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Abstract. Droughts affect terrestrial ecosystems directly and concurrently, and can additionally induce lagged effects in 15 

subsequent seasons and years. Such legacy effects of drought on vegetation growth and state have been widely studied in tree-16 

ring records and satellite-based vegetation greenness, while legacies on ecosystem carbon fluxes are still poorly quantified and 17 

understood. Here, we focus on two ecosystem monitoring sites in central Germany with similar climate but characterized by 18 

different species and age structures. Using eddy-covariance measurements, we detect legacies on gross primary productivity 19 

(GPP) by calculating the difference between random-forest model estimates of potential GPP and observed GPP. Our results 20 

showed that at both sites, droughts caused significant legacy effects on GPP at seasonal and annual time scales which were 21 

partly explained by reduced leaf development. The GPP reduction due to drought legacy effects is of comparable magnitude 22 

to the concurrent drought effects, but differed between two neighbouring forests with divergent species and age structures. The 23 

methodology proposed here allows quantifying the temporal dynamics of legacy effects at the sub-seasonal scale and 24 

separating legacy effects from model uncertainties. Application of the methodology at a larger range of sites will help quantify 25 

whether the identified lag effects are general and on which factors they may depend.  26 

1 Introduction 27 

The frequency, intensity, duration, and spatial extent of drought are expected to increase in the next decades due to 28 

anthropogenic global warming in many regions (IPCC, 2022). A great number of studies, considering both long-term 29 

observations (Schwalm et al., 2010; Zscheischler et al., 2014) and model simulations (Reichstein et al., 2007; Sun et al., 2015) 30 
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across various spatial scales, have shown that droughts concurrently impact the structure and function of terrestrial ecosystems 31 

(Assal et al., 2016; Frank et al., 2015; Lewis et al., 2011; Ma et al., 2015; Orth et al., 2020), potentially turning ecosystems 32 

from sinks to temporary sources of carbon (Ciais et al., 2005; Reichstein et al., 2013). Therefore, understanding the impact of 33 

droughts on terrestrial ecosystems is a key research question in Earth sciences (Piao et al., 2019). 34 

Drought impacts on terrestrial ecosystems are not limited to concurrent effects, but also include legacy effects during the 35 

following seasons and years (Anderegg et al., 2015; Frank et al., 2015; Kannenberg et al., 2020). Legacy effects at tree and/or 36 

stand scale can be caused by the higher vulnerability to drought  due to previous water depletion of the soil (Krishnan et al., 37 

2006, Galvagno et al., 2013), reduced or delayed leaf development (Migliavacca et al., 2009; Rocha and Goulden, 2010; 38 

Kannenberg et al., 2019), drought-induced hydraulic damage of the xylem (Anderegg et al., 2013), adjustments in carbon 39 

allocation within the trees (Huang et al., 2021), depletion of non-structural carbohydrates (Peltier et al., 2021) due to reduced 40 

carbon availability and adjustments in carbon allocation (Hartman and Trumbore, 2016), tree mortality (Allen et al., 2015), as 41 

well as reduced resistance to disturbances (e.g. insects outbreaks) due to depleted non-structural carbohydrates (Erbilgin et al., 42 

2021). However, at the ecosystem level the impact of species and age structures on legacy effects are still less understood 43 

(Haberstroh and Werner, 2022, Wang et al., 2022). 44 

Tree-ring records cover periods of decades to centuries and can cover multiple drought events, being therefore widely used to 45 

analyze inter-annual legacy effects of drought on tree growth (Anderegg et al., 2015; Huang et al., 2018; Kannenberg et al., 46 

2019). Beyond the level of individual trees, satellite-based observations and model outputs, as expressed through vegetation 47 

greenness (Wolf et al., 2016; Wu et al., 2018), canopy backscatter (Saatchi et al., 2013), aboveground carbon stocks (Wigneron 48 

et al., 2020), and gross primary productivity (Schwalm et al., 2017, Bastos et al., 2020)  have also been used to study seasonal 49 

and inter-annual legacy effects of drought. However, studies focusing on carbon fluxes, especially based on eddy-covariance 50 

measurements, are still rare (Kannenberg et al., 2020). Eddy-covariance data with hydrometeorological variables measured in 51 

parallel have the potential to quantify the timing and magnitude of legacy effects at the sub-seasonal and annual scales, and 52 

might provide insights into the mechanisms of legacy effects that might not be fully reflected in vegetation indices and tree 53 

rings.  54 

Assessments of drought impacts on the ecosystem carbon fluxes usually focus on direct and concurrent effects (Ciais et al., 55 

2005; Reichstein et al., 2007) without considering legacy effects. This is probably due to the challenge to attribute signals in 56 

the observations to a previous drought and hence identify them as legacy effects on ecosystem carbon fluxes (Kannenberg et 57 

al., 2020), and the inability of models to reproduce these legacy effects (Bastos et al., 2021). A number of studies consider 58 

ecosystems to have ‘recovered’ when the target variable such as gross primary productivity (GPP) and tree-ring width returns 59 

to the baseline, which is usually based on pre-drought values of the target variable (Bose et al., 2020; González de Andrés et 60 

al., 2021; Zhang et al., 2021). However, this might complicate the detection of legacies since GPP recovery dynamics is 61 

affected by hydrometeorological conditions in legacy years, which can either stimulate or slow-down recovery. Here, by 62 

estimating potential GPP given hydrometeorological conditions in legacy years, we consider that ‘recovery’ happens when the 63 

actual GPP reaches the potential GPP under the given hydrometeorological conditions, rather than the absolute flux.  64 
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Therefore, we aimed to develop a novel approach to quantify drought legacy effects on GPP at the sub-seasonal and annual 65 

scales. To do this, we followed a residual approach (Beringer et al., 2007) to identify legacy effects as the residuals between 66 

actual and potential GPP which is estimated by a machine-learning algorithm (specifically Random Forest regression). 67 

Furthermore, it is crucial to understand if the residuals are caused by model uncertainties or can be interpreted as legacy effects. 68 

By overlooking model uncertainties, one could misinterpret small residuals as ‘legacy effects’. Here we quantified model 69 

uncertainties to provide more robust estimates of drought legacies and avoid misinterpretation of results. To test our approach, 70 

we used eddy-covariance measurements at two neighbouring sites that experienced similar climate but are characterized by 71 

different species and age structures in central Germany. We asked 1) can we detect drought legacy effects on GPP? 2) is the 72 

