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Abstract. Several methods have been proposed for modelling global biome distribution. 10 

Climate data are typically summarised in terms of a few climate indices. However, with 11 

the recent advancement of machine learning algorithms, such summarisation is no longer 12 

required. Extreme climate events such as intense droughts and very low temperatures 13 

cannot be captured by monthly mean climate data, which may limit the applicability of 14 

biome boundaries. In this study, I assessed the influences of machine learning algorithms, 15 

climate variable indices, and extreme climate indices on the accuracy and robustness of 16 

global biome modelling. I found that the random forest and convolutional neural network 17 

algorithms produced highly accurate models for reconstructing the global biome 18 

distribution. However, the convolutional neural network algorithm was preferable, 19 

because the random forest algorithm substantially overfit the training data relative to the 20 

other machine learning algorithms examined. Including indexed climate data slightly 21 

reduced model accuracy, whereas including extreme climate data slightly improved it. 22 

However, there were significant deviations in the distribution of values between the 23 

observed and predicted climate when extreme climate data was included; this fatally 24 

reduced the robustness of the models, which were evaluated in terms of prediction 25 

consistency. Therefore, I recommend that extreme climate data not be considered in 26 

global-scale biome prediction applications. 27 
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1. Introduction 28 

A biome is a major regional ecological community characterised by distinctive life forms 29 

and principal plant species (Lincoln et al., 1998). Biome distributions are useful for 30 

estimating land potential and raising public awareness about land change (reviewed in 31 

Hengl et al. (2018)). At the global scale, climate conditions largely determine biome 32 

distribution (Adams, 2010; Prentice et al., 1992), and biome distribution interacts with 33 

climate through biophysical and biochemical pathways (Pitman, 2003). Thus, biome 34 

distributions may also be applied in climate projection. 35 

To date, several methods have been proposed for modelling biome distribution (Sato and 36 

Ise, 2022). In these models, climate data like monthly mean temperature and monthly 37 

precipitation are typically summarised as smaller numbers of climate indices such as 38 

annual precipitation and coldest month mean temperature. However, with the recent 39 

advancement of machine learning algorithms such as random forest (RF), restrictions on 40 

the amount of data used in model building have been relaxed, and it is no longer essential 41 

to summarise environmental data within indices. For example, Hengl et al. (2018) used 42 

160 environmental variables including soil and topography, as well as non-indexed 43 

climate variables such as monthly precipitation and monthly average temperature to 44 

construct an empirical model of biome distribution using machine learning algorithms. 45 

However, increasing the number of variables in the model entails costs such as lower 46 

model adaptability and higher computational demand; therefore, it is still important to 47 

limit the number of variables included in the model. 48 

From the perspective of plant physiology and ecology, the intensity of extreme climate 49 

events such as severe droughts and rare low-temperature incidents is a significant factor 50 

limiting biome boundaries (reviewed in Beigaite et al., 2022). Including extreme climate 51 

indices in addition to non-extreme climate variables has been reported to increase the 52 

accuracy of decision tree models (Beigaite et al., 2022). 53 

In this study, I evaluated the accuracy of four machine learning algorithms in a global 54 

biome distribution model based on current climate characteristics. I also assessed the 55 

influence of including extreme climate indices or converting monthly precipitation and 56 

average air temperature (24 variables) into 16 climatic indices on model accuracy. To 57 
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explore how the resulting models responded to climatic conditions beyond the training 58 

data, I applied them to forecast biome distributions for future climatic conditions (2060–59 

2080) and compared their outputs. 60 

2. Methods 61 

2.1 Biome data 62 

I used potential natural vegetation (PNV) compiled by Beigaite et al. (2022) to develop 63 

decision tree-based models of global PNV distribution 64 

(https://github.com/ritabei/dominant-natural-vegetation, accessed 20 June, 2022). The 65 

original PNV data were obtained from the Moderate Resolution Imaging 66 

Spectroradiometer (MODIS) MCD12C1 land cover product in 2001 67 

(https://doi.org/10.5067/MODIS/MCD12C1.006). The MCD12C product contains three 68 

land cover classifications, among which Beigaite et al. (2022) used the International 69 

