Supplementary material for:

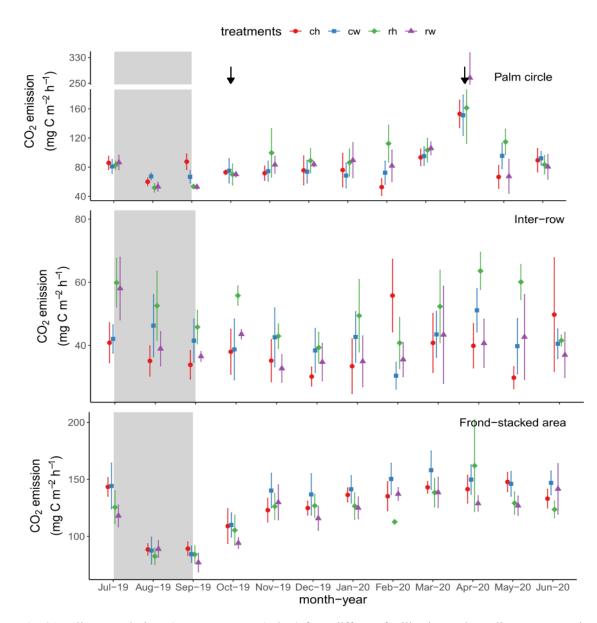
Large contribution of soil N₂O emission to the global warming potential of a large-scale oil palm plantation despite changing from conventional to reduced management practices

5 Guantao Chen¹, Edzo Veldkamp¹, Muhammad Damris², Bambang Irawan³, Aiyen Tjoa⁴, Marife D. Corre¹

¹Soil Science of Tropical and Subtropical Ecosystems, Faculty of Forest Sciences and Forest Ecology, University of Goettingen, Göttingen 37077, Germany

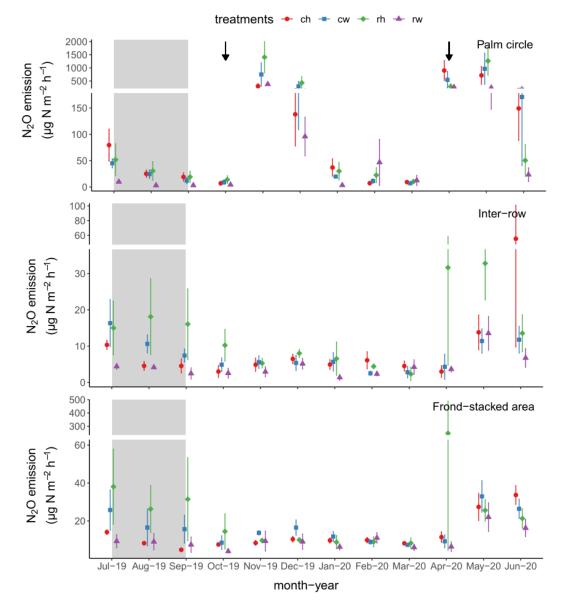
²Faculty of Science and Technology, University of Jambi, Jl. Raya Jambi-Ma. Bulian km. 15, Mendalo Darat, Muaro,

10 Jambi 36361, Indonesia


³Forestry Faculty, University of Jambi, Campus Pinang Masak Mendalo, Jambi 36361, Indonesia
⁴Faculty of Agriculture, Tadulako University, Jl. Soekarno Hatta, km 09 Tondo, Palu 94118, Indonesia

Correspondence to: Guantao Chen (gchen1@gwdg.de)

15 Contents of this file


Fig. S1 – S5

 $Table \; S1-S2$

20

Fig. S1 Soil CO₂ emissions (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an ≥ 18 year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation ≤ 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding

