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Abstract. The response of the global climate-carbon cycle system to anthropogenic perturbations happens differently at differ-

ent time scales. The unraveling of the memory structure underlying this time-scale dependence is a major challenge in climate

research. Recently the widely applied α-β-γ framework proposed by Friedlingstein et al. (2003) to quantify climate-carbon

cycle feedbacks has been generalized to account also for such internal memory. By means of this generalized framework, we

investigate the time-scale dependence of the airborne fraction for a set of Earth System Models that participated in CMIP55

(Coupled Model Intercomparison Project Phase 5). The analysis is based on published simulation data from C4MIP-type ex-

periments with these models. Independently of the considered scenario, the proposed generalization describes at global scale

the reaction of the climate-carbon system to sufficiently weak perturbations. One prediction from this theory is how the time-

scale resolved airborne fraction depends on the underlying feedbacks between climate and carbon cycle. These feedbacks are

expressed as time-scale resolved functions depending solely on analogues of the α, β, and γ sensitivities, introduced in the10

generalized framework as linear response functions. In this way a feedback-dependent quantity (airborne fraction) is predicted

from feedback-independent quantities (the sensitivities). This is the key relation underlying our study. As a preparatory step,

we demonstrate the predictive power of the generalized framework exemplarily for simulations with the MPI Earth System

Model. The whole approach turns out to be valid for perturbations up to about 100 ppm CO2 rise above pre-industrial level; be-

yond this value the response gets nonlinear. By means of the generalized framework we then derive the time-scale dependence15

of the airborne fraction from the underlying climate-carbon cycle feedbacks for an ensemble of CMIP5 models. Our analysis

reveals that for all studied CMIP5 models (1) the total climate-carbon cycle feedback is negative at all investigated time scales;

(2) the airborne fraction generally decreases for increasing time scales; and (3) the land biogeochemical feedback dominates

the model spread in the airborne fraction at all these time scales. Qualitatively similar results were previously found by em-

ploying the original α-β-γ framework to particular perturbation scenarios, but our study demonstrates that, although obtained20

from particular scenario simulations, they are characteristics of the coupled climate-carbon cycle system as such, valid at all

considered time scales. These more general conclusions are obtained by accounting for the internal memory of the system as

encoded in the generalized sensitivities, which in contrast to the original α, β, and γ are scenario-independent.
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1 Introduction

The global carbon cycle plays a key role in determining the sensitivity of Earth’s climate to anthropogenic emissions from25

fossil-fuel burning, cement production, and land-use change. The increase in atmospheric CO2 concentrations driven by those

emissions is considered the main radiative forcing driving climate change (see e.g. Gulev et al., 2021, Fig. 2.10). But to infer

the resulting changes in atmospheric CO2 it is not sufficient to consider anthropogenic emissions alone: also the response

of the global carbon cycle to these emissions must be taken into account. In reaction to rising emissions, land and ocean

store increasing amounts of carbon, on average 56% of emissions, a number that stayed surprisingly constant over the last six30

decades (Canadell et al., 2021, Fig. 5.7). This storage fraction strongly depends on environmental conditions: in years with

a positive phase of the El Niño-Southern Oscillation (ENSO) it can be as low as 20% while in negative phases it may raise

up to 75% (Canadell et al., 2021, Fig. 5.7). One must thus suspect that with rising atmospheric CO2 the resulting climate

change will affect this fraction of emissions stored away with potentially large consequences for the amount of anthropogenic

CO2 remaining in the atmosphere. In this way, the carbon cycle may either slow or accelerate climatic changes resulting from35

anthropogenic emissions. Understanding the dynamics of this cycle, and in particular how it responds to perturbations from

emissions and interferes with climate, thus constitutes an essential step in advancing climate research (Marotzke et al., 2017).

To gain insight into this combined dynamics of carbon cycle and climate, one must in particular study climate-carbon cycle

feedbacks. Such feedbacks arise from the already mentioned reaction of the global carbon cycle to a change in atmospheric CO2

that may amplify or counteract the initial change. For example, a rise in CO2 concentrations caused by fossil-fuel emissions40

drives CO2 into the ocean by increasing the difference between the CO2 partial pressure in the atmosphere and that in surface

waters (Takahashi et al., 2009). This flux of CO2 into the ocean reduces the initial increase in atmospheric CO2. On the other

hand, increasing atmospheric CO2 leads by the greenhouse effect to a rise in air temperatures. The warmer climate, in turn,

leads to an acceleration of soil microbial activity, and thereby to an increase in soil respiration rates (Raich and Potter, 1995).

The resulting enhanced land CO2 flux into the atmosphere leads to even more CO2 in the atmosphere so that the initial increase45

in atmospheric CO2 is amplified. In principle, the global response of the whole carbon cycle to emissions may be quantified

by summing the contributions from all such feedback mechanisms.

Depending on the speed at which the various feedbacks unfold, climate change may develop differently. Generally, the

dynamics of the coupled climate-carbon cycle system arising in response to perturbations depends on the spectrum of internal

time scales of the various processes involved in the response. For instance, the speed at which global climate is warming in50

reaction to anthropogenic emissions depends largely on the rate at which the oceans can take up heat, and this rate – actually an

inverse time scale – is determined by the temporal characteristics of the internal ocean dynamics, like the rate of mixing between

upper and deep ocean and the speed at which heat is re-distributed by ocean currents. Similar remarks apply to the uptake and

re-distribution of CO2 by the oceans. An indication of the involved time scales is obtained by noting that most of the carbon

taken up by the ocean since pre-industrial times still resides in its upper layers (74% in the top 700m; Frölicher et al., 2015).55

For land, the temporal characteristics of the response of the carbon cycle to rising CO2 is determined by the turnover times of

the various biogeochemical processes by which CO2 is sequestered and once more decomposed in the various ecosystems. It is
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well known that in particular our incomplete knowledge of the internal time scales of the land carbon cycle is severely limiting

our ability to predict the development of the land carbon sink (Todd-Brown et al., 2013; Friend et al., 2014; Exbrayat et al.,

2014; Koven et al., 2015; He et al., 2016; Yan et al., 2017; Zhou et al., 2018). To improve the understanding of the dynamics of60

coupled climate-carbon cycle system one thus needs to investigate together with the feedbacks also the issue of internal time

scales.

Concerning the analysis of feedbacks, a large step forward was the seminal work by Friedlingstein et al. (2003), who

proposed a mathematical framework to quantify their contributions to the response. The basic idea underlying their α-β-γ

framework is that at global scale one can identify two types of climate-carbon cycle feedback: a “biogeochemical feedback”,65

which arises by the direct effect of changes in atmospheric CO2 concentrations on global carbon stocks, and a “radiative

feedback”, which affects the carbon cycle indirectly from the change in climate that arises from the radiative forcing of CO2

perturbations. Key elements of this framework to quantify the two types of feedback – also known as carbon-concentration

and carbon-climate feedback (Arora et al., 2013) – are the β- and γ-sensitivities that, respectively, characterize the response

of stored land/ocean carbon to changes in CO2 and in climate. As in studies of the physical system by means of “pattern70

scaling” (e.g., Mitchell, 2003), climate is in this framework collectively represented by the single quantity temperature –

whose sensitivity to CO2 perturbations is quantified by α. Friedlingstein et al.’s framework led to important insights into the

role of climate-carbon cycle feedbacks for climate change and stimulated a vast amount of research in the field (Friedlingstein

et al., 2006; Gregory et al., 2009; Arneth et al., 2010; Zickfeld et al., 2011; Boer and Arora, 2013; Arora et al., 2013; Schwinger

et al., 2014; Friedlingstein et al., 2014; Friedlingstein, 2015; Adloff et al., 2018; Williams et al., 2019; Goodwin et al., 2019;75

Jones and Friedlingstein, 2020).

Quantitative results on the size of global climate-carbon cycle feedbacks were particularly obtained as part of the Coupled

Climate Carbon Cycle Model Intercomparison (C4MIP) project (Friedlingstein et al., 2013-2016; Arora et al., 2020) from Earth

system simulations tailored for the application of the α-β-γ framework. In terms of radiative forcing, when raising atmospheric

CO2 at a fixed rate of 1% per year from its pre-industrial value to four times this value, the negative biogeochemical feedback80

is more than four times stronger than the positive radiative feedback (Canadell et al., 2021). This results in a net land and ocean

carbon sequestration over the whole simulation period between 33% and 50% across the participating models (Arora et al.,

2020). Most of the spread in these numbers arises from differences in the representation of land carbon cycling in the various

models, in particular from the internal time scales assumed for the turnover of vegetation and soils (Arora et al., 2020).

The size of these feedbacks depends on the considered time scale (e.g., Enting, 2022). In the original α-β-γ framework, this85

time-scale dependence shows up only implicitly (see discussion in section 2), so that results from this framework are specific

to the considered perturbation scenario (Gregory et al., 2009; Torres Mendonça et al., 2021b). This limitation is overcome by

the recently proposed generalization of the α-β-γ framework (Heimann, 2014; Rubino et al., 2016; Enting and Clisby, 2019;

Enting, 2022) that instead explicitly quantifies the time-scale dependence of the climate-carbon cycle feedbacks independently

of the scenario. Here generalized sensitivities α,β and γ are introduced as time-dependent linear response functions, where90

the term “linear” indicates that they specify the response only to linear order in a Volterra expansion of the response into

the perturbation (see Torres Mendonça et al. (2021b)); practically this means that this approach applies only as long as the
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perturbations are sufficiently weak. As will be discussed below, in principle this generalization gives – at a globally aggregated

level – a complete description of the linear dynamics of the coupled climate carbon cycle in terms of the responses and

feedbacks at different time scales.95

In the present study we employ this generalized framework to study the role of feedbacks and their time-scale dependence

for airborne fraction. Airborne fraction is classically defined as the fraction of emitted CO2 that stays in the atmosphere after

accounting for the induced land and ocean uptake. Accordingly, airborne fraction quantifies the amount of emissions that

effectively contribute to climatic change and is therefore a key quantity of climate research (Oeschger and Heimann, 1983).

It is closely related to the climate-carbon cycle feedbacks because, as discussed above, the reduction in atmospheric CO2100

caused by ocean and land uptake depends itself on the changes in atmospheric CO2 induced by the emissions. Because of

its importance, much effort has been put into quantifying and investigating the airborne fraction (e.g., Canadell et al., 2007;

Raupach et al., 2008; Archer et al., 2009; Gregory et al., 2009; Gloor et al., 2010; Jones et al., 2013; Le Quéré et al., 2009;

Raupach et al., 2014; Bennedsen et al., 2019). The remarkable constancy of the airborne fraction over the last decades – a

consequence of the above mentioned constancy of the land and ocean carbon storage fraction – indicates that land and ocean105

uptake has not saturated yet so that their response is still linear. But as with the original α, β, and γ sensitivities, also this

classical definition of airborne fraction neglects that its value must depend on the internal time scales at which the land and

ocean carbon cycle react to emissions (see e.g. Enting, 2007). Addressing this time-scale dependence, Raupach (2013) argues

that the observed constancy of the airborne fraction is actually only a reflection of the linearity of the response of land and ocean

carbon reservoirs together with the exponential nature of the historical rise of anthropogenic emissions. Thus, as anthropogenic110

emissions cease to behave exponentially – for instance as a consequence of a cut in emissions –, the airborne fraction is expected

to deviate from its historical value. Hence, as in the case of the feedbacks quantified by the α-β-γ framework, the airborne

fraction in its standard definition cannot be seen as an invariant property of the carbon cycle alone, but only as a metric that

depends on the considered perturbation scenario. This is different when tackling airborne fraction by means of the generalized

α-β-γ framework. As demonstrated by Rubino et al. (2016) and Enting and Clisby (2019) when studying the pre-historical115

and historical development of airborne fraction, by such an approach not only α, β, and γ, but also airborne fraction can be

generalized to a dynamic quantity that describes the response of the coupled climate-carbon system to emissions at its various

internal time scales for any sufficiently weak perturbation scenario and is thus a true property of the coupled climate-carbon

system itself.

To gain further insight into the time-scale dependence of the airborne fraction and in particular how this time-scale depen-120

dence emerges from the underlying feedbacks, in the present study we analyze by means of the generalized α-β-γ framework

published simulations of different Earth System Models. More precisely, we analyze C4MIP-type simulation results from

models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5; see Taylor et al., 2012). These

C4MIP-type simulations were designed to separately quantify the biogeochemical and radiative feedbacks from the original

α, β, and γ values. We use these simulations to obtain for the respective models the linear response functions of the general-125

ized framework necessary to study the time-scale dependence of airborne fraction. For their robust recovery, we employ the

Response Function Identification method that we developed for this purpose in Torres Mendonça et al. (2021a).
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Most of our present study relies on a single theoretical result of the generalized α-β-γ framework, namely the relation

expressing the time-scale resolved airborne fraction exclusively by the underlying feedbacks (see Eq. (15) below). In this

formula the feedbacks are represented by time-scale dependent functions that in turn are fully determined by the generalized130

α, β, and γ sensitivities. By this relation the generalized framework makes a strong claim, namely that airborne fraction (a

quantity fully determined by feedbacks) can be predicted from the generalized sensitivities (quantities that are independent

of feedbacks). The validity of this relation fully relies on the assumption that at climate time scales the overall feedback

is dominated by the pair of biogeochemical and radiative feedbacks, which in respect to the latter includes the assumption

that near surface temperature is a good measure to represent also all other climate aspects, in particular those related to the135

eminently important hydrological cycle. As a consequence, in order to employ this relation in our study to derive the time-

scale dependence of airborne fraction via the underlying feedbacks from the generalized sensitivities, we first demonstrate

the predictive power of this relation when applied to Earth system simulations. We will do this exemplarily for the MPI Earth

System Model (MPI-ESM) by performing additional simulations not available for the other CMIP5 models. This demonstration

is also interesting on its own because so far theoretical inferences from the generalized α-β-γ framework have not been tested140

although this is a prerequisite for its faithful application.

Overall, our analysis of the simulation results from the considered set of CMIP5 models will show that one can understand

the dynamics of the airborne fraction from the behaviour of the climate-carbon cycle feedbacks, and that it is possible to

pinpoint the particular feedback that dominates the observed model spread in the airborne fraction at different time scales.

Moreover, it will get clear that by applying the generalized α-β-γ such results are scenario-independent although they are145

obtained from simulations performed for particular scenarios.

The outline of the paper is as follows. In the next section we introduce the generalized α-β-γ framework that underlies our

whole analysis. Then we demonstrate in section 3 its predictive power exemplarily for MPI-ESM. This part of the study serves

also a second methodological purpose: here we develop and test by example of MPI-ESM all the necessary numerical details to

derive from simulation data via the generalized sensitivities α, β and γ the time-scale resolved airborne fraction also for other150

models in the subsequent section 4. This section then contains the main part of our study where we investigate the time-scale

dependence of airborne fraction and the underlying feedbacks for an ensemble of CMIP5 models. In the final sections 5, 6, and

7 we summarize and discuss our results. To keep the paper better readable, the extensive technical parts of our investigations

are presented in the appendices.

2 Generalized α-β-γ framework155

To prepare for our investigation of the time-scale dependence of the airborne fraction and the underlying feedbacks we intro-

duce here the generalized α-β-γ framework (Heimann, 2014; Rubino et al., 2016; Enting and Clisby, 2019; Enting, 2022).
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To introduce this framework, we start from the carbon balance equation that couples the different subsystems of the global

carbon cycle

∆CA(t) =

t∫
0

E(s)ds−∆CL(t)−∆CO(t), (1)160

where ∆CA, ∆CL and ∆CO are the differences in global carbon content in the atmosphere, land and ocean with respect

to pre-industrial time (formally denoted here and below as t= 0 in all equations), and E(t) is the time-dependent flux of

(anthropogenic) carbon emissions. Following the framework of Friedlingstein et al. (2003), the land and ocean carbon changes

in Eq. (1) are assumed to depend only on the atmospheric CO2 concentration (driving the biogeochemical response) and

on temperature (driving the radiative response). Considering these changes as separate responses to CO2 and temperature165

perturbations, they can for the weak perturbations assumed here be approximated as the linear term of a Volterra expansion

around the pre-industrial state (see Torres Mendonça et al., 2021b) and thus must also combine linearly for this order of

approximation to give

∆CL(t) =

t∫
0

χ(L)
β (t− s)∆c(s)ds+

t∫
0

χ(L)
γ (t− s)∆TL(s)ds, (2)

∆CO(t) =

t∫
0

χ(O)
β (t− s)∆c(s)ds+

t∫
0

χ(O)
γ (t− s)∆TO(s)ds. (3)170

Here ∆c and ∆T are the changes in CO2 concentration and in land (L) and ocean (O) global mean near-surface air temperature

with respect to the pre-industrial state, while χ(L)
β , χ(L)

γ , χ(O)
β , and χ(O)

γ are the linear response functions that generalize the

land and ocean sensitivities β(L), γ(L), β(O), and γ(O) of the original α-β-γ framework. Additionally, the temperature can in

the same way be understood as a response to weak CO2 perturbations:

∆TL(t) =

t∫
0

χ(L)
α (t− s)∆c(s)ds, (4)175

∆TO(t) =

t∫
0

χ(O)
α (t− s)∆c(s)ds, (5)

where χ(L)
α and χ(O)

α are the linear response functions that generalize the land and ocean sensitivities α(L) and α(O). Following

Torres Mendonça et al. (2021b), the response functions that generalize the α, β, and γ sensitivities are referred to as generalized

sensitivities.

