

2°C relative to preindustrial conditions. We hypothesize that this intermodel uncertainty originates from model differences in 

the sensitivitiessensitivity of photosynthesis to atmospheric CO2 concentration (i), the sensitivity of net biome production 

(NBP) to (i) atmospheric CO2 concentration, (ii) air temperature (ii) and (iii) soil moisture, (iii), as well as model differences 15 

in average conditions of (iv) air temperature (iv) and (v) soil moisture. (v). Using multiple linear regression and a resampling 

technique, we quantify the individual contributions of these five terms for explaining the cumulative NBP anomaly of each 

model relative to the multi-model mean. Results indicate a primary role of the response of NBP to interannual temperature and 

soil moisture variability, followed by the sensitivity of photosynthesis to CO2, and lastly by the average climate conditions, 

which also show sizeable contributions. We find that the sensitivities of NBP to temperature and soil moisture, particularly in 20 

the tropics, dominantly explain the deviations from the ensemble mean of the two models with the lowest carbon sink 

(ACCESS-ESM1-5 and UKESM1-0-LL) and of the two models with the highest sink (CESM2 and NorESM2-LM). Overall, 

this study advances our understanding of provides insights on why each Earth system model projects either a low or high land 

carbon sink projections from Earth system models differ globally and across regions relative to the ensemble mean, which can 

guidefocalize efforts to reduce the underlying uncertaintiesidentify the representation of processes leading to intermodel 25 

uncertainty. 

1 Introduction 

During recent decades, ecosystems on land have taken up approximately one third of anthropogenic carbon emissions to the 

atmosphere, and are predominantly responsible for the year-to-year variations in the atmospheric carbon growth rate 

(Friedlingstein et al., 2020). While carbon emissions have been on the rise, land ecosystems have taken up more and more 30 
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carbon, which has resulted in this approximately constant 30% sink (Canadell et al., 2021). However, it remains unclear to 

what level this capacity of land to remove carbon from the atmosphere can continue in the coming decades, with evidence 

pointing towards a less effective sink under increasing cumulative emissions (Gatti et al., 2021; Hubau et al., 2020; Koch et 

al., 2021; Raupach et al., 2014; Wang et al., 2020; IPCC, 2021).(Gatti et al., 2021; Hubau et al., 2020; Koch et al., 2021; 

Raupach et al., 2014; IPCC, 2021). The future evolution of the land carbon sink is crucial to project how much global warming 35 

and consequent climate change Earth will experience given a certain level of greenhouse gas emissions. It is thus linked to 

policy questions such as how much more carbon can we emit to limit global warming below the 2°C or 1.5°C thresholds 

decided in the 2015 Paris agreement. 

 

The net carbon flux from the atmosphere to the land is denoted as net biome production (NBP), and it is given by the carbon 40 

uptake of vegetation through photosynthesis (gross primary production (GPP)), minus the losses of carbon to the atmosphere 

through autotrophic (RA) and heterotrophic respiration (RH), as well as from ecosystem disturbances (DIS) such as fires. The 

rising atmospheric CO2 concentration physiologically favors higher GPP, whereas associated warming temperatures tend to 

increase respiration and can influence all fluxes. In addition to these effectsThese fluxes are influenced by both atmospheric 

CO2 concentration and climate conditions. Rising atmospheric CO2 primarily favors higher GPP (fertilization effect), while it 45 

can indirectly enhance RA due to greater plant biomass and enhance RH due to higher microbial decomposition of fresh carbon 

supplied by increased litterfall and root-derived labile soil carbon, as well as higher priming of old soil organic matter fueled 

by this increased supply of labile soil carbon (Gao et al., 2020). Temperature conditions can influence all fluxes, with warming 

notably leading to an increase in respiration (Varney et al., 2020). In addition, the relevance of water-carbon interactions for 

the land carbon cycle has gained recognition in recent years (Canadell et al., 2021; Gentine et al., 2019; Green et al., 2019; 50 

Huang et al., 2020; Humphrey et al., 2018; Liu et al., 2020; Novick et al., 2016; Peters et al., 2018; Stocker et al., 

2018)(Canadell et al., 2021; Gentine et al., 2019; Green et al., 2019; Huang et al., 2020; Humphrey et al., 2018; Liu et al., 

2020; Novick et al., 2016; Peters et al., 2018; Stocker et al., 2018). Observations indicate a high sensitivity of annual NBP to 

anomalies in terrestrial water storage at the global scale, which is underestimated by land surface models uncoupled from the 

atmosphere (Humphrey et al., 2018; Peters et al., 2018). Supporting this finding, Winkler et al. (2021) identified several regions 55 

with drought-related observed decreasing trends in leaf area that are underestimated by models. Other factors such as incoming 

radiation and vapor pressure deficit (air dryness) clearly influence GPP and the land carbon sink (Fu et al., 2022; Grossiord et 

al., 2020; Humphrey et al., 2021; Novick et al., 2016), nevertheless they are strongly correlated with temperature and soil 

moisture on monthly or longer time scales. Overall, CO2 fertilization increases global land NBP, while anthropogenic warming 

and associated climate change tend to reduce it (Arora et al., 2020; Canadell et al., 2021). Importantly, the response of NBP to 60 

interannual climate variability appears to be underestimated by multiple Earth system models, potentially implying a smaller 

than expected capacity of land to remove carbon from the atmosphere during this century (Fu et al., 2022; Humphrey et al., 

2018; Novick et al., 2016; Wang et al., 2020; Winkler et al., 2021)(Fu et al., 2022; Humphrey et al., 2018; Novick et al., 2016; 

Winkler et al., 2021). 
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Projections of the land carbon sink from Earth system models have shown a very substantial intermodel uncertainty since early 