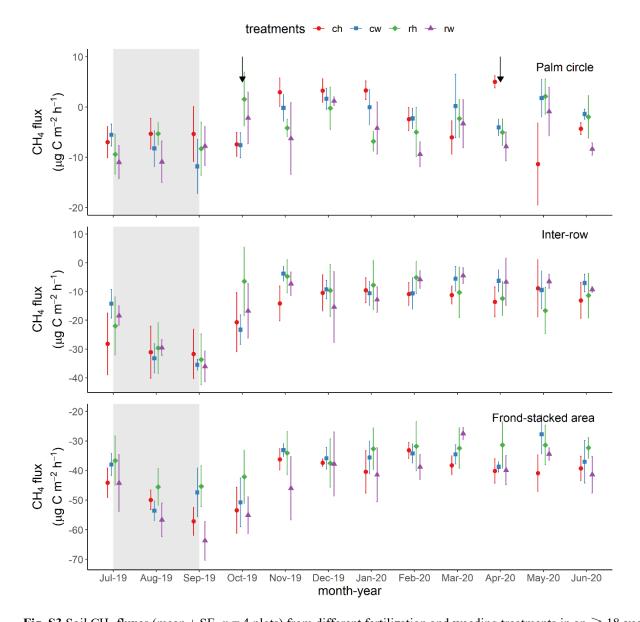
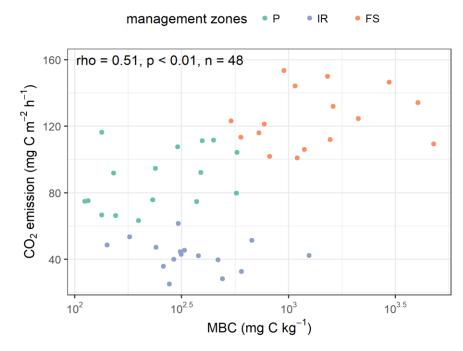

25

Fig. S2 Soil N₂O emissions (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an ≥ 18 year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation ≤ 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization –


herbicide weeding, cw: conventional fertilization - mechanical weeding, rh: reduced fertilization - herbicide weeding,

30

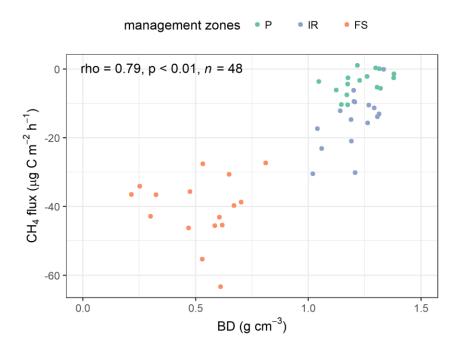

rw: reduced fertilization - mechanical weeding

Fig. S3 Soil CH₄ fluxes (mean \pm SE, n = 4 plots) from different fertilization and weeding treatments in an \geq 18-year old, large-scale oil palm plantation, Jambi, Indonesia, measured monthly from July 2019 to June 2020. Gray shadings mark the dry season (precipitation \leq 80 mm month⁻¹) and black arrows indicate fertilizer applications on the palm circle. Note the different y-axis ranges for the three management zones. ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding

40 Fig. S4 Spearman rank correlation between soil CO₂ emissions and microbial biomass carbon (MBC). Each data point for soil CO₂ emissions was the average of 12-monthly measurements and MBC was measured once in 2018, as reported by Formaglio et al. (2021). P – palm circle, IR – inter-row, FS – frond-stacked area

45 Fig. S5 Spearman rank correlation between soil CH₄ fluxes and soil bulk density (BD). Each data point for soil CH₄ fluxes was the average of 12-monthly measurements and BD was measured once in 2018 (Formaglio et al. 2021). P – palm circle, IR – inter-row, FS – frond-stacked area

