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Abstract. Coastal marsh survival relies upon to their on the ability to increase their elevation and offset sea level rise. It 

is therefore fundamental important to realistically model the sediment fluxes between marshes, tidal channels and , bays 

since sediment availability controls accretion. Traditionally, numerical models have been calibrated and validated using in-situ 

measurements located in at few locations within the domain of interest. These datasets typically provide temporal information 

5 but lack spatial variability. This paper explores the potential of coupling numerical models with high resolution remote sensing 

imagery. Products from three sensors from the recent NASA Delta-X airborne mission are used. UAVSAR provides vertical 

water level change on the marshland, and was used to adjust the bathymetry and calibrate the water fluxes over the marsh. 

AirSWOT yields water surface elevation within bays, lakes and channels and was used to calibrate the Chezy bottom friction 

coefficient. Finally, imagery from AVIRIS-NG provide maps of total suspended solids (TSS) concentration that were used to 

10 calibrate sediment parameters of settling velocity and critical shear stress for erosion. Three numerical models were developed 

at different locations and scales along coastal Louisiana using Delft3D. The coupling enabled a spatial evaluation of model 

performance not possible using simple point measurements. Some limitations were highlighted in the remote sensing imagery 

and the numerical models that need to be accounted for when comparing the results. Overall, the study shows that calibration 

of numerical models and their general quality performance will greatly benefit from remote sensing. 
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1  Introduction 
 

Coastal marshes are among the most important and functional ecosystems on Earth, as they are able to buffer and protect from 

storm surges and winds (Farber, 1987; Möller et al., 2014; Haddad et al., 2016; Peter Sheng et al., 2022)(Temmerman et al., 

2023), store carbon (Saintilan et al., 2013; Nahlik and Fennessy, 2016; Rogers et al., 2019), and offer natural shelter habitat 
20  to wildlife (Galbraith et al., 2002; Minello et al., 2003). However, it has been estimated that since the 1900s around 50% 
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of coastal wetlands have been lost (Nicholls, 2004). The resilience of present coastal wetlands is altered by accelerated sea 

level rise (Cahoon et al., 2006; Spencer et al., 2016; Schuerch et al., 2018), enhanced subsidence due to groundwater and oil 

extraction activities (Syvitski et al., 2009), and depleted sediment supply to the coast as a result of extensive river damming 

(Syvitski et al., 2005). Physically based models are necessary to understand and predict the response of coastal wetlands to 
25  such external drivers (Fagherazzi et al., 2020). 

In order to determine the evolution of coastal marshes in a climate change scenario, a fundamental step is the quantitative de- 

termination of i Incoming and outgoing sediment fluxes are key for the evolution of coastal marshes in a climate change scenario 

(Ganju et al., 2017). Consequently, it is imperative that numerical models accurately solve the hydrodynamic and sediment 

transport processes in the coastal area. Currently, in order to calibrate and validate physical models of coastal marshes, scientists 

30 use one or multiple stations that measure one or more local quantities parameters such as water levels, temperature, salinity, 

and sediment concentration to validate physical models of coastal marshes in the same location for a prolonged time. This 

approach is shared by modelling studies that focus solely on hydrodynamics (e.g., Dietrich et al. (2011); Bunya et al. (2010); 

Defne and Ganju (2015)) and studies that include sediment transport (e.g., Castagno et al. (2018); Zang et al. (2018); Zhang 

et al. (2019)). In most cases, the instrumentation is installed in a few locations either in the open sea, or along the coastline, or 

35 within tidal channels and creeks, as sensor installation becomes challenging in on the shallow areas of coastal marshes where 

boat access is not possible difficult. Furthermore, although they these in-situ measurements inform about temporal variability, 

these in-situ measurements only but provide limited spatial information across the landscape. Consequently, it is challenging 

to fully evaluate the quality of the numerical simulations over the marsh platform, which is troublesome, given the importance 

of must capturing e the flux of water and sediment there. Despite recent progress in this direction, there remains a need to 

40  include the extended extensive information provided by remote sensing imagery in numerical models (Fagherazzi et al., 2020). 