Coupled Model Intercomparison Projects (CMIPs) (Bonan and Doney, 2018; Friedlingstein et al., 2006) and this continues to 

be the case for the latest models participating in CMIP6 (Arora et al., 2020; Canadell et al., 2021). While uncertainty in the 

projections is dominated by these intermodel differences, internal climate variability can also play an important role (Tokarska 

et al., 2020). Nevertheless, models continue to evolve and represent more processes regarding the land carbon cycle.As models 70 

continue to evolve, land carbon cycle processes can be represented differently across them, and some models may represent 

processes that others do not, contributing to the uncertainty. Phenology (Peano et al., 2021), water transport through vegetation 

and water stress (Lawrence et al., 2019), fire (Hantson et al., 2020), woody-plant mortality (De Kauwe et al., 2022; McDowell 

et al., 2022), and nutrient limitation (Davies-Barnard et al., 2020) are processes at the modelling frontier. The representation 

of the nitrogen cycle in more models was an important step forward going from CMIP5 to CMIP6 (Davies-Barnard et al., 75 

2020). It is often the case that land carbon uptake is reduced when including nitrogen availability as a constraint (Arora et al., 

2020; Canadell et al., 2021). In addition, several studies have proposed observational constraints for projections of different 

land carbon sink components and sensitivities (Cox et al., 2013; Keenan et al., 2021; Liu et al., 2019; Mystakidis et al., 2016, 

2017; Schlund et al., 2020; Varney et al., 2020)(Cox et al., 2013; Liu et al., 2019; Mystakidis et al., 2016, 2017; Schlund et 

al., 2020; Varney et al., 2020). Despite this progress, land biogeochemical feedbacks with climate change remain a major 80 

source of uncertainty for future carbon budgets. 

 

The typical framework to study the evolution of the land carbon cycle and associated intermodel uncertainty is based on the 

carbon-concentration and carbon-climate feedback parameters (Arora et al., 2013, 2020; Friedlingstein et al., 2006). These 

feedback parameters are estimated from idealized simulations that increase atmospheric CO2 concentration 1% per year until 85 

2-times (~560 ppm) or 4-times (~1120 ppm) its pre-industrial value and that distinguish between its radiative and 

biogeochemical effects. Here we consider it important to instead focus on lower concentrations that are compatible with staying 

below the 2°C global warming level, i.e. 446 ppm by 2100 for the SSP126 scenario (Meinshausen et al., 2020). Another 

important point is that model differences in the carbon-concentration feedback can arise not only from differences in the effect 

of CO2 on GPP, but also from differences in respiration and disturbances which are sensitive to temperature and soil moisture 90 

too. Furthermore, differences in the sensitivity of the carbon fluxes to both temperature and soil moisture underlay model 

differences in the carbon-climate feedback.Using these simulations, Arora et al. (2020) provide insights on why the global 

land carbon feedback parameters differ among models by comparing their changes in vegetation and soil carbon pools, their 

strength of the CO2 fertilization effect on GPP, residence time, allocation, and changes in carbon use efficiency globally. To 

complement these insights and further our understanding of the underlying controlsdrivers of intermodel uncertainty in land 95 

carbon sink projections we directly focus on local responses to CO2 concentration, temperature, and soil moisture under the 

SSP126 low emission scenario.  (peak concentration of 471 ppm around 2075 and 446 ppm by 2100 (Meinshausen et al., 

2020)). 
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In this study we aim to advance our understanding of the future evolution of the land carbon cycle, primarily for a policy-100 

relevant scenario where global warming is limited to below 2°C. Here we use an ensemble of Earth system models participating 

in CMIP6, as detailed in section 2. A global and spatially explicit overview of the differences in NBP across models is given 

in section 3. Section 4 describes across the model ensemble the following five proposed controlsdrivers of projected cumulative 

NBP: (i) sensitivity of gross primary production (GPP) to CO2 concentration, (ii) sensitivity of NBP to air temperature, (iii) 

sensitivity of NBP to soil moisture, (iv) long-term average temperature, and (v) long-term average soil moisture. In section 5 105 

we quantify the contribution of differences in each of these controlsdrivers for explaining the intermodel differences in 

cumulative NBP. Concluding remarks are provided in section 6.  

2 Model simulations and characteristics 

For the main analysis we employ all 11 models participating in CMIP6 that provide NBP, near surface air temperature and 

layered soil moisture data for the SSP126 scenario (Table S1), which are publicly available at https://esgf-110 

node.llnl.gov/search/cmip6/. Data from all models are regridded to a common a 2.5°×2.5° longitude-latitude grid using second 

order conservative remapping., and a land mask is applied to increase model comparability. The SSP126 scenario is a shared 

socio-economic pathway based on the world following an ecological transition (Riahi et al., 2017), for which global warming 

by the end of the century is projected to be less than 2°C relative to preindustrial conditions. In addition, to estimate the 

sensitivity of GPP to CO2 concentration, we employ the 1pctCO2-bgc simulations wherein which atmospheric CO2 increases 115 

1% per year and only its direct physiological effects on vegetation are considered, while neglecting the radiative effects (Jones 

et al., 2016). Information from other scenarios is used in some cases to complement the analysis. 

 

An overview of the carbon cycle representation in the models analyzed in this study is provided in Table S1. Additional 

information about the models, except CMCC-ESM2 and EC-Earth3-Veg, is given by Arora et al. (2020). From all 11 models 120 

analyzed here, ACCESS-ESM1-5 is the only model that includes a phosphorous cycle in addition to nitrogen, whereas 

CanESM5, GFDL-ESM4 and IPSL-CM6A-LR do not include a nitrogen cycle, and CNRM-ESM2-1 only has an implicit 

representation of the nitrogen cycle. Fire emissions are not represented in 4 of the 11 models, namely ACCESS-ESM1-5, 

CanESM5, IPSL-CM6A-LR and UKESM1-0-LL. Dynamic vegetation cover is only modeled by EC-Earth3-Veg, GFDL-

ESM4, MPI-ESM1-2-LR and UKESM1-0-LL. In addition, soil moisture storage capacity and discretization of soil layers can 125 

be very different across models (Table S2). To increase comparability, here we compute soil moisture down to a depth of 30 

cm for every model by summing the moisture of all corresponding layers. For cases when the 30-cm depth threshold is within 

the boundaries of a model layer, we assume that the moisture in the layer is distributed uniformly with depth and account 

proportionally for the moisture until the 30 cm threshold.    