GPP reduction due to drought legacy effects significant compared to the magnitude of drought concurrent effects? 3) how do 73 

drought legacy effects on GPP differ at two neighbouring forests with different species and age structures? 74 

2 Data 75 

2.1 Study sites 76 

The two neighboring temperate forest sites studied here, Hainich (DE-Hai, 51°04′46″N, 10°27′07″E) and Leinefelde (DE-Lnf, 77 

51°19′42″N, 10°22′04″E), are located in central Germany, approximately 30 km from each other. These two sites share similar 78 

climate conditions, with long-term annual mean of 8 °C for 2-m air temperature and 750 mm of total annual   precipitation 79 

(Tamrakar et al., 2018). Both sites were affected by the two extreme central European droughts in 2003 and 2018 which 80 

reduced gross primary productivity (Fu et al., 2020; Herbst et al., 2015).  81 

The forest at Hainich is an old-growth, uneven aged (1-250 years) mixed forest, dominated by beech (Fagus sylvatica, 82 

representing approximately 64% of the tree carbon stocks). Ash (Fraxinus excelsior, 28%) and sycamore (Acer 83 

pseudoplatanus, 7%) are co-dominant tree species, and additionally there are few trees of European hornbean (Carpinus 84 

betulus), Norway maple (Acer platanoides), and other deciduous species (Knohl et al., 2003). The forest at Leinefelde can be 85 

characterized as a managed even-aged (ca. 130 years) pure beech forest (Anthoni et al., 2004).  86 

2.2 Eddy-covariance and meteorological measurements 87 

Identical eddy-covariance instrumental setups and data acquisition techniques were carried out at the two sites. The 88 

methodology of data collection and quality control followed those of Aubinet et al. (2000). The standard processing methods 89 

(Pastorello et al., 2020) adopted by the Integrated Carbon Observation System (ICOS) were used to carry out the gap-filling 90 

and the partitioning of net CO2 exchange (NEE) into gross primary production (GPP) and ecosystem respiration (Reco) using 91 

the nighttime partitioning algorithm (Reichstein et al., 2005, Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre 92 

2022). The GPP estimated from the nighttime partitioning algorithm (Reichstein et al., 2005) was used for the analysis 93 

(GPP_NT_VUT_REF).  A detailed description of meteorological data and instrumentation can be found in previous studies 94 

(Anthoni et al., 2004; Knohl et al., 2003). We used daily meteorological data alongside carbon and water fluxes, namely GPP, 95 
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latent heat flux after the energy balance correction (LE_CORR), which was converted to evapotranspiration (ET) using the 96 

heat of vaporization, incoming shortwave radiation (SW_IN), air temperature (TA), vapor pressure deficit (VPD), soil water 97 

content at the first layer (SWC_1, 8cm), the second layer (SWC_2, 16cm), the third layer (SWC_3, 32cm), and potential 98 

incoming shortwave radiation (SW_IN_POT) for the years 2000-2020 at DE-Hai and 2002-2012, with a gap in 2007-2009, at 99 

DE-Lnf.  100 

Additionally, we used daily enhanced vegetation index (EVI) data from the FluxnetEO v1.0 dataset (Walther et al., 2021) for 101 

the same years as the eddy-covariance data. EVI was derived from the MCD43A4 product of MODIS with a 500m spatial 102 

resolution and we used an average over 2x2 pixels surrounding the tower. We further estimated daily transpiration based on 103 

the Transpiration Estimation Algorithm (Nelson et al., 2018). 104 

2.3 Tree ring widthRadial increment and net primary productivity of fruits and leaves 105 

Annual mean tree ring width (TRW) Annual radial increment (RI)  was calculated frommeasured via permanent band 106 

dendrometers which measures change in stem girth (or circumference) over bark. The effect due to the inclusion of shrinkage 107 

and swelling of the bark is a negligible uncerainty for four reasons: 1) we used only the annual increment, 2) the dominant 108 

species is beech that has only a thin bark, 3) we recorded the final stem diameter of each year in winter, when the water status 109 

of the xylem and the bark is relatively constant, and when stem wood or the bark are not affected by frost or late/early growth 110 

or water uptake, and 4) in this study we were interested only in the interannual variability of stem growth, which is less affected 111 

by shrinkage and swelling at the described temporal scale than absolute growth rates. The dendrometer trees represented the 112 

main species and their respective size classes of the main footprint at DE-Hai for the years 2003 to 2020. Because of technical 113 

constraints, damages and a natural dieback of single trees, the number of measurement trees per year varied between 54 and 114 

95. Net primary productivity (NPP) of fruits for the years 2003 to 2020, and NPP of leaves for the years 2003 to 2016 resulted 115 

from litter samplings (25-29 traps) within the main footprint area of the flux tower. The high fluctuation of annual fruit NPP 116 

is caused by the periodically high fruit production (masting) of beech (Fagus sylvatica). In mast years the proportion of beech 117 

fruits (nuts and shells) amounted to almost 92% of total fruit mass. At DE-Lnf these data are not available. A detailed 118 

description of measurement and processing methods can be found in a previous study (Mund et al., 2020). 119 

3 Methodology 120 

3.1 Data processing 121 

As the first step, we filtered and processed the eddy covariance and meteorological data in the following way: 122 

1) To ensure reliable data for our analysis we used gap-filled daily data for days for which more than 70% of measured and 123 

good quality gap-fill data (Reichstein et al., 2005) were available. 124 

2) We only used data during the growing season which was defined as the period when GPP was greater than 10% of maximum 125 

of GPP as inferred from a smoothed (centered 7-days moving averages) daily average GPP across all years. 126 
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3) We calculated anomalies of all variables by subtracting the mean seasonal cycle and any significant long-term linear trend, 127 

detected by the Mann-Kendall test (Kendall, 1948), as these can obscure drought-related signals. We took the mean of each 128 

day across all considered years and then used centered 7-days moving averages to calculate the mean seasonal cycle. 129 

4) Furthermore, a 7-days moving average smoothing was applied to the anomaly time series to filter out noise at daily time 130 

scales. We expect this to increase the accuracy of our model while preserving drought legacy patterns which rather/better 131 

emerge at longer time scales. 132 

As for RITRW data, we removed for each individual tree any significant long-term linear trend detected using the Mann-133 