Over time, the introduction of more advanced sensors has improved the spatial resolution of available remote sensing im- 

agery. Coarser resolution sensors, including the Moderate Resolution Imaging Spectroradiometer (MODIS) and the National 

Oceanic and Atmospheric Administration NOAA (NOAA) Advanced Very High Resolution Radiometer (AVHRR) have been 

widely used in various applications for wetlands studies. MODIS data have the advantage of providing near daily coverage of 

45 the Earth’s surface, but with a resolution of 250 or 500 m depending on the selected band (Pflugmacher et al., 2007). MODIS 

data timeseries have been used to monitor wetland cover (Tana et al., 2013), estuarine vegetation succession and tidal flat 

elevation (Zhao et al., 2009), tidal wetlands biophysical characteristics (Ghosh et al., 2016), hurricane disturbance to coastal 

vegetation (Wang and D’Sa, 2009), and coastal wetland biomass (Lumbierres et al., 2017). MODIS data have also been coupled 

with tower-based flux measurements to determine the carbon budget and the G gross P primary P production in estuarine and 

50 coastal wetlands (Yan et al., 2008; Kang et al., 2018). Similarly to MODIS, AVHRR provides global imagery twice a day, but 

with a 1km resolution. AVHRR data applications vary from assessing hurricane damage in wetlands (e.g., Ill et al. (1997)) to 

NDVI seasonal pattern in deltaic systems (e.g., Zoffoli et al. (2008)). 

Moderate spatial resolution sensors, with spatial resolution of tens of meters, provide much higher detail of the Earth’s 

surface compared to MODIS and AVHRR. Among them, data provided by the Landsat and Sentinel sensors have been more of- 

55 ten used to monitor coastal wetlands more often compared to other sensors such as the Advanced Spaceborne Thermal Emission 
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and Reflection Radiometer (ASTER), China & Brazil Earth Resource Satellite (CBERS), Systeme Probatoire D’Observation 

De La Terre (SPOT 1-4) and Advanced Land Observing Satellite (ALOS) (Guo et al., 2017). Long-term Landsat timeseries have 

been used to detect coastal wetlands cover and area change (Cardoso et al., 2014; Couvillion et al., 2017; Kaplan and Avdan, 

2017; Wang et al., 2019, 2020), wetlands vegetation classification and change (Zhang et al., 2011; Muro et al., 2016; Lopes 

60  et al., 2019; Thomas et al., 2019; Balogun et al., 2020; Zhang et al., 2022c), extreme events impact on vegetation (Rodgers 

et al., 2009), coastal wetland soil vertical accretion rates (Jensen et al., 2022), and coastal wetland above ground above-ground 

biomass (Tan et al., 2003; Chen et al., 2022). 

Remote sensing studies have also developed algorithms to infer water quality indicators in coastal waters near wetlands (Mc- 

Clain and Meister, 2012). For instance, Fichot et al. (2016) used high resolution remote-sensing reflectance data from the air- 

65 borne Portable Remote Sensing Spectrometer (PRISM) to derive maps of turbidity, dissolved organic carbon and chlorophyll-a 

in the San Francisco Bay-Delta Estuary. Jensen et al. (2019) used high resolution remote-sensing reflectance data from NASA’s 

Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) to derive maps of total surface suspended 

solids in the waters of the Atchafalaya basin along the Louisiana coast (USA). and They used an algorithm centered on a 

derivative-based partial least squares regression between measured total surface suspended solids and in-situ spectra. derived 

70 maps of total suspended solids in the waters of the Atchafalaya basin along the Louisiana coast (USA) from AVIRIS-NG. 

Other studies utilized operational satellite sensors with coarser spatial resolution and fewer spectral bands to derive sediment 

concentrations in coastal waters. Dorji and Fearns (2016) applied multiple algorithms to MODIS and Landsat imagery in re- 

gional waters of northern Western Australia, whereas Zhang et al. (2020a) adopted Landsat-8 and Sentinel-2 imagery to derive 

suspended sediment concentration in Plum Island Estuary in Massachusetts (USA). 