5 
 

3 Intermodel differences in NBP 130 

The cumulative global land carbon sink projections from eleven Earth system models until the year 2100 show large 

differences, with an ensemble range between 56.3 PgC and 207206.6 PgC, and a multi-model mean estimate of 144.7 PgC 

(Fig. 1). The, and an intermodel standard deviation isof 47 PgC, which is (Fig. 1). The intermodel spread of 150.3 PgC 

corresponds to approximately 5 times40% of the current annualremaining carbon budget to limit global anthropogenic 

emissions.warming below 2°C (with a 50% likelihood) according to Table SPM.2 of IPCC (2021). Even though these 135 

differences are rather large it is important to note that they are smaller than those corresponding to higher emission scenarios 

such as SSP585, where the range is approximately 100–700 PgC. Thus, uncertainty increases as we move further away from 

the current state of the system to higher concentrations of greenhouse gases in the atmosphere. Differences across models are 

considerably larger than differences across realizations of individual models, which partly represent the internal variability of 

the system (Fig. S1).  140 

 

Further insights on projected intermodel NBP differences are obtained by decomposing them into differences in GPP, 

autotrophic and heterotrophic respiration, and disturbances (Fig. S2). There is no clear correspondence between models with 

higher global land GPP having also higher NBP, given that the loss terms are also generally higher. Moreover, the three models 

with highest NBP project relatively low GPP, as well as low carbon use efficiency (i.e., CUE = (GPP – RA)/GPP), but 145 

heterotrophic respiration and disturbance losses are also low. The CUE ranges from 0.6655 for GFDL-ESM4CanESM5 to 0.41 

for EC-Earth3-Veg. GFDL-ESM4 and ACCESS-ESM1-5 have the highest CUE, which is counteracted by the highest 

disturbance losses in these models, whereas the. Models that exhibit a relatively high CUE of CanESM5, UKESM1-0-LL and 

MPI-ESM1-2-LR is counteracted bytend to also exhibit high heterotrophic respiration.  , and thus moderate NBP. Lastly, we 

note that EC-Earth3-Veg and GFDL-ESM4 show the highest disturbance fluxes mainly from fire emissions. Although DIS is 150 

rather small compared to GPP, RA and RH, it is still large enough to substantially influence intermodel differences in NBP. 
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Figure 1: Intermodel differences in projected global land NBP for scenario SSP126. Temporal evolution of projected global land 
cumulative NBP from individual models. The average value is shown for models with multiple realizations available. If a model does not 155 
have information over Greenland, NBP is set to zero. Cumulative global land NBP is estimated by multiplying the area-weighted average 
NBP times the land surface area excluding Antarctica (135.22E6 km2). 

The maps of cumulative NBP illustrate in more detail the characteristics of the projections from individual models (Fig. 2). 

Note that there can be models with similar global land NBP as indicated in Fig. 1, even though the underlying spatial 

distribution is markedly different. Take MPI-ESM1-2-LR and IPSL-CM6A-LR as an example, whereas the tropics – 160 

particularly central Africa – are the main sink in the MPI-ESM1-2-LR model, the northern mid and high latitudes contribute 

most of the sink in IPSL-CM6A-LR. The UKESM1-0-LL and CMCC-ESM2 models also show a very contrasting spatial 

pattern of cumulative NBP, despite having a relatively similar global land sink magnitude. The local intermodel standard 

deviation of projected NBP (bottom right panel of Fig. 2) points towards the tropics and boreal forests as the regions with 

higher discrepancies across models. In addition, models also show marked differences in the magnitude of the detrended 165 

interannual variability of NBP (Fig. S3). EC-Earth3-Veg and GFDL-ESM4 have high interannual variability, as well as 

CMCC-ESM2 particularly over the boreal forests, whereas CESM2 and NorESM2-LM show the least variability. 
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Figure 2: Intermodel differences in regional projected NBP. Maps of average projected NBP during 2015 to 2100 from individual models. 170 
The intermodel standard deviation is shown at the bottom right. Greenland and desert regions are masked. 

4 ControlsDrivers of intermodel differences in NBP projections 

Several factors can influence long-term NBP, with atmospheric CO2 concentration, air temperature (T) and soil moisture (SM) 

playing a potentially important role. Here we focus on the sensitivities of NBP to changes in these variables, as well as on the 

background conditions of T and SM across the model ensemble. Background conditions of atmospheric CO2 are prescribed 175 

and thus identical for all models. Other aspects such as land cover, incoming radiation, air humidity, carbon allocation and, 

nutrient constraints, fire emissions, and interactions between CO2 with T and SM can also be relevant for NBP, however they 

are addressed only indirectly in this study.     

4.1 Sensitivity of GPP to atmospheric CO2 concentration 

The physiological effect of atmospheric CO2 concentration on NBP is dominated by its influencefertilization effect on GPP., 180 

while indirect CO2 effects on RA, RH and DIS can also be substantial. Here we use the 1pctCO2-bgc simulations to estimate 

the sensitivity of GPPNBP to CO2 concentration (sCO2) at every grid cell. These simulations limit confounding effects from 

changes in temperature and soil moisture as they only account for the biogeochemical effects of rising CO2. We determine 
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However, when computing the change in NBP in these simulations, it is important to note that model differences can also arise 

from differences in RA, RH and DIS that are highly dependent on how these fluxes are influenced by temperature and soil 185 

moisture in each model. Therefore, we decide to use the sensitivity of GPP (instead of NBP) to CO2 as a driver of intermodel 

uncertainty in land carbon sink projections to better disentangle the influence of CO2 from that of temperature and soil 

moisture, even though the indirect effects of CO2 on RA, RH and DIS are ignored in this case. Alternatively, we also replicate 

the analysis when using the sensitivity of NBP to CO2 instead and present results in the supplement.  

 190 

The sensitivity of GPP to CO2 (sCO2) is computed as the slope of the linear regression based on 84the 30 annual values with 

available in the simulations in which CO2 concentration rangingranges from 350approximately 375 ppm to 800500 ppm. 