Kendall test (Kendall, 1948). 134 

 135 

3.2 Water availability index estimation 136 

Soil moisture at the two study sites was measured only at the upper 30 cm and thus does not account for water availability in 137 

deeper layers (see Section 5.4). Therefore, we used a bucket model approach based on observed evapotranspiration and 138 

precipitation to estimate a vegetation water availability index, WAI (Tramontana et al., 2016), calculated as: 139 

 
WAIt = min(WAImax, WAIt-1 + Pt - 

ETt)WAI0 = WAIwam-up 

(1) 

 WAIt = min(WAImax, WAIt-1 + Pt - ETt) (2) 

Where WAI0 was the initial value of the water availability index (WAI), WAIwarm-up was the end value of WAI from the warm-140 

up of the bucket model (Eq. 1). To initializewarm up the bucket model, we ran it 5 times through the first year before starting 141 

the actual computation across all considered years.. 142 

WAIt-1 (mm) and WAIt (mm) were WAI at time step t-1 and t, respectively, Pt (mm), and ETt (mm) were water availability 143 

index, precipitation, and evapotranspiration at time step t (Eq. 2).  We set the bucket size (i.e. WAImax) as the maximum 144 

cumulative water deficit (CWD) at each site. The estimated bucket sizes were 205mm and 191mm at DE-Hai and DE-Lnf, 145 

respectively.  146 

Additionally, we calculated the CWD, which was estimated from cumulative differences between observed evapotranspiration 147 

and precipitation over periods where cumulative net water loss from the soil (Σ (ET-P)) is positive. 148 

To initialize the bucket model, we ran it 5 times through the first year before starting the actual computation across all 149 

considered years. 150 

3.3 Drought and legacy years selection 151 

Since legacy effects should result from significant impacts of droughts on ecosystems, we adopted a combined driver and 152 

impact-based approach to define droughts. Drought years were defined as those years when both low water availability and a 153 

concurrent biospheric response were found, and were evaluated as follows: 154 

Formatted Table
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1) First, we selected the minimum of negative GPP anomalies relative to the mean seasonal cycle during the growing season 155 

(minimum GPPanom) as a proxy to reflect the severity of drought impact on GPP in each year. 156 

2) Then, we calculated the mean WAI anomalies relative to the mean seasonal cycle for days when minimum GPPanom occurred 157 

and the previous 14 days (mean WAIanom_15) to reflect the water availability during the development of the GPP anomaly. To 158 

identify drought-related GPP reductions, we considered only years where negative GPP anomalies were associated with dry 159 

conditions. 160 

3) Finally, we selected the years with both the lowest minimum GPPanom and mean WAIanom_15 (Fig. S1). These were  2003 161 

and 2018 at DE-Hai and 2003 at DE-Lnf (2018 data not available here). 162 

In our data, we define non-legacy years as normal and drought years, while legacy years correspond to the two calendar years 163 

following a drought year. Including too few legacy years could lead to an underestimation of legacy effects, and too many 164 

legacy years would result in the lack of training data (see Section 3.4). As a trade-off, we selected a legacy period of two years 165 

and this choice was justified by the fact that GPP anomalies residuals returned to the range of model uncertainties (i.e. 25th-166 

75th percentiles of model residuals), which is considered as the point when GPP recovers, in 2005 (see Section 4.3) following 167 

the 2003 drought at both sites and, for 2018 at DE-Hai, data was only available up to 2020. This happened in 2005 (see Section 168 

4.3) following the 2003 drought at both sites. For the 2018 drought at DE-Hai, data was only available up to 2020. 169 

 170 

3.4 Quantification of legacy effects on GPP and transpiration 171 

Here, we followed a residual approach (Beringer et al., 2007) to detect drought legacy effects on GPP. To do this, we fitted a 172 

random forest regression model (RF, Breiman 2001) for daily GPP anomalies using the anomalies of hydro-meteorological 173 

variables in non-legacy years as predictors. We chose RF because it has the ability to effectively learn 1) the relationship 174 

between independent and dependent variables regardless of linear or non-linear relationships; 2) the interactions between 175 

independent variables (Ryo and Rillig, 2017). The model was then used to predict GPP anomalies in the legacy years, thereby 176 

reflecting the potential GPP anomalies given the climate conditions in that year. Specifically, the approach included the 177 

following steps (Fig. 1): 178 

 179 

Figure 1. Conceptual diagram of quantification of legacy effects. A random forest (RF) model (or linear regression, represented by the 180 
black cube on the right) was used to determine the relationship between the target variable (GPPanom or RITRW) and hydro-meteorological 181 
conditions using a training dataset excluding data in legacy years and one of non-legacy years for each loop. The legacy effects could be 182 
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quantified as the residuals between observed (red line) and modelled (blue line) target variable (i.e. GPPanom, RITRW, …) in legacy years. 183 
And the residuals between observed and modelled target variable (i.e. GPPanom, RITRW, …) in all non-legacy years from all loops indicated 184 
RF model uncertainties using a leave-one-out approach (see below). 185 

First, all daily data in non-legacy years were used as input for the RF model to determine the relationships between anomalies 186 

of GPP (GPPanom) and anomalies of hydro-meteorological variables (SW_INanom, TAanom, VPDanom, and WAIanom) along with 187 

absolute values of SW_IN_POT to capture seasonal variations in the response of ecosystems to hydro-meteorological 188 

conditions. These relationships represented long-term controls of climate on GPP, including drought events and near-average 189 

or wet conditions. The Out of bag (OOB) scores indicating the prediction ability of RF models were ~0.7 and ~0.8 (where zero 190 

indicates no skill and 1 denotes perfect performance) at DE-Hai and DE-Lnf, respectively (Fig. S2). WAIanom is the most 191 

important explanatory factor at both sites, followed by SW_INanom at DE-Hai and the phenological stage (given by 192 

SW_IN_POT) at DE-Lnf (Fig. S3). The ‘randomForest’ package in R 4.0.3 was used, and the number of trees, the number of 193 

variables randomly sampled as candidates at each split, and the node size of RF were set to 400, 5, and 5, respectively. Tuning 194 

those hyperparameters did not significantly change our results.  195 

Based on these relationships and the meteorological anomalies in legacy years, we used the trained RF model to predict the 196 

potential GPPanom in the absence of legacy effects and calculated the model's residuals (GPPanom residuals, i.e. observed minus 197 

predicted values), which should reflect legacies from the past drought: negative residuals corresponded to more negative or 198 

less positive GPPanom  than would be expected given the meteorological conditions  in that year, indicating negative legacies 199 

of drought, while positive residuals corresponded to less negative or more positive GPPanom, indicating beneficial legacies of 200 

drought. In order to reduce the noise at the daily scale, daily results were aggregated to the weekly scale.  201 