75  High quality optical imagery is limited to cloud-free conditions, therefore remote sensing techniques can also rely on radar 

sensors to overcome this limitation (Henderson and Lewis, 2008). The ALOS Phased Array L-band Synthetic Aperture Radar 

(PALSAR), European Remote Sensing satellite (ERS-1), RadarSAT, Advanced Synthetic Aperture Radar (ASAR), Japanese 

Earth Resources Satellite 1 (JERS-1), Airborne Synthetic Aperture Radar (AIRSAR), and TerraSAR-X are some examples of 

radar sensors used to monitor wetlands (Guo et al., 2017). Slatton et al. (2008) showed that changes in the multi-polarization 

80 L-band AIRSAR backscatter were able to detect herbaceous vegetation in marshes, while Kwoun and Lu (2009) used SAR 

data over the Louisiana coastal zone to characterize seasonal variations of radar backscattering according to vegetation type, . 

showing These studies show that SAR can be adopted to monitor changes in coastal wetland vegetation cover. Within the last 

decade it was demonstrated that repeat-pass radar interferometry from spaceborne instruments have enables d measurements 

of water level change within marshes (Wdowinski et al., 2008; Liao et al., 2020; Xie et al., 2013; Hong and Wdowinski, 2014). 
85  This new technology enables direct observation of large scale flow patterns that can only be observed with remote sensing. 

In this study, the aim is to showcase the This study presents a novel coupling between numerical modelling and high- 

resolution remote sensing imagery. In particular, it shows that the calibration of hydrological and sediment transport models 

can be performed with multiple remote sensing data. To do so, multiple three remote sensing products from the NASA Delta-X 

mission are used and to inform three Delft3D numerical models are developed at with different spatial resolutions. The paper 
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Figure 1. (a) The domains for the Atchafalaya and Terrebonne basin numerical models. The top left inset shows a map of the contiguous 

US with the state of Louisiana colored in red. (b) Inset showing a detail of the small-scale model domain in the Terrebonne basin. Sources 

for satellite images in Figure 1b are: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, AEX, Getmapping, 

Aerogrid, IGN, IGP, swisstopo, and the GIS User Community. 
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is structured in the following sections: an introduction to the Delta-X mission and related remote sensing products, set-up of 

the numerical models, results, and discussion of advantages and limitations of using these datasets with numerical models. 

 
2 Methods 

 
2.1 Study area and models domains 

 
The Terrebonne and Atchafalaya basins are two neighboring coastal basins located along the Louisiana coast, to the west of 

the Mississippi River birdfoot delta (Figure 1). Among all basins in the Mississippi River Delta Plain (MRDP), the Terrebonne 

wetlands have seen the highest rate of areal loss since 1932 (Couvillion et al., 2017; Jensen et al., 2022) due to the lack of 

sediment load from inland waters. Furthermore, because of the microtidal environment, mineral soil accretion heavily relies on 

wind waves for bottom sediment resuspension and on storm surges to transport the sediment over the marsh platform (Cortese 

and Fagherazzi, 2022). The basin is characterized by a strong salinity gradient, with salt marshes dominated by Spartina al- 

terniflora Spartina alterniflora along the coast, and brackish and fresh marshes located in landward internal areas (Twilley 

et al., 2019). 
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The Atchafalaya basin is located west of Terrebonne and includes the Atchafalaya River and the Wax Lake Outlet. Both rivers 

mirror the seasonal pattern of the Mississippi hydrograph, with peak discharge between January and June and low discharge 

in September and October (Allison et al., 2000). The two rivers receive around 30% of the Mississippi River flow through the 

Old River Control floodgate located north of Baton Rouge (Roberts et al., 2003) and have actively growing deltas, representing 

a rare instance of land gain along Louisiana’s coast (Couvillion et al., 2017). For instance, the Wax Lake Delta has prograded 

seaward at a 270 m yr−1 rate between 1980 and 2002 (Parker and Sequeiros, 2006). In the Atchafalaya basin nearly 80% of 

the wetlands are freshwater marshes and swamps due to the high freshwater discharge (Twilley et al., 2019). The distribution 

of the vegetation is heavily regulated by topography and hydroperiod (Bevington and Twilley, 2018). 