SomeEven though some of these concentrations are much higher than those from outside the range of 400–471 ppm spanned 

in the SSP126, however a large scenario, the responses of GPP and NBP to CO2 concentration are still mostly linear for all 

models (Fig. S4). If we were to limit the sample is needed to to be within the SSP126 CO2 concentration range, only 17 annual 195 

values would be available, which would reduce the confidence in the estimated regression slope. Counting with a larger sample 

size reduces the potential confounding effect of local temperature and soil moisture anomalies from individual years. To further 

avoid this confounding effect from individual years, we compute the regression slope one hundred times after resampling 84 

years with replacement from the 30-year time series. Finally, the median value of these regression slopes is used as the 

representative sensitivity from each model. In the case of models with multiple 1pctCO2-bgc simulations the average value 200 

from all simulations is used. Given that no data is available from NorESM2-LM for the 1pctCO2-bgc simulation, we here 

assume that its sCO2 is the same as for CESM2 because both share the same land surface model (CLM5). 

 

Increasing atmospheric CO2 concentration favors an overall increase in GPP due to enhanced photosynthesis, although with 

substantial intermodel differences in sCO2 particularly in the tropics (Fig. S4S5). EC-Earth3-Veg, CMCC-ESM2, and 205 

ACCESS-ESM1-5 generally exhibit the lowest fertilization effect from atmospheric CO2, whereas GFDL-ESM4 and MPI-

ESM1-2-LR exhibit the overall highest. despite relatively low values at high latitudes. It is surprising that sCO2 is negative at 

several locations, particularly for EC-Earth3-Veg and ACCESS-ESM1-5. This is likely due to natural climate variability in 

the simulations rather than an actual negative effect of increasing CO2 on GPP. Other noteworthy features are the relatively 

low tropical and high extratropical sCO2 of IPSL-CM6A-LR and CNRM-ESM2-1, as well as CNRM-ESM2-1 showing the 210 

highestrelatively high tropical and low extratropical sCO2 in mid and high latitudesof CanESM5. 

4.2 Sensitivity of NBP to temperature and soil moisture 

Locally, annual warm or cold and wet or dry anomalies can influence annual NBP. The interannual sensitivity of NBP is 

therefore potentially indicative of the consequences of long-term changes in T and SM on the land carbon sink. In addition, an 

asymmetry in the response of NBP to a warm (dry) and cold (wet) anomaly of equal magnitude would influence cumulative 215 

NBP even if there were no long-term changes in T and SM. In this case too, a different sensitivity would contribute to a 
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difference in cumulative NBP. Thus, model differences in the sensitivity of NBP to interannual variations in T and SM can 

potentially explain differences in cumulative NBP.  

 

We estimate the sensitivity of NBP to temperature (sT) and soil moisture (sSM) from the detrended time series of annual mean 220 

NBP and detrended annual mean warm-season T and SM values from 2015 to 2100 given by the SSP126 simulations. 

Detrending the time series reduces the potential confounding effect of rising CO2 concentrations in these simulations., although 

potential alleviating effects of higher CO2 for NBP when facing T and SM anomalies are implicit within sT and sSM. The 

removed trends are computed using a lowess fit with a 30-year window. In tropical latitudes (i.e., below 22.5°,° based on the 

model grid), we consider all months of the year, whereas in higher latitudes, we focus on the warmer months when vegetation 225 

is more active: March–October in the Northern Hemisphere and September–April in the Southern Hemisphere. We define sT 

and sSM as the covariance of NBP with T and SM, as opposed to the regression slope, to also account for intermodel differences 

in the interannual variability of T and SM (this is not necessary for sCO2 given that the interannual variability of CO2 is 

prescribed to be the same for all models). In addition to the covariance, we also compute the Pearson correlation to better 

describe the coupling of NBP with T and SM in the models. In the case of models with multiple simulations the average 230 

covariance and average correlation are used. 

 

Anomalies in NBP and T are generally negatively correlated (years with higher T lead to lower NBP) throughout the world 

for most models, except at high latitudes, whereas the opposite is the case for the correlation with SM (years with higher SM 

lead to higher NBP) (Fig. 3). Nevertheless, there is are several regions where the correlations are weaker and/or model 235 

disagreement on the signis higher as indicated by values closer to zero of the sensitivities in several regionsmulti-model mean 

over the standard deviation, e.g., southeast Asia, China, western central Europe, central Africa, (particularly for sSM), and 

throughout the boreal forests. Furthermore, the magnitudesMaps of the correlations and covariances also vary considerably 

acrossfrom individual models are provided in the Supplement (Figs. S5–S8S6–S9). Some noteworthy features are the highly 

negative correlation of NBP with T and highly positive correlation with SM over tropical South America for the ACCESS-240 

ESM1-5, UKESM1-0-LL, GFDL-ESM4, EC-Earth3-Veg, and CanESM5 models; the highly positive covariance of NBP with 

SM over the boreal forests for CMCC-ESM2 and EC-Earth3-Veg; and the negative covariance of NBP with SM in southeast 

Asia, China, east North America, and southeast Brazil plus Uruguay for UKESM1-0-LL and MPI-ESM1-2-LR. 
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 245 
Figure 3: Model agreement in the sign of the sensitivity of NBP to temperature and soil moisture. (a) Number of models with a 
positiveShown is the ratio of the multi-model mean over the multi-model standard deviation for (a) the correlation between detrended annual 
NBP and detrended annual warm-season temperature., and for (b) Number of models with a positivethe correlation between detrended annual 
NBP and detrended annual warm-season soil moisture. Lighter colors indicate weaker correlations and/or higher model disagreement. 
Greenland and desert regionsRegions with 2015–2100 average GPP below 100 gC m2 y-1 are masked.  250 

Although positive T anomalies often coincide with negative SM anomalies, we find that for most models and across most 

regions SM explains the detrended interannual variability of NBP better than T, as indicated by the squared correlations (Fig. 