As discussed above, atmospheric CO2 depends not only on the emissions perturbing the system but also on the responses180

of land and ocean CO2 exchanges induced by them. How land and ocean carbon and thus also the exchange fluxes react to

such perturbations is characterized by the generalized sensitivities just introduced. With their help, a compact equation relating

the change in atmospheric carbon content to the perturbing emissions including all feedbacks is obtained by employing the
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last two equations to eliminate temperature in Eqs. (2) and (3), inserting these into the carbon balance Eq. (1) and using the

known relation CA(t) = kc(t), k = 2.12 PgC/ppm(CO2) (Ciais et al., 2013, p. 417) between atmospheric CO2 concentration185

and carbon content. After applying a Laplace transform to the resulting integro-differential equation one obtains

∆C̃A(p) =
Ẽ(p)

p
−
[
χ̃(L)
β (p) + χ̃(L)

γ (p)χ̃
(L)
α (p) + χ̃(O)

β (p) + χ̃(O)

γ (p)χ̃
(O)

α (p)
]∆C̃A(p)

k
, (6)

where the tilde denotes Laplace-transformed quantities. Applying the Laplace transform has the technical advantage that linear

integral equations turn into linear algebraic equations for the transformed quantities that are much easier to handle – e.g. one

can directly solve the last equation for ∆C̃A(p) (see Eq. (7) below). The other, somewhat challenging, consequence is that190

the interpretation of Laplace transformed quantities is less intuitive because they are not functions of time, but of the rates p,

whose inverses 1/p should be understood as time scales. Similar Laplace-transformed equations were derived in Enting (2007),

Rubino et al. (2016), and Enting and Clisby (2019).

In the absence of feedbacks the atmospheric change in carbon content ∆C̃A(p) would be fully determined by the cumulated

emissions Ẽ(p)/p (this is the Laplace transform of
∫
E(s)ds, E(t=1850)=0) in Eq. (6). Thus the feedbacks enter by the195

second right-hand side term. This additional contribution to ∆C̃A(p) that depends on the response itself characterizes the total

climate-carbon cycle feedback (Roe, 2009). This gets even clearer by rewriting Eq. (6) analogously to the feedback equations

of the original α-β-γ framework (Roe, 2009; Gregory et al., 2009; Adloff et al., 2018): setting

∆C̃A(p) =:
1

1− f̃(p)

Ẽ(p)

p
, (7)

with200

f̃(p) := f̃
(L)
β (p) + f̃ (L)

γα (p) + f̃
(O)
β (p) + f̃ (O)

γα (p), (8)

one obtains from Eq. (6) by term-wise identification

f̃
(L)
β (p) =−

χ̃(L)
β (p)

k
, f̃ (L)

γα (p) =−
χ̃(L)
γ (p)χ̃

(L)
α (p)

k
, (9)

f̃
(O)
β (p) =−

χ̃(O)

β (p)

k
, f̃ (O)

γα (p) =−
χ̃(O)

γ (p)χ̃
(O)

α (p)

k
. (10)205

In this way the full information on how atmospheric carbon ∆C̃A(p) (and thus atmospheric CO2) responds to a trajectory of

emissions Ẽ(p) is contained in the function f̃(p), which we call, following the terminology of Roe (2009) and Adloff et al.

(2018), the total feedback function. As also explained there, from the point of view of feedback analysis 1/(1− f̃(p)) is the

gain of the system: depending on whether 1/(1− f̃(p)) is larger or smaller than 1, the inclusion of the feedbacks amplifies

or dampens the response of atmospheric CO2 in comparison to a reference system that would simply store the cumulated210
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emissions without reaction in land and ocean fluxes1. In other words, depending on whether 1/(1− f̃(p)) is larger or smaller

than 1, the inclusion of the feedbacks results in CO2 fluxes into or out of the atmosphere in addition to the emissions.

The total feedback function f̃(p) is defined in Eq. (8) as the sum of the feedback functions f̃ (L)
β (p), f̃ (L)

γα (p), f̃ (O)
β (p) and

f̃
(O)
γα (p). These functions quantify for land and ocean the biogeochemical

(
f̃
(L)
β and f̃ (O)

β

)
and the radiative

(
f̃
(L)
γα and f̃ (O)

γα

)
feedback, also known as carbon-concentration and carbon-climate feedback (Arora et al., 2013). The feedback functions, in215

turn, are determined from the generalized sensitivities via Eqs. (9) and (10).

Concerning the time-scale dependence it is important to note that in Eq. (6) all terms depend on the same rate p, which

means that at each time scale 1/p the response in atmospheric carbon to the forcing by emissions is fully determined by the

properties of the system at that very time scale alone. This independent behaviour at different time scales is a consequence of

the assumption that the forcing is sufficiently weak so that the system behaviour is already well approximated by the linear220

term in the Volterra expansions of the response in the perturbations (Eqs. (2) to (5)) when Laplace transformed; taking the

Volterra expansion to higher order would introduce terms involving mixed time scales (see e.g. Schetzen, 2010, Eqs. (2.1),

(2.2)).

Such independent behaviour is also the reason for the identical structure of the Laplace-transformed formulas of the gen-

eralized α-β-γ framework and those of the original framework in the time domain (Heimann, 2014), which gets obvious by225

comparing the relation between atmospheric carbon and emissions (Eqs. (7)–(10)) with its analogue from the original frame-

work (Gregory et al., 2009; Adloff et al., 2018; Jones and Friedlingstein, 2020)

∆CA(t) =
1

1− f(t)

t∫
0

E(s)ds with f(t) =−1

k

(
βL(t) +βO(t) + γL(t)αL(t) + γO(t)αO(t)

)
(11)

where the t-argument emphasizes the time dependence of α, β and γ (Adloff et al., 2018). But despite this striking similarity,

these are fundamentally different formulations: while Eq. (11) is a diagnostic way of writing the response of atmospheric230

carbon to emissions by means of sensitivities that generally differ for different scenarios, Eqs. (7)–(10) predict this response

for any (weak) emissions scenario by means of unique system properties – the generalized sensitivities, which are completely

independent of the scenario. It is this predictive power that we test in the next section (see more below).

Note also that the time-scale dependence of feedbacks cannot be obtained from the original α-β-γ framework, even if one

computes the α, β, and γ sensitivities underlying its feedback quantification as time-dependent quantities α(t), β(t), and235

γ(t) as above. To understand this one must realize that, in contrast to the original α-β-γ framework where feedbacks are

quantified for a particular scenario, in the generalized framework feedback strengths are internal properties of the climate-

carbon system, consistent with the viewpoint that these strengths depend only on internal system characteristics (such as the

sensitivity of soil microbial activity to changes in temperature or the sensitivity of plant photosynthesis to changes in CO2

concentrations). If one understands feedbacks in this way, it gets clear that by calculating the time-dependent α(t), β(t),240

1Note that our reference system is different from that used in Friedlingstein et al. (2003) to quantify the feedbacks. While for our reference system

atmospheric CO2 is fully determined by CO2 emissions without any response in the land and ocean carbon fluxes, their reference system includes in addition

the biogeochemical response so that they quantify the radiative feedback alone. Therefore our Eq. (8) differs from their Eq. (9) not only because we investigate

a generalization of their framework, but also because of the different reference system. This difference is also discussed in Gregory et al. (2009).
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and γ(t) sensitivities and combining them to quantify feedbacks one is obtaining only implicit information on the time-scale

dependent feedback strengths, because the combined values of these sensitivities reflect not internal system feedbacks alone

but also the external forcing scenario (e.g., Gregory et al., 2009; Boer and Arora, 2013; Arora et al., 2013; Torres Mendonça

et al., 2021b). Accordingly, from the time dependence of those sensitivites one cannot infer the time-scale dependence of

the feedback strengths. In the generalized framework contributions from forcing and feedback are disentangled so that the245

time-scale dependence of the climate-carbon cycle feedbacks is instead explicitly quantified. This more general quantification

of feedback strengths, which arises by considering the internal memory of the climate-carbon system, may be even more

clearly understood by noting that the α, β, and γ sensitivities can be predicted by their generalized counterparts for any weak

perturbation scenario (see section 4.1).

Our main topic in this study is the time-scale dependence of the airborne fraction. As explained in the following, by the250

generalized framework this time-scale dependence can be fully traced back to that of the feedback functions. In its standard

definition (e.g., Oeschger and Heimann, 1983; Raupach, 2013), the airborne fraction AF (t) is specified by

dCA

dt
=AF (t)E(t), (12)

where the left-hand side is the rate at which emitted carbon accumulates in the atmosphere. Airborne fraction obtained its name

because this accumulation rate can also be viewed as the fraction of the emitted carbon flux that remains airborne. As already255

discussed in the introduction, despite its constancy over the last decades, AF (t) cannot be seen as a property of the climate-

carbon system itself, but only as a metric dependent on the emissions scenario E(t). But following an analogous strategy as

for the α, β, and γ sensitivies, a scenario-independent generalized airborne fraction – denoted by A(t) – can be obtained by

expanding dCA/dt in a Volterra series up to linear order in the emissions E(t) around the preindustrial state (dCA/dt= 0).

Following Enting (2007), the standard definition (12) of airborne fraction thereby generalizes to260

dCA

dt
=

t∫
0

A(t− s)E(s)ds. (13)

Compared to Eq. (12), this generalized response formula accounts not only for the effect of emissions at time instant t but

also for their effect during their whole past history. Accordingly, Eq. (13) accounts for the memory of the carbon cycle and

having introduced the generalized airborne fraction A(t) as the kernel of the linear term of a Volterra expansion about the

preindustrial state, A(t) is for weak perturbations a property of the system itself independent of the emissions scenario E(t).265

This generalized airborne fraction is not only a generalization of the standard airborne fractionAF (t) but also of the cumulative

airborne fraction2 CAF (t).

To relate the generalized airborne fraction to the feedbacks, Eq. (13) is first Laplace transformed. Using then dCA/dt=

d∆CA/dt and noting that a standard property of the Laplace transform L of the time derivative of ∆CA is that L{d∆CA/dt}=

2This follows by deriving Eq. (14) as described in the main text and then inverting it to obtain ∆CA(t) =
∫ t
0 A(t− s)

∫ s
0 E(s′)ds′ds. This can be viewed

as a generalization of the equation defining the cumulative airborne fraction ∆CA(t) =: CAF (t)
∫ t
0 E(s)ds (e.g., Raupach, 2013) by accounting for the

effect of the whole past history of cumulative emissions.
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pL{∆CA(t)} for limt→0+ ∆CA(t) = 0 (where “+” indicates the one-sided limit of t approaching zero from positive t-values),270

one obtains

∆C̃A(p) = Ã(p)
Ẽ(p)

p
. (14)

By comparing this with Eq. (7), one finds that the generalized airborne fraction is identical to what was above called gain:

Ã(p) =
1

1− f̃(p)
. (15)

This is the key relation underlying our study. It demonstrates that at each time scale the generalized airborne fraction is fully275

determined by the values of the total feedback function f̃(p) at that very time scale 1/p. An analogous relation was obtained

by Gregory et al. (2009) and Jones and Friedlingstein (2020) employing the original α-β-γ framework and by Rubino et al.

(2016) and Enting and Clisby (2019) in this generalized form.

To follow our subsequent investigation of airborne fraction it is important to note that the generalized α-β-γ framework

is more than only a way to describe the coupled climate-carbon system at global scale: actually it is a theory about this280

system with predictive power. Basic to this whole framework is the generalization of the original α, β, and γ sensitivities to

response functions. Already by this first step some predictive power is gained because once these generalized sensitivities are

known, the response to any sufficiently weak CO2 perturbation scenario can be predicted (Torres Mendonça et al., 2021b).

But more important for the present study is another type of predictive power of the generalized framework that arises by

describing the climate-carbon system in terms of assumed key feedbacks: by Eq. (15) the airborne fraction is via Eqs. (8) to (10)285

fully determined by the generalized sensitivities χ̃α, χ̃β , and χ̃γ . These characterize the responses of subsystems to specific

perturbations and have at first sight nothing to do with feedbacks. The feedbacks come about only by their combined action

as described by the generalized framework. This is particularly obvious when considering the airborne fraction: as explained

in the introduction, this quantity embodies by its very nature the effect of all the ruling feedbacks. Hence, our key equation

(15) predicts a quantity shaped by feedbacks – the airborne fraction – from quantities that are independent of feedbacks –290

the generalized sensitivities. Thereby naturally the question arises how good such a prediction will be. This question will be

answered in the next section exemplarily for simulations performed with the MPI-ESM. Finding a good predictability will

justify to derive the airborne fraction by Eq. (15) merely from the knowledge of the generalized sensitivities also for other

CMIP5 Earth system models in the main part of this study.

3 Predictive power of the generalized α-β-γ framework295

The present section prepares for the main investigation of our study (next section). This involves two issues. The first was al-

ready shortly addressed at the end of the previous section, namely that we have to demonstrate the predictive power of equation

(15) before we can reliably use it to calculate the generalized airborne fraction Ã(p). We demonstrate this by first determining

Ã(p) directly by its definition (13) from simulated atmospheric CO2, and then comparing it with its prediction obtained from

(15) via the generalized sensitivities χ̃α, χ̃β , and χ̃γ . While the sensitivities necessary for the prediction can in principle be300
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calculated for all considered CMIP5 models from published simulation results (see technical issues below), to obtain Ã(p)

directly from simulated atmospheric CO2 one needs additional simulations. Therefore we restrict our demonstration to MPI-

ESM for which we perform these additional simulations. It should be noted that this demonstration is also interesting on its

own, because the validity of inferences from the generalized framework has so far never been demonstrated. For conciseness,

we call in the following the airborne fraction computed by application of its definition (13) from simulated atmospheric CO2305

as true airborne fraction, while the airborne fraction calculated via Eq. (15) of the generalized framework from simulated

generalized sensitivities as predicted airborne fraction.

The second preparatory issue tackled in this section concerns the technical aspects of the calculation of the generalized

sensitivities from simulation data. As explained in Torres Mendonça et al. (2021a), this calculation is generally not trivial.

There are two main complications:310

(i) Noise: the problem of deriving response functions such as the generalized sensitivities from perturbation experiments

data is mathematically “ill-posed”. In practice this means that by trying to solve it by classical numerical methods one

obtains sensitivities corrupted by the noise in the data.

(ii) Nonlinearities: the generalized framework is a linear approach. Therefore, when recovering the generalized sensitivities

one has to make sure that the response data is not contaminated by strong nonlinear contributions that would otherwise315

hinder the recovery.

To derive the generalized sensitivities we employ our recently developed Response Function Identification (RFI) method

(Torres Mendonça et al., 2021a, b). This method recovers the generalized sensitivity from a single realization of an arbitrary

perturbation experiment. In particular the RFI method addresses complication (i): it filters out the noise in the recovered

generalized sensitivity by means of Tikhonov-Phillips regularization (Phillips, 1962; Tikhonov, 1963), with the regularization320

parameter determined via the discrepancy principle (Morozov, 1966) from an estimate of the noise level in the data (obtained

from the associated control simulation).

To address complication (ii), we employ following Torres Mendonça et al. (2021b) two additional procedures: first, we

pre-transform the data by different techniques to try to account for known nonlinearities in the response for which we want to

derive the generalized sensitivity (e.g. the response of land carbon to changes in CO2 concentrations characterized by χ(L)
β (t)325

– first term in Eq. (2)); second, by means of additional perturbation experiments we estimate the maximum perturbation

strength limiting the extent of the linear regime of that response. By accounting for known nonlinearities in the response, the

first procedure allows one to take data at higher perturbation strengths and thus higher signal-to-noise ratio, which leads to a

better recovery of the generalized sensitivity. Therefore another technical aspect of the present section is to determine for each

generalized sensitivity the pre-processing technique that gives the best recovery. The second procedure assures that the taken330

data contain no strong nonlinearities that could hinder the recovery. This second procedure serves also a different purpose: to

estimate the range of perturbation strengths for which the generalized framework as a whole is applicable. Since this range

is generally different for the different involved responses (i.e. for each term in the right-hand side of Eqs. (2)–(5)), the linear

regime of the generalized framework as a whole is determined by the smallest of the maximum perturbation strengths limiting
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the linear regime of those responses separately. Since for employing these procedures additional experiments are needed, we335

restrict our analysis to the MPI-ESM – for which we perform those experiments –, and assume in the next section that the

pre-processing techniques and ranges of linearity identified for MPI-ESM apply also to other CMIP5 models.