Geosphere Biosphere Programme (IGBP) land cover classification, which is primarily 70 

based on supervised learning classification of MODIS Terra and Aqua reflectance data 71 

(Friedl et al., 2010). The MCD12C1 product contains percent cover for 17 IGBP classes 72 

(Loveland and Belward, 1997) in each grid cell at a resolution of 0.05°. Beigaite et al. 73 

(2022) resampled the MCD12C1 data to 50 km × 50 km grids and extracted the dominant 74 

natural vegetation with the highest fraction in each grid cell. Among the original 17 75 

categories, only 13 (natural vegetation) were used in this study (Figure 1, Table SI 1). 76 

Thus, grid cells with 100% human activity or water cover, or a combination of both, were 77 

eliminated from the analysis. I also ignored the continent of Antarctica. Ultimately, 78 

52,297 grid cells were included in the analysis. 79 

2.2 Climate data 80 

This study used four climate datasets: averaged monthly air temperature and precipitation 81 

(Ave, 24 variables), averaged monthly climate indices (AveI, 16 variables), climate 82 

extreme indices representing extreme conditions on a daily scale such as the maximum 83 

length of a dry spell (CEI, 27 variables), and a subset of CEI (CEIpart, 21 variables). The 84 

variables included in AveI and CEI are listed in Tables SI 2 and SI 3, respectively. Figures 85 
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SI 1–3 show the present (1970–2000) and future (2061–2080) distributions of Ave, AveI, 86 

and CEI, respectively. Among all climatic variables used in this study, only six variables 87 

in the CEI dataset (Tn10p, Tx10p, Tn90p, Tx90p, WSDI, and CSDI) had completely 88 

separate variable distributions between the present and future. Another indexed extreme 89 

climate dataset, CEIpart, was constructed by excluding these variables from the CEI 90 

dataset. 91 

Ave data were obtained from the WorldClim 2.1 product (released January 2020; Fick 92 

and Hijmans (2017)), which represents average monthly air temperature and precipitation 93 

data for 1970–2000. The original WorldClim 2.1 product was downloaded 94 

(http://worldclim.org, accessed 01 July, 2022) at a spatial resolution of 10 min, and 95 

resampled to 50 km × 50 km grids using the nearest-neighbour method. AveI was released 96 

by Beigaite et al. (2022), summarising WorldClim 2.1 properties in terms of annual means 97 

(e.g., BIO1 and BIO12), seasonality (e.g., BIO4, BIO7, and BIO15), and limiting 98 

environmental factors to a monthly scale (e.g., BIO5, BIO6, and BIO14). 99 

The CEI product was released by Beigaite et al. (2022) using the CLIMDEX climate 100 

extremes index (Sillmann, 2013 #3057@@author-year; https://climate-101 

modelling.canada.ca/climatemodeldata/climdex/). CLIMDEX comprises four datasets 102 

that were derived from different reanalysis datasets. Among these, Beigaite et al. (2022) 103 

used a dataset calculated from the ERA-Interim reanalysis dataset, which accurately 104 

reproduces observed climate extremes (Donat et al., 2014). CEI data derived from the 105 

ERA-Interim reanalysis dataset covers 32 years (1979–2010). For each grid, multi-year 106 

CEI values were averaged; multi-year averages of extreme indices are commonly used to 107 

represent averaged extreme conditions in the past and future (Seneviratne and Hauser, 108 

2020; Sillmann et al., 2013a). The original resolution of the CEI data was 1.5° × 1.5°; 109 

they were transformed onto 10 min × 10 min grids through conservative interpolation and 110 

then resampled to 50 km × 50 km grids using nearest-neighbour interpolation. 111 

For future climate condition projections (2061–2080), I used BIOCLIM 112 

(http://www.worldclim.com/cmip5_10m) and extreme climate variables (Sillmann et al. 113 

