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Abstract. Droughts affect terrestrial ecosystems directly and concurrently, and can additionally induce lagged effects in 15 

subsequent seasons and years. Such legacy effects of drought on vegetation growth and state have been widely studied in tree-16 

ring records and satellite-based vegetation greenness, while legacies on ecosystem carbon fluxes are still poorly quantified and 17 

understood. Here, we focus on two ecosystem monitoring sites in central Germany with similar climate but characterized by 18 

different species and age structures. Using eddy-covariance measurements, we detect legacies on gross primary productivity 19 

(GPP) by calculating the difference between random-forest model estimates of potential GPP and observed GPP. Our results 20 

showed that at both sites, droughts caused significant legacy effects on GPP at seasonal and annual time scales which were 21 

partly explained by reduced leaf development. The GPP reduction due to drought legacy effects is of comparable magnitude 22 

to the concurrent drought effects, but differed between two neighbouring forests with divergent species and age structures. The 23 

methodology proposed here allows quantifying the temporal dynamics of legacy effects at the sub-seasonal scale and 24 

separating legacy effects from model uncertainties. Application of the methodology at a larger range of sites will help quantify 25 

whether the identified lag effects are general and on which factors they may depend.  26 

1 Introduction 27 

The frequency, intensity, duration, and spatial extent of drought are expected to increase in the next decades due to 28 

anthropogenic global warming in many regions (IPCC, 2022). A great number of studies, considering both long-term 29 

observations (Schwalm et al., 2010; Zscheischler et al., 2014) and model simulations (Reichstein et al., 2007; Sun et al., 2015) 30 
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across various spatial scales, have shown that droughts concurrently impact the structure and function of terrestrial ecosystems 31 

(Assal et al., 2016; Frank et al., 2015; Lewis et al., 2011; Ma et al., 2015; Orth et al., 2020), potentially turning ecosystems 32 

from sinks to temporary sources of carbon (Ciais et al., 2005; Reichstein et al., 2013). Therefore, understanding the impact of 33 

droughts on terrestrial ecosystems is a key research question in Earth sciences (Piao et al., 2019). 34 

Drought impacts on terrestrial ecosystems are not limited to concurrent effects, but also include legacy effects during the 35 

following seasons and years (Anderegg et al., 2015; Frank et al., 2015; Kannenberg et al., 2020; Müller and Bahn, 2022). 36 

Legacy effects at tree and/or stand scale can be caused by the higher vulnerability to drought  due to previous water depletion 37 

of the soil (Krishnan et al., 2006, Galvagno et al., 2013), reduced or delayed leaf development (Migliavacca et al., 2009; Rocha 38 

and Goulden, 2010; Kannenberg et al., 2019), drought-induced hydraulic damage of the xylem (Anderegg et al., 2013), 39 

adjustments in carbon allocation within the trees (Huang et al., 2021), depletion of non-structural carbohydrates (Peltier et al., 40 

2021) due to reduced carbon availability and adjustments in carbon allocation (Hartman and Trumbore, 2016), tree mortality 41 

(Allen et al., 2015), as well as reduced resistance to disturbances (e.g. insects outbreaks) due to depleted non-structural 42 

carbohydrates (Erbilgin et al., 2021). However, at the ecosystem level the impact of species and age structures on legacy effects 43 

are still less understood (Haberstroh and Werner, 2022, Wang et al., 2022). 44 

Tree-ring records cover periods of decades to centuries and can cover multiple drought events, being therefore widely used to 45 

analyze inter-annual legacy effects of drought on tree growth (Anderegg et al., 2015; Huang et al., 2018; Kannenberg et al., 46 

2019). Beyond the level of individual trees, satellite-based observations and model outputs, as expressed through vegetation 47 

greenness (Wolf et al., 2016; Wu et al., 2018), canopy backscatter (Saatchi et al., 2013), aboveground carbon stocks (Wigneron 48 

et al., 2020), and gross primary productivity (Schwalm et al., 2017, Bastos et al., 2020)  have also been used to study seasonal 49 

and inter-annual legacy effects of drought. However, studies focusing on carbon fluxes, especially based on eddy-covariance 50 

measurements, are still rare (Kannenberg et al., 2020). Eddy-covariance data with hydrometeorological variables measured in 51 

parallel have the potential to quantify the timing and magnitude of legacy effects at the sub-seasonal and annual scales, and 52 

might provide insights into the mechanisms of legacy effects that might not be fully reflected in vegetation indices and tree 53 

rings.  54 

Assessments of drought impacts on the ecosystem carbon fluxes usually focus on direct and concurrent effects (Ciais et al., 55 

2005; Reichstein et al., 2007) without considering legacy effects. This is probably due to the challenge to attribute signals in 56 

the observations to a previous drought and hence identify them as legacy effects on ecosystem carbon fluxes (Kannenberg et 57 

al., 2020), and the inability of models to reproduce these legacy effects (Bastos et al., 2021). A number of studies consider 58 

ecosystems to have ‘recovered’ when the target variable such as gross primary productivity (GPP) and tree-ring width returns 59 

to the baseline, which is usually based on pre-drought values of the target variable (Bose et al., 2020; González de Andrés et 60 

al., 2021; Zhang et al., 2021). However, this might complicate the detection of legacies since GPP recovery dynamics is 61 

affected by hydrometeorological conditions in legacy years, which can either stimulate or slow-down recovery. Here, by 62 

estimating potential GPP given hydrometeorological conditions in legacy years, we consider that ‘recovery’ happens when the 63 

actual GPP reaches the potential GPP under the given hydrometeorological conditions, rather than the absolute flux.  64 
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Therefore, we aimed to develop a novel approach to quantify drought legacy effects on GPP at the sub-seasonal and annual 65 

scales. To do this, we followed a residual approach (Beringer et al., 2007) to identify legacy effects as the residuals between 66 

actual and potential GPP which is estimated by a machine-learning algorithm (specifically Random Forest regression). 67 