To demonstrate the predictive power of the generalized framework, all these technical issues must be tackled before we

can invoke Eq. (15) to reliably compute the predicted airborne fraction. We tackle them by following the recipes given in

Torres Mendonça et al. (2021b). Since these technical parts of our study reveal no further scientific insight we have relegated340

their rather lengthy description to Appendix A. The obtained results concerning the size of the linear regime and the best

pre-processing technique are summarized in Table A2.

3.1 Determining the true airborne fraction from simulated atmospheric CO2

As explained above, to demonstrate that indeed the time-scale resolved airborne fraction Ã(p) is reliably predicted by Eq. (15)

of the generalized framework, we compare it with the true airborne fraction calculated by application of its defining equation345

(13). This section explains how to obtain this true airborne fraction from a simulation with prognostic atmospheric CO2,

i.e. from an emission-driven simulation.

From given time series for atmospheric carbon content CA(t) and emissions E(t) one could in principle obtain Ã(p) by

solving the defining equation (13) by means of our RFI method for A(t) followed by a Laplace transform. But to proceed

in this way one had first to calculate dCA/dt from CA(t) (compare (13)), which introduces numerical noise that deteriorates350

the quality of recovery of A(t) (Torres Mendonça et al., 2021a). Therefore we proceed differently. To linear order a Volterra

expansion of CA into the perturbing emissions gives

∆CA(t) =

t∫
0

χζ(t− s)E(s)ds, (16)

which defines another response function χζ(t).3 A Laplace transform then gives4 (Enting, 1990)

∆C̃A(p) = χ̃ζ(p)Ẽ(p). (17)355

By comparing this with the Laplace-transformed definition of the generalized airborne fraction (14) one thus obtains (as also

noted by Enting and Clisby (2019))

Ã(p) = pχ̃ζ(p). (18)

By these considerations, the true airborne fraction Ã(p) can be determined from emission-driven simulations in three steps:

first, solve (16) by our RFI method for χζ(t) using simulation data for ∆CA(t) and E(t) (no numerical derivative needed).360

Second, Laplace-transform the recovered χζ(t) to obtain χ̃ζ(p). Finally, apply Eq. (18) to determine Ã(p) from χ̃ζ(p).
3We thank the reviewer Ian Enting for making us aware that χζ(t) has been widely studied in connection with the so-called “Global Warming Potential”

(see e.g. Joos et al., 2013).
4We note that, in contrast to Eq. (14), no p-factor shows up in Eq. (17). This is essentially because Eq. (13), from which (14) is obtained, has on the

left-hand side the time derivative of the left-hand side of Eq. (16) (from which (17) is obtained), and the Laplace transform of this time derivative is p∆C̃A(p)

(see text introducing Eq. (14)).
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For our demonstration of predictive power we performed impulse-type emission-driven experiments with MPI-ESM and

obtained Ã(p) from the resulting simulation data following these three steps (see Appendices B and C for details). The resulting

true Ã(p) is plotted in Fig.1.

3.2 Determining the predicted airborne fraction from generalized α-β-γ sensitivities365

The second step towards the demonstration of the predictive power of the generalized framework is to calculate the predicted

airborne fraction by application of Eq. (15) from the generalized sensitivities. For a proper comparison with the true airborne

fraction from above, this predicted airborne fraction is obtained from simulations with the same model (MPI-ESM) as the true

airborne fraction, although from different simulation experiments.

To predict airborne fraction via the total feedback function f̃(p) from Eq. (15) one needs to know the generalized sensitiv-370

ities (see Eqs. (8) to (10)). These we obtain from two standard C4MIP-type experiments performed with MPI-ESM that are

published in the international CMIP5-repository (see Appendix A for details). These C4MIP-type simulations were tailored

for separate determination of the α, β, and γ sensitivities of the original framework (Taylor et al., 2012; Arora et al., 2013)

but are similarly suited for separate determination of their generalized counterparts (Torres Mendonça et al., 2021b). In both of

experiments atmospheric CO2 concentration is prescribed to rise from its pre-industrial level by 1% per year, but for separate375

identification of the different sensitivities this rising CO2 is made to act differently in the two simulations: in the radiatively

coupled (“rad”) simulation the CO2 rise affects only the atmospheric radiation code, while in the biogeochemically coupled

(“bgc”) simulation the rise in CO2 affects only biogeochemical processes (ocean pCO2, leaf CO2); in both simulations for the

respective other aspect CO2 stays at its pre-industrial level.

To determine the generalized sensitivities from the simulation data we once more invoke our RFI method (Torres Mendonça380

et al., 2021a, b). In the bgc-simulation, climate change is largely suppressed so that the changes in ocean and land carbon are to

first order determined only by the rising CO2. The rather small change in land temperature in this simulation arises by various

indirect effects, among them by a reduction in transpiration cooling because of the closing of plant stomata under higher CO2

(Arora et al., 2013). Ignoring this comparably small temperature rise, one can assume ∆T = 0 in Eqs. (2) and (3) so that

only the integrals over the rising CO2 remain in these equations. These are the equations that we solve by means of the RFI385

method for the ocean and land χβ(t) sensitivities using the data for the rising CO2 and the stored land and ocean carbon from

the bgc-simulation. The generalized α and γ sensitivities are obtained from the rad-simulation5. In this simulation the effect

of rising CO2 on the carbon chemistry is missing, i.e. stored land and ocean carbon change only because of changing climate,

collectively represented by temperature in the α-β-γ framework. Hence in Eqs. (2) and (3) one can now drop the integrals

over rising CO2 so that only the integrals over rising temperature remain; these reduced equations are then solved by the RFI390

method for the ocean and land χγ(t) under the integral. Finally, because the α sensitivities measure the direct response of

rising CO2 via its greenhouse effect on land and ocean temperatures, these sensitivities are as well determined from the rad

simulation. The respective equations to be solved for the χα(t) sensitivities are (4) and (5).

5We note that the sensitivities need not be derived from “bgc” and “rad” simulations: also either of these two together with a “fully-coupled” experiment –

where both the radiation and the biogeochemical code are affected by CO2 changes – suffices (see e.g. Arora et al., 2020).
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Actually, as already explained in the introduction to this section, to obtain linear response functions reliably by the RFI

method, additional preparatory effort is needed concerning selection of a pre-processing technique and checks assuring that395

the underlying linearity assumption is valid for the simulation data used. For those purposes we performed additional rad- and

bgc-simulations with MPI-ESM for a variety of different CO2 forcing scenarios (see Table A1 in Appendix A). Based on this

preparatory analysis we then obtain the generalized sensitivities of MPI-ESM in the time domain (see Appendix A).

The final steps to obtain the generalized airborne fraction as predicted by (15) from the generalized framework are to

Laplace-transform the obtained generalized sensitivities (done analytically; see (Torres Mendonça et al., 2021a)), calculate400

from Eqs. (8)–(10) the total feedback function f(p), and then obtain finally by our key equation (15) the predicted time-scale

resolved airborne fraction; the result is seen in Fig. 1.

Please note that the way of deriving here the predicted generalized airborne fraction for MPI-ESM is exactly how we derive

it also for the other CMIP5 models in the next section, except that the additional preparatory analysis and checks cannot be

performed because of the lack of the necessary additional simulations. Accordingly, we will assume that the size of the linear405

regime obtained for MPI-ESM applies also to these other models and will pre-process also their data by the technique identified

to be best for MPI-ESM (see summary of linear regime and best pre-processing technique for each sensitivity in Table A2).

3.3 Demonstration of predictive power by comparing predicted with true airborne fraction

So far in this section, the generalized airborne fraction Ã(p) has been derived for MPI-ESM in two ways: first directly from

simulated atmospheric CO2 (“true” airborne fraction) and then by employing Eq. (15) of the generalized framework (“pre-410

dicted” airborne fraction). The results are plotted in Fig. 1. The two curves differ by up to around 5% for time scales below 5

years but match well for the longer time scales up to 100 years6 (mean difference less than 1%). To judge from the closeness

of the two curves how well airborne fraction is predicted one should note that their coincidence for 1/p→ 0 is not a hint for

good predictive power, but merely a hint to the reliability of the numerics by which the curves were obtained: from carbon

conservation it follows that χζ(0) = 1 (see Appendix B) so that415

lim
p→∞

Ã(p)
(18)
= lim

p→∞
pχ̃ζ(p) = lim

t→0+
χζ(t) = 1, (19)

where the second equality follows from the initial value theorem of Laplace transforms (e.g. Beerends et al., 2003, p. 292).

Hence the two curves match at small time scales for theoretical reasons and not because of the quality of the prediction. More

6Note that for our analysis we calculated Ã(p) only up to a time scale of 100 years because of the restricted size of the linear regime: Ã(p) can be predicted

only until those time scales where the recovery of the generalized sensitivities is reliable; a reliable recovery, in turn, can only be obtained when the underlying

data are unaffected by strong nonlinearities that appear at larger perturbation strengths (Torres Mendonça et al., 2021a). Most restrictive in this respect is
χβ(t) whose recovery had for this reason to be based on only the first few decades of available simulation data (70 years for land and 50 years for ocean;

see Table A2). Nevertheless, experience with MPI-ESM in (Torres Mendonça et al., 2021b, Figs. 8a and 8b) and in Appendix A2 (Fig. A1e) suggests that the

recovery of generalized sensitivities can be relied upon even for time scales longer than those involved in their recovery – even for the whole 140 years of

available data. But since we have not tested this for models other than MPI-ESM, we decided to consider our recovery of Ã(p) reliable only up to 100-years

time scale.
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insight into the behaviour of Ã(p) will be given in section 4 when discussing its dependence on the climate-carbon cycle

feedbacks calculated for the CMIP5 models.420

The discrepancy between the two estimates of the airborne fraction observed at time scales smaller than 5 years is expected

from two types of error that might have affected the results. The first type affects the predicted airborne fraction and arises from

the ill-posedness of the deconvolution problem that must be solved to derive the generalized sensitivities employed in Eq. (15).

This ill-posedness obscures information at small time scales and therefore deteriorates the recovery of the sensitivities at those

scales (see Torres Mendonça et al., 2021a). The second type of error affects the true airborne fraction and arises from the fact425

that χζ(t), from which then Ã(p) was derived via (18), was not obtained from a perfect impulse experiment (see details in

Appendix B). Although we derived χζ(t) in Appendix B enforcing its known value χζ(t= 0) = 1 as numerical constraint

to partially account for this error, the recovery of χζ(t) at small time scales might still not be fully correct. Despite these

discrepancies, as time scales lower towards 1/p= 0.01 yrs the agreement improves once more, in line with the theoretical

expectation discussed above.430

Overall, the close agreement between the two estimates of the airborne fraction demonstrates the predictive power of the

generalized α-β-γ framework: since Ã(p) encodes all information needed to predict atmospheric carbon response to any

(weak) emission scenario – accounting for all climate-carbon cycle feedbacks –, this close agreement shows that, at least for

MPI-ESM, the generalized framework correctly predicts at global scale the linear dynamics of the coupled climate-carbon

system. In addition, because the two curves were obtained from very different simulations, their agreement adds confidence435

that the numerical methods employed can be trusted. These two results suggest that the generalized framework as well as

our numerical methods are appropriate to confidently predict the airborne fraction and the underlying climate-carbon cycle

feedbacks by Eq. (15) of the generalized framework from the concentration-driven CMIP5 experiments as we do in the next

section.

4 Time-scale dependence of climate-carbon cycle feedbacks and airborne fraction for weak perturbations in CMIP5440

models

In the present section we extend our analysis of the time-scale dependence of airborne fraction to the set of CMIP5 models

listed in Table 1. In particular we study the importance of the different climate-carbon feedbacks for this time-scale dependence.

The whole investigation is based on the calculation of the generalized airborne fraction by means of Eq. (15), whose power

to predict airborne fraction from the generalized sensitivities has been demonstrated exemplarily for MPI-ESM in the previous445

section. As part of this demonstration, methods to derive the necessary generalized sensitivities from MPI-ESM standard

C4MIP simulations had to be developed (see Appendix A). They are applied here to calculate also for those other CMIP5

models the generalized sensitivities from published 1%-bgc and 1%-rad simulation data.
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Figure 1. Quality of agreement between the true generalized airborne fraction (Eq. (18); see section 3.1) and the generalized airborne fraction

predicted by invoking Eq. (15) of the generalized α-β-γ framework (see section 3.2). Technically, both curves were obtained by means of

our RFI method from MPI simulation experiment data. But while the “predicted” curve is based on the generalized sensitivities derived

from the usual pair of rad and bgc 1%-simulations using prescribed atmospheric CO2 (concentration-driven), the "true" curve is based on

data from impulse experiments performed with interactive CO2 (emission-driven; see the detailed description in Appendix B). Note that the

airborne fraction A plotted here differs from the standard airborne fraction AF (compare defining equations (13) and (12)) in that it is a

scenario-independent generalization of it that predicts the response of atmospheric carbon accumulation rate to any weak emissions scenario

(as demonstrated by Eqs. (13) in the time domain and (14) in the time-scale domain). The maximum discrepancy between the two curves is

around 5% (1-year time scale). At time scales larger than 5 years, the average discrepancy is smaller than 1%. The overall close agreement

shows that the generalized α-β-γ framework gives – at least for MPI-ESM – a reasonable and scenario-independent description of the linear

dynamics of the coupled climate-carbon system at global scale.
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Table 1. CMIP5 data considered in this study. For a description of the experiments please see Table A1.

Model 1% rad (esmFdbk1) 1% bgc (esmFixClim1) pre-industrial (piControl) 1% fully-coupled (1pctCO2)

BCC-CSM1-1 Wu and Xin (2015b) Wu and Xin (2015c) Wu and Xin (2015d) Wu and Xin (2015a)

CESM1-BGC Lindsay (2013b) Lindsay (2013c) Lindsay (2013d) Lindsay (2013a)

GFDL-ESM2M Dunne et al. (2014a) Dunne et al. (2014b) Dunne et al. (2014c) Dunne et al. (2014d)

HadGEM2-ES Liddicoat et al. (2014a) Liddicoat et al. (2014b) Jones et al. (2014) Webb et al. (2014)

IPSL-CM5A-LR IPSL (2011) IPSL (2011) IPSL (2011) Caubel et al. (2016)

MIROC-ESM Kindly provided by Tomohiro Hajima Kindly provided by Tomohiro Hajima JAMSTEC et al. (2015b) JAMSTEC et al. (2015a)

MPI-ESM-LR Torres Mendonca et al. (2023) Torres Mendonca et al. (2023) Torres Mendonca et al. (2023) Giorgetta et al. (2012)

NorESM1-ME Tjiputra et al. (2012a) Tjiputra et al. (2012b) Bentsen et al. (2011) Tjiputra et al. (2012c)

4.1 Generalized sensitivities of CMIP5 models

In this subsection we present our results for the generalized sensitivities of the considered CMIP5 models. The robustness450

of the recovered sensitivities depends on the quality of the data (Torres Mendonça et al., 2021a, b) and on how appropriate

it is to apply the numerical techniques selected in Appendix A for MPI-ESM also to the other CMIP5 models. In principle

this robustness should be examined for these other CMIP5 models by means of additional simulations as was done for the

MPI-ESM in Torres Mendonça et al. (2021b) and in Appendix A. But such simulations are not available. To get nevertheless

an idea of the quality of the recovered generalized sensitivities we use them to predict the time dependence of the standard α,455

β, and γ sensitivities for published 1% simulations and compare them with their values obtained directly from the simulation

data.

We start by discussing the identified generalized sensitivities. In Fig. 2 we show the ocean sensitivities in the first row and

the land sensitivities in the second row. Figures 2a and d show the χ(O)
β (t) and χ(L)

β (t) sensitivities. The plotted vertical lines

indicate the end of that part of the time series that is used to derive the sensitivities according to the techniques summarized in460

Table A2. As seen, these two sensitivities are for almost all models positive at all times analyzed. This is because an increase

in atmospheric CO2 concentrations results in an increase in land and ocean carbon stocks: for land this positive response is a

consequence of the CO2 fertilization effect, which increases plant productivity and vegetation growth, while in the oceans it is a

consequence of the increase in the difference between atmospheric and oceanic CO2 partial pressure, leading to a positive input

flux of CO2 into the ocean (Arora et al., 2013; Friedlingstein et al., 2006). The surprising negative values of χ(L)
β (t) for the465

HadGEM2-ES after 70 years are most likely a consequence of nonlinearities in the response of this model: by the very nature of

the biogeochemical response it can be shown that χ(L)
β (t) should decrease monotonically to zero (see Torres Mendonça et al.,

2021b, Appendix C), so that the negative values must be an artefact of the numerical recovery caused either by the nonlinearity

of the response being stronger than expected from MPI-ESM, or by deterioration from noise (Torres Mendonça et al., 2021a).

Noting that the order of magnitude of the estimated signal-to-noise ratio in the HadGEM2-ES response is equal to or larger470

than that in the response of the other models (not shown), the negative values are most likely not caused by noise but related to

nonlinearities. This result suggests that to reliably derive χ(L)
β (t) for this model, to minimize the influence of nonlinearities one
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should take data until a perturbation strength smaller than that assumed following our investigation with MPI-ESM (Appendix

A).