4a). For all models, anomaliesAnomalies in SM explain at least 4050% of the variability in NBP over a quarter of the land 

area (excluding deserts and Greenland).regions with average GPP below 100 gC m2 y-1) on average across all models. Note 

that in general the interannual correlation of NBP and SM, as well as of NBP and T, is higher precisely where the interannual 255 

variability of NBP is higher (Figs. S3, S5S6 and S6S7). In addition, to explain the detrended interannual variability of NBP 

using both T and SM as predictors, we fit a stepwise linear regression. In this case the explained NBP variability increases, 

reaching an ensemble mean of 57% over a quarter of the land area. Furthermore, we find that over 8078% of the land area 

there is a model majority for which SM is added as the first predictor (Fig. 4b). Notable exceptions are regions with large 

interannual NBP variability such as parts of the Amazon, central Africa, and southeast Asia, where T is added first for most 260 

models. However, note that there is no strong model agreement throughout many regions. Results are consistent when using 

SM down to 1 m depth instead of 30 cm (Fig. S9S10). Overall, these findings highlight the importance of explicitly considering 

the sensitivity to SM, in addition to the sensitivity to T, as a controldriver of intermodel differences in NBP.  
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 265 
Figure 4: Temperature and soil moisture as controlsdrivers of the detrended interannual variability of NBP. (a) Area-weighted 
distribution from all grid cells of the coefficient of determination (R2) between NBP with T (orange), with SM (purple), and with both T and 
SM from a stepwise linear regression (greygray). The circle indicates the median, the boxes span the interquartile range, and the whiskers 
the full range. (b) Model agreement at each location where either T or SM is added first to the stepwise linear regression. Greenland and 
desert regions are masked. Regions with 2015–2100 average GPP below 100 gC m2 y-1 are omitted in (a) and masked in (b). 270 

4.3 Average warm-season temperature and soil moisture conditions 

The projectedProjected long-term average T and SM also influence the cumulative land carbon sink. NBP is negatively 

affectedreduced if conditions are generally too hot, cold, dry, or wet relative to an optimum state. Given that our focus is on 

cumulative NBP from 2015 to 2100 under the SSP126 scenario, we compute the average warm-season T and SM over the 

same 86-year period and scenario. We follow the same definition for the warm season as described in section 4.2.  275 

 

The localLocal intermodel differences in projected average T and top 30 cm SM show a global mean standard deviation of 

1.4°C and 14.7 kg m-2 over land, with higher values at tropical forests, the United States and Tibet for T, and at very high 

latitudes for SM (Figs. S10S11 and S11S12). GFDL-ESM4, MPI-ESM1-2-LR and, IPSL-CM6A-LR and EC-Earth3-Veg 

generally project lower temperatures, whereas higher temperatures are projected by ACCESS-ESM1-5 and UKESM1-0-LL in 280 

the tropics, by CESM2 and NorESM2-LM, CMCC-ESM2 and CESM2 at mid latitudes, and by CanESM5, CMCC-ESM2, 

IPSL-CM6A-LR and CNRM-ESM2-1 at high latitudes. NorESM2-LM and CESM2 are clearly the models with highest SM. 

(both have CLM5 as their land surface model). On the other hand, MPI-ESM1-2-LR, IPSL-CM6A-LR, CanESM5 and 

UKESM1-0-LL are generally the driest models, as well as ACCESS-ESM1-5 in the tropics.    
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5 Explaining intermodel differences in cumulative NBP  285 

To assess the effect and relevance of each of the five proposed controlsdrivers of intermodel differences in the land carbon 

sink projections, we compute at each grid cell their correlation with cumulative NBP (Fig. 5). At each grid cell, for example, 

we correlate the sCO2 values obtained for each of the 11 models with the corresponding 11 values of cumulative NBP from 

each model. The dominant positive correlation for sCO2, particularly in the extratropics, indicates that models that have a 

higher CO2 fertilization effect on GPP tend to project higher NBP in these regions. Throughout the tropics, the lack of 290 

correlation indicates that intermodel differences in NBP cannot be explained by differences in the strength of the CO2 

fertilization effect, potentially because of other NBP controlsdrivers. In addition, we find clear positive correlations of 

cumulative NBP with sT and negative correlations with sSM over multiple regions important for the land carbon sink, such as 

the Amazon, central Africa, India, China, eastern Australia, Europe, and the boreal forests. This suggests that models that have 

higher (lower) NBP during warmer (colder) than average years (i.e., higher sT) tend to project higher cumulative NBP in these 295 

regions, as do models that have higher (lower) NBP during drier (wetter) than average years (i.e., lower sSM). In other words, 

models for which annual NBP drops less during hotter and drier years yield higher cumulative NBP (recall Fig. 3). On the 

other hand, there are also other typically wet regions such as Indonesia and southeast South America where models that have 

higher (lower) NBP during wetter (drier) than average years (i.e., higher sSM) tend to project higher cumulative NBP. 

Additionally, we find that higher long-term average warm season T in some models over central Africa, eastern Brazil, the 300 

Amazon, as well as central and western United States is associated with lower cumulative NBP. Higher NBP is favored over 

midwestern North America, the Amazon, European boreal forests, and eastern Australia for models with higher-than-average 

long-term mean warm season SM.      
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 305 
Figure 5: Influence of model characteristics on projected cumulative NBP. Pearson correlation at each grid cell between cumulative 
NBP projected by each Earth system model and their (a) sensitivity to CO2 concentration (sCO2), (b) sensitivity to temperature (sT), (c) 
sensitivity to soil moisture (sSM), (d) long-term warm season average temperature (T), and (e) long-term warm season average soil moisture 
(SM). For (b) and (c), sT and sSM correspond either to the covariance or to the correlation of detrended annual anomalies of NBP with T 
and SM, depending on which has the strongest absolute correlation with projected cumulative NBP. Greenland and desert regionsRegions 310 
with 2015–2100 average GPP below 100 gC m2 y-1 are masked. 