Furthermore, it is crucial to understand if the residuals are caused by model uncertainties or can be interpreted as legacy effects. 68 

By overlooking model uncertainties, one could misinterpret small residuals as ‘legacy effects’. Here we quantified model 69 

uncertainties to provide more robust estimates of drought legacies and avoid misinterpretation of results. To test our approach, 70 

we used eddy-covariance measurements at two neighbouring sites that experienced similar climate but are characterized by 71 

different species and age structures in central Germany. We asked 1) can we detect drought legacy effects on GPP? 2) is the 72 

GPP reduction due to drought legacy effects significant compared to the magnitude of drought concurrent effects? 3) how do 73 

drought legacy effects on GPP differ at two neighbouring forests with different species and age structures? 74 

2 Data 75 

2.1 Study sites 76 

The two neighboring temperate forest sites studied here, Hainich (DE-Hai, 51°04′46″N, 10°27′07″E) and Leinefelde (DE-Lnf, 77 

51°19′42″N, 10°22′04″E), are located in central Germany, approximately 30 km from each other. These two sites share similar 78 

climate conditions, with long-term annual mean of 8 °C for 2-m air temperature and 750 mm of total annual   precipitation 79 

(Tamrakar et al., 2018). Both sites were affected by the two extreme central European droughts in 2003 and 2018 which 80 

reduced gross primary productivity (Fu et al., 2020; Herbst et al., 2015).  81 

The forest at Hainich is an old-growth, uneven aged (1-250 years) mixed forest, dominated by beech (Fagus sylvatica, 82 

representing approximately 64% of the tree carbon stocks). Ash (Fraxinus excelsior, 28%) and sycamore (Acer 83 

pseudoplatanus, 7%) are co-dominant tree species, and additionally there are few trees of European hornbean (Carpinus 84 

betulus), Norway maple (Acer platanoides), and other deciduous species (Knohl et al., 2003). The forest at Leinefelde can be 85 

characterized as a managed even-aged (ca. 130 years) pure beech forest (Anthoni et al., 2004).  86 

2.2 Eddy-covariance and meteorological measurements 87 

Identical eddy-covariance instrumental setups and data acquisition techniques were carried out at the two sites. The 88 

methodology of data collection and quality control followed those of Aubinet et al. (2000). The standard processing methods 89 

(Pastorello et al., 2020) adopted by the Integrated Carbon Observation System (ICOS) were used to carry out the gap-filling 90 

and the partitioning (Warm Winter 2020 Team and ICOS Ecosystem Thematic Centre 2022). The GPP estimated from the 91 

nighttime partitioning algorithm (Reichstein et al., 2005) was used for the analysis (GPP_NT_VUT_REF). A detailed 92 

description of meteorological data and instrumentation can be found in previous studies (Anthoni et al., 2004; Knohl et al., 93 

2003). We used daily meteorological data alongside carbon and water fluxes, namely GPP, latent heat flux after the energy 94 

balance correction (LE_CORR), which was converted to evapotranspiration (ET) using the heat of vaporization, incoming 95 
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shortwave radiation (SW_IN), air temperature (TA), vapor pressure deficit (VPD), soil water content at the first layer (SWC_1, 96 

8cm), the second layer (SWC_2, 16cm), the third layer (SWC_3, 32cm), and potential incoming shortwave radiation 97 

(SW_IN_POT) for the years 2000-2020 at DE-Hai and 2002-2012, with a gap in 2007-2009, at DE-Lnf.  98 

Additionally, we used daily enhanced vegetation index (EVI) data from the FluxnetEO v1.0 dataset (Walther et al., 2021) for 99 

the same years as the eddy-covariance data. EVI was derived from the MCD43A4 product of MODIS with a 500m spatial 100 

resolution and we used an average over 2x2 pixels surrounding the tower. We further estimated daily transpiration based on 101 

the Transpiration Estimation Algorithm (Nelson et al., 2018). 102 

2.3 Radial increment and net primary productivity of fruits and leaves 103 

Annual radial increment (RI) was calculated from permanent band dendrometers which measures change in stem girth (or 104 

circumference) over bark. The effect due to the inclusion of shrinkage and swelling of the bark is a negligible uncerainty for 105 

four reasons: 1) we used only the annual increment, 2) the dominant species is beech that has only a thin bark, 3) we recorded 106 

the final stem diameter of each year in winter, when the water status of the xylem and the bark is relatively constant, and when 107 

stem wood or the bark are not affected by frost or late/early growth or water uptake, and 4) in this study we were interested 108 

only in the interannual variability of stem growth, which is less affected by shrinkage and swelling at the described temporal 109 

scale than absolute growth rates. The dendrometer trees represented the main species and their respective size classes of the 110 

main footprint at DE-Hai for the years 2003 to 2020. Because of technical constraints, damages and a natural dieback of single 111 

trees, the number of measurement trees per year varied between 54 and 95. Net primary productivity (NPP) of fruits for the 112 

years 2003 to 2020, and NPP of leaves for the years 2003 to 2016 resulted from litter samplings (25-29 traps) within the main 113 

footprint area of the flux tower. The high fluctuation of annual fruit NPP is caused by the periodically high fruit production 114 