(2013b); https://crd-data-donnees-rdc.ec.gc.ca/CCCMA/products/CLIMDEX/CMIP5/) 114 

derived from future climate projections of the International Panel on Climate Change 115 

https://doi.org/10.5194/bg-2023-106
Preprint. Discussion started: 25 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

5 
 

 

(IPCC) Coupled Model Intercomparison Project Phase 5 (CMIP5). I used only one future 116 

scenario, Representative Concentration Pathway (RCP) 8.5. In this study, RCPs represent 117 

atmospheric greenhouse gas (GHG) concentration forecasts adopted by the IPCC for its 118 

Fifth Assessment Report (AR5) in 2014; RCP8.5 assumes that global annual GHG 119 

emissions will continue to rise throughout the 21st century, resulting in 758 ppm of 120 

atmospheric CO2 by 2080 (IPCC, 2013). All data were based on ensemble means of 11 121 

models participating in CMIP5 and averaged over 2061–2080. 122 

2.3 Machine learning algorithms 123 

I employed four machine learning algorithms: RF (Breiman, 2001), support vector 124 

machine (SVM) (Cortes and Vapnik, 1995), naive Bayes classifier (NV) (Langley et al., 125 

1992), and LeNet convolutional neural network (CNN). RF, SVM, and NV algorithms 126 

are commonly used to develop supervised learning models for classification. I 127 

implemented and evaluated these algorithms using the randomForest, ksvm, and 128 

naiveBayes packages in R v3.3.3 (R-Core-Team, 2018). I used the default model 129 

parameters for simplicity and to prevent potential overfitting, i.e., training the model too 130 

closely to a particular dataset, thereby creating a model that might fail to fit additional 131 

data or reliably predict future observations. 132 

CNN algorithms are more complex than the others included in this study. They are 133 

typically applied to analyse visual imagery, and have been successfully adapted for 134 

species distribution modelling at regional (Benkendorf and Hawkins, 2020; Botella et al., 135 

2018) and global scales (Sato and Ise, 2022). I follow Sato and Ise (2022) in training our 136 

CNN with graphical images as input variables representing climatic conditions. 137 

In contrast to Beigaite et al. (2022), I did not include a decision tree algorithm in our 138 

study. Although decision trees rapidly provide interpretable boundary conditions for the 139 

distribution of a given output variable, they are generally inferior to the algorithms 140 

explored in this study in terms of reconstruction accuracy. The RF algorithm is an 141 

ensemble of decision tree algorithms, which I anticipated would provide higher model 142 

accuracy. 143 
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2.4 Data analysis 144 

To separate the influences of climate data and extreme climate indices on PNV model 145 

performance, I compared the learning performance of six climate dataset combinations: 146 

Ave, Ave + CEI, Ave + CEIpart, AveI, AveI + CEI, and AveI + CEIpart. Four machine 147 

learning algorithms were applied for each climate dataset combination, resulting in 24 148 

models.  149 

For each model, 25% of all 52,297 grids were randomly selected and used for training. I 150 

determined the test accuracy of each model by calculating the ratio of correct answers 151 

when the model was applied to the remaining 75% of grids. I also determined the training 152 

accuracy of each model by calculating the ratio of correct answers when the model was 153 

applied to the training data itself. Generally, training accuracy scores were expected to be 154 

higher than test accuracy scores due to overfitting (Leinweber, 2007); thus, an overfitting 155 

score was calculated as training accuracy minus test accuracy. Ten experiments were 156 

conducted for each model, and their averages were compared among models. 157 

3. Results 158 

Irrespective of the training datasets, all models except NV reconstructed global PNV 159 

precisely (Figs. 1 and SI4–7). The ranges of test accuracy values were 80.1%–81.4%, 160 

74.6%–78.0%, 44.2%–50.1%, and 77.1%–82.0% for the RF, SVM, NV, and CNN 161 

models, respectively (Table 1). All accuracy values were > 17.8%, in which all grids were 162 

assumed to be the most frequent PNV, grassland (Table SI1). All accuracy values except 163 

for NV were > 49%, in which all grids at the same latitude were assigned the most 164 

frequent PNV at that latitude. 165 

The low test accuracy of the NV model was caused by an overestimation of areas 166 

dominated by boreal forest, tropical rainforest, and deciduous broadleaf forest (Fig. 4), 167 

whereas the other models tended to show grid discrepancies along PNV boundaries (Figs. 168 

