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Response to Reviewer #1 

Major comments: 

R1C1: In this manuscript, Yu et al. investigate drought legacy effects in GPP at two 

contrasting forest types in Germany. This manuscript represents several notable advances, 

including: 1) direct observation of GPP legacy effects, 2) a method to quantify sub-annual 

legacies, 3) incorporating uncertainty in legacy effect calculations, and 4) a neat idea to get at 

the mechanism behind GPP legacies. In addition, the manuscript is written very clearly and 

is quite compelling to read. This is a great contribution to the literature and only have a few 

suggestions. 

We thank the reviewer for the overall positive evaluation of our study and for the constructive 

comments. Below, we provide a point-by-point reply to the reviewer comments. 

R1C2: The approach to calculate a “tree ring width” based on dendrometer bands is 

interesting. However, due to bark shrinkage and expansion, these processes aren’t exactly 

analogous. I think there needs to be an acknowledgement of this and a discussion of how these 

biases might play out. 

Thanks for pointing this out. The method we used has - compared to tree cores where TRW is 

directly measured - three central advantages: permanent, long-term and non-invasive/non-

destructive measurement of the same trees, measurement of fresh wood increment, and 

measurement of the entire stem at breast height (not only of a very small part). The latter two 

advantages are important for an upscaling to total wood growth at stand level. The main 

disadvantage of our method - the inclusion of shrinkage and swelling of the bark - is an "accepted" 

uncertainty. This uncertainty can be accepted  (1) because we used only the annual increment (not 

as in Mund et al 2010 where monthly growth rates were investigated), (2) because the dominant 

species is beech that has only a thin bark, (3) because we recorded the final stem diameter of each 

year in winter, when the water status of the xylem and the bark is relatively constant, and when 

stem wood or the bark are not affected by frost or late/early growth or water uptake, (4) because in 

this study we were interested only in the interannual variability of stem growth, which is less 

affected by shrinkage and swelling at the described temporal scale than absolute growth rates. Thus, 

in our case the bark-associated uncertainty results mainly from annual bark increment that is small 

compared to stem growth in the studied species (no pine or oak). Nevertheless, to be clear and to 

avoid any misunderstanding, we have changed the term ‘tree ring width’ to ‘radial increment’, and 

have added the description in line 104 of section 2.3: 

‘Annual radial increment (RI) was calculated from permanent band dendrometers which measures 

change in stem girth (or circumference) over bark. The effect due to the inclusion of shrinkage and 

swelling of the bark is a negligible uncertainty for four reasons: 1) we used only the annual 

increment, 2) the dominant species is beech that has only a thin bark, 3) we recorded the final stem 

diameter of each year in winter, when the water status of the xylem and the bark is relatively 

constant, and when stem wood or the bark are not affected by frost or late/early growth or water 

uptake, and 4) in this study we were interested only in the interannual variability of stem growth, 



which is less affected by shrinkage and swelling at the described temporal scale than absolute 

growth rates.’ 

R1C3: How well does the RF model predict GPP during drought years, if trained on non-

drought data? Or, just trained on a subset of droughts and used to predict other droughts? 

The answer to this question has implications for the interpretation of the legacy effect 

calculation. 

 

 

Figure R1.1. Observed (OBS) and predicted (RF) GPP anomalies from trained models using 

subsets of the training dataset a) at DE-Hai in 2003 and 2018, b) at DE-Lnf in 2003.  

We trained RF models using a subset of training dataset (sub) to test the model performance during 

drought years. For example, in order to test the model performance in 2003, the data in 2003 was 

excluded from the training dataset and the trained model was used to predict GPP anomalies in 

2003 given meteorological variables. The same strategy was applied to 2018 at DE-Hai and 2003 

at DE-Lnf. We compared observed (OBS) and predicted (RF) GPP anomalies from subset-trained 

RF models a) in 2003 and 2018 at DE-Hai and b) in 2003 at DE-Lnf. We found that RF matches 

OBS GPP relatively well at DE-Hai during the growing seasons of 2003 and 2018 (R2 of 0.49 and 

0.35, respectively) and captures the GPP decrease during the drought period of 2003, but estimates 

a weaker decrease in the 2018 drought. This is thanks to the fact that the 2018 drought is more 

extreme than the 2003 drought, and the RF model of which training dataset including the 2018 

drought is expected to capture the 2003 drought which is within the range of training data. 