(masting) of beech (Fagus sylvatica). In mast years the proportion of beech fruits (nuts and shells) amounted to almost 92% 115 

of total fruit mass. At DE-Lnf these data are not available. A detailed description of measurement and processing methods can 116 

be found in a previous study (Mund et al., 2020). 117 

3 Methodology 118 

3.1 Data processing 119 

As the first step, we filtered and processed the eddy covariance and meteorological data in the following way: 120 

1) To ensure reliable data for our analysis we used gap-filled daily data for days for which more than 70% of measured and 121 

good quality gap-fill data (Reichstein et al., 2005) were available. 122 

2) We only used data during the growing season which was defined as the period when GPP was greater than 10% of maximum 123 

of GPP as inferred from a smoothed (centered 7-days moving averages) daily average GPP across all years. 124 
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3) We calculated anomalies of all variables by subtracting the mean seasonal cycle and any significant long-term linear trend, 125 

detected by the Mann-Kendall test (Kendall, 1948), as these can obscure drought-related signals. We took the mean of each 126 

day across all considered years and then used centered 7-days moving averages to calculate the mean seasonal cycle. 127 

4) Furthermore, a 7-days moving average smoothing was applied to the anomaly time series to filter out noise at daily time 128 

scales. We expect this to increase the accuracy of our model while preserving drought legacy patterns which rather/better 129 

emerge at longer time scales. 130 

As for RI data, we removed for each individual tree any significant long-term linear trend detected using the Mann-Kendall 131 

test (Kendall, 1948). 132 

 133 

3.2 Water availability index estimation 134 

Soil moisture at the two study sites was measured only at the upper 30 cm and thus does not account for water availability in 135 

deeper layers (see Section 5.4). Therefore, we used a bucket model approach based on observed evapotranspiration and 136 

precipitation to estimate a vegetation water availability index, WAI (Tramontana et al., 2016), calculated as: 137 

 WAI0 = WAIwam-up (1) 

 WAIt = min(WAImax, WAIt-1 + Pt - ETt) (2) 

Where WAI0 was the initial value of the water availability index (WAI), WAIwarm-up was the end value of WAI from the warm-138 

up of the bucket model (Eq. 1). To warm up the bucket model, we ran it 5 times through the first year before starting the actual 139 

computation across all considered years.WAIt-1 (mm) and WAIt (mm) were WAI at time step t-1 and t, respectively, Pt (mm), 140 

and ETt (mm) were, precipitation, and evapotranspiration at time step t (Eq. 2).  We set the bucket size (i.e. WAImax) as the 141 

maximum cumulative water deficit (CWD) at each site. The estimated bucket sizes were 205 mm and 191mm at DE-Hai and 142 

DE-Lnf, respectively.  143 

Additionally, we calculated the CWD, which was estimated from cumulative differences between observed evapotranspiration 144 

and precipitation over periods where cumulative net water loss from the soil (Σ (ET-P)) is positive. 145 

3.3 Drought and legacy years selection 146 

Since legacy effects should result from significant impacts of droughts on ecosystems, we adopted a combined driver and 147 

impact-based approach to define droughts. Drought years were defined as those years when both low water availability and a 148 

concurrent biospheric response were found, and were evaluated as follows: 149 

1) First, we selected the minimum of negative GPP anomalies relative to the mean seasonal cycle during the growing season 150 

(minimum GPPanom) as a proxy to reflect the severity of drought impact on GPP in each year. 151 

2) Then, we calculated the mean WAI anomalies relative to the mean seasonal cycle for days when minimum GPPanom occurred 152 

and the previous 14 days (mean WAIanom_15) to reflect the water availability during the development of the GPP anomaly. To 153 
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identify drought-related GPP reductions, we considered only years where negative GPP anomalies were associated with dry 154 

conditions. 155 

3) Finally, we selected the years with both the lowest minimum GPPanom and mean WAIanom_15 (Fig. S1). These were 2003 and 156 

2018 at DE-Hai and 2003 at DE-Lnf (2018 data not available here). 157 

In our data, we define non-legacy years as normal and drought years, while legacy years correspond to the two calendar years 158 

following a drought year. Including too few legacy years could lead to an underestimation of legacy effects, and too many 159 

legacy years would result in the lack of training data (see Section 3.4). As a trade-off, we selected a legacy period of two years 160 

and this choice was justified by the fact that GPP anomalies residuals returned to the range of model uncertainties (i.e. 25 th-161 

75th percentiles of model residuals), which is considered as the point when GPP recovers. This happened in 2005 (see Section 162 

4.3) following the 2003 drought at both sites. For the 2018 drought at DE-Hai, data was only available up to 2020. 163 

 164 

3.4 Quantification of legacy effects on GPP and transpiration 165 

Here, we followed a residual approach (Beringer et al., 2007) to detect drought legacy effects on GPP. To do this, we fitted a 166 

random forest regression model (RF, Breiman 2001) for daily GPP anomalies using the anomalies of hydro-meteorological 167 

variables in non-legacy years as predictors. We chose RF because it has the ability to effectively learn 1) the relationship 168 

between independent and dependent variables regardless of linear or non-linear relationships; 2) the interactions between 169 

independent variables (Ryo and Rillig, 2017). The model was then used to predict GPP anomalies in the legacy years, thereby 170 

reflecting the potential GPP anomalies given the climate conditions in that year. Specifically, the approach included the 171 

following steps (Fig. 1): 172 

 173 

Figure 1. Conceptual diagram of quantification of legacy effects. A random forest (RF) model (or linear regression, represented by the 174 
black cube on the right) was used to determine the relationship between the target variable (GPPanom or RI) and hydro-meteorological 175 
conditions using a training dataset excluding data in legacy years and one of non-legacy years for each loop. The legacy effects could be 176 
quantified as the residuals between observed (red line) and modelled (blue line) target variable (i.e. GPPanom, RI, …) in legacy years. And 177 
the residuals between observed and modelled target variable (i.e. GPPanom, RI, …) in all non-legacy years from all loops indicated RF model 178 
uncertainties using a leave-one-out approach (see below). 179 