(a) χ(O)
β (b) χ(O)

γ (c) χ(O)
α

(d) χ(L)
β (e) χ(L)

γ (f) χ(L)
α

Figure 2. Generalized sensitivities (see definition in Eqs. (2)–(5)) in CMIP5 models. All sensitivities were derived employing the RFI

(Response Function Identification) method (Torres Mendonça et al., 2021a) using the techniques selected in Appendix A (see summary

Table A2). The inset in subfigure (f) shows the ratio of temperature sensitivities χ(L)
α (t)/χ(O)

α (t), with the shaded area indicating the likely

range of 1.4–1.7 for the ratio of land to ocean temperature (obtained for CMIP6 but consistent with CMIP5 estimates, Lee et al., 2021, section

4.5.1.1.1; see discussion in text for more details). Changes with respect to pre-industrial equilibrium state were taken as ∆x= x−x0, where

x0 is the mean value from the control simulation. Exceptions to this were ∆TL and ∆TO for MIROC-ESM: in the 1% simulations from this

model temperatures do not start at the level of pre-industrial equilibrium, so in this case we defined ∆T = T −T 0 with T 0 := T (0). The

vertical lines in plots (a) and (d) indicate the time series length that was taken to derive the sensitivities; for the other plots the full time series

was used.

There is a close agreement between the obtained generalized ocean sensitivities χ(O)
β (t) in Fig. 2a: in most models χ(O)

β (t)475

decays rapidly at a similar pace in the first years. Such overall agreement is in contrast with the results for the land sensitivities

χ(L)
β (t) in Fig. 2d, which spread largely for the different models. In particular the χ(L)

β (t) sensitivities behave differently for

the NorESM1-ME and CESM1-BGC models, which have very small values at all times. This behaviour may be explained

by noting that these models account for the coupling between nitrogen and carbon cycle, which reduces the strength of CO2
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fertilization because of nitrogen limitation (Zaehle et al., 2010; Arora et al., 2013). Excluding NorESM1-ME and CESM1-480

BGC, χ(L)
β (t) for the other models agree better at small than at large times.

Figures 2b and e present the results for the χ(O)
γ (t) and χ(L)

γ (t) sensitivites. Both generalized sensitivities are negative for

all times. This is because globally land and ocean lose carbon to the atmosphere when only the climatic effect of CO2 is taken

into account. As clarified by Arora et al. (2013), this loss is explained by noting that rising temperatures over land result in

an increase of heterotrophic soil respiration and almost everywhere to a decrease in Net Primary Production, while over the485

oceans rising temperatures result primarily in a decrease in CO2 solubility and thus degassing.

In contrast to χ(O)
β (t), for χ(O)

γ (t) the model spread is large over the whole time range (compare Figs. 2a and b). Particularly

different is the behaviour of the sensitivities for MIROC-ESM and GFDL-ESM2M: while for all other models the magnitude

of χ(O)
γ (t) decreases rapidly in the first years, for these two models only a slow decrease resulting from strong contributions of

long time scales in the generalized sensitivities (not shown) is observed. In fact the decrease is so slow that it looks as if they490

had constant values throughout the whole time range, but this is a misimpression induced by the scale of the plot.

The magnitude of χ(L)
γ (t) is – at least at small times – much larger than that of χ(O)

γ (t) for almost all models except for

NorESM1-ME and CESM1-BGC. As explained by Arora et al. (2013), in these two models the coupling between nitrogen

and carbon cycle weakens not only the biogeochemical but also the radiative response, because temperature-driven nitrogen

remineralization enhances plant productivity, which counteracts the parallel carbon loss from the enhanced soil respiration in495

the warmer climate (see also Melillo et al., 2002; Thornton et al., 2009). Analogously to χ(O)
γ (t) in MIROC-ESM and GFDL-

ESM2M, because of strong contributions from long time scales the generalized sensitivity χ(L)
γ (t) decays in the two other

models NorESM1-ME and CESM1-BGC so slowly (see Fig. 2e) that it seems as if it had a constant value throughout the time

series, which is also only a misimpression due to the scale. Overall there is a better model agreement for χ(L)
γ (t) at large rather

than at small times.500

Finally, Figs. 2c and f present the results for the χ(O)
α (t) and χ(L)

α (t) sensitivites that characterize the response of ocean

and land temperature to atmospheric CO2 perturbations. For both χ(O)
α (t) and χ(L)

α (t) there is a relatively good agreement

among models. A larger spread is nevertheless found for values at small times, for which the recovery is less robust due

to ill-posedness of the deconvolution problem that must be solved to recover the generalized sensitivities (Torres Mendonça

et al., 2021a). We note also that the values of both sensitivities are closely related: this is expected from the well-known505

fact that by various mechanisms the ratio ∆TL/∆TO =: a of land to ocean temperature is around 1.4–1.7 (Lee et al., 2021,

section 4.5.1.1.1; Eyring et al., 2021, Fig. 3.2b.). By their definition in the Laplace domain χ̃(O)

α (p) = ∆T̃O(p)/∆c̃(p) and

χ̃(L)
α (p) = ∆T̃L(p)/∆c̃(p) it follows that χ̃

(L)
α (p) = a∆T̃O(p)/∆c̃(p) = aχ̃

(O)

α (p) so that these two generalized sensitivities

should differ by about that factor. Interestingly, this is indeed seen for most models (see inset in Fig. 2f), but only for the first

decades – over the last years a large spread arises.510

We now turn to the analysis of the plausibility of the recovered generalized sensitivities by means of the prediction of

the original α, β, and γ sensitivities for standard C4MIP 1%-simulations. For this analysis we first employ the recovered

generalized sensitivities to predict the original α, β, and γ sensitivities and then compare the results to the actual α, β, and

γ sensitivities obtained directly from data. That the original α, β, and γ sensitivities can in principle be predicted from the
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generalized sensitivities may be seen by noting that515

β(X)(t) :=
∆Cbgc

X (t)

∆c(t)
=

1

∆c(t)

t∫
0

χ(X)
β (t− s)∆c(s)ds, (20)

γ(X)(t) :=
∆C rad

X (t)

∆T rad
X (t)

=
1

∆T rad
X (t)

t∫
0

χ(X)
γ (t− s)∆T rad

X (s)ds, (21)

α(X)(t) :=
∆T rad

X (t)

∆c(t)
=

1

∆c(t)

t∫
0

χ(X)
α (t− s)∆c(s)ds, (22)520

where X stands for land (L) or ocean (O), the superscripts “bgc” and “rad” indicate data taken from bgc- and rad-simulations

(see Table A1); quantities pre-fixed by ∆ stand for a difference with respect to pre-industrial time. The first equalities are the

definitions of the standard α, β, and γ sensitivities (Friedlingstein et al., 2003). The second equalities are obtained by inserting

Eqs. (2)–(5) while accounting for the specific setup of the bgc- and rad-simulations: to a good approximation (Friedlingstein

et al., 2003) temperature remains unchanged in the bgc-simulations, while the CO2 rise acts only via climate on land and525

ocean carbon storage in the rad-simulations. In the following analysis we compare the prediction from the generalized sensi-

tivities (second equalities) to the actual α, β, and γ values computed by their definition directly from the simulation data (first

equalities). The whole comparison is performed for the 1% rad and the 1% bgc simulations (Table A1).

The results of these calculations are shown in Fig. 3. We plot the α, β, and γ sensitivities as function of time for the first 30

years of the 1% simulations so that CO2 forcing strengths are within the estimated linear regime of the generalized framework530

(around 94 ppm; see Appendix A). Because of natural climate variability there is some uncertainty in the choice of the values

of pre-industrial temperature and carbon stocks needed to calculate the differences ∆TX(t) and ∆CX(t) in the definitions of

the sensitivities (see Eqs. (20)–(22)). In Fig. 3 we used the variability from the associated control simulations to estimate the

resulting uncertainty range for the data-derived sensitivities (shaded area in the figures) – details are found in Appendix E.

As seen in the figure, for γ(t) the uncertainty range gets sometimes extremely large; this happens when the ∆TX(t) found535

in the denominator comes close to zero (see Eq. (E5)). In principle, such an uncertainty from initial values enters also the

denominator of the predicted γ sensitivities, but we do not display this to keep the figures simple and the interpretation of this

comparison would not change.

The results for MPI-ESM-LR can be considered as a reference for the achievable agreement between data-derived and

predicted sensitivities, because for MPI-ESM-LR the generalized sensitivities were obtained in a quality-controlled way by540

means of additional simulations (see Appendix A) not available for the other models. In view of this achievable agreement, the

predicted α- and γ-sensitivities excellently match for all models the respective data-derived sensitivities, judged by noting that

the predicted sensitivities stay within the amplitude range of inter-annual variability that is by principle not predictable by the

linear response methods employed here because they predict the ensemble mean instead of the individual system development

(see the discussion in Torres Mendonça et al., 2021a). In contrast, for all models the predicted β(O)(t) is – for times larger than545
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15 years – systematically too high. Additionally, the predicted β(L)(t) has a slope and/or offset that systematically differs from

those of the respective data-derived β(L)(t).

Such systematic deviations in β(O)(t) and β(L)(t) are largely a result of the effect of nonlinearities in the respective carbon

responses ∆Cbgc
X (t): in fact, if the predicted sensitivities are calculated by using under the integral in (20) not the untransformed

forcing ∆c(t) but rather the transformed forcings cPI ln(c(t)/cPI) and ∆NPP (t) – these are used in the derivation of the550

generalized sensitivities χ(X)
β to account for nonlinearities (see Appendices A2 and A5) –, the quality of agreement for β(O)(t)

and β(L)(t) considerably improves (not shown). We nevertheless chose to perform the predictions with the untransformed

forcing ∆c(t) to conform with the standard formulation of the generalized framework (compare Eqs. (2)–(5)). Despite the

encountered deviations in β(X)(t), in all cases the magnitude and tendency of the predicted sensitivities matches those of the

data-derived sensitivities.555

Overall, we consider the results of this comparison as sufficiently convincing to add confidence in the validity of the re-

covered generalized sensitivities (Fig. 2) that underlie the predicted α, β, and γ sensitivities in Fig. 3. We note also that the

predicted sensitivities, in contrast to the often noisy data-derived sensitivities, are typically well defined because, as mentioned

above, the generalized sensitivities predict the response not in noisy individual realizations, but in a smooth ensemble mean.

Nevertheless, it should be kept in mind that this comparison is a mere plausibility check because essentially the same data used560

to predict the α, β, and γ sensitivities were also used to derive the generalized sensitivities.
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4.2 Additivity of responses

Before the main question of this study on the role of feedbacks for airborne fraction can finally be addressed in next section,

another preparatory step is necessary. Key to investigate this question will be Eq. (15) from the generalized framework to predict

the generalized airborne fraction via the feedback functions from the generalized sensitivities as already explained in section565

3.2. In applying this relation to the data from the different CMIP5 models one must realize that the accuracy of such predictions

depends on two aspects: 1) the quality of the numerical recovery of the generalized sensitivities (see previous subsection); and

2) the validity of the assumption underlying the generalized framework that for weak perturbations the carbon response to CO2

is determined by the sum of the biogeochemical and radiative responses; this assumption of additivity is implicit to Eqs. (2)–

(3), where the first term represents the biogeochemical response, and the second (after insertion of Eqs. (4)–(5)) the radiative570

response. Ideally, for each model one should fully check these two aspects with the aid of additional simulations, as we did for

the MPI-ESM in Torres Mendonça et al. (2021b) and in Appendix A. Unfortunately, such additional simulations are at present

not available for other models so that a full check is not possible. Nevertheless, since all CMIP5 models provide in addition

to the 1% rad and bgc simulations also a 1% “fully-coupled” simulation (a 1% simulation where both the biogeochemical and

the radiative effects of CO2 are active), one can at least check whether the biogeochemical and radiative responses are indeed575

additive for a certain range of perturbation strengths. The rationale underlying this check is that the 1% rad and bgc simulations

separately give the values for the two right hand side terms in Eqs. (2)–(3) while the 1% “fully-coupled” simulation gives the

left-hand sides.

To check additivity, we plot in Fig. 4 for each of these models the response in carbon storage for land, ocean and global

(land plus ocean) carbon from the 1% fully-coupled experiment along with the sum of the responses from the 1% bgc and580

1% rad experiments. If additivity holds for a certain range of perturbation strengths, then within this range these two curves

(1% fully-coupled and the sum of 1% bgc and 1% rad) must agree. As seen, for all models there is indeed agreement at least

within the estimated range of linearity (94 ppm CO2 rise, see Appendix A) for land, ocean, as well as global carbon stock

changes, with larger discrepancies for land and global carbon in MIROC-ESM and NorESM1-ME. For those two models, the

generalized framework may not fully describe the linear dynamics of the system in the “fully-coupled” setup7. But overall,585

within the linear regime one may say that the biogeochemical and radiative response are approximately additive in the CMIP5

models. This result, together with the evidence for the overall plausibility of the generalized sensitivities obtained in the last

subsection, gives some confidence that our numerical methods and the framework as a whole are describing in reasonable

approximation the linear dynamics of the carbon cycle in these models.

4.3 Climate-carbon cycle feedbacks and airborne fraction590

In this section we tackle the main question of our study, namely how the climate-carbon cycle feedbacks shape the time-scale

dependence of the generalized airborne fraction. From here on we take for granted that by the methods presented in the previous

7It is nevertheless not completely clear from only those single realizations if this is true, because the generalized framework predicts the dynamics of the

system only in the ensemble mean (see Torres Mendonça et al., 2021a).
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(a) BCC-CSM1-1 (b) CESM1-BGC (c) GFDL-ESM2M

(d) HadGEM2-ES (e) IPSL-CM5A-LR (f) MIROC-ESM

(g) MPI-ESM-LR (h) NorESM1-ME

Figure 4. Check of the additivity of the biogeochemical and radiative carbon responses in CMIP5 models that underlies the generalized α-

β-γ-framework (compare Eqs. (2)–(3)). Plotted are the sum of the responses from the 1% bgc and 1% rad experiments (dashed lines) and the

response from the 1% fully-coupled experiment (solid lines) for land (green), ocean (blue), and global carbon (land plus ocean; black). Note

that in contrast to all other simulations, for GFDL-ESM2M the prescribed atmospheric CO2 increase by 1% per year does not last for the

full 140 years, but only for the first 70 years from whereon CO2 is kept at the level reached. This explains the peculiar vertical behaviour at

the end of the time series in subfigure (c): while CO2 is held constant (note the reduced CO2 scale), carbon stocks continue accumulating on

land and in the ocean. This figure confirms that additivity holds approximately within the estimated linear regime of 94 ppm (see Appendix

A) for all models. For more details see text.
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sections indeed Eq. (15) reliably predicts the generalized airborne fraction for the considered CMIP5 models. We thus proceed

to estimate the feedbacks and the airborne fraction for each model via Eqs. (9), (10) and (15). The results are shown in Fig. 5.

In Fig. 5a, one sees that for almost all CMIP5 models the time-scale dependent airborne fraction decreases as the time scale595

1/p increases, all starting at 1 for small time scales and spreading from 0.56 to 0.75 at a time scale of 10 years, and from 0.26 to

0.5 at a time scale of 100 years. The only exception is HadGEM2-ES, whose time-scale dependent airborne fraction once more

increases at long time scales, which, as will be seen below, is related to a reduction in the magnitude of its land biogeochemical

feedback. That airborne fraction has value 1 at short time scales is not a property of the models but follows from its definition

(compare Eq. (19)). Not so the decrease of airborne fraction at large time scales: as will get clear below this behaviour is a600

consequence of the biogeochemical feedback being stronger than the radiative feedback in the considered CMIP5 models so

that this decrease is presumably a genuine property of the Earth system.

How the airborne fraction changes in the time-scale domain is determined by the climate-carbon cycle feedbacks. As seen

in Fig. 5b, for 1/p→ 0 all feedback functions approach zero which in view of Eq. (15) is consistent with Ã(p)→ 1 for the

airborne fraction. Besides the mathematical reasons explained in connection with Eq. (19), this behaviour can intuitively be605

understood by noting that at small time scales the ocean and land carbon cycle have not yet reacted to emissions, so that

at these scales Ã(p)→ 1 and thus atmospheric CO2 simply follows emissions (Eq. (14)). To understand how the airborne

fraction behaves as the time scale increases, one must look at the behaviour of the separate feedback functions. For larger time

scales, the feedback functions f̃ (L)
γα and f̃ (O)

γα that quantify the radiative feedbacks get increasingly positive, while the feedback

functions f̃ (L)
β and f̃ (O)

β that quantify the biogeochemical feedbacks get in general increasingly negative. The sign of these610

feedbacks is in agreement with current process understanding (Friedlingstein et al., 2006; Gregory et al., 2009; Arora et al.,

2013, 2020). But that these feedbacks are either positive or negative for all time scales is a non-trivial result that could not be

obtained by the original α-β-γ framework because there the time-scale dependent feedback strengths show up only combined

with the external forcing that enters the quantification by the underlying α, β and γ sensitivities (see discussion in section 2).

