1	Supplementary Information				
2	Biogeochemistry of climate driven shifts in Southern Ocean primary				
3	producers				
4 5	Ben J. Fisher ^{1*} , Alex J. Poulton ² , Michael P. Meredith ³ , Kimberlee Baldry ⁴ , Oscar Schofield ⁵ , Sian F. Henley ¹ .				
6	¹ School of GeoSciences, University of Edinburgh, Edinburgh, United Kingdom				
7	² The Lyell Centre for Earth and Marine Science, Heriot-Watt University, Edinburgh, United Kingdom				
8	³ British Antarctic Survey, Cambridge, United Kingdom				
9 10	⁴ Institute for Marine and Antarctic Studies, College of Sciences and Engineering, University of Tasmania, Hobart, TAS, Australia				
11 12	⁵ Center of Ocean Observing Leadership, School of Environmental and Biological Sciences, Rutgers University, New Brunswick, NJ 08901, USA				
13					
14					
15					
16					
17	-4.8				
18					
19	-3.6				
20	2.8				
21	- 2.4				
22					
23	-0.8				
24	- 0.4				
25					
26					
27	A MA				
28 29 30	Figure S1: Anomaly in sea surface temperature (°C) between 2100 (SSP5-8.5) and a historical average (1985-2015). Representative of a multi-model ensemble of CMIP6 models, models included are detailed in Table S1.				

- 46 Figure S2: Anomaly in sea surface pH between 2100 (SSP5-8.5) and a historical average (1985-
- 47 **2015).** Representative of a multi-model ensemble of CMIP6 models, models included are detailed in
 48 Table S1.

Figure S3: Si* ([Si(OH)₄]–[NO₃⁻]) (μmol) across the Southern Ocean. According to the World Ocean
 Atlas data product 2018.

-10

-20

-30

-10

-20

-30

-20

-40

-50

-100 -

contributions compared to annual productivity at the first time point (2015) in the SSP585 run.

Total productivity

Diatom productivity Non-diatom productivity

Δ Vertically integrated primary productivity (%)

Subtropical (30 - 40°S)

Transitional (40 - 50°S)

Subantarctic (50 - 65°S)

Antarctic (65 - 90°S)

Figure S4: Changes in productivity (%) and the contribution of different phytoplankton classes to productivity 2015-2100. Adapted version of main figure 3 showing the relative change in productivity and phytoplankton group

Year

100 Table S1: CMIP6 members assessed.

101 Table S1 shows the CMIP6 productivity parameters used in this paper. Models shown correspond to CMIP6 models that contain a) the productivity

parameter, b) both a historical and SSP5-8.5 scenario. For all models the final data selection represents a mean across all available member_ids, bnds,

103 vertex and time parameters (following selection of desired time period). Model availability was determined from pangeo (<u>https://pangeo.io/</u>).

Variable ID	Parameter	Units	Data selection	Models containing
intpp	Primary organic carbon	gC m ⁻² yr ⁻¹	Annual average	GFDL-ESM4, GFDL-CM4, CanESM5, CanESM5-
	production by all types of			CanOE, MPI-ESM1-2-HR, UKESM1-0-LL, CESM2-
	phytoplankton.			WACCM, CNRM-ESM2-1, NorESM2-LM, MIROC-
				ES2L, CMCC-ESM2, EC-Earth3-CC, ACCESS-ESM1-
				5, MRI-ESM2-0, IPSL-CM6A-LR.
intppdiat	Primary organic carbon	gC m ⁻² yr ⁻¹	Annual average	GFDL-ESM4, CanESM5-CanOE, UKESM1-0-LL,
	production by diatoms			CESM2-WACCM.IPSL-CM6A-LR, CNRM-ESM2-1.
chl	Mass concentration of total	kg m ⁻³	Annual average	GFDL-ESM4, GFDL-CM4, CanESM5, CanESM5-
	phytoplankton expressed as			CanOE, MPI-ESM1-2-HR, UKESM1-0-LL,
	chlorophyll in sea water			NorESM2-MM, CanESM5, MIROC-ES2L,
				CMCC-ESM2, ACCESS-ESM1-5,MRI-ESM2-0.
limirrpico	Irradiance limitation of	Ratio of growth under	Annual average	GFDL-ESM4, CESM2-WACCM,
	picophytoplankton	environmental	(Combined with	
		irradiance/growth	misc/diat/diaz)	
		under unlimited		
		irradiance		
limirrmisc	Irradiance limitation of	Ratio of growth under	Annual average	GFDL-ESM4, IPSL-CM6A-LR, CNRM-ESM2-1,
	miscellaneous	environmental	(Combined with	CanESM5,
	phytoplankton	irradiance/growth	pico/diat/diaz)	
		under unlimited		
		irradiance		
limirrdiat	Irradiance limitation of	Ratio of growth under	Annual average	GFDL-ESM4, CESM2-WACCM, CNRM-ESM2-1,
	diatoms	environmental	(Combined with	IPSL-CM6A-LR, UKESM1-0-LL.
		irradiance/growth	pico/diat/diaz)	