2, 3, and 5). This trend corresponds to that of observation-based biome distributions being 169 

fragmented along PNV boundaries (Fig. 1). In contrast, model-reconstructed biome 170 

distributions have more continuous structures (Figs. SI4–7). From further analysis and 171 

discussion, I excluded the NV model due to its poor performance. 172 
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The models shared common test accuracy patterns in response to input data (Table 1). 173 

The summarizing climate data into indices decreased model test accuracy, with AveI – 174 

Ave accuracy results of −1.1%, −1.8%, and −2.0% for RF, SVM, and CNN, respectively. 175 

The inclusion of extreme climate indices (CEI) increased test accuracy, with (Ave + CEI) 176 

− Ave accuracy results of 0.2%, 1.6%, and 1.0% for RF, SVM, and CNN, respectively, 177 

and (AveI + CEI) − AveI accuracy results of 1.1%, 3.1%, and 2.8% for RF, SVM, and 178 

CNN, respectively. Replacing CEI with CEIpart in these comparisons revealed no 179 

consistent trend in test accuracy, with negligible change for RF (0.1% vs. 0.1%), a 180 

decrease for SVM (−0.3% vs. −0.8%), and an increase for CNN (1.7% vs. 2.1%). 181 

Training accuracy rates consistently exceeded test accuracy rates for all combinations of 182 

models and datasets (Tables 1 and 2), resulting in a positive overfitting score, defined as 183 

training accuracy minus test accuracy (Table 3). The RF model always had 100% training 184 

accuracy, resulting in high overfitting scores of 18.6%–20.0%. The overfitting scores of 185 

the other models were much lower, at 1.38%–2.05% for SVM and 0.75%–2.17% for 186 

CNN. 187 

All models reconstructed highly coincident PNV distributions under current climatic 188 

conditions, irrespective of the training datasets (accuracy, 70.1%–86.4%, Table 4). For 189 

any combinations of models, datasets provide only slight differences in the 190 

correspondence of PNV reconstructions: in comparing RF and SVM, which provides the 191 

closest PNV distributions (accuracy, 84.5%–86.4%), the difference is less than 2.0%, 192 

while in comparing SVM and CNN, which provides the farthest PNV distributions 193 

(accuracy, 70.1%–72.4%), the difference is less than 2.3%. 194 

When the trained models were adapted for a future climate, i.e., climate conditions 195 

beyond the training data, there were much larger differences between PNV distributions 196 

produced by different combinations of models and datasets (accuracy, 4.1%–82.8%, 197 

Table 5), with larger discrepancies in PNV maps constructed by models trained with CEI 198 

datasets (Figs. 6–9). SVM models trained with the CEI dataset output only evergreen 199 

broadleaf forest (Fig. SI9c, d), whereas CNN models output maps with abundant 200 

grassland and savanna (Fig. SI11c, d). Replacing CEI data with CEIpart data amended 201 

these extreme outputs (Figs. SI9e, f and 11e, f). Excluding models trained with the NV 202 
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algorithm and CEI dataset produced highly coincident PNV distributions under a future 203 

climate (accuracy, 51.7%–82.8%, Table 5). 204 

4. Discussion 205 

Irrespective of the input dataset combination, the RF and CNN algorithms provided more 206 

accurate global PNV models than did the SVM and NV algorithms. Hengl et al. (2018) 207 

also found that RF consistently outperformed other machine learning algorithms, 208 

including neural networks. In their study, a stack of 160 global maps representing 209 

biophysical conditions over the terrestrial surface, including atmospheric, climatic, relief, 210 

and lithologic variables, were used as explanatory variables to predict 20 biome classes 211 

in the BIOME 6000 dataset (http://doi.org/10.17864/1947.99). Although a direct 212 

comparison with the findings of the current study is impossible, this previous report 213 