In order to examine the use of remote sensing to calibrate models at different scales, t Three numerical models were devel- 

oped at different scales and calibrated with remote sensing data. Two models were set-up at the basin scale, while the third 

one was developed at a smaller scale. The large-scale Terrebonne model (red rectangle in Figure 1) extends longitudinally for 

90 km and borders with the Atchafalaya basin to the west. The small-scale Terrebonne model is located within the salt marsh 

in the south-west portion of Terrebonne (blue rectangle in Figure 1) and is connected to the south with the small Dog Lake. 

The domain consists of an island surrounded by two main channels with a 100-150 m wide cross section that converge at the 

northern top of the island. Finally, the Atchafalaya model (green rectangle in Figure 1) extends longitudinally for 84 km and, 

besides includes the two deltas, includes Fourleague Bay to the east, and Vermilion Bay to the west. 

2.2 NASA Delta-X mission 
 

Delta-X is a NASA mission funded by the Science Mission Directorate’s Earth Science Division through the Earth Venture 

Suborbital-3 Program (Simard et al. (2022); https://deltax.jpl.nasa.gov/), which aims to investigates how feedbacks between 

hydrological and ecological processes enable marshes and deltas to survive relative sea level rise. The project is focused on 

the two basins of the MRDP introduced above. The mission has produced airborne high-resolution remote sensing imagery 

and in-situ measurements that can be incorporated in hydrodynamic, sediment transport and ecological numerical models. In 

2021, two field campaigns were completed, one in Spring and one in Fall in order to capture the maximum and minimum flood 

stages of the Mississippi river discharge. 

2.3 UAVSAR, AirSWOT, and AVIRIS-NG 
 

During both Delta-X campaigns, three airborne remote sensing instruments repeatedly collected data to capture the hydrol- 

ogy hydrological parameters and infer sediment concentration during different tidal stages. 

The Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) is a fully polarimetric L-band synthetic aperture radar 

130 (SAR), with a wavelength of 23.8 cm, installed on a NASA Gulfstream-III aircraft, that can provide highly coherent rapid 

repeat-pass SAR acquisitions. UAVSAR data provide a measurement of water level change over the wetlands with a resolution 

of 6 m through repeat-pass interferometry, which allows the detection of surface displacement using multiple observations from 

the same viewing geometry (Rosen et al., 2006). In flooded wetlands, the water surface is detected through the double-bounce 

scattering mechanism from water and vegetation (Kim et al., 2009; Wdowinski et al., 2013). To separate the water surface 

https://deltax.jpl.nasa.gov/
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from the emergent wetland, a water mask was generated from the interferogram Level-1 products. Figure 2a shows an example 

of water level change measured by UAVSAR on the wetlands in western Terrebonne by UAVSAR between 17:13 and 17:44 

(GMT) on 06 April 2021. A phase unwrapping algorithm is employed to convert interferometric phase change ∆ϕ to change in 

elevation ∆z (Oliver-Cabrera et al., 2021). Here, Level-3 UAVSAR data acquired in Terrebonne (Jones et al., 2022) are used 

(Jones et al., 2022). 

AirSWOT is an airborne Ka-band synthetic aperture radar with a wavelength of 0.84 cm flown on a Beechcraft King Air 

B200, that measures water surface elevation and water surface slope in open waters with uncertainty below 0.3 cm/km. Air- 

SWOT uses cross-track interferometry to measure the elevation and combines it with along-track interferometry to correct for 

the bias due to the water motion (Goldstein and Zebker, 1987). To separate land from water surfaces, the same UAVSAR water 

mask was used for AirSWOT. More details on the application of AirSWOT are reported by Denbina et al. (2019). Figure 2b 

shows an example of water surface elevation in western Terrebonne acquired along a flight line on 05 April 2021 at 22:22 

GMT. Here, Level-2 AirSWOT geocoded water surface elevation data in Terrebonne and Wax Lake (Denbina et al., 2022) are 

used. Water surface elevation data was validated in both Delta-X campaigns using in-situ gauges and a root mean squared error 

of 9 cm was found when data were averaged on a 1 km2 area. 
The Airborne Visible/Infrared Imaging Spectrometer-Next Generation (AVIRIS-NG) is a high-resolution imaging spec- 

trometer that measures radiance for 432 bands at 5-nm spectral sampling between 380 and 2510 nm (Hamlin et al., 2011). 