To account for model uncertainties and evaluate the significance of legacy effects, we used a leave-one-out approach to 202 

quantify model uncertainties. In the training phase, one of the non-legacy years was excluded from the training dataset and the 203 

trained RF model was then used to predict the GPPanom in that year. This was done for all non-legacy years, and the GPPanom 204 

residuals in non-legacy years for each leave-one-out iteration were then considered as model uncertainties. In order to reduce 205 

the noise at the daily scale, all the daily results were aggregated to the weekly scale.  206 

In order to infer possible legacy effects due to plant hydraulic damage, Tthe same method was used to quantify legacy effects 207 

on transpiration (Tr) estimated by TEA (Transpiration estimation algorithm) approachalgorithm (Nelson et al., 2018). The 208 

TEA approach first isolates the periods when evapotranspiration is most likely dominated by transpiration. Then, a quantile 209 

random forest model (Breiman, 2001; Meinshausen and Ridgeway 2006) is trained during the separated periods and 210 

transpiration can be estimated at every time step. More detail can be found in Nelson et al., 2018. Not using We did not use 211 

evapotranspiration (ET) is because given a certain amount of energy even though Tr decreases due to plant hydraulic damage 212 

but it could be compensated by increased soil evaporation, and the amount of ET might remainbe still unchanged. 213 
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3.5 Quantification of legacy effects on tree growth 214 

To detect legacy effects on tree growth, we used a multivariate-linear regression instead of RF to develop the relationship 215 

between tree growth (detrended radial incrementtree ring width, RITRW) due to the fewer data points available. We used the 216 

following explanatory variables: detrended growing-seasonannual mean WAI, detrended growing-seasonannual mean VPD, 217 

detrended growing-seasonannual mean SW_IN, and detrended growing-seasonannual mean TA for each species. We 218 

detrended the time series of all variables by removing any significant long-term linear trend detected using the Mann-Kendall 219 

test (Kendall, 1948). Annual net primary productivity of fruits (fruits-NPP) particularly was added as an additional predictor 220 

to only the model for beech since the high fluctuation of annual fruit NPP could be caused by the periodically high fruit 221 

production (masting) of beech. We considered fruits-NPP as a predictor to account for the trade-off between tree growth and 222 

reproduction in mast years, which could also cause the change in tree growth in addition to legacy effects from previous 223 

droughts (Hacket-Pain et al., 2015).  224 

The strategy to quantify legacy effects and model uncertainties was the same as in the case of GPP. We trained the model in 225 

non-legacy years except for each one of them iteratively and predicted potential RITRW in legacy years and the year 226 

additionally excluded. The residuals between observed and potential RI TRW in non-legacy years and legacy years were then 227 

considered as model uncertainties and legacy effects, respectively. 228 

3.6 Separation of legacy effects on GPP due to structural and physiological effects 229 

Drought legacy effects on GPP might result from changes in canopy structure (structural effects) and photosynthesis capacity 230 

(physiological effects) (Kannenberg et al., 2019). Combining GPP and satellite-based EVI allows separating these structural 231 

and physiological effects. To do this separation, we used two model settings: 1) RF, which was the original setting described 232 

in section 3.4, included both structural and physiological effects; 2) RFEVI, which added EVI anomalies as an additional 233 

predictor to the original model, only included physiological effects because taking structural effects were already included in 234 

reflected by the predictor EVI anomalies into account and GPPanom residuals from this model waswere expected to be caused 235 

by physiological effects. Therefore, physiological legacy effects on GPP were quantified as GPPanom residuals from RFEVI 236 

while structural legacies were quantified as the difference between GPPanom residuals from RF and RFEVI (i.e. RF-RFEVI). The 237 

same method was used to separate structural and physiological effects of legacy effects on Tr. 238 

3.7 Quantifying concurrent and lagged reduction in GPP from drought 239 

Additionally, we compared the estimated legacy effects on GPP to the concurrent drought-induced GPP anomalies. To compute 240 

the concurrent reduction in GPP, we summed up all GPP anomalies over each identified drought period. Here, drought periods 241 

were defined as the periods where WAIanom was lower than -1 of standard deviation (WAISD). WAISD was calculated for each 242 

day of year by using a centered 7-day moving window instead of a single value over the whole time series because WAISD 243 

showed a seasonality. This definition only relied on the water availability without considering biospheric responses because 244 
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WAI directly indicated the water supply for vegetation while GPP could include other factors in addition to drought in short 245 

periods. We quantified the lagged reduction in GPP at the annual scale as the difference between GPP anom residuals in legacy 246 

years and the median of the model uncertainties. To compare the reduction in GPP across sites, both concurrent and lagged 247 

values were normalized relative to averaged total GPP over the growing season. 248 

4. Results 249 

4.1 GPP time series in drought and legacy years 250 

 251 

 252 

Figure 2. Daily GPP in the selected drought and legacy years at a), b) DE-Hai (showing the 2003 and 2018 droughts, respectively) 253 
and c) DE-Lnf (showing the 2003 drought) Daily GPP in the selected drought and legacy years at a) DE-Hai 2003, b) DE-Hai 2018 254 
and c) DE-Lnf 2003 showing the droughts and following legacy years, respectively. Colored points and lines showed original and 255 
smoothed (7-days average) GPP, respectively, in drought and legacy years. The grey lines and shaded areas showed the median, 25th-75th 256 
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(dark grey), and 5th-95th (light grey) percentiles of GPP, respectively, over non-drought and non-legacy years. The shaded coral areas indicate 257 
the average growing seasons of DE-Hai and DE-Lnf. 258 

In Fig. 2, we show the measured absolute GPP time series in the selected drought (2003 and 2018) and legacy years (2004, 259 

2005, 2019, and 2020) together with the long-term median, 25th-75th, and 5th-95th percentiles GPP at DE-Hai and DE-Lnf. In 260 

the drought year 2003, GPP was significantly lower than the baseline, defined as the 25th percentile GPP, during July-261 

September at DE-Hai and July-August at DE-Lnf, respectively. In the post-drought years 2004 and 2005, there was no 262 

systematic decrease in GPP at DE-Hai, while GPP at DE-Lnf was slightly lower than the baseline during June-August of 2004. 263 