supports RF as a robust machine learning algorithm for reconstructing biome maps. The 214 

present study is the first to compare the results of a CNN algorithm adapted for biome 215 

modelling (Sato and Ise, 2022) to those of biome models based on other machine learning 216 

algorithms; this CNN showed comparable performance to an RF. 217 

I found that RF and CNN algorithms had similar test accuracy rates. However, the CNN 218 

is preferable because RF produced much higher overfitting scores than any other machine 219 

learning algorithm examined in this study. Overfitting is an inevitable risk associated with 220 

empirical models (Leinweber, 2007). Fourcade et al. (2018) demonstrated an extreme 221 

example of pseudo-predicting variables (randomly chosen classical paintings) increasing 222 

the accuracy of species distribution modelling; these models sometimes had even higher 223 

evaluation scores than models trained with relevant environmental variables. To avoid 224 

overfitting or employing pseudo-predicting variables, Fourcade et al. (2018) suggested 225 

expending more effort in cross-validation and ensuring the selection of the most important 226 

predictors. I followed this suggestion in our analysis. 227 

The climate index data used in this study reduced the number of variables by two thirds 228 

(from 24 to 16). However, it reduced model accuracy only slightly (−1.1%, −1.8%, and 229 

−2.0% for RF, SVM, and CNN, respectively), demonstrating that the typical climate 230 

indices used in this study adequately extracted essential climate information relevant to 231 
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global biome distribution. Nevertheless, indexing has no particular merit in building 232 

machine learning-based invisible models, whereas it is essential in building visible 233 

models such as decision trees (Beigaite et al., 2022). 234 

Adding extreme climate data improved test accuracy rates slightly but it can fatally reduce 235 

model robustness, which was defined as the consistency of model prediction under 236 

forecast climate conditions. This outcome was caused by six CEI variables with 237 

distributions that were entirely distinct from the training data, demonstrating the need to 238 

assess the distributions of training and predicting variables when building empirical 239 

models. Because the slight improvement in test accuracy obtained by including extreme 240 

climate data was insufficient to compensate the loss of model robustness, I recommend 241 

that extreme climate data not be included in models predicting global biome distribution 242 

at the geographical resolution employed in this study (0.5°). 243 

There is clear evidence that climate extremes control plant demographic processes such 244 

as growth (Jolly et al., 2005; Ciais et al., 2005), regeneration (Ibanez et al., 2007), and 245 

mortality (Villalba and Veblen, 1998; Bigler et al., 2006), all of which influence plant 246 

species distributions. However, it does not follow that extreme climate data should always 247 

be considered to improve biome map reconstruction, because mean climatic values are 248 

tightly correlated with extreme climatic variables. Even indexed climate variables 249 

adequately extracted this correlated information in the present study, as shown by the 250 

slight differences in test accuracy rates between Ave and AveI (< 1.8%), and between Ave 251 

+ CEIpart and AveI + CEIpart (< 0.8%), except for NV models (Table 1). However, at local 252 

and species levels, extreme climate may be a more critical predictor; Zimmermann et al. 253 

(2009) revealed that complementing mean climate predictors with variables representing 254 

climate extremes improves the predictive power of species distribution models. 255 

A crucial disadvantage of the climatic envelope approach is that extrapolating current 256 

correlations between climate and biome distributions into the future may lead to seriously 257 

biased predictions. Thus, strong model performance under the present climate does not 258 

guarantee similar performance under a new set of climatic conditions that may occur in 259 

the future. However, no models except those trained with the NV algorithm and the CEI 260 

dataset showed apparent expansions of PNV uncertainty under projected climatic 261 

https://doi.org/10.5194/bg-2023-106
Preprint. Discussion started: 25 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

10 
 

 

conditions. This result suggests that robust models can be developed beyond the training 262 

data if the machine learning algorithms and climatic variables are carefully selected. The 263 

climatic envelope approach has other limitations and disadvantages. For example, it 264 

ignores time lags between climate change and vegetation change, changes in atmospheric 265 