First, all daily data in non-legacy years were used as input for the RF model to determine the relationships between anomalies 180 

of GPP (GPPanom) and anomalies of hydro-meteorological variables (SW_INanom, TAanom, VPDanom, and WAIanom) along with 181 

absolute values of SW_IN_POT to capture seasonal variations in the response of ecosystems to hydro-meteorological 182 
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conditions. These relationships represented long-term controls of climate on GPP, including drought events and near-average 183 

or wet conditions. The Out of bag (OOB) scores indicating the prediction ability of RF models were ~0.7 and ~0.8 (where zero 184 

indicates no skill and 1 denotes perfect performance) at DE-Hai and DE-Lnf, respectively (Fig. S2). WAIanom is the most 185 

important explanatory factor at both sites, followed by SW_INanom at DE-Hai and the phenological stage (given by 186 

SW_IN_POT) at DE-Lnf (Fig. S3). The ‘randomForest’ package in R 4.0.3 was used, and the number of trees, the number of 187 

variables randomly sampled as candidates at each split, and the node size of RF were set to 400, 5, and 5, respectively. Tuning 188 

those hyperparameters did not significantly change our results.  189 

Based on these relationships and the meteorological anomalies in legacy years, we used the trained RF model to predict the 190 

potential GPPanom in the absence of legacy effects and calculated the model's residuals (GPPanom residuals, i.e. observed minus 191 

predicted values), which should reflect legacies from the past drought: negative residuals corresponded to more negative or 192 

less positive GPPanom  than would be expected given the meteorological conditions  in that year, indicating negative legacies 193 

of drought, while positive residuals corresponded to less negative or more positive GPPanom, indicating beneficial legacies of 194 

drought. In order to reduce the noise at the daily scale, daily results were aggregated to the weekly scale.  195 

To account for model uncertainties and evaluate the significance of legacy effects, we used a leave-one-out approach to 196 

quantify model uncertainties. In the training phase, one of the non-legacy years was excluded from the training dataset and the 197 

trained RF model was then used to predict the GPPanom in that year. This was done for all non-legacy years, and the GPPanom 198 

residuals in non-legacy years for each leave-one-out iteration were then considered as model uncertainties. In order to reduce 199 

the noise at the daily scale, all the daily results were aggregated to the weekly scale.  200 

In order to infer possible legacy effects due to plant hydraulic damage, the same method was used to quantify legacy effects 201 

on transpiration (Tr) estimated by TEA (Transpiration estimation algorithm) approach (Nelson et al., 2018). The TEA approach 202 

first isolates the periods when evapotranspiration is most likely dominated by transpiration. Then, a quantile random forest 203 

model (Breiman, 2001; Meinshausen and Ridgeway 2006) is trained during the separated periods and transpiration can be 204 

estimated at every time step. More detail can be found in Nelson et al., 2018. We use Tr, rather than evapotranspiration (ET) 205 

because decreases in Tr due to hydraulic damage could be offset by increased soil evaporation, making the aggregated ET 206 

signal difficult to interpret. 207 

3.5 Quantification of legacy effects on tree growth 208 

To detect legacy effects on tree growth, we used a multivariate-linear regression instead of RF to develop the relationship 209 

between tree growth (detrended radial increment, RI) due to the fewer data points available. We used the following explanatory 210 

variables: detrended growing-season mean WAI, detrended growing-season mean VPD, detrended growing-season mean 211 

SW_IN, and detrended growing-season mean TA for each species. We detrended the time series of all variables by removing 212 

any significant long-term linear trend detected using the Mann-Kendall test (Kendall, 1948). Annual net primary productivity 213 

of fruits (fruits-NPP) particularly was added as an additional predictor to only the model for beech since the high fluctuation 214 

of annual fruit NPP could be caused by the periodically high fruit production (masting) of beech. We considered fruits-NPP 215 



8 

 

as a predictor to account for the trade-off between tree growth and reproduction in mast years, which could also cause the 216 

change in tree growth in addition to legacy effects from previous droughts (Hacket-Pain et al., 2015).  217 

The strategy to quantify legacy effects and model uncertainties was the same as in the case of GPP. We trained the model in 218 

non-legacy years except for each one of them iteratively and predicted potential RI in legacy years and the year additionally 219 

excluded. The residuals between observed and potential RI in non-legacy years and legacy years were then considered as 220 

model uncertainties and legacy effects, respectively. 221 

3.6 Separation of legacy effects on GPP due to structural and physiological effects 222 

Drought legacy effects on GPP might result from changes in canopy structure (structural effects) and photosynthesis capacity 223 

(physiological effects) (Kannenberg et al., 2019). Combining GPP and satellite-based EVI allows separating these structural 224 

and physiological effects. To do this separation, we used two model settings: 1) RF, which was the original setting described 225 

in section 3.4, included both structural and physiological effects; 2) RFEVI, which added EVI anomalies as an additional 226 

predictor to the original model, only included physiological effects because structural effects were already included in the 227 

predictor EVI anomalies and GPPanom residuals from this model were expected to be caused by physiological effects. Therefore, 228 

physiological legacy effects on GPP were quantified as GPPanom residuals from RFEVI while structural legacies were quantified 229 

as the difference between GPPanom residuals from RF and RFEVI (i.e. RF-RFEVI). The same method was used to separate 230 

structural and physiological effects of legacy effects on Tr. 231 

3.7 Quantifying concurrent and lagged reduction in GPP from drought 232 

Additionally, we compared the estimated legacy effects on GPP to the concurrent drought-induced GPP anomalies. To compute 233 

the concurrent reduction in GPP, we summed up all GPP anomalies over each identified drought period. Here, drought periods 234 

were defined as the periods where WAIanom was lower than -1 of standard deviation (WAISD). WAISD was calculated for each 235 

day of year by using a centered 7-day moving window instead of a single value over the whole time series because WAISD 236 

showed a seasonality. This definition only relied on the water availability without considering biospheric responses because 237 