Characteristics	Palm circle	Inter-row	Frond-stacked area	
Soil organic C (kg C m ⁻²)	$6.2\pm0.6~b$	$6.4\pm0.2\ b$	9.1 ± 0.8 a	
Total N (g N m ⁻²)	$402\pm31\ b$	$426 \pm 15 ab$	571±39 a	
ECEC (mmol _{charge} kg ⁻¹)	35 ± 2 a	18 ± 1 b	28 ± 2 a	
pH (1:4 soil-to-H ₂ O)	$5.05\pm0.08\ a$	$4.81\pm0.05\ b$	$5.00\pm0.08~ab$	
Bulk density (g cm ⁻³)	$1.37\pm0.01~a$	1.36 ± 0.01 a	$0.89\pm0.01~b$	
Clay (%)	23.30 ± 1.31 a	23.60 ± 1.00 a	25.47 ± 1.37 a	
Silt (%)	$7.80\pm1.19~a$	7.73 ± 1.23 a	6.47 ± 1.21 a	
Sand (%)	68.90 ± 1.52 a	68.67 ± 1.35 a	68.07 ± 1.97 a	

Table S1 Soil biochemical and physical characteristics (means \pm SE, n = 16 plots) in 0–50 cm depth determined in 2018 and soil texture in the 50–150 cm depth determined in 2021, reported for each management zone in an \geq 18-year old, large-scale oil palm plantation, Jambi, Indonesia

50 ECEC: effective cation exchange capacity. For each parameter, different letters indicate significant differences among management zones (one-way ANOVA with Tukey HSD at $P \le 0.05$). Except for soil texture, soil characteristics were reported by Formaglio et al. (2020)

Treatments	Cumulative yield (Mg ha ⁻¹)				
	2017	2018	2019	2020	
ch	26.64 ± 1.91	57.55 ± 2.74	83.41 ± 3.63	114.60 ± 4.26	
cw	31.24 ± 1.12	66.51 ± 1.57	96.75 ± 3.55	130.37 ± 4.45	
rh	28.18 ± 2.35	56.31 ± 4.86	86.59 ± 5.21	116.01 ± 6.20	
rw	29.38 ± 4.69	60.62 ± 5.35	90.94 ± 5.25	118.50 ± 5.92	

Table S2 Cumulative fruit yield from 2017–2020 (means \pm SE, n = 4 plots) in different fertilization and weeding treatments in an \geq 18-year old, large-scale oil palm plantation, Jambi, Indonesia

There are no significant differences among treatments for each column (2^2 factorial ANOVA; fertilization: P = 0.35 - 0.96; weeding control: P = 0.07 - 0.32; interaction: P = 0.07 -

55 0.23–0.57). ch: conventional fertilization – herbicide weeding, cw: conventional fertilization – mechanical weeding, rh: reduced fertilization – herbicide weeding, rw: reduced fertilization – mechanical weeding. Fruit yield was reported by Iddris et al. (2023)

References

60

Formaglio, G., Veldkamp, E., Duan, X., Tjoa, A., and Corre, M. D.: Herbicide weed control increases nutrient leaching compared to mechanical weeding in a large-scale oil palm plantation, Biogeosciences, 17, 5243–5262, https://doi.org/10.5194/bg-17-5243-2020, 2020.

Formaglio, G., Veldkamp, E., Damris, M., Tjoa, A., and Corre, M. D.: Mulching with pruned fronds promotes the internal soil N cycling and soil fertility in a large-scale oil palm plantation, Biogeochemistry, 154, 63–80, https://doi.org/10.1007/s10533-021-00798-4, 2021.

Iddris, N. A., Formaglio, G., Paul, C., von Groß, V., Chen, G., Angulo-Rubiano, A., Berkelmann, D., Brambach, F.,
 Darras, K. F. A., Krashevska, V., Potapov, A., Wenzel, A., Irawan, B., Damris, M., Daniel, R., Grass, I., Kreft, H.,
 Scheu, S., Tscharntke, T., Tjoa, A., Veldkamp, E., and Corre, M. D.: Mechanical weeding enhances ecosystem
 multifunctionality and profit in industrial oil palm, Nat Sustain. https://doi.org/10.1038/s41893-023-01076-x, 2023.