CO2, and human land use change (discussed in Sato and Ise (2022)). However, the 266 

climatic envelope is helpful for various adaptations, including benchmarking dynamic 267 

global vegetation models (Fisher et al., 2018). 268 

5. Conclusion 269 

Models constructed based on RF and CNN algorithms provided accurate, robust global 270 

PNV models. Despite its slightly higher accuracy, the RF model tended to overfit the 271 

training data, leading to dramatically lower robustness; thus, the CNN model is 272 

preferable. The inclusion of climate data indices has no particular merit in developing 273 

“non-transparent” models, and only slightly reduced model accuracy. Extreme climate 274 

data improves model accuracy and robustness only if the distributions of climate variables 275 

are moderately within the range of the training data. Therefore, it is safer not to include 276 

extreme climate indices. 277 
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Tables 383 

Table 1. Average test accuracy rates ± standard deviation (%; n = 10) for models based 384 

on four machine learning algorithms: random forest (RF), support vector machine (SVM), 385 

Naive Bayes classifier (NV), and convolutional neural network (CNN). Input variable 386 

abbreviations: Ave, averaged monthly air temperature and precipitation; AveI, averaged 387 

monthly climate indices; CEI, climate extreme indices; and CEIpart, a subset of CEI. 388 

Input variable 

combinations 

RF SVM NV CNN 

Ave 81.2 ± 0.21 76.4 ± 0.15 46.7 ± 0.84 79.1 ± 0.15 

Ave + CEI 81.4 ± 0.20 78.0 ± 0.15 45.2 ± 1.20 80.1 ± 0.12 

Ave + CEIpart 81.5 ± 0.22 77.7 ± 0.19 44.2 ± 1.24 81.8 ± 0.30 

AveI 80.1 ± 0.22 74.6 ± 0.12 50.1 ± 0.88 77.1 ± 0.18 

AveI + CEI 81.2 ± 0.21 77.7 ± 0.19 44.6 ± 1.82 79.9 ± 0.16 

AveI + CEIpart 81.3 ± 0.18 76.9 ± 0.16 43.3 ± 2.26 82.0 ± 0.31 
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Table 2. 390 

As in Table 1, but for training accuracy rate ± standard deviation (%, n = 10). 391 

Input variable 

combinations 

RF SVM NV CNN 

Ave 100.0 ± 0.00 77.8 ± 0.28 46.8 ± 0.70 81.1 ± 0.90 

Ave + CEI 100.0 ± 0.00 79.9 ± 0.25 45.3 ± 1.02 81.9 ± 0.94 

Ave + CEIpart 100.0 ± 0.00 79.5 ± 0.32 44.4 ± 1.08 83.0 ± 0.44 

AveI 100.0 ± 0.00 76.1 ± 0.33 50.5 ± 0.97 78.3 ± 1.02 

AveI + CEI 100.0 ± 0.00 79.8 ± 0.14 44.7 ± 1.74 82.1 ± 0.90 

AveI + CEIpart 100.0 ± 0.00 78.5 ± 0.38 43.5 ± 2.14 82.9 ± 0.48 

 392 

Table 3. 393 

As in Table 1, but for overfitting scores ± standard deviation (%, n = 10). 394 

 RF SVM NV CNN 

Ave 18.9 ± 0.21 1.38 ± 0.30 0.11 ± 0.40 2.05 ± 0.99 

Ave + CEI 18.7 ± 0.20 1.92 ± 0.30 0.15 ± 0.36 1.78 ± 0.91 

Ave + CEIpart 18.6 ± 0.22 1.83 ± 0.43 0.14 ± 0.32 0.75 ± 0.62 

AveI 20.0 ± 0.22 1.53 ± 0.39 0.33 ± 0.59 1.19 ± 1.03 

AveI + CEI 18.8 ± 0.21 2.05 ± 0.29 0.15 ± 0.49 2.17 ± 0.86 

AveI + CEIpart 18.8 ± 0.18 1.91 ± 0.46 0.16 ± 0.43 1.06 ± 0.57 
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Table 4. Degree of coincidence (%) in pairwise comparisons of simulated potential 396 