The observed uniformity of the sign of the feedbacks is explained by the fact that almost all generalized sensitivities in Fig. 2615

are either always negative or always positive: since the feedback functions are proportional either to the Laplace transform of

χβ or to the product of the Laplace transforms of χγ and χα (Eqs. (9) and (10)), one sees following the lines of the argument

for Ã(p)≥ 0 in Appendix D that by the positivity or negativity of these response functions in time also their Laplace transforms

and the associated feedback functions must have a unique sign at all time scales8. Interestingly, for increasing time scales in

almost all models – except for the HadGEM2-ES at long time scales – the sum (land plus ocean) of the biogeochemical620

feedbacks gets increasingly larger than the sum of the radiative feedbacks. As a result, in all these models the total feedback

function f̃(p) gets increasingly negative (not shown) and by Eq. (15) the airborne fraction always decreases. In the HadGEM2-

8This however does not work the other way around: from the positivity or negativity of the feedback functions one cannot determine the sign of the

associated response functions. In fact, the only exception to the observation on the uniformity of the sign of the generalized sensitivities is seen in Fig. 2 for

the χ(L)
β (t) sensitivity of HadGEM2-ES: it changes sign after 70 years but still leads to a negative f̃

(L)
β (p). But the negativity of χ(L)

β (t) in HadGEM2-ES

is still reflected in Fig. 5b: although for the domain analyzed f̃
(L)
β (p) is always negative, its magnitude starts to reduce over decadal time scales, which is in

contrast to all other feedback functions.

25



(a) Airborne fraction

(b) Feedback functions

Figure 5. Airborne fraction and climate-carbon cycle feedbacks in CMIP5 models as derived by the generalized framework (Eqs. (15) and

(9),(10)). The numbers in subfigure (b) indicate the model mean and standard deviation for each feedback function at 10-years and 100-years

time scales. Note that the generalized airborne fraction and all feedback functions are dimensionless.
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ES, at long time scales the magnitude of the land biogeochemical feedback starts to decrease, thereby reducing the magnitude

of the (negative) total feedback function and as a consequence increasing the airborne fraction.

In the mean over all models, the land biogeochemical feedback is at all time scales larger than the ocean biogeochemical625

feedback: at a time scale of 10 years, it is 1.4 times larger, and at a time scale of 100 years, 1.8 times larger. The picture is

qualitatively similar for the radiative feedback: at a time scale of 10 years, the land feedback is, despite its small value of 0.03,

orders of magnitude larger than the almost absent ocean feedback, and at a time scale of 100 years the land feedback is 7.4

times larger than its ocean counterpart. Aggregating land and ocean, the mean of the biogeochemical feedback is 22 times larger

than the radiative feedback at a time scale of 10 years, and 5.6 times larger at a time scale of 100 years. These results are in630

particular at short time scales in contrast with previous estimates (Gregory et al., 2009; Arora et al., 2013) using Friedlingstein’s

framework, which suggested that the biogeochemical feedback is about 4 times larger than the radiative feedback. One must

note though that our and previous estimates are not entirely comparable: while previous estimates were made for a particular

scenario, our estimate is valid for any scenario. In addition, here only the linear regime is considered so that the saturation of

the land and ocean carbon sinks (that reduces the values of β(L) and β(O) when higher perturbation strengths are considered)635

is not taken into account.

By Fig. 5b the model spread is for the land feedbacks much larger than that for the ocean feedbacks, as expected from

previous studies (Gregory et al., 2009; Arora et al., 2013; Friedlingstein et al., 2014). Because of the nonlinear relationship

between Ã(p) and the feedback functions (see Eq. (15)), it is not immediately clear how the model spread in the feedbacks

propagates to the airborne fraction. Assuming small, independent spreads, this propagation may be computed as (Roe, 2009;640

Barlow, 1989, p. 55)9

σ2
A(p)≈ Ã4(p)

(
σ2

f
(L)
β

(p) +σ2

f
(L)
γα

(p) +σ2

f
(O)
β

(p) +σ2

f
(O)
γα

(p)

)
, (23)

where σ2 denotes the spread (variance) for each quantity. Figure 6a shows the terms on the right-hand side of Eq. (23), the

resulting approximation of σ2
Ã

(p) (sum of those terms), and the true spread in the airborne fraction. As seen, the true variance

in the airborne fraction follows closely the component arising from the land biogeochemical feedback, with a slightly larger645

discrepancy at time scales above 30 years, indicating that on longer time scales other feedbacks’ spread becomes relatively

more important. This indicates that most of the model spread in the airborne fraction arises from the spread in the land

biogeochemical feedback. This result agrees with that obtained in a recent study (Jones and Friedlingstein, 2020) that also

evaluated how the model spread in the airborne fraction is affected by the spread in the climate-carbon cycle feedbacks, but

employing Friedlingstein’s original framework for the analysis.650

An even clearer view about the impact of the different feedbacks on the airborne fraction may be gained by artificially

changing the values of these feedbacks to study hypothetical situations and then evaluating the resulting change in the airborne

fraction. For instance, one can illustrate how strongly the model spread in the airborne fraction depends on the spread in the

land biogeochemical feedback by recalculating the statistics of the airborne fraction taking f̃ (L)
β for all models equal to its

9This follows by expanding Ã(p) around the mean into the feedback functions, assuming small spreads in the functions so that only linear terms are kept,

and then calculating the variance of the result assuming independent spreads so that covariance terms are ignored.
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(a) Variance of airborne fraction (b) All eƒ (L)β equal to model mean

Figure 6. Analysis of model spread of feedback functions and their influence on the airborne fraction. (a) Spread (variance) of airborne

fraction and decomposition in terms of the feedback contributions according to Eq. (23); (b) Airborne fraction (averaged over all models)

and its model spread (standard deviation) as shown in Fig. 5a (unchanged) and airborne fraction and the model spread that one would obtain

if the feedback function f̃ (L)
β was for all models equal to the model mean. Percentages in (b) indicate the reduction in the airborne-fraction

model spread compared to the true spread at 10- and 100-years time scale. See text for more details.

model mean. As shown in Fig. 6b, it turns out that if the exact values of only this feedback function were known and equal655

to the model mean (with all other feedback spreads remaining the same), the spread in the airborne fraction would reduce by

about 82% at a time scale of 10 years and 61% at a time scale of 100 years. This once more makes obvious that the main reason

for the model spread in the airborne fraction is the large spread in the land biogeochemical feedback.

5 Conclusions

The dynamics of the global carbon cycle can be understood in terms of feedbacks arising via the land and ocean carbon cycle660

when atmospheric CO2 is perturbed. To disentangle and separately quantify those feedbacks, Friedlingstein et al. (2003) devel-

oped the α-β-γ framework. Although this framework gives insight into the main effects of atmospheric CO2 perturbations onto

the global carbon cycle, by not accounting for the internal time scales of the system, the resulting quantification of feedbacks

is valid only for a particular perturbation scenario and time period. Such limitations are overcome by employing the recently

proposed generalization of this framework (Heimann, 2014; Rubino et al., 2016; Enting and Clisby, 2019; Enting, 2022). By665

assuming weak perturbations and accounting for the memory of the carbon cycle, the generalized α-β-γ framework quantifies

feedbacks independently of the perturbation scenario at different time scales. As a result of the generalization, this framework
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gives in principle a complete description of the linear dynamics of the global carbon cycle in terms of the underlying feedbacks.

But so far its applicability to study the dynamics of the climate-carbon system had not been systematically investigated.

Here, we employed this generalized framework to study the time-scale dependence of the climate-carbon cycle feedbacks670

and the associated airborne fraction for an ensemble of CMIP5 models. In section 3, we have shown for the example of MPI-

ESM that the generalized sensitivities identified from concentration-driven simulations correctly predict via Eqs. (7)–(8) and

(15) the generalized airborne fraction derived from emission-driven simulations. This demonstrates that the generalized α-β-γ

framework has indeed predictive power.

Based on experience with MPI-ESM, we quantified in section 4 the time-scale dependent airborne fraction and feedbacks675

for various other CMIP5 models. As can be seen from Eq. (14), the time-scale dependent airborne fraction quantifies the

fraction of emissions staying in the atmosphere at a particular time scale. At small time scales this fraction is known to be

1, i.e. atmospheric carbon simply follows emissions because feedbacks that could change it need sufficient time to react. We

found that for almost all models, the airborne fraction strictly decreases towards long time scales. This decrease is slow: even

at a time scale of 100 years the airborne fraction has dropped down only to values ranging from 0.26 to 0.5, meaning that even680

a century after CO2 emissions happened a considerable amount is still airborne, which is consistent with results from impulse

experiments (Archer et al., 2009).

Considering global carbon, in the model mean the biogeochemical feedback was found to be 22 times larger than the

radiative feedback at a 10-years time scale and 5.6 times larger at a 100-years time scale. This result suggests that at least over

shorter time scales the difference between these feedbacks may be even greater than previously thought (Gregory et al., 2009;685

Arora et al., 2013). Nevertheless, one must note that here only the linear perturbation regime is considered, so that a possible

saturation of the land and ocean carbon sinks at high CO2 (that would reduce the values of β(L) and β(O) compared to the case

where no saturation is present) is not reached.

The influence of the model spread of the different feedbacks on the airborne fraction was also investigated. It was found

that the spread in the airborne fraction arises mostly from the spread in the land biogeochemical feedback, especially for time690

scales below 30 years. By considering the hypothetical case where this particular feedback would be equal to the model mean

we found that the spread in the airborne fraction would decrease by 82% at a 10-years time scale and by 61% at a 100-years

time scale, which demonstrates even more clearly that it is indeed the land biogeochemical feedback that causes the spread in

airborne fraction between the different models.

6 Discussion695

While the generalized framework was shown here to reasonably describe the linear dynamics of the global carbon cycle in

MPI-ESM, the results obtained for the other CMIP5 models depend on two basic assumptions. The first is that the generalized

sensitivities in the CMIP5 models are recoverable with sufficient quality by the same numerical approaches that were appropri-

ate to recover the sensitivities in MPI-ESM. This involves the assumption that for all other considered CMIP5 models the linear

perturbation regime is of similar extent to that found for MPI-ESM for the different response variables invoked to recover the700
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sensitivities. This might not be the case – and is probably not for χ(L)
β in the HadGEM2-ES (see discussion of Fig. 2d). The

second basic assumption is that the generalized framework itself correctly describes the dynamics of the global carbon cycle

in those models. This involves the assumption that the biogeochemical and radiative responses are additive – which was con-

firmed to a good degree of approximation within the linear regime (see Fig. 4) –, but also that the whole carbon cycle dynamics

can be described in terms of the responses to atmospheric CO2 and temperature alone (see Eqs. (2)–(5)). Ideally, each of these705

assumptions should be carefully investigated for each model separately by aid of additional simulations, similarly to what was

done here for the case of MPI-ESM.

These cautionary remarks in mind, our conclusion that the spread in the airborne fraction arises mostly from the spread in

the land biogeochemical feedback corroborates the recent finding by Jones and Friedlingstein (2020), who performed a similar

analysis employing Friedlingstein’s originalα-β-γ framework. This agreement adds confidence in the results obtained here, and710

suggests that research on climate-carbon cycle feedbacks should focus especially on understanding the land biogeochemical

feedback, since it is the largest source of model uncertainty in the airborne fraction in our and in their analysis. But additionally,

the conclusion drawn here is valid not only for the particular perturbation scenario underlying the CMIP5 protocol, but for all

scenarios within the linear regime. Insofar this study at least partially answers the question raised by Jones and Friedlingstein

(2020) about the behaviour of climate-carbon cycle feedbacks in scenarios with different characteristics: as long as we stay715

within the linear regime, there is no need for calculating for the different scenarios separate feedback metrics; the feedback

functions of the generalized framework describe this behaviour for all scenarios at once.

Estimates of the time-scale resolved airborne fraction, by means of Eq. (18), and of time-scale dependent generalized sensi-

tivities had already been attempted (Enting, 2007; Rubino et al., 2016; Enting and Clisby, 2019; Enting, 2022). These attempts,

focused on the observed carbon cycle, were based on ad hoc assumptions on the internal memory in terms of analytical struc-720

ture of the underlying response functions and values of internal time scales. Such assumptions could be circumvented in the

present study by employing our RFI method (Torres Mendonça et al., 2021a, b) that instead derives the internal time-scale

spectra of the system by fully accounting for the ill-posedness of the underlying inverse problem. But it should be noted that

our approach is tailored to simulation data and whether it may be applicable to observation data needs to be seen. One of the

involved challenges for such application is that our setting here is limited to an idealized case where CO2 is the only forcing,725

while in observations one would have to account for further perturbations such as non-CO2 greenhouse gases, land use change,

aerosols, etc.

As explained in section 2, the time-scale resolved airborne fraction can be understood as a generalization of the airborne

fraction in its standard definition (defined as a ratio of atmospheric CO2 fluxes to emission fluxes; see Eq. (12)). It is well

known that the near-constancy of the value of the standard airborne fraction is a result of linearity of response in combination730

with the exponential character of the increase of historic emissions (Raupach, 2013). Accordingly, once emissions get non-

exponential – as it must be if future emissions are significantly reduced –, the standard airborne fraction must deviate from

its constant value (Raupach, 2013). Thus, standard airborne fraction cannot be seen as an invariant property of the climate-

carbon system. In contrast, the generalized airborne fraction investigated here describes the response of atmospheric CO2 to

any emissions scenario and is therefore indeed an invariant property of the system. As such, the generalized airborne fraction735
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may be employed to predict the standard airborne fraction by Eq. (13) for any emissions scenario as long as emissions are

sufficiently weak (see Appendix F for an exemplary demonstration). This is the case e.g for emission scenarios with low or

even negative future emissions as investigated in Jones et al. (2016). For such scenarios the generalized airborne fraction –

once it has been determined for one or more models – could be used as an emulator to see without expensive Earth system

simulations how atmospheric CO2 develops; and a similar approach could be applied to changes in the land and ocean carbon740

reservoirs by determining the appropriate response functions.

7 Outlook

Besides investigating the time-scale dependence of airborne fraction, our study also demonstrated for MPI-ESM the predictive

power of the generalized framework (see section 3). This demonstration indicates that this framework may be invoked to

tackle also other problems involving time-dependent components of the climate-carbon system. Directly related to the airborne745

fraction is the Transient Climate Response to Cumulative Emissions (TCRE), which quantifies the change in global mean

temperature in response to cumulative emissions (Ciais et al., 2013). As recognized by Gregory et al. (2009), and Jones

and Friedlingstein (2020), the TCRE can be investigated using the standard climate-carbon feedback framework by means

of airborne fraction and the global temperature sensitivity to CO2. We believe this extends to the generalized framework

investigated here – note that although we take separate temperature sensitivities for land and ocean, sensitivities defined for a750

single global temperature can be easily obtained from them (see Appendix G). Jones and Friedlingstein (2020) in particular

quantified the contribution of the spread in each sensitivity in Friedlingstein’s framework to the spread in TCRE, finding in

their multi-model ensemble that the spread in the β(L)-sensitivity has the second largest contribution, smaller only than that

from the spread in the α-sensitivity (see their Fig. 4). It would be interesting to check this finding in the generalized framework

employed here, where the additional complications arising from the scenario dependence of Friedlingstein’s framework are755

absent. Further, the generalized framework could be used to study how the TCRE is determined by contributions from the

different climate-carbon cycle feedbacks at different time scales. Such analysis could lead to a better understanding of the

dynamics behind this metric.

Furthermore, the generalized framework may be invoked to investigate the contribution of the different feedbacks to com-

mitted climate change, where one is interested in understanding the behaviour of the system once atmospheric CO2 stabilizes760

or emissions cease (Wetherald et al., 2001; Meehl et al., 2005; Wigley, 2005; Plattner et al., 2008; Mauritsen and Pincus, 2017;

MacDougall et al., 2020). Also, since the generalized framework gives a consistent formalism for quantifying climate-carbon

cycle feedbacks, it may be possible to apply it to study in a consistent unified framework climate-carbon cycle feedbacks and

physical climate feedbacks (Gregory et al., 2009; Williams et al., 2019; Goodwin et al., 2019).

One aspect emphasized throughout this study is that the generalized framework is valid only for weak perturbations. In765

fact, we have found in application to the MPI-ESM that the linear regime extends only up to about 100 ppm atmospheric CO2

increase beyond the pre-industrial level, i.e. up to a value of about 380 ppm. This perturbation level was reached already around

2005 (Dlugokencky and Tans, 2023) so that this linear framework cannot be employed to study future climate change. But
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gaining understanding of the large-scale dynamics and the underlying memory structure of the coupled climate-carbon cycle

system should be easier in the linear regime where complications from nonlinearities that are expected to get increasingly770

important during future climate change are absent. Given the promising results obtained here and the potential applications

outlined above, we believe that the generalized framework is thus the right tool for such investigations. But in principle the

Volterra expansion underlying the generalized framework can be extended beyond the linear term (Ruelle, 1998; Lucarini,

2009), so that one could also think of a nonlinear generalized feedback formalism applicable to near future climate change

(Roe, 2009). For such a research program it would be useful to have simulations with a better signal-to-noise ratio to recover the775

response functions. In the present study we used published 1% simulations from C4MIP, but as we showed in Torres Mendonça

et al. (2021a, b) simulations forced by a step-function CO2 rise would be more suitable for their recovery. Therefore it could

be an idea for a future C4MIP protocol to switch to such simulations.