WAI directly indicated the water supply for vegetation while GPP could include other factors in addition to drought in short 238 

periods. We quantified the lagged reduction in GPP at the annual scale as the difference between GPPanom residuals in legacy 239 

years and the median of the model uncertainties. To compare the reduction in GPP across sites, both concurrent and lagged 240 

values were normalized relative to averaged total GPP over the growing season. 241 

4. Results 242 

4.1 GPP time series in drought and legacy years 243 

 244 
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 245 

Figure 2. Daily GPP in the selected drought and legacy years at a) DE-Hai 2003, b) DE-Hai 2018 and c) DE-Lnf 2003 showing the 246 
droughts and following legacy years, respectively. Colored points and lines showed original and smoothed (7-days average) GPP, 247 
respectively, in drought and legacy years. The grey lines and shaded areas showed the median, 25th-75th (dark grey), and 5th-95th (light grey) 248 
percentiles of GPP, respectively, over non-drought and non-legacy years. The shaded coral areas indicate the average growing seasons of 249 
DE-Hai and DE-Lnf. 250 

In Fig. 2, we show the measured absolute GPP time series in the selected drought (2003 and 2018) and legacy years (2004, 251 

2005, 2019, and 2020) together with the long-term median, 25th-75th, and 5th-95th percentiles GPP at DE-Hai and DE-Lnf. In 252 

the drought year 2003, GPP was significantly lower than the baseline, defined as the 25th percentile GPP, during July-253 

September at DE-Hai and July-August at DE-Lnf, respectively. In the post-drought years 2004 and 2005, there was no 254 

systematic decrease in GPP at DE-Hai, while GPP at DE-Lnf was slightly lower than the baseline during June-August of 2004. 255 

During the 2018 drought, GPP significantly differed from the baseline during June-September at DE-Hai. After the 2018 256 

drought, we could not find any systematic decrease in GPP in 2019, while GPP was consistently lower than the baseline from 257 

mid-May to September of 2020 at DE-Hai. 258 

 259 
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4.2 Drought legacy effects on GPP: seasonal patterns 260 

 261 

Figure 3. Residuals of GPP anomalies at the seasonal scale in legacy years at a) DE-Hai and b) DE-Lnf. Residuals of GPP anomalies 262 
were characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands show the median and 5th-263 
95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. Negative residuals corresponded to more negative 264 
or less positive GPPanom than would be expected given the climate in that year, indicating negative legacies of drought, while positive 265 
residuals corresponded to less negative or more positive GPPanom, indicating beneficial legacies of drought. The model uncertainties (dark 266 
and light grey shaded area, respectively) are characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom residuals in non-legacy 267 
years. The black line represents the median of GPPanom residuals in non-legacy years. The ticks denote the start of each month. 268 
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At the seasonal scale, residuals of GPP anomalies (GPPanom residuals) showed significant departures from model uncertainties 269 

at both sites (Fig. 3). After the 2003 drought at DE-Hai, we found negative residuals below the 25th percentile of model 270 

residuals in non-legacy years (model uncertainties) during the early and late growing season of 2004 (April-July, September) 271 

and May-June of 2005, and below the 5th percentile for short periods, in April and May of 2004 and May of 2005. After June 272 

2005, residuals were mostly within 5-95% of the model residuals. After the 2018 drought at DE-Hai, we found negative 273 

residuals (below 25th percentile of model residuals) during May, June, August, and September of 2019. In 2020, residuals 274 

showed a persistent decrease from May to July, and generally stayed well below the 5th and 25th percentile of model residuals 275 

from mid-May until July and September, respectively. 276 

After the 2003 drought at DE-Lnf, we found persistent negative residuals were below the 25th percentile of model residuals 277 

over almost the complete growing season (from May to October) in 2004 and below the 5th percentile of model residuals for 278 

periods in June-September. In 2005, residuals remained mostly within 25th-75th percentiles of model residuals. 279 

 280 

4.3 Drought legacy effects on GPP: annual patterns 281 

  282 
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Figure 4. Integrated residuals of GPP anomalies at the annual scale in legacy years at DE-Hai and DE-Lnf. The color points and line 283 
ranges show the median and 5-95% percentile integrated GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The 284 
model uncertainties (the boxplot) are characterized as the 25th-75th quantile range of integrated GPPanom residuals in non-legacy years. 285 

There were systematic departures of integrated residuals of GPP anomalies in legacy years from model uncertainties at the 286 

annual scale (Fig. 4) although the seasonal patterns varied (Fig. 3). After the 2003 drought at DE-Hai, integrated residuals in 287 

2004 were significantly below the 25th percentile of model residuals, while integrated residuals were within the 25th-75th 288 

percentiles of model residuals in 2005. After the 2018 drought, integrated residuals in 2019 were near the 25 th percentiles of 289 

model residuals, while in 2020 integrated residuals were far below the 25th percentile of model residuals. 290 

At DE-Lnf, after the 2003 drought, integrated residuals in 2004 were below the 25th percentile of residuals in non-legacy 291 

years, while integrated residuals almost remained within 25th-75th percentiles of model residuals in 2005.  292 
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4.4 Drought legacy effects on GPP due to structural and physiological effects 293 