		under unlimited		
limirrdiaz	Irradiance limitation of	Ratio of growth under	Annual average	GFDL-ESM4, CESM2-WACCM.
	diazotrophs	environmental	(Combined with	
		irradiance/growth	pico/diat/misc)	
		under unlimited		
		irradiance		
Limfediat/pico/misc	Iron limitation of	Ratio of growth under	Combined annual	GFDL-ESM4.
	diatoms/picophytoplankton/	environmental iron	average	
	miscellaneous	concentration/growth		
	phytoplankton.	under unlimited iron		
		concentration		
Rsntds	Net Downward Shortwave	W m ⁻² (Converted to	Summertime	CNRM-CM6-1, CNRM-ESM2-1, CanESM5,
	Radiation at Sea Water	μE m ⁻² s ⁻¹ by x4.599)	maximum	CanESM5-CanOE, MPI-ESM1-2-LR, CESM2-
	Surface (IPAR)			WACCM, MIROC-ES2L, IPSL-CM6A-LR, ACCESS-
				CM2, CNRM-CM6-1-LR, MRI-ESM2-0, EC-Earth3,
				CMCC-CM2-SR5, ACCESS-ESM1-5,
				FIO-ESM-2-0, EC-Earth3-CC.
sfcWindmax	Daily Maximum Near-	m s ⁻¹	Annual average of	GFDL-CM4, CNRM-CM6-1, BCC-CSM2-MR,
	Surface Wind Speed		daily maxima	CNRM-CM6-1, CNRM-ESM2-1, CanESM5, (AWI-
				CM-1-1-MR), INM-CM4-8, MPI-ESM1-2-LR, MPI-
				ESM1-2-HR, INM-CM5-0, UKESM1-0-LL, IPSL-
				CM6A-LR,KACE-1-0-G, CNRM-ESM2-1, MRI-
				ESM2-0, CNRM-CM6-1-HR, CMCC-CM2-SR5,
				HadGEM3-GC31-MM, EC-Earth3-Veg-LR, EC-
				Earth3-CC, CMCC-ESM2.
Mlotst	Ocean Mixed Layer	m	Summertime	IPSL-CM6A-LR, GISS-E2-1-G, BCC-CSM2-MR, BCC-
	Thickness Defined by σ_t		maximum	ESM1, CESM2, CanESM5, MPI-ESM-1-2-HAM,
				NESM3, MPI-ESM1-2-HR, GFDL-ESM4, CESM2-
				WACCM, GISS-E2-1-G-CC, EC-Earth3, ACCESS-
				CM2,NorESM2-MM, ACCESS-ESM1-5, CESM2-
				FV2, CESM2-WACCM-FV2, E3SM-1-1, MRI-ESM2-
				0, E3SM-1-1-ECA.