During the 2018 drought, GPP significantly differed from the baseline during June-September at DE-Hai. After the 2018 264 

drought, we could not find any systematic decrease in GPP in 2019, while GPP was consistently lower than the baseline from 265 

mid-May to September of 2020 at DE-Hai. 266 

 267 
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4.2 Drought legacy effects on GPP: seasonal patterns 268 

 269 

Figure 3. Residuals of GPP anomalies at the seasonal scale in legacy years at a) DE-Hai and b) DE-Lnf. Residuals of GPP anomalies 270 
were characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands show the median and 5th-271 
95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. Negative residuals corresponded to more negative 272 
or less positive GPPanom than would be expected given the climate in that year, indicating negative legacies of drought, while positive 273 
residuals corresponded to less negative or more positive GPPanom, indicating beneficial legacies of drought. The model uncertainties (dark 274 
and light grey shaded area, respectively) are characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom residuals in non-legacy 275 
years. The black line represents the median of GPPanom residuals in non-legacy years. The ticks denote the start of each month. 276 
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At the seasonal scale, residuals of GPP anomalies (GPPanom residuals) showed significant departures from model uncertainties 277 

at both sites (Fig. 3). After the 2003 drought at DE-Hai, we found negative residuals below the 25th percentile of model 278 

residuals in non-legacy years (model uncertainties) during the early and late growing season of 2004 (April-July, September) 279 

and May-June of 2005, and below the 5th percentile for short periods, in April and May of 2004 and May of 2005. After June 280 

2005, residuals were mostly within 5-95% of the model residuals. After the 2018 drought at DE-Hai, we found negative 281 

residuals (below 25th percentile of model residuals) during May, June, August, and September of 2019. In 2020, residuals 282 

showed a persistent decrease from May to July, and generally stayed well below the 5th and 25th percentile of model residuals 283 

from mid-May until July and September, respectively. 284 

After the 2003 drought at DE-Lnf, we found persistent negative residuals were below the 25th percentile of model residuals 285 

over almost the complete growing season (from May to October) in 2004 and below the 5th percentile of model residuals for 286 

periods in June-September. In 2005, residuals remained mostly within 25th-75th percentiles of model residuals. 287 

 288 

4.3 Drought legacy effects on GPP: annual patterns 289 

  290 
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Figure 4. Integrated residuals of GPP anomalies at the annual scale in legacy years at DE-Hai and DE-Lnf. The color points and line 291 
ranges show the median and 5-95% percentile integrated GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The 292 
model uncertainties (the boxplot) are characterized as the 25th-75th quantile range of integrated GPPanom residuals in non-legacy years. 293 

There were systematic departures of integrated residuals of GPP anomalies in legacy years from model uncertainties at the 294 

annual scale (Fig. 4) although the seasonal patterns varied (Fig. 3). After the 2003 drought at DE-Hai, integrated residuals in 295 

2004 were significantly below the 25th percentile of model residuals, while integrated residuals were within the 25th-75th 296 

percentiles of model residuals in 2005. After the 2018 drought, integrated residuals in 2019 were near the 25th percentiles of 297 

model residuals, while in 2020 integrated residuals were far below the 25th percentile of model residuals. 298 

At DE-Lnf, after the 2003 drought, integrated residuals in 2004 were below the 25th percentile of residuals in non-legacy 299 

years, while integrated residuals almost remained within 25th-75th percentiles of model residuals in 2005.  300 
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4.4 Drought legacy effects on GPP due to structural and physiological effects 301 

 302 

Figure 5. Residuals of GPP anomalies from RF and RFEVI (see Section 3.6) in legacy years at a) DE-Hai and b) DE-Lnf. Residuals of 303 
GPP anomalies are characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands show the 304 
median and 5th-95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The solid and dashed lines show 305 
the residuals based on RF and RFEVI , respectively. The model uncertainties from RFEVI (dark and light grey shaded area, respectively) are 306 
characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom residuals in non-legacy years. The black dashed line was the median 307 
of GPPanom residuals from RFEVI in non-legacy years. The ticks denoted the start of each month. Figure S4 shows the results for April-June 308 
and August-October at DE-Hai in more detail. 309 

At the seasonal scale, residuals of GPP anomalies from RFEVI (ResEVI) showed significant departures from GPPanom residuals 310 

from RF (Res) over some periods at both sites (Fig. 5). At DE-Hai, we found ResEVI was above Res in the early growing season 311 
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(April-May) of 2004, 2005, 2019, and 2020, and also in the late growing season of 2004 (August-October) and 2019 (August-312 

September). After the 2003 drought, we found negative ResEVI below the 25th percentile of model residuals from RFEVI in 313 

non-legacy years (model uncertainties) during the early and late growing season of 2004 (May-July, September) and May of 314 

2005, and below the 5th percentile for short periods, in May of 2005. After the 2018 drought, we found negative ResEVI (below 315 

25th percentile of model residuals) during June of 2019. In 2020, ResEVI showed a persistent decrease from May to July, and 316 

generally stayed well below the 5th and 25th percentile of model residuals from mid-May until July and September, respectively.  317 

At DE-Lnf, ResEVI was below Res from April to mid-May and significantly above Res almost over the growing season of 2004 318 

(from mid-May to September). We found negative ResEVI below the 25th percentile of model residuals from RFEVI in non-319 

legacy years (model uncertainties) during June, August, and September of 2004, and below the 5th percentile for short periods, 320 

in June and September of 2004. 321 

 322 

4.5 Drought legacy effects on radial incrementtree ring width 323 

 324 



16 

 

 325 

Figure 6. Residuals of RITRW in legacy years at DE-Hai across species. Residuals of RITRW are characterized as observed minus 326 
predicted RITRW anomalies (RITRW residuals). The model uncertainties (the grey area) are characterized as the 25th-75th quantile range of 327 
RITRW residuals in non-legacy years.  328 

To complement the analysis of the legacy effects on GPP at the seasonal and annual scales, we also evaluated legacy effects 329 

on tree growth at the annual scale. In the post-drought years 2004 and 2005, RITRW of Fagus sylvatica was below the 25th 330 

percentile of model residuals in the post-drought year 2004 and returned to the 25th-75th percentiles of model residuals in 2005. 331 