 294 

Figure 5. Residuals of GPP anomalies from RF and RFEVI (see Section 3.6) in legacy years at a) DE-Hai and b) DE-Lnf. Residuals of 295 
GPP anomalies are characterized by observed minus predicted GPP anomalies (GPPanom residuals). The color lines and bands show the 296 
median and 5th-95th percentile GPPanom residuals of ensemble model runs (see Section 3.4), respectively. The solid and dashed lines show 297 
the residuals based on RF and RFEVI , respectively. The model uncertainties from RFEVI (dark and light grey shaded area, respectively) are 298 
characterized by the 25th-75th and 5th-95th quantile ranges of GPPanom residuals in non-legacy years. The black dashed line was the median 299 
of GPPanom residuals from RFEVI in non-legacy years. The ticks denoted the start of each month. Figure S4 shows the results for April-June 300 
and August-October at DE-Hai in more detail. 301 

At the seasonal scale, residuals of GPP anomalies from RFEVI (ResEVI) showed significant departures from GPPanom residuals 302 

from RF (Res) over some periods at both sites (Fig. 5). At DE-Hai, we found ResEVI was above Res in the early growing season 303 
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(April-May) of 2004, 2005, 2019, and 2020, and also in the late growing season of 2004 (August-October) and 2019 (August-304 

September). After the 2003 drought, we found negative ResEVI below the 25th percentile of model residuals from RFEVI in 305 

non-legacy years (model uncertainties) during the early and late growing season of 2004 (May-July, September) and May of 306 

2005, and below the 5th percentile for short periods, in May of 2005. After the 2018 drought, we found negative ResEVI (below 307 

25th percentile of model residuals) during June of 2019. In 2020, ResEVI showed a persistent decrease from May to July, and 308 

generally stayed well below the 5th and 25th percentile of model residuals from mid-May until July and September, respectively.  309 

At DE-Lnf, ResEVI was below Res from April to mid-May and significantly above Res almost over the growing season of 2004 310 

(from mid-May to September). We found negative ResEVI below the 25th percentile of model residuals from RFEVI in non-311 

legacy years (model uncertainties) during June, August, and September of 2004, and below the 5th percentile for short periods, 312 

in June and September of 2004. 313 

 314 

4.5 Drought legacy effects on radial increment 315 

 316 

 317 

Figure 6. Residuals of RI in legacy years at DE-Hai across species. Residuals of RI are characterized as observed minus predicted RI 318 
anomalies (RI residuals). The model uncertainties (the grey area) are characterized as the 25th-75th quantile range of RI residuals in non-319 
legacy years.  320 
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To complement the analysis of the legacy effects on GPP at the seasonal and annual scales, we also evaluated legacy effects 321 

on tree growth at the annual scale. RI of Fagus sylvatica was below the 25th percentile of model residuals in the post-drought 322 

year 2004 and returned to the 25th-75th percentiles of model residuals in 2005. For species of Acer pseudoplatanus, Fraxnius 323 

excelsior, and others, residuals of RI were almost within 25th-75th percentiles of model residuals in 2004 and 2005. After the 324 

2018 drought, RI of all species for 2019 and 2020 were almost within or close to 25 th-75th percentiles of model residuals. 325 

 326 

4.6 Concurrent and lagged reduction in GPP 327 

 328 

Figure 7. Concurrent (dashed black bars) and lagged (colored bars) reduction in GPP from the 2003 and 2018 droughts at a) DE-329 
Hai and b) DE-Lnf. Concurrent impacts in GPP were quantified as the sum of GPP anomalies over drought periods in drought years relative 330 
to averaged total GPP over the growing season (see Method). Lagged impacts in GPP are characterized as the difference between GPPanom 331 
residuals in legacy years and median of the model uncertainties relative to averaged total GPP over the growing season. Colored bars and 332 
error bars show the median and 5-95%, respectively, of lagged reduction in GPP from ensemble model runs.  333 

Finally, we compared the concurrent impacts on GPP with the lagged impacts due to drought. We found that, at DE-Hai, the 334 

concurrent reduction in GPP was 9.4% relative to averaged total GPP over the growing season (hereinafter) in 2003, while 335 

6.1-12.3% indirectly reduced in 2004. And in 2018 concurrent reduction in GPP was 21.0%, while 3.5%-10.0% and 23.5-336 

29.6% indirectly reduced in 2019 and 2020, respectively. At DE-Lnf, the concurrent reduction in GPP was negligible in 2003 337 

(2.2%), while we estimated 14.4-24.8% GPP reduction in 2004, which was higher than the corresponding values at DE-Hai in 338 

the same year. 339 

 340 
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5. Discussion 341 

5.1 A novel methodology to detect drought legacy effects on GPP 342 

There is limited research on discovering legacy effects of drought on the ecosystem carbon cycle using eddy-covariance 343 

observations (Kannenberg et al., 2019). Here, we propose a residual-based methodology using a random-forest regression 344 

model to detect legacy effects on GPP, and found significant legacy effects on GPP using eddy-covariance data at two forests 345 

in central Germany in the similar climate but with different age and species composition. There are three advantages to our 346 

methodology: 1) capturing the temporal dynamics of legacy effects at the seasonal scales; 2) separating the influence of 347 

meteorological conditions during the post-drought period on recovery rates; 3) estimating model uncertainties to avoid 348 

misinterpreting small residuals as ‘legacy effects’. 349 

First, because we used measurements with a high temporal resolution (daily), legacy effects could be determined across 350 

different time scales. Previous studies based on tree-ring or satellite-greenness data have mainly focused on legacy effects at 351 

the annual scale (Anderegg et al., 2015; Wu et al., 2018) or monthly scale (Bastos et al., 2021), but the legacies can be more 352 

ephemeral, for example, if they appear only in critical periods of the growing season, as we have found here. Such temporally 353 

confined effects may not necessarily manifest themselves at the annual scale. For example, after the 2003 drought, the annual 354 