natural vegetation (PNV) under the current climate. Asterisks indicate the exclusion of 397 

models trained with the naive Bayes classifier. 398 

 RF 
vs 

SVM 

RF 
vs 

NV 

RF 
vs 

CNN 

SVM 
vs 

NV 

SVM 
vs 

CNN 

NV 
vs 

CNN 

Ave 85.6* 49.4 70.8* 50.9 70.1* 33.5 

Ave + CEI 86.4* 47.8 71.5* 49.0 72.3* 32.0 

Ave + CEIpart 86.3* 46.1 74.1* 46.9 70.6* 30.4 

AveI 84.4* 53.8 70.8* 56.7 71.9* 38.8 

AveI + CEI 86.1* 46.9 70.9* 48.1 72.4* 31.2 

AveI + CEIpart 85.5* 45.0 73.5* 46.0 70.7* 29.2 

 399 

Table 5. Degree of coincidence (%) in pairwise comparisons of simulated potential 400 

natural vegetation (PNV) under a Representative Concentration Pathway 8.5 (RCP8.5) 401 

climate scenario. Asterisks indicate the exclusion of models trained with the naive 402 

Bayes classifier or including climate extreme indices as input data. 403 
 RF 

vs 
SVM 

RF 
vs 

NV 

RF 
vs 

CNN 

SVM 
vs 

NV 

SVM 
vs 

CNN 

NV 
vs 

CNN 

Ave 78.6* 46.0 56.3* 52.8 65.4* 35.8 

Ave + CEI 3.4 21.0 43.4 20.2 1.6 2.8 

Ave + CEIpart 82.8* 45.7 63.1* 51.2 51.7* 30.6 

AveI 81.2* 51.5 60.8* 56.9 65.4* 37.7 

AveI + CEI 4.1 22.0 56.8 17.5 5.1 10.2 

AveI + CEIpart 82.0* 44.9 66.3* 49.4 66.0* 30.0 
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Figures 405 

 406 

Figure 1 407 

Distribution of observation-based potential natural vegetation (PNV) data, which were 408 

used to train machine learning-based models in this study. 409 
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 411 

Figure 2. Differences in simulated PNV under the current climate between a random 412 

forest (RF) algorithm-based model and PNV observation data. Four sets of climate data 413 

were used for training and simulation: (a) averaged monthly air temperature and 414 

precipitation (Ave), (b) averaged monthly climate indices (AveI), (c) Ave + climate 415 

extreme indices (CEI), (d) AveI + CEI, (e) Ave + a subset of CEI (CEIpart), and (f) AveI + 416 

CEIpart. Color definitions are available in Fig. 1. 417 
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 419 

Figure 3. As in Fig.2, but for a support vector machine (SVM)-based model. 420 
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 422 

Figure 4. As in Fig. 2, but for a naive Bayes classifier (NV)-based model. 423 

  424 

https://doi.org/10.5194/bg-2023-106
Preprint. Discussion started: 25 January 2024
c© Author(s) 2024. CC BY 4.0 License.



 

21 
 

 

 425 

Figure 5. As in Fig. 2, but for a convolutional neural network (CNN)-based model. 426 
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 428 

Figure 6. Differences in simulated PNV between the current climate and a Representative 429 

Concentration Pathway 8.5 (RCP8.5) climate scenario for 2080 produced by a random 430 

forest (RF)-based model. Four sets of climate data were used for training and simulation: 431 

(a) averaged monthly air temperature and precipitation (Ave), (b) averaged monthly 432 

climate indices (AveI), (c) Ave + climate extreme indices (CEI), (d) AveI + CEI, (e) Ave 433 

+ a subset of CEI (CEIpart), and (f) AveI + CEIpart. Color definitions are available in Fig. 434 

1. 435 
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 437 

Figure 7. As in Fig.6, but for a support vector machine (SVM)-based model. 438 
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 439 

Figure 8. As in Fig.6 but for a naive Bayesian classifier (NV)-based model. 440 
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 442 

Figure 9. As in Fig.6, but for a convolutional neural network (CNN)-based model. 443 
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