For species of Acer pseudoplatanus, Fraxnius excelsior, and others, residuals of RITRW were almost within 25th-75th 332 

percentiles of model residuals in 2004 and 2005. After the 2018 drought, RITRW of Fagus sylvatica was within model 333 

uncertainties in 2019 while higher than 75th percentile of model residuals in 2020. The residuals of TRW of Acer 334 

pseudoplatanus, Fraxnius excelsior, and othersall species for 2019 and 2020 were almost within or close to 25th-75th percentiles 335 

of model residuals. 336 

 337 
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4.6 Concurrent and lagged reduction in GPP 338 

 339 

Figure 7. Concurrent (dashed black bars) and lagged (colored bars) reduction in GPP from the 2003 and 2018 droughts at a) DE-340 
Hai and b) DE-Lnf. Concurrent impacts in GPP were quantified as the sum of GPP anomalies over drought periods in drought years relative 341 
to averaged total GPP over the growing season (see Method). Lagged impacts in GPP are characterized as the difference between GPPanom 342 
residuals in legacy years and median of the model uncertainties relative to averaged total GPP over the growing season. Colored bars and 343 
error bars show the median and 5-95%, respectively, of lagged reduction in GPP from ensemble model runs.  344 

Finally, we compared the concurrent impacts on GPP with the lagged impacts due to drought. We found that, at DE-Hai, the 345 

concurrent reduction in GPP was 9.4% relative to averaged total GPP over the growing season (hereinafter) in 2003, while 346 

6.1-12.3% indirectly reduced in 2004. And in 2018 concurrent reduction in GPP was 21.0%, while 3.5%-10.0% and 23.5-347 

29.6% indirectly reduced in 2019 and 2020, respectively. At DE-Lnf, the concurrent reduction in GPP was negligible in 2003 348 

(2.2%), while we estimated 14.4-24.8% GPP reduction in 2004, which was higher than the corresponding values at DE-Hai in 349 

the same year. 350 

 351 

5. Discussion 352 

5.1 A novel methodology to detect drought legacy effects on GPP 353 

There is limited research on discovering legacy effects of drought on the ecosystem carbon cycle using eddy-covariance 354 

observations (Kannenberg et al., 2019). Here, we propose a residual-based methodology using a random-forest regression 355 

model to detect legacy effects on GPP, and found significant legacy effects on GPP using eddy-covariance data at two forests 356 

in central Germany in the similar climate but with different age and species composition. There are three advantages to our 357 

methodology: 1) capturing the temporal dynamics of legacy effects at the seasonal scales; 2) separating the influence of 358 



18 

 

meteorological conditions during the post-drought period on recovery rates; 3) estimating model uncertainties to avoid 359 

misinterpreting small residuals as ‘legacy effects’. 360 

First, because we used measurements with a high temporal resolution (daily), legacy effects could be determined across 361 

different time scales. Previous studies based on tree-ring or satellite-greenness data have mainly focused on legacy effects at 362 

the annual scale (Anderegg et al., 2015; Wu et al., 2018) or monthly scale (Bastos et al., 2021), but the legacies can be more 363 

ephemeral, for example, if they are expressedappear only in critical periods of the growing season, as we have found here. 364 

Such temporally confined effects may not necessarily manifest themselves at the annual scale. For example, after the 2003 365 

drought, the annual GPP at DE-Hai in 2005 was close to normal, which was the 25th percentile of model residuals here, but we 366 

found short legacies at the seasonal scale (Fig. 3).  367 

Second, recovery is usually considered when the target variable (i.e. GPP, tree-ring width…) returns to the baseline, usually 368 

based on pre-drought values of the target variable (Bose et al., 2020; González de Andrés et al., 2021; Zhang et al., 2021). 369 

However, meteorological conditions during the recovery period will modulate recovery rates, so that recovery can be delayed 370 

e.g. if a drought is followed by other unfavourable climatic conditions. Hence, the evaluation of possible legacy effects should 371 

be based on the functional relations between the target variable and meteorological conditions. Our model takes this into 372 

account by considering that ecosystems recovered when observed GPP reaches the potential GPP given the meteorological 373 

conditions, rather than the absolute flux.  374 

Finally, our approach allows determiningestimating the uncertainties in estimated legacy effects. Previous studies (Anderegg 375 

et al., 2015; Huang et al., 2018) quantified legacy effects as the residuals between observed and predicted target variables (i.e. 376 

tree-ring width, vegetation indices, …) in legacy years, but were not able to consider uncertainties of their trained models. Yet, 377 

it is crucial to understand if the residuals are caused by model uncertainties or can be interpreted as legacy effects. In this 378 

study, legacy effects are identified only when the model residuals are outside the range of the model uncertainties, so that we 379 

are confident that the legacies reported here are significant and avoid interpreting residuals caused by model error as legacy 380 

effects. A limitation of our approach is that we have to assume that there are no legacy effects in the climate system because 381 

this would potentially bias the interpretation of the residuals.  382 

The methodology we proposed is able to detect the legacy effects of drought on GPP and can be easily applied to other eddy-383 

covariance sites and variables (i.e. evapotranspiration, transpiration, …), in order to improve our understanding of drought 384 

legacy effects on the ecosystem carbon cycle at different time-scales. 385 

 386 

5.2 Seasonal and annual legacy drought impacts on GPP 387 

We found that residuals of GPP anomalies (GPPanom residuals) in legacy years were significantly larger than model 388 

uncertainties at both seasonal and annual scales at both sites, which indicated strong legacy effects of drought on GPP at least 389 

in the two years following the drought events. 390 
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We found negative legacies on GPP (reduced uptake) in the early growing season of all legacy years (2004, 2005, 2019, and 391 

2020) at DE-Hai. Reduced and delayed leaf development due to physiological effects of the 2003 and 2018 droughts (e.g. 392 

metabolic damage, non-structural carbohydrates depletion) could result in reduced ecosystem-level photosynthesis 393 

(Migliavacca et al., 2009; Rocha and Goulden, 2010; Kannenberg et al., 2019), and could potentially explain negative legacies 394 

on GPP at the start of the growing season. In line with this hypothesis, we found the enhanced vegetation index (EVI, a proxy 395 

of leaf area index, Fig. S52 and Fig. S36) at the sites showed lower values than other years in the early growing seasons of 396 

2004, 2005, and 2019 and this delayed spring phenology propagated over the year of 2004 and 2019 with a shift of seasonality. 397 