GPP at DE-Hai in 2005 was close to normal, which was the 25th percentile of model residuals here, but we found short legacies 355 

at the seasonal scale (Fig. 3).  356 

Second, recovery is usually considered when the target variable (i.e. GPP, tree-ring width…) returns to the baseline, usually 357 

based on pre-drought values of the target variable (Bose et al., 2020; González de Andrés et al., 2021; Zhang et al., 2021). 358 

However, meteorological conditions during the recovery period will modulate recovery rates, so that recovery can be delayed 359 

e.g. if a drought is followed by other unfavourable climatic conditions. Hence, the evaluation of possible legacy effects should 360 

be based on the functional relations between the target variable and meteorological conditions. Our model takes this into 361 

account by considering that ecosystems recovered when observed GPP reaches the potential GPP given the meteorological 362 

conditions, rather than the absolute flux.  363 

Finally, our approach allows determining the uncertainties in estimated legacy effects. Previous studies (Anderegg et al., 2015; 364 

Huang et al., 2018) quantified legacy effects as the residuals between observed and predicted target variables (i.e. tree-ring 365 

width, vegetation indices, …) in legacy years, but were not able to consider uncertainties of their trained models. Yet, it is 366 

crucial to understand if the residuals are caused by model uncertainties or can be interpreted as legacy effects. In this study, 367 

legacy effects are identified only when the model residuals are outside the range of the model uncertainties, so that we are 368 

confident that the legacies reported here are significant and avoid interpreting residuals caused by model error as legacy effects. 369 

A limitation of our approach is that we have to assume that there are no legacy effects in the climate system because this would 370 

potentially bias the interpretation of the residuals.  371 
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The methodology we proposed is able to detect the legacy effects of drought on GPP and can be easily applied to other eddy-372 

covariance sites and variables (i.e. evapotranspiration, transpiration, …), in order to improve our understanding of drought 373 

legacy effects on the ecosystem carbon cycle at different time-scales. 374 

 375 

5.2 Seasonal and annual legacy drought impacts on GPP 376 

We found that residuals of GPP anomalies (GPPanom residuals) in legacy years were significantly larger than model 377 

uncertainties at both seasonal and annual scales at both sites, which indicated strong legacy effects of drought on GPP at least 378 

in the two years following the drought events. 379 

We found negative legacies on GPP (reduced uptake) in the early growing season of all legacy years (2004, 2005, 2019, and 380 

2020) at DE-Hai. Reduced and delayed leaf development due to physiological effects of the 2003 and 2018 droughts (e.g. 381 

metabolic damage, non-structural carbohydrates depletion) could result in reduced ecosystem-level photosynthesis 382 

(Migliavacca et al., 2009; Rocha and Goulden, 2010; Kannenberg et al., 2019), and could potentially explain negative legacies 383 

on GPP at the start of the growing season. In line with this hypothesis, we found the enhanced vegetation index (EVI, a proxy 384 

of leaf area index, Fig. S5 and Fig. S6) at the sites showed lower values than other years in the early growing seasons of 2004, 385 

2005, and 2019 and this delayed spring phenology propagated over the year of 2004 and 2019 with a shift of seasonality. We 386 

found consistently lower values of NPP allocated to foliage growth in 2004 than other years (Fig. S7). Furthermore, the 387 

detected negative legacies in the early growing season became smaller when adding EVI anomalies as an additional predictor 388 

in the random forest model (Fig. 5), indicating that the reduced and delayed leaf development partly explained the estimated 389 

legacy effects by the RF model trained with climate predictors only.  390 

Another possible mechanism explaining legacy effects could be hydraulic damage induced by drought (Anderegg et al., 2013), 391 

and therefore insufficient ability of water transport limiting sink strength (Körner, 2015) and photosynthetic capacity (Chen et 392 

al., 2010), at least until damage is repaired. If this was the case, transpiration fluxes should be reduced. However, we did not 393 

find similar negative legacy patterns on transpiration in the early growing season (Fig. S8a). Therefore, hydraulic damage did 394 

not seem a likely cause of drought legacies on GPP for these events. Overall, we cannot pinpoint the physiological causes of 395 

the detected legacy effects due to limited availability of measurements. This calls for establishing more plant-physiological 396 

measurements complementing eddy-covariance and RI measurements to capture sufficient information about plant water 397 

relations such as sap flow (Poyatos et al., 2021) and tree water deficit (Nehemy et al., 2021) as well as carbon allocation 398 

(Hartmann et al, 2020) to provide a more detailed process understanding of the mechanisms underlying drought legacy effects. 399 

Negative legacies on GPP in terms of lagged reduction in GPP in 2004 at DE-Lnf (14.4-24.8%) were stronger than those at 400 

DE-Hai (6.1-12.3%) in the seasonal and annual scales. The persistence of negative legacies throughout the full growing season 401 

in 2004 indicates that the 2003 drought likely caused stronger damage, especially reduced leaf development which was 402 

supported by largely reduced negative legacies of RFEVI with EVI comparing to RF without EVI (Fig. 5), on the ecosystem at 403 

DE-Lnf than that at DE-Hai. From the community-level perspective, the stronger legacy effects found at DE-Lnf compared to 404 
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DE-Hai may have been partly related to differences in forest composition between the two sites (Tamrakar et al. 2018, Pardos 405 

et al., 2021). Measurements of GPP at tree species level were not available, therefore we relied on the legacies found for RI 406 