However, the prediction skills of the RF model in 2018 at DE-Hai and 2003 at DE-Lnf are limited, 

because of the limited range of training data. Therefore, in the manuscript, to avoid extrapolation 



beyond the range of training data, we included drought and non-drought years in our training 

dataset, which maximizes the range of training data. The meteorological conditions in legacy years 

are within the range of training data, and the trained model is expected to be able to predict 

reasonable potential GPP anomalies in legacy years. Furthermore, such RF prediction inaccuracies 

are included in our uncertainty calculation, and the respective uncertainty ranges have been shown 

in the main figures. 

R1C4: Along those lines, there also needs to be some information regarding model fit, 

predictive ability, variable importance, etc. in the methods or results. Does model fit differ 

across sites, years, etc? It seems like a model with a lot of uncertainty at one site or one year 

may drastically alter the legacy effect calculation. What variables are most important for 

predicting fluxes at these sites? 

 

Figure R1.2. Out of bag (OOB) scores of RF models at DE-Hai and DE-Lnf. 

We reported here the Out of bag (OOB) scores, which indicate the model prediction ability (closer 

to 1 is better), of RF models at DE-Hai and DE-Lnf (Figure R1.2). Since using leave-one-out 

strategy (see Section 3.4), each RF model for a resulting time series has its own OOB score. The 

medians of all these OOB scores are ~0.7 and ~0.8 at DE-Hai and DE-Lnf, respectively, which are 

good enough to allow predicting reasonable potential GPP anomalies in legacy years. We agree 

that the uncertainty from one year could alter the legacy effects calculation, but the difference is 

not strong enough to change the main legacy signals. This can be seen in the different quantiles of 

legacy effects in Figure 3 based on the ensemble runs (see Section 4.2), and the band range is 

relatively narrow.   

 



 

Figure R1.3. Variable importance, indicated by increased MSE, of RF models at DE-Hai and DE-

Lnf. 

Here, we also showed the increased MSE, indicating variable importance, from ensemble model 

runs at a) DE-Hai and b) DE-Lnf (Figure R1.3). The water availability index is the most important 

explanatory factor at both sites, followed by incoming radiation at DE-Hai and the phenological 

stage (given by potential radiation) at DE-Lnf. 

We have added Figure R1.2 and R1.3 to supplementary materials as Figure S2 and S3, adjusted the 

order of other figures in the supplement, and added the description in line 184 of section 3.4: 

‘First, all daily data in non-legacy years were used as input for the RF model to determine the 

relationships between anomalies of GPP (GPPanom) and anomalies of hydro-meteorological 

variables (SW_INanom, TAanom, VPDanom, and WAIanom) along with absolute values of SW_IN_POT 

to capture seasonal variations in the response of ecosystems to hydro-meteorological conditions. 

These relationships represented long-term controls of climate on GPP, including drought events 

and near-average or wet conditions. The Out of bag (OOB) scores indicating the prediction ability 

of RF models were ~0.7 and ~0.8 (where zero indicates no skill and 1 denotes perfect performance) 

at DE-Hai and DE-Lnf, respectively (Fig. S2). WAIanom is the most important explanatory factor at 

both sites, followed by SW_INanom at DE-Hai and the phenological stage (given by SW_IN_POT) at 

DE-Lnf (Fig. S3).’ 

R1C5: It doesn’t seem like there is any mention in the methods regarding how the length and 

size of legacies were calculated. It is implied that GPP recovers when it hits the uncertainty 

boundary, but not explicitly stated. 

We briefly mentioned how the length of legacies was selected in Section 3.3 (Lines 153-158 of the 

original manuscript).  

But following the reviewer's comment, we realize that this statement is not explicit enough, 

therefore we have rephrased it in line 162 as follows: 

‘we selected a legacy period of two years and this choice was justified by the fact that GPP 

anomalies residuals returned to the range of model uncertainties (i.e. 25th-75th percentiles of 

model residuals), which is considered as the point when GPP recovers. This happened in 

2005 (see Section 4.3) following the 2003 drought at both sites. For the 2018 drought at DE-

Hai, data was only available up to 2020.’ 