We found consistently lower values of NPP allocated to foliage growth in 2004 than other years (Fig. S74). Furthermore, the 398 

detected negative legacies in the early growing season became smaller when adding EVI anomalies as an additional predictor 399 

in the random forest model (Fig. 5), indicating that the reduced and delayed leaf development partly explained the estimated 400 

legacy effects by the RF model trained with climate predictors only.  401 

Another possible mechanism explaining legacy effects could be hydraulic damage induced by drought (Anderegg et al., 2013), 402 

and therefore insufficient ability of water transport limiting sink strength (Körner, 2015) and photosynthetic capacity (Chen et 403 

al., 2010), at least until damage is repaired. If this was the case, transpiration fluxes should be reduced. However, we did not 404 

find similar negative legacy patterns on transpiration in the early growing season (Fig. S58a). Therefore, hydraulic damage 405 

did not seem a likely cause of drought legacies on GPP for these events. Overall, we cannot pinpoint the physiological causes 406 

of the detected legacy effects due to limited availability of measurements. This calls for establishing more plant-physiological 407 

measurements complementing eddy-covariance and RITRW measurements to capture sufficient information about plant water 408 

relations such as sap flow (Poyatos et al., 2021) and tree water deficit (Nehemy et al., 2021) as well as carbon allocation 409 

(Hartmann et al, 2020) to provide a more detailed process understanding of the mechanisms underlying drought legacy effects. 410 

Negative legacies on GPP in terms of lagged reduction in GPP in 2004 at DE-Lnf (14.4-24.8%) were stronger than those at 411 

DE-Hai (6.1-12.3%) in the seasonal and annual scales. The persistence of negative legacies throughout the full growing season 412 

in 2004 indicates that the 2003 drought likely caused stronger damage, especially reduced leaf development which was 413 

supported by largely reduced negative legacies of RFEVI with EVI comparing to RF without EVI (Fig. 5), on the ecosystem at 414 

DE-Lnf than that at DE-Hai. From the community-level perspective, the stronger legacy effects found at DE-Lnf compared to 415 

DE-Hai may have been partly related to differences in forest composition between the two sites (Tamrakar et al. 2018, Pardos 416 

et al., 2021). Measurements of GPP at tree species level were not available, therefore we relied on the legacies found for 417 

RITRW (reflecting growth), available for individual trees at DE-Hai. It should be noted, though, that the relationship between 418 

GPP and growth is complex (Fatichi et al., 2014). Negative legacy effects on RITRW of Fagus sylvatica, dominating at DE-419 

Hai, in 2004 and 2005, were found, whereas other co-dominating species (Acer pseudoplatanus and Fraxinus excelsior) did 420 

not show negative legacies. Therefore, the lower resilience of Fagus sylvatica compared to other species may have partly 421 

resulted in stronger negative legacies at the pure European beech forest at DE-Lnf than at DE-Hai. In addition, contrasting 422 

legacy effects of these two sites could also be associated with different age classes and the absolute stand age since the effects 423 

of stand age on determining modulating  the heat and drought impact on carbon exchange (Arain et al., 2022) and ecosystem-424 
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level photosynthetic capacity (Musavi et al., 2017) have been recognized. However, the evidence of species diversity and age 425 

structure effects on legacy effects needs to be further explored using more sites in the future. 426 

Stronger negative legacy effects on GPP in 2020 than those in other legacy years were found at DE-Hai in the seasonal and 427 

annual scales. This might be associated with significant tree mortality in the whole forest coveringincluding the main footprint 428 

in the period 2018-2020 (about 6% year-1 between 2017 and 2020 compared to less than 1% year-1 between 2005 and 2017) 429 

mainly caused by the storm Friedrike in January 2018 and the heat and/or drought in summer 2018 and 2019 (unpublished 430 

data). RITRW of Fagus sylvatica in 2020, on the contrary, showed slightly positive legacy effects in growth, since only living 431 

trees were sampled. This might be explained by the favorable weather conditions in winter/spring 2019/2020 associated with 432 

high mineralization rates and reduced competition for nutrients, light and water of the surviving trees (Grossiord, 2020). The 433 

RITRW data reflected mean growth signals from individual survivinged trees, while the GPP data reflected mean carbon 434 

assimilation at stand level, including positive, negative or absent legacy effects at individual tree level as well as the reduction 435 

of assimilating individuals due to higher tree mortality. 436 

Overall, we found that the lagged impacts of drought on GPP are significant compared with concurrent drought impacts at the 437 

two sites studied here. The lagged reduction in GPP resulting from drought is usually not quantified (Ciais et al., 2005; 438 

Reichstein et al., 2007), perhaps because separating legacy effects on ecosystem carbon fluxes from observations is challenging 439 

(Kannenberg et al., 2019) and process-based models have been shown to miss such legacy effects (Bastos et al., 2021). This 440 

implies that the impact of droughts on ecosystem carbon cycling in most studies might be underestimated. 441 

 442 

5.3 Importance of deep root-zone soil moisture data 443 

Deep root-zone soil moisture has been recognized as an important water source for vegetation, especially during droughts 444 

(Miguez-Macho and Fan, 2021; Werner et al., 2021). Although soil moisture measurements across three soil layers are 445 

available at both sites, the deepest depth (ca. 30cm) cannot capture the entire soil water reservoir available for European beech 446 

which has been observed to have non-negligible amounts of fine roots below 30cm across different sites (Leuschner et al., 447 

2004, Gessler et al., 2021).  448 

We tested an initial model using anomalies of soil moisture at three layers as predictors (RFSM), and found strong positive 449 

legacy effects in the late growing season in 2019 at DE-Hai (Fig. S96), which however could not be reproduced by any of the 450 

models using soil moisture information from deeper layers (Fig. S69) including the local water balance (WAI, CWD) and the 451 

reanalysis data (ERA5). Comparing the predicted time series of GPPanom of the RFSM model with observations, we found the 452 

predicted GPPanom became much more negative in the late growing season while observed GPPanom were close to zero (Fig. 453 

S107). Therefore, although soil moisture anomalies in the third layer (30cm) were largely negative when the positive residuals 454 

appeared (Fig. S118), soil moisture from layers deeper than 30 cm may maintain the water supply for photosynthesis. Also, 455 

we found the evapotranspiration from the shallow layers (0~30cm) estimated by soil moisture decrease was less than the 456 

observed evapotranspiration during dry-down periods (Fig. S119), which indicated plant water uptake from layers deeper than 457 
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30 cm during dry-down periods, in line with our hypothesis. In summary, these positive patterns are likely due to model errors 458 

from incomplete information on the soil-moisture profile rather than actual positive legacy effects. 459 