Finally it may be noted that our study is an example for the application of linear response theory – known from statistical

mechanics (Kubo et al., 2012) – to a dissipative system (Lucarini et al., 2014), namely to the global carbon cycle. Recently780

it has been noted that the RFI method underlying our recovery of the generalized sensitivities is limited in scope because it

assumes the absence of an imaginary part of the eigenvalues of the evolution operator (Santos Gutiérrez and Lucarini, 2022).

In case that some eigenvalues have a non-zero imaginary part the system contains internal oscillatory modes. But this is hardly

believable to be true for the carbon cycle at the time scales from one year up to a century considered in the present study.

While the intra-annual oscillations seen e.g. in atmospheric CO2 are caused externally by the effect of the seasonal changes785

in insolation on climate and photosynthesis, ecological communities in the ocean and on land may in principle be capable of

oscillatory behaviour in their population dynamics at multi-annual scales (see e.g. Murray, 1993). But there is no evidence

that such processes may be relevant at global scale. In contrast to the carbon cycle, the climate system is known to have

internal oscillatory modes (e.g. ENSO and NAO). Currently it is unclear how one could account for non-zero imaginary parts

of the eigenvalues in the recovery of linear response functions from data; the RFI method gains part of its simplicity from the790

particular assumption of non-complex eigenvalues. Insofar, the carbon cycle seems to be that part of the Earth system to which

linear response theory may be applied most easily.

Code and data availability. The scripts and data used to produce the results in this paper can be found at https://hdl.handle.net/21.11116/

0000-000C-F6A2-7 (Torres Mendonca et al., 2023).

Appendix A: Calculation of generalized sensitivities for the MPI-ESM795

This appendix complements the results from Torres Mendonça et al. (2021b) to derive for the MPI-ESM all generalized

sensitivities. The results from this appendix are needed for (i) testing the predictive power of the generalized α-β-γ framework

in section 3; (ii) identifying the best data pre-processing techniques to optimally recover the generalized sensitivities for the
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investigation of the feedbacks and of airborne fraction in CMIP5 models in section 4; and (iii) obtaining an estimate of the

linear regime for which the generalized α-β-γ framework is valid.800

Since the land carbon sensitivities χ(L)
β and χ(L)

γ were already derived in Torres Mendonça et al. (2021b), here we derive

the remaining generalized sensitivities for ocean carbon and land/ocean temperature χ(O)
β , χ(O)

γ , χ(L)
α and χ(O)

α (see section 2).

We recover these sensitivities by the RFI method (Torres Mendonça et al., 2021a) using data taken from standard C4MIP 1%

experiments (see Table A1). To obtain the generalized sensitivities with the best possible quality and also estimate the linear

regime for which the generalized α-β-γ framework is valid, following Torres Mendonça et al. (2021b) we proceed in three805

steps:

1. Select a technique to pre-transform the data to account for known nonlinearities in the response. Accounting for these

nonlinearities allows for recovering the generalized sensitivity from experiments with higher perturbation strengths and

thus higher signal-to-noise ratio, which improves the quality of the results.

2. Determine the maximum forcing strength for which no strong nonlinearities are present in the response. This gives810

the best trade-off between signal-to-noise ratio and nonlinearity for a particular pre-transformed response data, thereby

further improving the quality of the recovery.

3. Calculate the linear regime of the response, i.e. the range of forcing strenghts for which the generalized sensitivity can

be used to predict the response of the system. By analyzing this linear regime for all generalized sensitivities we will

be able to determine the overall linear regime for which the generalized α-β-γ framework as a whole can predict the815

dynamics of the coupled global carbon cycle accounting for all climate-carbon cycle feedbacks.

The final result of this analysis is summarized in Table A2 in section A6. The results for the best pre-transformation technique

and maximum forcing strength for the recovery of the MPI-ESM sensitivities are used to derive the generalized sensitivities

for all CMIP5 models in section 4.

A1 Procedure to analyze the recovery of the generalized sensitivities820

To perform the analysis described in the three steps above we employ a simple procedure introduced in Torres Mendonça et al.

(2021b). The idea behind the procedure can be understood as follows. First, using the RFI method (Torres Mendonça et al.,

2021a), we recover the generalized sensitivity taking pre-transformed data from increasingly longer time periods of the 1%

experiment. For each time period, we employ the recovered generalized sensitivity to predict the response of additional 0.5%

and 0.75% experiments covering that same time period (for a description of the experiments see Table A1). Then, we measure825

the quality of the recovery of the generalized sensitivity by the quality of the prediction of the responses for these additional

simulations. The quality of the prediction is quantified by the (dimensionless) prediction error

εk :=
||∆Y k −χ ?∆fk||

||∆Y k||
, (A1)

where χ ?∆fk gives the predicted values, ? stands in short for the convolution operation, ∆Y k and ∆fk are the response

and the perturbation in experiment “k” and χ is the response function recovered from the 1% experiment. Because in the 1%830
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Table A1. C4MIP-type experiments considered in this appendix, following Torres Mendonça et al. (2021a, b). Acronyms “rad” and “bgc”

refer to standard CMIP model setups used to calculate the climate-carbon cycle sensitivities. In the “rad” (radiatively coupled) setup, only

the radiation code of the model is affected by changes in atmospheric CO2. This setup is used to calculate χγ and χα. In the “bgc”

(biogeochemically coupled) setup, only the biogeochemistry of the model is affected by changes in atmospheric CO2. This setup is used to

calculate χβ . In the 1% fully-coupled experiment (used in Appendix F and also for Fig. 4) both the radiation and the biogeochemistry code

of the model are affected by changes in CO2. The standard CMIP experiments’ names are set in brackets.

Type Forcing Description

Percent

0.5% rad

CO2 is increased from its pre-industrial value at the

specified percent rate per year.

0.5% bgc
0.75% rad
0.75% bgc
1% rad (esmFdbk1)
1% bgc (esmFixClim1)
1% fully-coupled (1pctCO2)
1.5% rad
1.5% bgc
2% rad
2% bgc

Step

1.1×CO2 rad
CO2 is abruptly increased from its pre-industrial value by

the specified factor.

1.1×CO2 bgc
2×CO2 rad
2× CO2bgc

Control pre-industrial

(piControl)
CO2 is held fixed at its pre-industrial value.

experiment the perturbation strength increases with time, also the signal-to-noise ratio of the data increases. On the other hand,

higher perturbation strengths increase nonlinearities. This results in the following trade-off: while a higher signal-to-noise ratio

results in a recovery with better quality, larger nonlinearities deteriorate the quality of the recovery. From this trade-off, by

analyzing the prediction error (A1) for different perturbation strengths of the 1% experiment and also for different data pre-

transformation techniques, one can: 1) select the best pre-transformation technique for the recovery of the response function;835

2) determine the maximum forcing strength for which the response function can be optimally recovered; and 3) estimate the

linear regime of the response. For a more detailed description of this procedure please refer to Torres Mendonça et al. (2021b).
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A2 Generalized sensitivityχ(O)
β

Pre-transformation techniques to recoverχ(O)
β

Similarly to Torres Mendonça et al. (2021b), we recover χ(O)
β (t) employing the RFI method in combination with two tech-840

niques. The first technique consists in simply taking ∆c(t) as perturbation and derive χ(O)
β (t) from

∆Cbgc
O (t) =

t∫
0

χ(O)
β (t− s)∆c(s)ds, (A2)

where ∆CbgcO (t) is the ocean carbon response in the “bgc” setup (see Table A1). Because we directly take ∆c(t) for the

recovery, we call this the no-transform technique.

Since (A2) is the equation employed in the generalized framework to describe the ocean biogeochemical response (compare845

Eq. (3)), from this no-transform technique we will also obtain an estimate of the range of CO2 perturbation strengths for which

this response can be considered linear. This estimate is needed to address the question of what is the linear regime for which

the generalized α-β-γ framework is valid in the MPI-ESM.

In the second technique, we consider the logarithm of c as perturbation and derive χ(O)
β (t) from

∆Cbgc
O (t) =

t∫
0

χ(O)
β,ln(t− s)cPI ln

c(s)

cPI
ds, (A3)850

where cPI is the pre-industrial value for atmospheric CO2. Because we take instead of c its logarithm, we call this the log-

transform technnique.

This log-transform technique is inspired by the fact that nonlinearities in the ocean carbon uptake come mainly from the

dissolution of CO2 in ocean surface water (see e.g. Joos and Bruno, 1996). Because with accumulation of CO2 in upper layers

of the ocean the ability for further uptake of CO2 decreases (Hooß et al., 2001), we use a logarithmic representation for the855

perturbation to try to explicitly describe the nonlinearity between CO2 concentration and the carbon flux into the ocean. As

explained in (Torres Mendonça et al., 2021b, Eqs. (16), (18), (19) in subsection 4.1), employing Eq. (A3) has the advantage

that χ(O)
β,ln(t) = χ(O)

β (t), i.e. by deriving χ(O)
β,ln(t) from Eq. (A3) one obtains also the desired χ(O)

β (t).

For both techniques χ(O)
β (t) is derived enforcing monotonicity by the RFI algorithm (see Fig. 1 in Torres Mendonça et al.,

2021a).860

Recovery ofχ(O)
β and linear regime of the biogeochemical response of ocean carbon

Using the pre-transformation techniques described above, in the following we recover the generalized sensitivity χ(O)
β and

evaluate the quality of the results.

We start by deriving χ(O)
β (t) from Eq. (A2) (no-transform technique) taking data from the 1% bgc experiment. Following

the procedure described in section A1, we employ Eq. (A2) to predict the response from the 0.5% and 0.75% bgc experiments865

(see Table A1). Figure A1a shows the resulting prediction error (see Eq. (A1)) for increasing time period of the data used
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to obtain χ(O)
β (t) – note that on the x-axis the CO2 forcing strength in the 1% bgc experiment at the end of the period is

used. Similarly as for the biogeochemical response of land carbon in Torres Mendonça et al. (2021b), minima are found for

final forcing strengths below 100 ppm (about 94 ppm for the 0.75% and 58 ppm for the 0.5% bgc experiment), indicating the

presence of strong nonlinearities for forcing strengths above this value. Because both minima are “flat”, i.e. the error does not870

change substantially for values around the minima, we take as an estimate of the linear regime forcing strengths below the

highest minimum – about 94 ppm in the 0.75% curve.

To try to improve the quality of the recovery, χ(O)
β (t) was derived as well using the log-transform technique (Eq. (A3)).

To see whether the quality of the recovery indeed improves, one must check if Eq. (A3) indeed accounts for some of the

nonlinearities in the response. If this is the case, then Eq. (A3) should predict the 0.5% and 0.75% bgc responses better than875

Eq. (A2). To check this, we recovered χ(O)
β (t) by this log-transform technique and then employed the recovered χ(O)

β (t) in

Eq. (A3) to predict these responses. The resulting prediction error is shown in Fig. A1b. Overall the error is substantially

smaller than in Fig. A1a. Minima are still found, but now at values between 100 and 200 ppm and with smaller optimal errors.

In contrast to Fig. A1a, after the minima the error increases only slightly for increasing final forcing strength. Therefore,

Eq. (A3) seems to indeed account for some of the nonlinearities in the response. Hence, with this approach one can derive880

χ(O)
β (t) taking data from the 1% bgc experiment until larger perturbation strengths and therefore higher signal-to-noise ratios

than with the no-transform technique, making it in principle possible to recover χ(O)
β (t) with better quality.

But despite the overall reduction in the prediction error, Fig. A1b still shows a slightly increasing trend in the prediction

error after the minima, indicating the presence of possibly non-negligible nonlinearities in the response. Therefore we check

whether the log-transform technique indeed gives a better recovery for χ(O)
β (t) by comparing the recovery from this technique885

with that from the no-transform technique. Figure A1c shows the response function recovered with each technique taking data

from the 1% bgc experiment until the optimal final forcing strength (we take 94 ppm or 30 years of the 1% bgc experiment

for the no-transform technique and 138 ppm or 50 years of the 1% bgc experiment for the log-transform technique; the values

correspond to the minima found in the 0.75% curve respectively in Figs. A1a and b) and the response function recovered with

the log-transform technique but taking data until the maximal final forcing strength in the 1% bgc experiment, i.e. the whole890

time series (since for those forcing strengths the error in Fig. A1b is still small). As seen, all recovered response functions

are very similar. This similarity is most likely due to the combination of an overall high signal-to-noise ratio of the ocean

biogeochemical response (as indicated by the small errors even at small perturbation strengths in subfigures (a) and (b)) and

only small contributions from nonlinearities when employing the log-transform technique. This suggests that for the MPI-

ESM χ(O)
β (t) can be equally well recovered by either of the two techniques. Despite this result, we selected the log-transform895

technique for deriving χ(O)
β (t) in sections 3 and 4 because this technique accounts for nonlinearities that may cause a more

significant error in the recovery for other models. But because subfigure (b) indicates that non-negligible nonlinearities may

still remain in the response even when employing this log-transform (because of the slightly increasing trend), we choose

conservatively to take data only until the optimal forcing strength (138 ppm or 50 years of the 1% bgc experiment) and not the

full time series. As suggested by the small differences between the recoveries for the optimal and maximal forcing strengths900
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(a) Prediction error for χ(O)β in Eq. (A.2) (b) Prediction error for χ(O)β,ln in Eq. (A.3)

(c) Recovered χ(O)β

(d) Prediction for “best” χ(O)β in Eq. (A.2) (e) Prediction for “best” χ(O)β in Eq. (A.3)

Figure A1. Generalized sensitivity χ(O)
β (t) and prediction of responses from additional experiments. (a) Prediction error (A1) for χ(O)

β (t)

derived with the no-transform technique employing Eq. (A2) for prediction. (b) Prediction error (A1) for χ(O)
β (t) derived with the log-

transform employing Eq. (A3) for prediction. (c) Response function χ(O)
β (t) recovered with the no-transform technique at optimal forcing

strength (∆c), log-transform at optimal forcing strength (ln(c), opt. forcing strength), and log-transform at maximal forcing strength (ln(c),

max. forcing strength). (d) Prediction of additional experiments taking the “best” recovery of χ(O)
β (t) (using the log-transform at optimal

forcing strength) employed in Eq. (A2). (e) Prediction of additional experiments taking the “best” recovery of χ(O)
β (t) (using the log-

transform at optimal forcing strength) employed in Eq. (A3). Continuous lines are predictions and dashed lines are simulated responses from

the MPI-ESM. Dots indicate the maximum value for which responses are predictable by Eq. (A2) according to the estimate of the linear

regime (see text). For better visibility of the regions within the linear regime in (c), the responses are shown only for the first 30 years.
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in subfigure (c), taking data only until this optimal forcing strength does not significantly hinder the recovery of time scales at

the order of the length of the full time series.

To obtain evidence that the recovered χ(O)
β (t) indeed characterizes the biogeochemical response of the ocean carbon of the

MPI-ESM to any temporal development of sufficiently weak atmospheric CO2 perturbations, we show how well it predicts

the model response for additional CO2 perturbation experiments (see Table A1). The prediction is performed by convoluting905

the recovery of χ(O)
β (t) selected above with the different CO2 perturbation scenarios first via Eq. (A2), which is the equation

employed in the generalized framework (compare Eq. (3) in section 2), and then via Eq. (A3), to see if by this equation

the prediction is indeed further improved for all experiments. The result for the first case is shown in Fig. A1d. To better

visualize the linear regime region where the approximation works, we show only the first 30 years. The responses for the

1.5% and 2% bgc experiments are marked with dots where the forcing strength exceeds 94 ppm, the maximal forcing strength910

corresponding to the linear regime estimated from Fig. A1a. As seen, the recovered χ(O)
β (t) predicts almost perfectly the

response from experiments whose forcing strengths are within the linear regime estimate, i.e. the 0.5%, 0.75% and 1.1×CO2

bgc experiments. It also predicts with reasonable quality of agreement the response from the 1.5% and 2% bgc experiments

for forcing strengths within the estimated linear regime. As forcing strengths exceed the linear regime, the prediction starts to

deviate from the model response. Likewise, the prediction fails for the whole 2×CO2 bgc response because its forcing strength915

is larger than the linear regime estimate throughout the whole experiment. These results therefore suggest that indeed χ(O)
β (t)

characterizes the biogeochemical response of ocean carbon for any temporal development of atmospheric CO2, as long as its

strength is within the linear regime.