Minor comments: 

L118: What constitutes “good” gapfilling? 

It refers to the standard eddy-covariance gap filling algorithm (Pastorello et al., 2020; Reichstein 

et al., 2005). At the half-hourly (or hourly) scale, there are three different reliable degrees of gap 

filled data, which are good quality gap fill, medium, and poor. The reliability of gap fill data 

depends on the availability of data and the size of the time window. For more details, please check 

Appendix A in Reichstein et al., 2005. 

L133: I might be missing something, but this doesn’t seem to mention how WAI is calculated. 

WAIt depends on the calculation of WAIt-1, which is undefined. So, the definition seems 

circular. 

We have added more details in lines 136-143 of section 3.2 about WAI calculation. 

‘Therefore, we used a bucket model approach based on observed evapotranspiration and 

precipitation to estimate a vegetation water availability index, WAI (Tramontana et al., 2016), 

calculated as: 

 WAI0 = WAIwam-up (1) 

 WAIt = min(WAImax, WAIt-1 + Pt - ETt) (2) 

 

where WAI0 is the initial value of the water availability index (WAI), WAIwarm-up is the end value of 

WAI from the warm-up of the bucket model (Eq. 1). To warm up the bucket model, we ran it 5 times 

through the first year before starting the actual computation across all considered years. WAIt-1 

(mm) and WAIt (mm) were WAI at time step t-1 and t, respectively, Pt (mm) and ETt (mm) were 

precipitation and evapotranspiration at time step t (Eq. 2).  We set the bucket size (i.e. WAImax) as 

the maximum cumulative water deficit (CWD) at each site. The estimated bucket sizes were 205mm 

and 191mm at DE-Hai and DE-Lnf, respectively.  

Additionally, we calculated the CWD, which was estimated from cumulative differences between 

observed evapotranspiration and precipitation over periods where cumulative net water loss from 

the soil (Σ (ET-P)) is positive.’ 

 

L197-199: Detrended how? 

We have added one sentence to describe how to detrend in line 212 of section 3.5.  

‘We detrended the time series of all variables by removing any significant long-term linear trend 

detected using the Mann-Kendall test (Kendall, 1948).’ 



L198: Is this annual, or a mean from the growing season? The latter would probably be more 

relevant. 

 

Figure R1.4. Residuals of radial increment (RI) in legacy years at DE-Hai across species. 

We agree and have changed to growing-season mean values, but still, only negative legacy effects 

in 2004 were found on RI of Fagus sylvatica. We found only slightly positive or no legacy effects 

on RI of Fagus sylvatica in 2020, which is different from the original results using annual values 

where RI of Fagus sylvatica in 2020 showed strong positive legacy effects. We have replaced the 

original Figure 6 in the manuscript as Figure R1.4 and have corrected the relevant description in 

line 211 of section 3.5: 

‘We used the following explanatory variables: detrended growing-season mean WAI, detrended 

growing-season mean VPD, detrended growing-season mean SW_IN, and detrended growing-

season mean TA for each species.’ 

in line 322 of section 4.5: 

‘To complement the analysis of the legacy effects on GPP at the seasonal and annual scales, we 

also evaluated legacy effects on tree growth at the annual scale. RI of Fagus sylvatica was below 

the 25th percentile of model residuals in the post-drought year 2004 and returned to the 25th-75th 

percentiles of model residuals in 2005. For species of Acer pseudoplatanus, Fraxnius excelsior, 

and others, residuals of RI were almost within 25th-75th percentiles of model residuals in 2004 and 

2005. After the 2018 drought, RI of all species for 2019 and 2020 were almost within or close to 

25th-75th percentiles of model residuals.’ 

and in line 420 of section 5.2: 



‘Stronger negative legacy effects on GPP in 2020 than those in other legacy years were found at 

DE-Hai in the seasonal and annual scales. This might be associated with significant tree mortality 

in the period 2018-2020 (about 6% year-1 between 2017 and 2020 compared to less than 1% year-

1 between 2005 and 2017) mainly caused by the storm Friedrike in January 2018 and the heat 

and/or drought in summer 2018 and 2019 (unpublished data). RI of Fagus sylvatica in 2020 showed 

slightly positive legacy effects in growth, since only living trees were sampled. This might be 

explained by the favorable weather conditions in winter/spring 2019/2020 associated with high 

mineralization rates and reduced competition for nutrients, light and water of the surviving trees 

(Grossiord, 2020). The RI data reflected mean growth signals from individual surviving trees, while 

the GPP data reflected mean carbon assimilation at stand level, including positive, negative or 

absent legacy effects at individual tree level as well as the reduction of assimilating individuals 

due to higher tree mortality.’ 