To quantify the joint contributions of differences in sCO2, sT, sSM, T and SM for explaining the intermodel differences in 

projected cumulative NBP, we fit a multiple linear regression at every grid cell. As noted in section 4.2, for sT and sSM we 

use both the covariance and the correlation of detrended annual anomalies of NBP (NBPanom) with anomalies of warm season 

temperature (Tanom) and soil moisture (SManom). Therefore, cumulative NBP of each model m is estimated according to Eq. (1): 315 

𝑁𝐵𝑃! = 𝑏" + 𝑏# × 𝑠𝐶𝑂$! + 𝑏$ × 𝑐𝑜𝑣(𝑁𝐵𝑃%&'!, 𝑇%&'!)! + 𝑏( × 𝑐𝑜𝑟𝑟(𝑁𝐵𝑃%&'!, 𝑇%&'!)! + 

																	𝑏) × 𝑐𝑜𝑣(𝑁𝐵𝑃%&'!, 𝑆𝑀%&'!)! + 𝑏* × 𝑐𝑜𝑟𝑟(𝑁𝐵𝑃%&'!, 𝑆𝑀%&'!)! + 𝑏+ × 𝑇! + 𝑏, × 𝑆𝑀! ,  (1)  

where 𝑏- are the regression coefficients. Given that the number of predictor variables (7) is relatively high, and the sample size 

is relatively small (11 models), we are likely to obtain a good fit for the regression even if random variables are used instead 

of the proposed controlsdrivers. However, a regional spatial coherence on the signs of 𝑏- would only arise if there is an actual 320 

relation between NBP and the proposed controlsdrivers as seen in Fig. 5.  

 

Instead of fitting the regression given by Eq. 1 only once at every grid cell using cumulative NBP from 2015 to 2100, we create 

200 different bootstrap time series of 86 years by resampling with repetition from all projected years. Then for each of these 

time series we compute the cumulative NBP of individual models, as well as sT, sSM, T and SM (not sCO2 as it is estimated 325 

from the 1pctCO2-bgc simulations), and finally fit the regression. This bootstrap approach introduces some uncertainty in our 

estimates of both the proposed controlsdrivers (Eq. 1, right-hand side) and the cumulative NBP (Eq. 1, left-hand side), which 

is further propagated into an uncertainty in terms of the regression coefficients 𝑏-. In this way we can provide a likely range 

for the contribution of each controldriver to explain a given model’s anomalous behaviour relative to the ensemble mean 

cumulative NBP. 330 
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The regression estimates capture well the local intermodel variability of cumulative NBP (Fig. S12S13) and the regression 

coefficients 𝑏-  show regionally coherent signs consistently across the bootstrap realizations (Fig. S13S14), providing 

confidence in the robustness of the results. The net aggregated outcome of the local multiple linear regressions (MLR) (Eq. 1) 

shows good agreement with average projected NBP from individual Earth system models (ESM) at regional and global scales 335 

(Fig. 6), with a mean). The average coefficient of determination (R2) across bootstraps between the ESM and MLR aggregated 

estimates is greater than 0.92 in all cases94 for both the global and regional estimates. Thus, most of the intermodel spread in 

cumulative NBP can be explained from the intermodel spread in the proposed controls. The maindrivers. Nevertheless, there 

are some discrepancies are anbetween the MLR estimate and the ESM projection of each model. Most noticeable are the MLR 

underestimation of the land carbon sink modelled by CanESM5, NorESM2-LM, CESM2 and CanESM5CNRM-ESM2-1, as 340 

well as anthe overestimation byfor UKESM1-0-LL, GFDL-ESM4, and IPSL-CM6A-LRCMCC-ESM2. The underestimation 

for NorESM2-LM arises in the tropics, whereas for CanESM5 it is consistent across all regions., for NorESM2-LM and 

CESM2 it arises mainly in the tropics, and for CNRM-ESM2-1 it occurs at mid and high latitudes. In the case of UKESM1-0-

LL and IPSL-CM6A-LR the overestimation from the regression predominantly occurs in the tropics, and to a lesser degree at 

high latitudes. For GFDL-ESM4 the overestimation is highest at mid latitudes, and it also occurs in the tropics. In addition, 345 

forFor CMCC-ESM2 there is ana large overestimation at high latitudes that is partially compensated by an underestimation at 

the tropics. These differences are likely due to nonlinear responses of NBP that are not captured by the multiple linear 

regression and/or due to missing relevant controlsdrivers (e.g., indirect effects of CO2 on RA, RH and DIS, differences in land 

cover)., etc.). 



16 
 

 350 

 
Figure 6: Comparison of average projected NBP from Earth system models (ESM) with the multiple linear regression (MLR) 
estimate. Colored bars indicate the mean from the 200 bootstrap samples, while uncertainty bars span from the 5th to the 95th percentile. The 
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spatial average is shown for global land, the tropics (22.5°S – 22.5°N), mid latitudes (22.5°N – 47.5°N over North America, 22.5°N – 55°N 
over Europe and Asia, and > 22.5°S), and high latitudes (> 47.5°N over North America and > 55°N over Europe and Asia). Greenland and 355 
desert regions are omitted. TropicsThe land percentage comprised in each region is noted next to the title: tropics represent 3635.1% of the 
considered global land area, mid latitudes 44.8%, and high latitudes 20%.    .1%. 

Given that the regression simulates well the projected NBP by the Earth system models, the individual terms of Eq. 1 (i.e., 

𝑏- ∗ 𝑐𝑜𝑛𝑡𝑟𝑜𝑙-𝑑𝑟𝑖𝑣𝑒𝑟- ) can be used to quantify the contribution of each proposed controldriver to explain intermodel 

differences. The contributions of sT and sSM are obtained by lumping both the correlation and covariance terms. Figure 7 360 

shows how much each controldriver contributes to explain each model’s anomaly in projected NBP relative to the ensemble 

mean. (see also Fig. S15). For example, 3327% of the lower-than-average land carbon sink projected by ACCESS-ESM1-5 is 

due to its low sCO2 mainly outside the tropics (see Fig. S4), 51S5), 65% is due to its low sT mainly inat the tropics (i.e., lower 

(higher) NBP during hotter (colder) than average years compared to other models (see Figs. S5S6 and S7)), and 17S8)), 19% 

is due mainly to its high long-term average tropical T (see Fig. S10),S11), and 7% is due to its SM, whereas the 365 

contributionscontribution of SM and sSM are smaller and mostly compensate eachcompensates the excess 18% from the other 

drivers. UKESM1-0-LL also shows an important contribution towards a relative low land carbon sink from sT and T mainly 

inat the tropics. At the other end of the spectrum the two models with the highest average projected NBP (CESM2 and 