(reflecting growth), available for individual trees at DE-Hai. It should be noted, though, that the relationship between GPP and 407 

growth is complex (Fatichi et al., 2014). Negative legacy effects on RI of Fagus sylvatica, dominating at DE-Hai, in 2004, 408 

were found, whereas other co-dominating species (Acer pseudoplatanus and Fraxinus excelsior) did not show negative 409 

legacies. Therefore, the lower resilience of Fagus sylvatica compared to other species may have partly resulted in stronger 410 

negative legacies at the pure European beech forest at DE-Lnf than at DE-Hai. In addition, contrasting legacy effects of these 411 

two sites could also be associated with different age classes and the absolute stand age since the effects of stand age   412 

modulating the heat and drought impact on carbon exchange (Arain et al., 2022) and ecosystem-level photosynthetic capacity 413 

(Musavi et al., 2017) have been recognized. However, the evidence of species diversity and age structure effects on legacy 414 

effects needs to be further explored using more sites in the future. 415 

Stronger negative legacy effects on GPP in 2020 than those in other legacy years were found at DE-Hai in the seasonal and 416 

annual scales. This might be associated with significant tree mortality in the whole forest including the main footprint in the 417 

period 2018-2020 (about 6% year-1 between 2017 and 2020 compared to less than 1% year-1 between 2005 and 2017) mainly 418 

caused by the storm Friedrike in January 2018 and the heat and/or drought in summer 2018 and 2019 (unpublished data). RI 419 

of Fagus sylvatica in 2020 showed slightly positive legacy effects in growth, since only living trees were sampled. This might 420 

be explained by the favorable weather conditions in winter/spring 2019/2020 associated with high mineralization rates and 421 

reduced competition for nutrients, light and water of the surviving trees (Grossiord, 2020). The RI data reflected mean growth 422 

signals from individual surviving trees, while the GPP data reflected mean carbon assimilation at stand level, including 423 

positive, negative or absent legacy effects at individual tree level as well as the reduction of assimilating individuals due to 424 

higher tree mortality. 425 

Overall, we found that the lagged impacts of drought on GPP are significant compared with concurrent drought impacts at the 426 

two sites studied here. The lagged reduction in GPP resulting from drought is usually not quantified (Ciais et al., 2005; 427 

Reichstein et al., 2007), perhaps because separating legacy effects on ecosystem carbon fluxes from observations is challenging 428 

(Kannenberg et al., 2019) and process-based models have been shown to miss such legacy effects (Bastos et al., 2021). This 429 

implies that the impact of droughts on ecosystem carbon cycling in most studies might be underestimated. 430 

 431 

5.3 Importance of deep root-zone soil moisture data 432 

Deep root-zone soil moisture has been recognized as an important water source for vegetation, especially during droughts 433 

(Miguez-Macho and Fan, 2021; Werner et al., 2021). Although soil moisture measurements across three soil layers are 434 

available at both sites, the deepest depth (ca. 30cm) cannot capture the entire soil water reservoir available for European beech 435 

which has been observed to have non-negligible amounts of fine roots below 30cm across different sites (Leuschner et al., 436 

2004, Gessler et al., 2021).  437 
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We tested an initial model using anomalies of soil moisture at three layers as predictors (RFSM), and found strong positive 438 

legacy effects in the late growing season in 2019 at DE-Hai (Fig. S9), which however could not be reproduced by any of the 439 

models using soil moisture information from deeper layers (Fig. S9) including the local water balance (WAI, CWD) and the 440 

reanalysis data (ERA5). Comparing the predicted time series of GPPanom of the RFSM model with observations, we found the 441 

predicted GPPanom became much more negative in the late growing season while observed GPPanom were close to zero (Fig. 442 

S10). Therefore, although soil moisture anomalies in the third layer (30cm) were largely negative when the positive residuals 443 

appeared (Fig. S11), soil moisture from layers deeper than 30 cm may maintain the water supply for photosynthesis. Also, we 444 

found the evapotranspiration from the shallow layers (0~30cm) estimated by soil moisture decrease was less than the observed 445 

evapotranspiration during dry-down periods (Fig. S12), which indicated plant water uptake from layers deeper than 30 cm 446 

during dry-down periods, in line with our hypothesis. In summary, these positive patterns are likely due to model errors from 447 

incomplete information on the soil-moisture profile rather than actual positive legacy effects. 448 

These results highlight the importance of soil moisture measurements that capture the entire root zone for more reliable 449 

understanding of ecosystem functioning, particularly in the case of drought legacy effects. 450 

6. Conclusions 451 

The frequency, intensity, duration, and spatial extent of droughts are expected to increase in the next decades due to 452 

anthropogenically caused global warming in many regions (IPCC, 2022). Drought not only impacts ecosystems concurrently, 453 

but also can have legacy effects on ecosystem carbon fluxes. We developed a residual-based approach using a random forest 454 

regression model to detect drought legacies on gross primary productivity (GPP) using eddy-covariance data. The methodology 455 

proposed here allows quantifying significant drought legacy effects on GPP at the sub-seasonal and annual scales. The GPP 456 

reduction due to drought legacy effects is of comparable magnitude to the concurrent drought effects at the studied sites, which 457 

confirms the importance of legacy effects. We found contrasting legacy effects at two neighbouring forests with different 458 

species and age structures, yet the importance of these factors could not be evaluated. Future studies across a larger range of 459 

sites will be needed to understand whether the crucial role of legacy effects is general and on which mediating factors they 460 

depend. 461 
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