 

L443: Some of your citations do exactly this, so perhaps cut this sentence. 

Thanks for pointing this out, we have deleted it. 
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Response to Reviewer #2 

R2C1: The authors present a sophisticated collaborative work and the development of a 

new method to separate GPP legacy effects. The analysis clearly demonstrates the value and 

importance of long term flux measurements with eddy covariance in combination with 

biometric data for the evaluation of concurrent and legacy effects of ecosystem GPP on 

different temporal scales. The potential applicability to other ecosystems is attractive as 

well. Only very few remarks needed for clarification. 

We thank the reviewer for the encouraging evaluation of our manuscript and for constructive 

comments and suggestions. Below, we provide a point-by-point response to the comments. 

R2C2: Regarding the importance of changes in the energy balance caused by drought and 

legacy effects, a bit more evaluation of evapotranspiration would improve the paper even 

more. Even though transpiration seems not to be influenced by drought / drought legacy 

here, it is unclear whether the term ‘transpiration’ in the manuscript is standing for 

‘evapotranspiration’ from eddy covariance data. 

 

 



Figure R2.1. Residuals of evapotranspiration anomalies at the seasonal scale in legacy years at a) 

DE-Hai and b) DE-Lnf. 

In Figure R2.1, we show the legacy effects on evapotranspiration (ET) calculated using the same 

methodology we applied for GPP and which is described in Section 3.4. We found the legacy 

effects on ET are small compared to the legacies on GPP at both sites. Nevertheless, 

evapotranspiration includes not only transpiration but also soil evaporation and interception 

evaporation as well. Given a certain amount of energy, even though transpiration decreases due to 

legacy effects caused by plant hydraulic damage, it could be compensated by increased soil 

evaporation. In the end, the amount of evapotranspiration might remain unchanged. Therefore, in 

the manuscript, we quantified legacy effects on transpiration estimated by the TEA (Transpiration 

estimation algorithm) approach (Nelson et al., 2018) to infer possible legacy effects due to plant 

hydraulic damage, which was briefly described in line 194 of section 3.4 in the original manuscript.  

‘The same method was used to quantify legacy effects on transpiration (Tr)’ 

After the reviewer's comment, we have clarified the respective paragraph in line 201-207 of the 

revised manuscript. 

‘In order to infer possible legacy effects due to plant hydraulic damage, the same method 

was used to quantify legacy effects on transpiration (Tr) estimated by the TEA 

(Transpiration estimation algorithm) approach (Nelson et al., 2018). The TEA approach 

first isolates the periods when evapotranspiration is most likely dominated by transpiration. 

Then, a quantile random forest model (Breiman, 2001; Meinshausen and Ridgeway 2006) 

is trained during the separated periods and transpiration can be estimated at every time 

step. More detail can be found in Nelson et al., 2018. We did not use evapotranspiration 

(ET) because given a certain amount of energy even though Tr decreases due to plant 

hydraulic damage but it could be compensated by increased soil evaporation, and the 

amount of ET might remain unchanged.’ 

R2C3: Mortality of trees is mentioned to be already caused by droughts. Can the effect of 

mortality / less trees over time be separated already? Have these trees been in the flux 

footprint? It should also be mentioned whether the biomass data from dendrometers and 

the litter harvest were from within the footprint. 