NorESM2-LM) show a dominant contribution of sSM inat the tropics mainly due to low values in the Amazon and high values 

in Indonesia (Figs. S6S7 and S8S9), as well as a positive contribution due to high long-term SM inat the tropics and mid 370 

latitudes (see Fig. S11S12). Other noteworthy findings are: the strong contributioncontributions of sCO2 and sSM at mid and 

high latitudes to the higher-than-average land carbon sink projected by CNRM-ESM2-1 and IPSL-CM6A-LR; the less negative 

impact of hot temperature anomalies on tropical NBP for CMCC-ESM2, and MPI-ESM1-2-LR and IPSL-CM6A-LR together 

with the relativerelatively low long-term average tropical T of the latter two modelsMPI-ESM1-2-LR, which result in positive 

contributions to average NBP; and the very low average NBP of CMCC-ESM2 at high latitudes resulting from steep drops 375 

during years with high T and low SM annual anomalies (sT and sSM contributions). These steep drops in annual NBP are 

associated with high fire emissions at the boreal forests (Fig. S14S16), highlighting the importance of adequately representing 

this process in models given that it can explain much of the differences in average projected NBP. In this study, model 

differences in fire emissions are partly captured by differences in sT and sSM. Lastly, we note that CMCC-ESM2, GFDL-

ESM4 and EC-Earth3-Veg show the largest uncertainties, particularly in the contributions of sT and sSM. This is related to 380 

high fire emissions from individual years which can be in or out of the bootstrap samples, as well as to partial shifts between 

bootstrap samples in the contributions of sT and sSM due to collinearity.  
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Figure 7: Contributions of the controlsdrivers to explain the anomaly in average projected NBP from individual models relative to 385 
the ensemble mean. Estimates are based on the multiple linear regression. Colored bars indicate the mean from the 200 bootstrap samples, 
while uncertainty bars span from the 5th to the 95th percentile. The spatial average is shown for global land, the tropics (22.5°S – 22.5°N), 
mid latitudes (22.5°N – 47.5°N over North America, 22.5°N – 55°N over Europe and Asia, and > 22.5°S), and high latitudes (> 47.5°N over 
North America and > 55°N over Europe and Asia). Greenland and desert regions are omitted. TropicsThe land percentage comprised in each 
region is noted next to the title: tropics represent 3635.1% of the considered global land area, mid latitudes 44.8%, and high latitudes 20.1%. 390 

In summary, the contributions of sCO2, sT and sSM to explain the projected differences in NBP are of similar magnitudethe 

largest, whereas those of sCO2, T and SM are generally smaller and of similar magnitude. The overall intermodel standard 

deviation of global land projected NBP based on the regression estimates is 3.8625 gC m-2 y-1 (equivalent to 44.937.8 PgC 
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during the period 2015–2100), relative to which the intermodel standard deviations of the contributions from the 

controlsdrivers are 53.233.9% for sCO2, 5863.5% for sT, 39.952.7% for sSM, 24.527.1% for T and 27.631.2% for SM. These 395 

results highlight the importance of sSM and SM as controlsdrivers of projected cumulative NBP, in addition to sT and T. 

Furthermore, the arguably high intermodel standard deviation values for many of the controlsdrivers suggest that while 

constraining any individual controldriver would help reduce the spread of the projected land carbon sink, a large uncertainty 

would remain. For example, if we are to assume sCO2 to be locally equal across all models, by summing the contributions 

from the other controlsdrivers we find that the intermodel standard deviation of NBP would still be 3.2.63 gC m-2 y-1, i.e., 400 

8381% of the original spread.; assuming both T and SM to be locally equal across models drops the NBP spread to 80%; and 

assuming both sT and sSM to be locally equal across models drops it to 50%.   

 

Figure 8 presents a compact overview of the factors explaining intermodel differences in averagecumulative projected NBP. 

We group sT with sSM to represent the sensitivity of NBP to interannual climate variability, and T with SM to represent 405 

general background climate conditions. This reduces any potential compensating effects in the contributions of sT, sSM, T 

and SM that could have resulted from the underlying collinearities between these controlsdrivers. Differences in the sensitivity 

of NBP to interannual climate variability play a key role, dominantly explaining the projected anomaly relative to the ensemble 

mean for the two models with lowest land carbon sink, as well as for the two models with highest land carbon sink. We consider 

it important toWe note here that ACCESS-ESM1-5 and UKESM1-0-LL (models with lowest sink) share the samea similar 410 

atmospheric model component, (HadGEM family), while CESM2 and NorESM2-LM (models with highest sink) share the 

same land surface model. Furthermore, the intermodel variability in the contributions of the sensitivity of NBP to climate 

(sT+sSM) corresponds to 63.259% of the total NBP intermodel variability. Differences in , whereas for the strength 

contributions of the CO2 fertilization effect are also clearly important, followed by differences in backgroundon GPP (sCO2) 

it corresponds to 33.9% and for the contributions of average climate conditions that nevertheless account for more than 15% 415 

of the absolute sum of contributions in 7 out of 11 models.(T+SM) it is 28.3%. These insights are obtained based on the 

multiple linear regression, so it is worth noting once again that the regression estimates do not fully match the actual differences 

between models, with the clearest discrepancies beingin the underestimation of the sink for CanESM5 and NorESM2-LM, as 

well as in the overestimation for IPSL-CM6A-LR, GFDL-ESM4 and UKESM1-0-LL. 
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 420 

 
Figure 8: Summary of contributions of the controlsdrivers to explain intermodel differences in average projected global land 
cumulative NBP. Bars indicate the grouped contributions of sCO2, sT plus sSM, and T plus SM to the NBP anomaly estimate from the 
multiple linear regression. Dots indicate the total NBP anomaly based on the multiple linear regression. (MLR) and from the actual model 
projections (ESM). All values correspond to averages from the 200 bootstrap samples. Global land estimates are obtained by multiplying 425 
the area-weighted averages times the land surface area excluding Antarctica (135.22E6 km2). From left to right models are ordered according 
to actual increasing projected land carbon sink. 