Figure A1e shows the prediction employing Eq. (A3). As seen, now the predictive power of χ(O)
β (t) improves considerably,

extending to the whole time series for all experiments. Some discrepancies are nevertheless encountered, especially for the last920

years of the 2×CO2 bgc response. Such discrepancies are probably related to the relatively limited amount of information that

data from 1% experiments provide to recover response functions, as observed for the land carbon in Torres Mendonça et al.

(2021b).

Despite these discrepancies, overall Figs. A1d and e show that the recovered χ(O)
β (t) predicts the response from different

experiments with reasonable quality up to certain perturbation strengths. Equation (A3) – employed for the prediction in925

Fig. A1e – demonstrates successful prediction of the response of the model up to higher perturbation strengths than Eq. (A2).

Therefore, Eq. (A3) is probably more appropriate when the aim is to predict the separate biogeochemical response of the model

to prescribed atmospheric CO2 perturbations. On the other hand, Eq. (A2) is the equation employed in the generalized α-β-γ

framework (first term on the right-hand side of Eq. (3)). Therefore, when estimating the linear regime for the application of the

generalized α-β-γ framework one has to consider for the ocean biogeochemical response the estimate obtained from Eq. (A2),930

i.e. the linear regime estimate indicated by subfigure (a).

The conclusions from this subsection therefore suggest that the best pre-transformation technique to derive χ(O)
β (t) is the

log-transform technique (Eq. (A3)), taking data until 138 ppm or 50 years of the 1% bgc experiment, which corresponds to the

first minimum for the prediction error in Fig. A1b. In addition, the linear regime for the ocean biogeochemical response in the

generalized α-β-γ framework (first term in the right-hand side of Eq. (3)) is about 94 ppm, as estimated from Fig. A1a.935

38



A3 Generalized sensitivityχ(O)
γ

Technique to recoverχ(O)
γ

In this subsection we recover χ(O)
γ (t). Since, as will be seen, no strong nonlinearities are present in the response, χ(O)

γ (t) is

well recovered without any pre-transformations from

∆C rad
O (t) =

t∫
0

χ(O)
γ (t− s)∆TO(s)ds, (A4)940

where ∆C rad
O (t) is the ocean carbon response in the “rad” setup. Because the quality of the recovery depends on the quality of

the estimate of the noise in the data, and this estimate may be improved by enforcing monotonicity (see Torres Mendonça et al.,

2021a), we assume that χ(O)
γ is monotonic and recover it enforcing monotonicity by the RFI method. Indication of the quality

of the recovery will be obtained below by checking how well the recovered χ(O)
γ predicts the model response in different

perturbation experiments.945

Recovery ofχ(O)
γ and linear regime of the radiative response of ocean carbon

We start by recovering χ(O)
γ (t) from the 1% rad experiment. To evaluate the quality of the recovery, following the procedure

from section A1 we employed the recovered χ(O)
γ (t) in Eq. (A4) to predict the 0.5% and 0.75% rad responses. The prediction

error is plotted in Fig. A2a as a function of the final forcing strength in the 1% rad experiment. As seen, the error decreases with

increasing final forcing strength, indicating that no strong nonlinearities are present in the response. As a result, the response950

can be considered linear for the whole range of forcing strengths in the 1% rad experiment (temperatures up to around 4 K).

Hence we choose to recover χ(O)
γ (t) for the investigation in the main text by taking data from the full 1% rad experiment.

The resulting χ(O)
γ (t) recovered in this way is shown in Fig. A2b. The negativity of χ(O)

γ (t) reflects the fact that as tem-

peratures rise, globally the ocean loses carbon to the atmosphere. This is consistent with the results shown in Fig. A2c, which

shows the model responses from the different rad experiments and the prediction from the recovered χ(O)
γ (t). Because in these955

experiments only the radiative effect of CO2 is active (while the biogeochemical effect is switched off), temperatures rise,

leading to the mentioned global loss of ocean carbon to the atmosphere reflected by the negative responses. The quality of

agreement between the model responses and the predictions from χ(O)
γ (t) suggests that indeed the recovered χ(O)

γ (t) char-

acterizes the radiative response of ocean carbon not only for the few perturbation experiments considered here, but to any

temporal development of weak CO2 perturbations and is therefore a true property of the MPI-ESM itself.960

In summary, since the response can be considered linear over the whole 1% rad experiment we choose to derive χ(O)
γ (t) in

sections 3 and 4 from Eq. (A4) taking data from the full experiment.
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(a) Prediction error for χ(O)γ in Eq. (A.4)

(b) Recovered χ(O)γ

(c) Prediction for χ(O)γ in Eq. (A.4)

Figure A2. Generalized sensitivityχ(O)
γ (t) and prediction of responses from additional experiments. (a) Prediction error (A1) employing the

recovered χ(O)
γ (t) in Eq. (A4). (b) Recovered response function χ(O)

γ (t). (c) Prediction of additional experiments employing the recovered

χ(O)
γ (t) in Eq. (A4). Continuous lines are predictions and dashed lines are simulated responses from the MPI-ESM. For more details see

text.
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A4 Generalized sensitivitiesχ(L)
α andχ(O)

α

Pre-transformation techniques to recoverχ(L)
α andχ(O)

α

Following subsection A2 we recover χ(L)
α (t) and χ(O)

α (t) by employing two different techniques. In the first technique we965

recover the sensitivities from Eqs. (4) and (5), i.e. without any pre-transformation. From this first technique we will also obtain

an estimate of the linear regime for the temperature responses as described in the generalized α-β-γ framework.

But because CO2 radiative forcing is known to increase logarithmically with atmospheric CO2 concentration (Myhre et al.,

1998), we also derive χ(L)
α (t) and χ(O)

α (t) also using a logarithmic pre-transformation:

∆TL(t) =

t∫
0

χ(L)
α,ln(t− s)cPI ln

c(s)

cPI
ds, (A5)970

∆TO(t) =

t∫
0

χ(O)
α,ln(t− s)cPI ln

c(s)

cPI
ds. (A6)

As explained in (Torres Mendonça et al., 2021b, section 4), the resulting χ(L)
α,ln(t) = χ(L)

α (t) and χ(O)
α,ln(t) = χ(O)

α (t).

Recovery ofχ(L)
α ,χ(O)

α , and linear regime of temperature responses

We start by recovering χ(L)
α (t) and χ(O)

α (t) without any pre-transformation (Eqs. (4) and (5)) taking data from the 1% rad975

experiment. As in the previous subsections, to evaluate the quality of the recoveries we employed them once more in Eqs. (4)

and (5) to predict the responses from the 0.5% and 0.75% rad experiments. The prediction error is plotted in Figs. A3a and

A4a. As seen, in both figures the error decreases until about 279 ppm, presenting after that in Fig. A3a a clear increase and in

Fig. A4a a slight decrease followed by an increase for the 0.5% rad response and an approximately constant behaviour for the

0.75% rad response. Therefore we conservatively estimate for both land and ocean temperature responses the linear regime as980

perturbation strengths below 279 ppm.

To assess whether the log-transform technique (Eqs. A5 and A6) indeed improves the recovery of χ(L)
α (t) and χ(O)

α (t),

analogously to subsection A2 we check whether Eqs. (A5) and (A6) indeed account for nonlinearities in the response. If this

is the case, then Eqs. (A5) and (A6) should predict the 0.5% and 0.75% rad responses better than Eqs. (4) and (5). To evaluate

this, we recovered χ(L)
α (t) and χ(O)

α (t) from Eqs. (A5) and (A6) taking data once more from the 1% rad experiment, and985

then employed the recovered response functions in Eqs. (A5) and (A6) to predict the 0.5% and 0.75% rad responses. The

resulting prediction error is shown in Figs. A3b and A4b. As seen in both figures, now the prediction error clearly decreases for

increasing final forcing strength, indicating that no strong nonlinearities are present in the response. This clear decreasing trend

in the prediction error indicates that the log-transform technique (Eqs. (A5) and (A6)) is indeed more appropriate to recover

χ(L)
α (t) and χ(O)

α (t).990

Therefore in Figs. A3c and A4c we show the response functions recovered with the log-transform technique. Plotted are re-

coveries by the RFI method both enforcing and not enforcing monotonicity. As seen, the recoveries obtained without enforcing
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(a) Prediction error for χ(O)α in Eq. (5) (b) Prediction error for χ(O)α,ln in Eq. (A.6)

(c) Recovered χ(O)α

(d) Prediction for “best” χ(O)α in Eq. (5) (e) Prediction for “best” χ(O)α in Eq. (A.6)

Figure A3. Generalized sensitivityχ(O)
α (t) and prediction of responses from additional experiments. (a) Prediction error (A1) forχ(O)

α (t) de-

rived with the no-transform technique employing Eq. (5) for prediction. (b) Prediction error (A1) for χ(O)
α (t) derived with the log-transform

employing Eq. (A6) for prediction. (c) Response function χ(O)
α (t) recovered with the log-transform both enforcing and not enforcing mono-

tonicity. (d) Prediction of additional experiments taking the “best” recovery of χ(O)
α (t) (using the log-transform enforcing monotonicity)

employed in Eq. (5). (e) Prediction of additional experiments taking the “best” recovery ofχ(O)
α (t) (using the log-transform enforcing mono-

tonicity) employed in Eq. (A6). Thick lines are predictions and thin lines are responses from the MPI-ESM. Dots indicate the maximum

value for which responses are predictable by Eq. (5) according to the estimate of the linear regime. For more details see text.
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(a) Prediction error for χ(L)α in Eq. (4) (b) Prediction error for χ(L)α,ln in Eq. (A.5)

(c) Recovered χ(L)α

(d) Prediction for “best” χ(L)α in Eq. (4) (e) Prediction for “best” χ(L)α in Eq. (A.5)

Figure A4. Generalized sensitivityχ(L)
α (t) and prediction of responses from additional experiments. (a) Prediction error (A1) forχ(L)

α (t) de-

rived with the no-transform technique employing Eq. (4) for prediction. (b) Prediction error (A1) for χ(L)
α (t) derived with the log-transform

employing Eq. (A5) for prediction. (c) Response function χ(L)
α (t) recovered with the log-transform both enforcing and not enforcing mono-

tonicity. (d) Prediction of additional experiments taking the “best” recovery of χ(L)
α (t) (using the log-transform enforcing monotonicity)

employed in Eq. (4). (e) Prediction of additional experiments taking the “best” recovery ofχ(L)
α (t) (using the log-transform enforcing mono-

tonicity) employed in Eq. (A5). Thick lines are predictions and thin lines are responses from the MPI-ESM. Dots indicate the maximum

value for which responses are predictable by Eq. (4) according to the estimate of the linear regime. For more details see text.
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monotonicity are approximately monotonic so that differences between the two types of recovery are small. Hence in the next

sections we choose to derive χ(L)
α (t) and χ(O)

α (t) employing the log-transform and enforcing monotonicity by the RFI method.

As already mentioned above (see also Torres Mendonça et al., 2021a), the advantage of enforcing monotonicity is that one may995

improve the noise level estimate used in the RFI method and thereby improve the quality of the recovery.

To obtain evidence that the recovered χ(L)
α (t) and χ(O)

α (t) indeed characterize the land and ocean temperature responses

to any temporal development of weak CO2 perturbations, we show how well they predict additional experiments. Following

subsection A2 we first show the predictive power of χ(L)
α (t) and χ(O)

α (t) when employed in Eqs. (4) and (5), i.e. without pre-

transformations. In Figs. A3d and A4d we plot the predictions by Eqs. (4) and (5) taking the recoveries selected above (log-1000

transform technique enforcing monotonicity). The responses for the 0.75%, 1.5% and 2% rad experiments are marked with

dots where the forcing strength exceeds 279 ppm – the maximal forcing strength corresponding to the linear regime estimated

from Figs. A3a and A4a. As seen, the recovered response functions predict the model responses with some overestimation but

still with reasonable quality of agreement10 for forcing strengths within the estimated linear regime, i.e. for the whole 1.1×CO2

and 0.5% rad experiments, and for the 0.75%, 1.5% and 2% rad experiments for values preceding the dots. For these three latter1005

experiments predictions start to strongly deviate from the responses as forcing strengths exceed the estimated linear regime.

Likewise, the predictions fail basically for the whole 2×CO2 rad response because its forcing strength is larger than the linear

regime estimate throughout the whole experiment.

As expected from the known logarithmic relationship between radiative forcing and CO2 concentration, the predictive power

of χ(L)
α (t) and χ(O)

α (t) improves when employing Eqs. (A5) and (A6) instead of Eqs. (4) and (5) (see Figs. A3e and A4e).1010

Almost all responses are well predicted for the whole time series. The exceptions are the last years of the 1.5% and 2% rad

responses, which indicates a deviation from linearity for those levels of perturbation strength.

As in section A2, overall the prediction results suggest that indeed the recovered response functions characterize the land

and ocean temperature responses to any temporal development of atmospheric CO2 up to certain perturbation strengths. While

Eqs. (A5) and (A6) are more appropriate when the aim is simply to predict model responses because of their extended predictive1015

power, Eqs. (4) and (5) are the equations actually employed in the generalized α-β-γ framework so that for the application of

the framework one must consider the linear regime of the temperature responses estimated from Figs. A3a and A4a.

In summary, the conclusions from this subsection suggest that the best approach to derive χ(L)
α (t) and χ(O)

α (t) is the log-

transform technique (Eqs. (A5) and (A6)), taking data from the full 1% rad experiment. The linear regime for the land and

ocean temperature responses in the generalized α-β-γ framework (Eqs. (5) and (4)) is about 279 ppm, as estimated from1020

Figs. A3a and A4a.

A5 Selection of techniques to recoverχ(L)
γ (t) andχ(L)

β (t)

To recover χ(L)
γ (t) and χ(L)

β (t) we use the conclusions from Torres Mendonça et al. (2021b). Because the radiative response of

land carbon can be considered linear for the whole range of perturbation strengths in the 1% rad experiment (Torres Mendonça

10Note that linear response functions characterize only the ensemble average of the response (see Torres Mendonça et al., 2021a, section 2) so that they

cannot predict high-frequency temperature variations arising from the internal variability of the system.
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et al., 2021b, section 3), χ(L)
γ (t) is derived taking data without any pre-transformation from the full 1% rad experiment by1025

employing

∆C rad
L (t) =

t∫
0

χ(L)
γ (t− s)∆TL(s)ds, (A7)

where ∆C rad
L (t) is the land carbon response in the “rad” setup. And because the obtained χ(L)

γ (t) is monotonic (without en-

forcing monotonicity), we assume monotonicity when deriving χ(L)
γ (t) for all other CMIP5 models so that all generalized

sensitivites are derived enforcing monotonicity by the RFI method (as mentioned above and explained in section 3.5 of Tor-1030

res Mendonça et al. (2021a), this assumption may further improve the quality of the recovery).

To derive χ(L)
β (t), conclusions from section 4 of Torres Mendonça et al. (2021b) suggest that the best approach is the

NPP-transform technique analyzed there: first derive the response function χNPP (t) from

∆Cbgc
L (t) =

t∫
0

χNPP (t− s)∆NPP (s)ds, (A8)

then transform the obtained χNPP (t) into the desired χ(L)
β (t) via1035

χ(L)
β (t) = χNPP (t)

∂NPP

∂c

∣∣∣
c=cPI

, (A9)

where cPI is the pre-industrial value for atmospheric CO2. Because the prediction error plot for χNPP (t) presents minima (see

Fig. 6c in Torres Mendonça et al., 2021b), following the reasoning from subsection A2 we choose conservatively to take data

only until the first minimum, which corresponds to 279 ppm or 70 years of the 1% bgc experiment.

A6 Summary of best techniques for recovery of the generalized sensitivities1040

With the results presented in the preceding subsections we can now summarize the best techniques identified to recover the

generalized sensitivities for our study. A general summary of the identified techniques is given in Table A2. The table indicates

which is 1) the best pre-transformation technique to derive each generalized sensitivity; 2) the respective equation used for the

derivation; 3) the optimal time series length taken for recovery using the best pre-transformation technique; and 4) the linear

regime of the respective response in the generalized α-β-γ framework (i.e. the linear regime for each term at the right-hand1045

side of Eqs. (2)–(5)).

Because the linear regime for the biogeochemical response of land and ocean carbon is restricted to forcing strengths even

smaller than that for the temperature responses (4) and (5) – and obviously also smaller than that for the radiative responses of

land and ocean carbon, which are linear for the whole 1% rad experiment as seen in Torres Mendonça et al. (2021b) and section

A3 –, the applicability of the generalized α-β-γ framework as a whole is limited by the linear regime of the biogeochemical1050

responses, which is estimated as forcing strengths up to about 94 ppm.

With this subsection we complete the recovery of all generalized sensitivities for the MPI-ESM. The approaches selected

here are employed to recover the generalized sensitivities for all CMIP5 models in the main text.
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Appendix B: Calculation of the time-scale dependent airborne fraction from emission-driven simulations

In this appendix we explain in detail how we derived the airborne fraction Ã(p) from emission-driven simulations for the1055

demonstration of section 3. For the derivation we followed the three steps described in subsection 3.1.