рН	Sea surface pH	pH units	Annual average	GFDL-ESM4, CanESM5, CanESM5-CanOE, CESM2- WACCM, IPSL-CM6A-LR, NorESM2-LM, NorESM2- MM, IPSL-CM6A-LR ,MRI-ESM2-0, CESM2, MIROC-ES2L
tos	Sea surface temperature	°C	Annual average	GFDL-ESM4, GFDL-CM4, CNRM-CM6-1, CNRM- ESM2-1, BCC-CSM2-MR, CanESM5-CanOE, INM- CM4-8, MIROC6, MPI-ESM1-2-LR, MPI-ESM1-2- HR, INM-CM5-0, UKESM1-0-LL, MCM-UA-1-0, NESM3, CESM2-WACCM, IPSL-CM6A-LR, CAM5-CSM1-0, FGOALS-f3-L, MRI-ESM2-0, NorESM2-0, IPSL-CM6A-LR, CNRM-CM6-1-HR, FIO-ESM-2-0, FGOALS-g3, HadGEM3-GC31-LL, GISS-E2-1-G, KACE-1-0-G, EC-Earth3-Veg ,EC - Earth3, MIROC-ES2L, ACCESS-ESM1-5.

Table S2: Models containing different classes of phytoplankton under SSP5-8.5 ScenarioMIP conditions. (not assessed in this study).

chldiat	Mass concentration of diatoms expressed as chlorophyll in sea water	kg m ⁻³	N/A	CanESM5-CanOE, CESM2-WACCM, UKESM1-0-LL.
chlpico	Mass concentration of picophytoplankton expressed as chlorophyll in sea water	kg m ⁻³	N/A	CESM2-WACCM
chlmisc	Mass concentration of miscellaneous phytoplankton expressed as chlorophyll in sea water	kg m ⁻³	N/A	CanESM5-CanOE.
chldiaz	Mass concentration of diazotrophs expressed as chlorophyll in sea water	kg m ⁻³	N/A	CESM2-WACCM, MPI-ESM1-2-LR, MPI-ESM1-2-HR

108 Table S3: Data descriptors for Figure 1.

Variable	Value	Detail	Reference
Warming at depth	+0.62 °C	Expected warming of Antarctic shelf bottom waters by 2100 across SSP5-8.5 in a CMIP6 multi-ensemble mean. (Purich & England 2021).	Purich, & England. (2021)
Changes in stratification.	CMIP6: -1.9 m/ -7.8% Uncertain, sign change within standard deviation.	Changes in mixed layer depth are highly spatially variable. In the coastal Southern Ocean (south of 60°) CMIP5 models disagree on the direction of MLD change due to the competing effects of freshwater input with increased upwelling and wind driven mixing. (Hauk et al., 2015). CMIP6 models similarly disagree but give an overall mean of -1.9 m. Melting of the Antarctic ice sheet is not a process considered within CMIP models.	Hauck et al. (2015)
pCO ₂	+200%	Increase from ~500 μatm (GLODAP) to ~1000 μatm under RCP8.5.	Kawaguchi et al. (2013).
рН	-0.3 pH units	Decrease in Southern Ocean pH from 8.09 to 7.79 calculate using the CSIRO ocean carbon model from CC IS92a atmospheric CO ₂ scenario.	McNeil and Matear.(2008).
Increased surface warming	+2.50°C	Spatial average taken from the temperature anomaly data shown in Figure S1. Representative of a CMIP6 multi-model ensemble anomaly between 2100 and (1985-2015) under SSP5-8.5.	This study

109 References:

- 110 Purich, A., & England, M. H. (2021). Historical and future projected warming of Antarctic Shelf
- 111 Bottom Water in CMIP6 models. Geophysical Research Letters, 48.
- Hauck, J., Völker, C., Wolf-Gladrow, D. A., Laufkötter, C., Vogt, M., Aumont, O., Bopp, L., Buitenhuis,
- 113 E. T., Doney, S. C., Dunne, J., et al. (2015), On the Southern Ocean CO2 uptake and the role of the
- biological carbon pump in the 21st century, Global Biogeochem. Cycles, 29, 1451–1470,
- Kawaguchi, S., Ishida, A., King, R. et al. Risk maps for Antarctic krill under projected Southern Ocean
 acidification. Nature Clim Change 3, 843–847 (2013).
- 117 McNeil, B.I. and Matear, R.J., 2008. Southern Ocean acidification: A tipping point at 450-ppm
- atmospheric CO2. Proceedings of the National Academy of Sciences, 105(48), pp.18860-18864.