The insights derived from Figure 8 are generally robust to different choices on how the sensitivities (sCO2, sT and sSM) are 

defined. The estimated contribution of sCO2 is larger when defining it as the sensitivity of NBP to rising CO2, as opposed to 

the sensitivity of GPP to CO2 (Fig. S17). In this case the intermodel variability in the contribution of sCO2 increases from 430 

33.9% to 43.5% of the total NBP intermodel variability, whereas that of sT+sSM decreases to 49.4% and that of T+SM 

decreases to 24.4%. This increase in the contributions of sCO2 and decrease in those of sT+sSM is expected as model 

differences in the indirect effects of CO2 on RA, RH and DIS are now included, in addition to a stronger collinearity of sCO2 

with sT and sSM, due to sCO2 also capturing differences in RA, RH and DIS that are dependent on temperature and soil 

moisture. These indirect effects of CO2 particularly contribute to explain the cumulative NBP differences of CanESM5, 435 

CNRM-ESM2-1 and IPSL-CM6A-LR relative to the ensemble mean. In addition, we replicate the analysis when computing 

sT and sSM from the 1pctCO2-rad simulations to remove potential alleviating effects of higher CO2 given that these 

simulations account for the radiative effects of increasing CO2 but keep CO2 at the pre-industrial level from a biogeochemical 

perspective (Fig. S18). Results are still largely consistent with those of Fig. 8 even though this case is less meaningful as sT 
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and sSM are computed under different CO2 and climate conditions than those projected by scenario SSP126. Finally, results 440 

hardly change when assuming a latitudinal threshold of 30°, instead of 22.5°, beyond which annual mean warm season 

temperature and soil moisture are used to compute sT and sSM (Fig. S19).   

6 Conclusions 

In this study we focus on projections of the land carbon sink for a policy-relevant scenario with warming below 2°C by the 

end of the century (i.e., SSP126). Even under this scenario with a relative low concentration of greenhouse gases, there is an 445 

intermodel spread of approximately 150 PgC in cumulative NBP from 2015 to 2100 – equivalent to 15 years of current 

anthropogenic emissions – which translates into significanta 40% uncertainty in the carbon budget remaining to stabilize global 

temperature below the chosen threshold. We also show that even when two models project a similar global land carbon sink, 

there can be large and compensating regional differences. Here we identify regions in which models differ the most and assess 

which are the underlying model characteristics explaining these differences in the cumulative land carbon sink. 450 

 

We accurately explain model differences in cumulative NBP as a function of their differences in the sensitivity of GPP to CO2, 

in the sensitivity of NBP to interannual temperature and soil moisture variability, and in projected long-term temperature and 

soil moisture during the warm season. We detail differences in these five controlsdrivers across the model ensemble and discuss 

how they influence the land carbon sink projected by each model throughout the globe. In addition, we find that the detrended 455 

interannual variability of projected NBP is better explained by soil moisture than temperature in most models and across most 

regions. A notable exception is the core of the Amazon, where temperature continues to outperformis more important than soil 

moisture to explain the interannual variability of NBP in the models. Given the relevance of model differences in the sensitivity 

of NBP to temperature and soil moisture, it is increasingly important to further disentangle their sensitivities to incoming 

radiation and vapor pressure deficit. This would bring us a step closer to identify the underlying mechanisms for the divergence 460 

across models from a process perspective. 

 

Our quantification of the factors explaining intermodel differences in projected NBP highlights the dominant role of the 

response of the land carbon cycle to interannual temperature and soil moisture variability over that of the CO2 fertilization 

effect and average climate conditions. This finding provides explicit evidence that improving the representation of the local-465 

scale sensitivity of NBP to interannual climate variability has the potential to reduce uncertainty in long-term projections of 

the global land carbon sink. However, we also find that the different controls of NBP model spread often have compensating 

effects, as evidenced by multiple models with an above average CO2 fertilization effect being more adversely affected by 

interannual climate variability and vice versa (see instances of opposing contributions of sCO2 and sT + sSM in Fig. 8). Thus, 

much of the model spread in cumulative NBP would remain even if we would be able to constrain a single control. A 470 

noteworthy aspect of this study is to explicitly consider the role of soil moisture when explaining model differences in projected 
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cumulative NBP, as it provides valuable information in addition to temperature. We highlight substantial contributions mainly 

from model differences in the sensitivity of NBP to interannual soil moisture variability, and to a lesser extentbut also from 

differences in long-term average soil moisture. 

 475 

In the quest to better understand the future evolution of the land carbon cycle, our detailed insights about why each model 

projects either a relatively high or low cumulative land carbon sink is a valuable roadmap to reducing uncertainty.starting point 

to reducing uncertainty. For example, a high regional contribution of sSM and/or sT to a model’s land sink anomaly indicates 

the need to evaluate and improve potentially related processes such as water stress on photosynthesis, the effect of temperature 

and moisture on soil carbon loss due to microbial activity, and the occurrence and magnitude of fire emissions. Furthermore, 480 

our findings emphasize the need for spatially explicit observations of the sensitivity of the land carbon cycle to changes in 

temperature, soil moisture and CO2 concentration, among other variables. Fortunately, this is becoming increasingly feasible 

thanks to progress in estimating carbon fluxes through in-situ observational networks, atmospheric inversions, and remote 

sensing products. The insights from this study together with those from novel observations are set to pave the way towards 

more confident projections of the evolution of the land carbon sink. 485 

Code and data availability 

The CMIP6 data used in this study are available at https://esgf-node.llnl.gov/search/cmip6/. Detailed inputs for the search 

query are as follows: Source ID: see Table S1; Experiment ID: ssp126, ssp585 and 1pctCO2-bgc; Frequency: mon; Variable: 

nbp, tas, mrsol, gpp, ra, rh, fFire. We also used the variable npp to derive ra = gpp – npp for the ACCESS-ESM1-5 model. 

 490 

Scripts used for the analysis are available during review at: 

https://polybox.ethz.ch/index.php/s/ElMQLCRRqaf4iwahttps://polybox.ethz.ch/index.php/s/iDyqY4lIrmIusUt.   
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