These results highlight the importance of soil moisture measurements that capture the entire root zone for more reliable 460 

understanding of ecosystem functioning, particularly in the case of drought legacy effects. 461 

6. Conclusions 462 

The frequency, intensity, duration, and spatial extent of droughts are expected to increase in the next decades due to 463 

anthropogenically caused global warming in many regions (IPCC, 2022). Drought not only impacts ecosystems concurrently, 464 

but also can have legacy effects on ecosystem carbon fluxes. We developed a residual-based approach using a random forest 465 

regression model to detect drought legacies on gross primary productivity (GPP) using eddy-covariance data. The methodology 466 

proposed here allows quantifying significant drought legacy effects on GPP at the sub-seasonal and annual scales. To the best 467 

of our knowledge, this is the first time that drought legacies on ecosystem carbon fluxes in observation are quantified usingare 468 

detected in eddy-covariance data. The GPP reduction due to drought legacy effects is of comparable magnitude to the 469 

concurrent drought effects at the studied sites, which confirms the importance of legacy effects. We found contrasting legacy 470 

effects at two neighbouring forests with different species and age structures, yet the importance of these factors could not be 471 

evaluated. Future studies across a larger range of sites will be needed to understand whether the crucial role of legacy effects 472 

is general and on which mediating factors they depend. 473 
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Supplement 

 

Figure S1. The minimum of GPP anomalies (minimum GPPanom) and WAI anomalies during the day when minimum GPPanom 

occurs and previous 14 days (mean WAIanom_15) at a) DE-Hai and b) DE-Lnf. 
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 5 

Figure S2. Out of bag scores of RF models at DE-Hai and DE-Lnf. Since using leave-one-year-out strategy (see Section 3.4), each RF 

model for a resulting time series has its own OOB score. 

 

 

Figure S3. Variable importance, indicated by increased MSE, of RF models at DE-Hai and DE-Lnf. Since using leave-one-year-out 10 

strategy (see Section 3.4), each RF model for a resulting time series has its own variable importance. 
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Figure S4. Residuals of GPP anomalies from RF and RFEVI (see Section 3.6) in legacy years at a) DE-Hai and b) DE-Lnf. Residuals 15 

of GPP anomalies are characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands show the 

median and 5th-95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The solid and dashed lines show 

the residuals based on RF and RFEVI , respectively. The model uncertainties from RFEVI (dark and light grey shaded area, respectively) are 

characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom residuals in non-legacy years. The black dashed line was the median 

of GPPanom residuals from RFEVI in non-legacy years. The ticks denoted the start of each month. Panel c and d show in more detail results 20 

in April-June and August-October at DE-Hai, respectively. 

Formatted: Font: 9 pt, Bold

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Not Italic

Formatted: Font: 9 pt

Formatted: Font: 9 pt, Not Italic

Formatted: Font: 9 pt



4 

 

 

 

Figure S52. Daily enhanced vegetation index (EVI) in the selected drought and legacy years at a), b) DE-Hai (showing the 2003 and 

2018 droughts, respectively) and c) DE-Lnf (showing the 2003 drought) Daily EVI in the selected drought and legacy years at a) 25 
DE-Hai 2003, b) DE-Hai 2018 and c) DE-Lnf 2003 showing the droughts and following legacy years, respectively. Colored points 

and lines showed original and smoothed (7-days average) EVI, respectively, in drought and legacy years. The grey lines and shaded areas 

showed the median, 25th-75th (dark grey), and 5th-95th (light grey) percentiles of EVI, respectively, over non-drought and non-legacy 

years. The shaded coral areas indicated the average growing seasons of DE-Hai and DE-Lnf. 
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 30 

Figure S63. Enhanced vegetation index (EVI) time series at a) DE-Hai and b) DE-Lnf. Colored lines were EVI anomalies in legacy 

years (2004, 2005, 2019, and 2020), while grey lines were EVI anomalies in non-legacy years (normal and drought years). 
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 35 

Figure S74. NPP of leaves in the footprint of eddy-covariance tower at DE-Hai. Colored points were leaves NPP in the drought 

year (2003) and legacy years (2004 and 2005). The boxplot showed NPP of leaves in other years. 
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Figure S85. Residuals of transpiration (Tr) anomalies from RF and RFEVI (see Section 3.6) in legacy years at a) DE-Hai and b) DE-

Lnf. Residuals of GPP anomalies were characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and 

bands showed the median and 5th-95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The solid and 

dashed lines showed the residuals based on  RF and RFEVI , respectively. The model uncertainties from RFEVI (dark and light grey shaded 45 
area, respectively) were characterized by the 25th-75th and 5th-95th quantile ranges of Tranom residuals in non-legacy years. The black dashed 

line was the median of Tranom residuals from RFEVI in non-legacy years. The ticks denoted the start of each month. 
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Figure S96. Residuals of GPP anomalies at seasonal scale in legacy years at DE-Hai from a) the model using observed soil moisture 50 
(SM), b) the model using cumulative water deficit (CWD), c) the model using estimated water availability index from a bucket 

model (WAI), and d) the model using soil moisture from ERA5 (ERA5). Legacy effects on GPP was characterized by observed minus 

predicted GPP anomalies (GPPanom residuals). The model uncertainty (dark and light grey area, respectively) was characterized by the 

25%-75% and 5%-95% quantile ranges of GPPanom residuals in non-legacy years. The black line was the median of GPPanom residuals in 

non-legacy years. CWD was estimated from cumulative differences between observed precipitation and evapotranspiration over dry 55 
periods at daily scale. 
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Figure S107. Observed (OBS) and predicted (RF) GPP anomalies in a) 2019 and b) 2020 at DE-Hai. The green area was 5-95% of 60 
predicted GPP anomalies from all loops (see Method). 
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Figure S118. Soil water content at the third layer (30cm) anomalies (SWC_3 anomaly) at DE-Hai. Colored lines were SWC_3 65 
anomalies in legacy years (2004, 2005, 2019, and 2020), while grey lines were SWC_3 anomalies in non-legacy years (normal and 

drought years). 
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Figure S129. Cumulative evapotranspiration at 0~30cm (ET_30) and at the whole soil (ET) during dry-down periods (grey areas) 

in 2019 and 2020 at DE-Hai. Dry-down periods were identified as the periods when soil moisture at 0~30cm is continuously decreasing. 70 
ET_30 was estimated by summed soil moisture decreases at 0~30cm during dry-down periods. ET was the summed observation from 

eddy-covariance measurements during dry-down periods. 

 

 