Unfortunately, the methodology and available data do not allow separating the mortality effects, 

but we can confirm that there is significant tree mortality in the period 2018-2020 in the whole 

forest including the flux tower footprint. This is based on observations by the site PIs, who co-

authors this study. We also confirm that dendrometers, leaves, and fruits data were collected 

within the main footprint area. We have added this information in line 110 of section 2.3: 

‘Annual mean tree ring width (TRW) was measured via permanent band dendrometers. The 

dendrometer trees represented the main species and their respective size classes of the 

main footprint at DE-Hai for the years 2003 to 2020. Because of technical constraints, 

damages and a natural dieback of single trees, the number of measurement trees per year 

varied between 54 and 95. Net primary productivity (NPP) of fruits for the years 2003 to 



2020, and NPP of leaves for the years 2003 to 2016 resulted from litter samplings (25-29 

traps) within the main footprint area of the flux tower’ 

And in line 417 of section 5.2: 

‘This might be associated with significant tree mortality in the whole forest including the 

main footprint of the flux tower in the period 2018-2020 (about 6% year-1 between 2017 

and 2020 compared to less than 1% year-1 between 2005 and 2017) mainly caused by the 

storm Friedrike in January 2018 and the heat and/or drought in summer 2018 and 2019 

(unpublished data)’ 

Specific remarks: 

L 212ff: could you clarify a bit more the description of the model setting with EVI 

anomalies? It seems not to be totally clear how structural effects are removed 

We have added more details and rephrased the description in line 227 of section 3.6: 

‘Combining GPP and satellite-based EVI allows separating these structural and 

physiological effects. To do this separation, we used two model settings: 1) RF, which was 

the original setting described in section 3.4, included both structural and physiological 

effects; 2) RFEVI, which added EVI anomalies as an additional predictor to the original 

model, only included physiological effects, because structural effects were already included 

in by the predictor EVI anomalies and GPPanom residuals from this model were expected to 

be caused by physiological effects. Therefore, physiological legacy effects on GPP were 

quantified as GPPanom residuals from RFEVI while structural legacies were quantified as the 

difference between GPPanom residuals from RF and RFEVI (i.e. RF-RFEVI).’ 

L 223: “…other factors in addition to…” 

corrected. 

L 331/332: “…using eddy-covariance data at two forests in central Germany in the same 

climate but with different management and species composition.“ I suggest to repeat here 

briefly what these forests have in common and where they differ. 

We have added the information. 

L 338: “…if they appear only in critical periods of the growing season,…” –check 

formulation 

corrected. 

L 349: “Finally, our approach allows determining the uncertainties in estimated legacy 

effects…” replace one ‘estimate’ 

corrected. 

L 365: “…negative legacies on GPP (reduced uptake) in the…” -just for the reader’s 

convenience 



We have added it. 

L 399: “…of stand age the heat and drought impact on carbon….” 

We have rephrased it. 

L 431 + 432: this should probably be evaporation instead of evapotranspiration 

Thanks, this should be evapotranspiration, because this refers to the total evapotranspiration 

including soil evaporation and transpiration from the shallow layers (0~30 cm). 

Fig. 2: 

As a) represents DE-Hai for 2003 and following years and b) represents DE-Hai for 2018, I 

suggest to write such: 

Figure 2: “Daily GPP in the selected drought and legacy years at a), DE-Hai 2003, b) DE-

Hai 2018 and c) DE-Lnf showing the 2003 droughts and following legacy years, 

respectively." 

We have rephrased it. 

Similar for Fig. S2 

We have rephrased it. 

Fig 5: seasonal GPP anomalies: lines ResEVI (structural effect) in figures hard to 

distinguish from Res. Could you e.g. zoom in to the periods discussed? 

We have zoomed in on the periods discussed in Figure R2.2 but have found it is too informative. 

Therefore we have added Figure R2.2 to the supplementary materials and have added the 

description in line 300 of Figure 5.

 



Figure R2.2. Residuals of GPP anomalies from RF and RFEVI (see Section 3.6) in legacy years at 

a) DE-Hai and b) DE-Lnf. 

 

‘Figure 5. Residuals of GPP anomalies from RF and RFEVI (see Section 3.6) in legacy 

years at a) DE-Hai and b) DE-Lnf. Residuals of GPP anomalies are characterized by 

observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands 

show the median and 5th-95th percentile GPPanom residuals of ensemble model runs (see 

Section 3.4), respectively. The solid and dashed lines show the residuals based on RF and 

RFEVI , respectively. The model uncertainties from RFEVI (dark and light grey shaded area, 

respectively) are characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom 

residuals in non-legacy years. The black dashed line was the median of GPPanom residuals 

from RFEVI in non-legacy years. The ticks denoted the start of each month. Figure S4 shows 

the results for  April-June and August-October at DE-Hai in more detail.’ 

 