In the first step, we recovered χζ(t) taking data from an impulse-emission experiment. In this experiment, starting from a

standard pre-industrial control run (see “esmControl” in Taylor et al., 2012), we perturbed the system by a small impulse in

emissions of 100 PgC/yr (as in Joos et al. (2013)) during the first year. Therefore we name this experiment Impulse100. The

advantage of using data from this type of experiment is that the impulse response is from a practical point of view directly1060

the desired linear response function χζ(t), so that errors from the ill-posedness of Eq. (16) (Torres Mendonça et al., 2021a)

can be avoided. Nevertheless, the disadvantage is that the small impulse-perturbation strength leads to a response with poor

signal-to-noise ratio, which deteriorates the recovery of χζ(t). Therefore, instead of taking data from only one realization

of the experiment, we performed an ensemble of 5 realizations with initial conditions taken 100 years separated from one

another (as in Lembo et al. (2020)), and then took the data from the ensemble average of the response. This procedure is in1065

agreement with linear response theory because strictly the linear response function characterizes only the ensemble average of

the response (e.g., Torres Mendonça et al., 2021a). Taking the data from the ensemble average we employed the RFI method to

recover χζ(t). Although in principle a special method is not needed to recover χζ(t) because the impulse response is directly

the linear response function, by employing the RFI method we obtain not only χζ(t) but also the spectrum of internal time

scales of the response (Torres Mendonça et al., 2021a), from which the Laplace transform χ̃ζ(p) in Eq. (18) can be analytically1070

calculated.

The resulting impulse response after taking the ensemble average and the fit by the recovered χζ(t) are shown in Fig. B1a.

One sees that the experiment is not a perfect impulse experiment because the impulse extends even beyond the first year. This

may be related to internal interpolations in the model when computing the emissions within the time interval of one year. Such

problem leads to an error in the estimation of χζ(0), which must be 1 by conservation of mass: for an impulse in emissions1075

E(t) = aδ(t) it must be that at t= 0 the impulse response ∆cδ(0) = aχζ(0) = a because land and ocean carbon have no time

to react, hence χζ(0) = 1. To avoid this error, we recalculated χζ(t) using the same regularization parameter obtained from

the RFI method but employing a Lagrange multiplier to account for this constraint (see Appendix C). The result for both

recoveries is shown in Fig. B1b. The response functions are almost identical except for χζ(0), which is corrected by enforcing

the constraint χζ(0) = 1.1080

To make sure that the impulse response is within the linear regime and therefore that the recovery of χζ(t) is not spoiled by

nonlinearities, in line with the procedure in section A we check the quality of the recovered χζ(t) by employing it to predict

additional emission-driven experiments via Eq. (16). For the additional experiments we chose step-emission experiments where

starting from the control run the system is perturbed by abrupt, constant emissions of 1.43, 2.86 and 5.71 PgC/yr, which by

the end of the simulation result in cumulative emissions of 200, 400 and 800 PgC. For this reason we name these experiments1085

Step200, Step400 and Step800 respectively. The quality of the prediction is shown in Fig. B1c. As seen, the obtained χζ(t) can

predict almost all responses with reasonable accuracy for the whole time series. The only exception is over the last years of the
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(a) Impulse response (b) Recovered χζ (c) Prediction

Figure B1. Response function χζ(t) recovered from impulse-emission experiment Impulse100. (a) Impulse response and fit by χζ(t); (b)

χζ(t) recovered with and without enforcing the constraintχζ(0) = 1; (c) prediction of different experiments employing the recoveredχζ(t)

in Eq. (16). For more details see text.

Step800 experiment. The discrepancy encountered there is nevertheless in agreement with results from Torres Mendonça et al.

(2021b) and from Appendix A that show that strong nonlinear contributions to the biogeochemical response of land and ocean

carbon start to arise at about 94 ppm. As a consequence, the identified discrepancy is not a result of nonlinearities spoiling the1090

recovery of χζ(t) but rather a result of nonlinearities that arise in the response of the Step800 experiment, which can therefore

not be completely predicted by χζ(t).

Hence, overall these results suggest that the recovery of χζ(t) is not spoiled by nonlinearities and is thus a good candidate

to be used to compute the airborne fraction. Therefore χζ(t) was Laplace-transformed and the airborne fraction was finally

derived by applying Eq. (18).1095

Further evidence of the reliability of our numerics is obtained by examining the agreement of the resulting airborne fraction

(Fig. 1) with theoretical expectations: Ã(p) indeed converges to 1 for 1/p→ 0 as expected by Eq. (19) and 0≤ Ã(p)≤ 1 for

all time scales 1/p as expected by the considerations of Appendix D.

Appendix C: Calculation ofχζ(t) enforcing the constraintχζ(0) = 1

This appendix complements Appendix B to show how χζ(t) is calculated by the RFI method enforcing in addition the theoreti-1100

cally exact relationχζ(0) = 1. The RFI method recovers a response functionχ(t) employing Tikhonov-Phillips regularization,

with the regularization parameter λ determined from an estimate of the noise in the data (Torres Mendonça et al., 2021a). But

the RFI method does not account for the desired constraint χζ(0) = 1. Therefore to derive χζ(t) enforcing this constraint we

proceed in two steps. First, we derive χζ(t) by the RFI method without the constraint, obtaining thereby the value of λ. Then,

we use the obtained λ to derive χζ(t) employing the same regularization procedure from the RFI method but accounting in1105

addition for the constraint χζ(0) = 1 by the method of Lagrange multipliers (Sundaram et al., 1996; Selesnick, 2013).
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After obtaining λ by the RFI method in the first step, the derivation of χζ(t) in the second step proceeds as follows. As in

the RFI method, we assume χζ(t) to be given by

χζ(t) =

∞∫
−∞

q(τ)e−t/τd log10 τ, (C1)

where q(τ) is the spectrum of internal time scales. By plugging Eq. (C1) into Eq. (16) and prescribing a distribution of time1110

scales τ , the problem of finding χζ(t) boils down to finding the spectrum q(τ). Once q(τ) is derived, χζ(t) follows from

Eq. (C1). For more details please refer to Torres Mendonça et al. (2021a).

To understand how the constraint can be enforced, one has to consider

χζ(0) =

∞∫
−∞

q(τ)d log10 τ. (C2)

Equation (C2) can be discretized using the prescribed distribution of time scales equally spaced at a logarithmic scale between1115

maximum and minimum values τmax and τmin (Torres Mendonça et al., 2021a). This discretization gives

χζ(0)≈∆log10 τ

M−1∑
j=0

qj , (C3)

where M is the number of qj terms and ∆log10 τ := (log10 τmax− log10 τmin)/M is the spacing between the time scales.

Following (Torres Mendonça et al., 2021a, section 4.2), we take M = 30, τmin = 0.1, and τmax = 105. Using Eq. (C3) one

can write the desired constraint χζ(0) = 1 in a discrete formulation as1120

Cq = 1, (C4)

where C is the row matrix C := [1,1, ...,1]∆log10 τ .

Knowing how to discretely account for the desired constraint the spectrum q can now be derived. The procedure consists of

minimizing the standard cost function employed in Tikhonov-Phillips regularization (see e.g. Hansen, 2010, p. 60), which is

also done in the RFI method, but now subject to the constraint (C4), i.e.1125

min
qλ

(
||∆Y −Aqλ||2 +λ||qλ||2

)
with Cqλ = 1, (C5)

where || · || denotes the Euclidean norm, qλ is the spectrum vector recovered by regularization, ∆Y is the response data

vector, A is the matrix obtained after discretization (Torres Mendonça et al., 2021a, section 3.2), and λ is the regularization

parameter. The solution to Eq. (C5) can be obtained by the method of Lagrange multipliers (Selesnick, 2013). We first define

the Lagrangian1130

L(qλ,µ) := ||∆Y −Aqλ||2 +λ||qλ||2 +µ(Cqλ− 1) , (C6)

where µ is the Lagrange multiplier. Taking ∂L/∂qλ = 0, ∂L/∂µ= 0, and solving the resulting system for qλ leads to

qλ = (ATA +λI)−1(AT∆Y −CT [C(ATA +λI)−1CT ]−1[C(ATA +λI)−1AT∆Y − 1]), (C7)
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where I is the identity matrix. Since λ was already obtained in the first step, Eq. (C7) gives a discrete approximation to the

spectrum q(τ). Plugging this spectrum in a discrete form of Eq. (C1) (for discretization details see Torres Mendonça et al.,1135

2021a, Appendix B) we obtain χζ(t).

Appendix D: χζ(t) non-negative and monotonically decreasing implies 0 ≤ Ã(p) ≤ 1

The response function χζ(t) defined by Eq. (16) is in terms of Laplace transforms closely related to the generalized airborne

fraction Ã(p) by Eq. (18). In this appendix it is shown that if χζ(t) is non-negative and monotonically decreasing for all times t

(as suggested by the results in Appendix B), then 0≤ Ã(p)≤ 1 for all time scales 1/p, as claimed in Appendix B. This follows1140

from the separate proofs of the two inequalities involved in this claim:

Show χζ(t)≥ 0⇒ Ã(p)≥ 0:

By Eq. (18) one immediately finds

Ã(p) = p

∞∫
0

χζ(t)e−ptdt≥ 0, (D1)

where for the inequality χζ(t)≥ 0 was used.1145

Show dχζ(t)/dt≤ 0⇒ Ã(p)≤ 1:

As a prerequisite for this proof one needs to know that

Ã(p) = χ̃′
ζ(p) + 1, (D2)

where the apostrophy notation is used for time derivatives. This relation follows by (i) noting that by the general rules of

Laplace transforms χ̃′ζ(p) = pχ̃ζ(p)−χζ(0), using (ii) χζ(0) = 1 (see Appendix B) and (iii) inserting Ã(p) = pχ̃ζ(p) (see1150

(18)). The rest of the proof is obtained from noting that

χ̃′
ζ(p) =

∞∫
0

χ′
ζ(t)e

−ptdt≤ 0 (D3)

because χ′ζ(t)≤ 0 is assumed. Using this in (D2) completes the proof.

Appendix E: Calculation of uncertainty range in α-β-γ sensitivities

When calculating the α-β-γ sensitivities in Fig. 3, we take into account the uncertainty in the choice of the initial values in1155

Eqs. (20)–(22):

β(X)(t) :=
∆Cbgc

X (t)

∆c(t)
:=

Cbgc
X (t)−C0

X

c(t)− c0
, (E1)
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γ(X)(t) :=
∆C rad

X (t)

∆T rad
X (t)

:=
C rad

X (t)−C0
X

T rad
X (t)−T 0

X
, (E2)

1160

α(X)(t) :=
∆T rad

X (t)

∆c(t)
:=

T rad
X (t)−T 0

X

c(t)− c0
, (E3)

where the initial values C0
X, T 0

X , and c0 are taken as the mean from the control simulation with uncertainty (standard deviation)

σC0
X
, σT 0

X
, and σc0 = 0 (because in the considered simulations atmospheric CO2 is prescribed). Assuming small, independent

uncertainties, they propagate to the sensitivities as follows (Barlow, 1989):

σβ(X)(t) =± 1

∆c(t)
σC0

X
, (E4)1165

σγ(X)(t) =± 1

∆T rad
X (t)

√√√√(∆C rad
X (t)σT 0

X

∆T rad
X (t)

)2

+σ2
C0

X
, (E5)

σα(X)(t) =± 1

∆c(t)
σT 0

X
. (E6)

Appendix F: Predicting standard airborne fractionAF (t) from the generalized airborne fractionA(t)1170

In the present appendix we demonstrate exemplarily for MPI-ESM that from the generalized airborne fraction A(t) one can

indeed predict for sufficiently weak emissions the airborne fraction in its standard definition AF (t), as claimed in section 6.

For this demonstration we take data from two perturbation experiments performed with the MPI-ESM: the Step400 experiment

– an emission-driven experiment where starting from the control run a constant amount of 2.86 PgC/yr is emitted every year

until cumulative emissions reach 400 PgC (see Appendix B) – and the 1% fully-coupled experiment – a concentration-driven1175

experiment where starting from the control run atmospheric CO2 concentration is increased by 1% every year (see Table A1).

The demonstration is carried out by first computing the true standard airborne fraction AF (t) via its definition (12) and then

comparing it with its prediction obtained from the generalized airborne fraction A(t) via Eqs. (13) and (12).

To compute the true standard airborne fraction AF (t) we directly evaluate the defining equation (12) by using dCA/dt and

E(t) as obtained from the two experiments. The accumulation rate dCA/dt is for both experiments numerically calculated from1180

the atmospheric carbon content CA(t). Concerning the emissions E(t), since in the Step400 experiment they are prescribed,

for this experiment we take them as constant and equal to 2.86 PgC/yr. For the 1% fully-coupled experiment the situation is

different: here atmospheric CO2 concentrations – not emissions – are prescribed; therefore for this experiment we infer the

emissions that would be needed to produce the respective changes in atmospheric CO2 from the evolution of carbon content in

the atmosphere, land and ocean via the carbon balance equation (1). Results for the true AF (t) are shown in Fig. F1.1185
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To predict now the standard airborne fraction AF (t) from the generalized airborne fraction A(t) we proceed as follows.

First we compute A(t) by Laplace inverting relation (D2) so that

A(t) = δ(t) +
dχζ
dt

, (F1)

where χζ(t) was already obtained in Appendix B and we take for the numerics the Kronecker delta δi instead of δ(t). We then

plug the resultingA(t) and the emissions E(t) – obtained as described above – into Eq. (13) to calculate dCA/dt. The standard1190

airborne fractionAF (t) is then finally predicted by plugging the resulting dCA/dt once more together with the emissions E(t)

now into Eq. (12).

The results are compared in Fig. F1. As seen in Fig. F1a, because in the Step400 experiment atmospheric CO2 changes

are below our estimated linear regime of 94 ppm (see Table A2), there the predicted standard airborne fraction fits the true

standard airborne fraction over the whole simulation period. The large variability in the true airborne fraction arises from1195

the ill-posedness (e.g., Torres Mendonça et al., 2021a) of the numerical differentiation needed to compute dCA/dt, which

substantially amplifies the noise from the already noisy response ofCA(t) that results from the small emissions forcing strength

of this experiment.

Such large variability in AF (t) is not present in the 1% fully-coupled experiment, as shown by Fig. F1b. Here, the larger

signal-to-noise ratio of dCA/dt allows for a better quality of fit of the prediction from the generalized airborne fraction. But1200

since in this experiment changes in atmospheric CO2 get larger than our linear regime estimate, the prediction works only for

that first part of the time series where atmospheric CO2 concentrations are sufficiently small.

(a) Step400 experiment (b) 1% fully-coupled experiment

Figure F1. Prediction of standard airborne fraction AF (t) from generalized airborne fraction A(t) for (a) Step400 experiment; and (b) 1%

fully-coupled experiment. Vertical dashed line in (b) indicates the estimated linear regime of 94 ppm (Table A2). For more details see text.
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Appendix G: Transforming sensitivities defined for separate land and ocean temperatures to sensitivities defined for a

single global temperature

In this appendix we show how from α and γ sensitivities defined using separate land and ocean temperatures one can compute1205

their analogues defined by means of a single global temperature, as claimed in the outlook section 7. Global temperature in a

model is obtained by

∆T =

∑
iAi∆Ti∑
iAi

=

∑
i∈LAi∆Ti +

∑
i∈OAi∆Ti∑

i∈LAi +
∑
i∈OAi

=

∑
i∈LAi∆Ti∑
i∈LAi

∑
i∈LAi∑
iAi

+

∑
i∈OAi∆Ti∑
i∈OAi

∑
i∈OAi∑
iAi

=: ∆TLFL+∆TOFO,

(G1)

where Ai and ∆Ti are the area and temperature of grid box i, i ∈ L and i ∈ O indicate sum over grid boxes on land/ocean,

∆TL and ∆TO are land/ocean temperatures, and FL and FO are the fractions of global area occupied by land and ocean.1210

Using a single global temperature, α is defined by

∆T = α∆c. (G2)

Using separate land and ocean temperatures one defines

∆TL = αL∆c, (G3)

∆TO = αO∆c. (G4)1215

Plugging (G1), (G3), (G4) into (G2) gives

α= αLFL +αOFO. (G5)

Taking a single global temperature, γ is defined by

∆C rad
X = γX∆T, (G6)

where X denotes the carbon response over land (L) or ocean (O).1220

Using separate land/ocean temperatures, γ can be defined by

∆C rad
X = γ∗X∆TX. (G7)

Inserting (G3)/(G4) and (G1) into (G7) gives

γX =
γ∗XαX

FLαL +FOαO
. (G8)

Since the Laplace-transformed formulation of the generalized framework is completely analogous to that of the original1225

α-β-γ framework, (G5) and (G8) extend straightforwardly to the respective generalized sensitivities:

χ̃α = χ̃(L)
α FL + χ̃(O)

α FO, (G9)

χ̃(X)

γ =
χ̃(X,∗)
γ

χ̃(X)

α

FLχ̃
(L)
α +FOχ̃

(O)

α

. (G10)
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