The calibrated radiance measurements from AVIRIS-NG were atmospherically corrected to produce spectral remote-sensing 

reflectance (Rrs(λ)) of the water, and surface reflectance of the land. Local empirical algorithms derived using in-situ mea- 

surements during Delta-X were used to derive TSS concentration form from the Rrs(λ) in the visible/near-infrared region 

and generate maps of TSS from the AVIRIS-NG imagery and vegetation structure are produced (Gao et al., 1993; Bue et al., 

2015; Jensen et al., 2019). In-situ samples were collected in both Terrebonne and Atchafalaya basins during the Delta-X 2021 

Spring and Fall campaigns in order to capture high and low flow conditions. The algorithm to retrieve TSS from AVIRIS-NG 

performed well (Median Absolute Percent Difference 13.7% and Median bias 6.71 mg/l) across a wide range of TSS con- 

centrations (0.1–154.5 mg/l) (Fichot and Harringmeyer, 2021, 2022). AVIRIS-NG images were also used to produce maps of 

vegetation structure (Jensen et al., 2021). Figure 2c shows an example of total suspended solids (TSS) concentration maps 

derived from AVIRIS-NG over the Wax Lake Outlet acquired on 02 April 2021 at 20:31 GMT. Here, the AVIRIS-NG Level3- 

derived TSS data in Terrebonne and Wax Lake are used (Fichot and Harringmeyer, 2022). 
 

2.4 Large-scale Terrebonne model set-up 
 

The Delft3D model was used to simulate water levels and sediment transport during the Delta-X 2021 Spring campaign. The 

FLOW module (Lesser et al., 2004) was coupled with SWAN (Simulating Waves Nearshore, e.g. Holthuijsen et al. (1993); 

Booij and Holthuijsen (1987)) to account for wave resuspension of bottom sediments. The model ran from 25 March 2021 to 

18 April 2021 with an additional 5 days as warm spin-up period. The domain (Figure 1) consisted of 1139 × 686 cells with a 90 

× 90 m resolution. Bathymetric data were referenced to the NAVD88 vertical datum and are available from NOAA (Love et al., 

2010). Boundary conditions were water levels imposed at the south boundary in the Gulf of Mexico. Water level data were 
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Figure 2. Example of Delta-X remote sensing products. At the top of each map the acquisition time is reported in GMT. (a) Water level 

change on the marsh from UAVSAR. (b) Water elevation from AirSWOT. (c) Total suspended solids (TSS) concentration derived from 

AVIRIS-NG. Refer to Figure 3 for the spatial relationship. 
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taken from the United States Geological Survey (USGS) station at Caillou Bay SW of Cocodrie (ID:073813498). The water 

levels at the boundary were adjusted to reproduce the correct water levels at the USGS station location by shifting the phase 

and correcting the amplitude to account for signal damping. Data of wind speed and direction were taken from the same USGS 

station and applied homogeneously on the entire domain with an hourly time resolution. Two sediment types composing the 

bottom were considered: sand (non-cohesive fraction) and mud (cohesive fraction). The initial sediment distribution were as 

derived from the usSEABED database (Williams et al., 2006). Field measurements were interpolated to derive which provides 

the fraction of mud and sand in each cell. 

The model was coupled with AirSWOT to calibrate the bed roughness which is expressed as Chezy coefficient. Three dif- 

ferent friction categories were considered: open sea/ocean, tidal channels/lakes/bays, and marsh platform. Since the AirSWOT 

campaign covers the water area, the calibration of the Chezy coefficient was focused only on the tidal channels/lakes/bays. Val- 

ues of 50 65 and 35 m1/2s−1 were set for ocean and marsh platform respectively, whereas 40 45, 42.5 55, and 45 65 m1/2s−1 
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were evaluated for the tidal channels/lakes/bays. The selected values fall within the range adopted by several modelling studies 

of coastal marshes and deltas (e.g. Edmonds and Slingerland (2010); Nardin et al. (2013); Stark et al. (2015); Zhang et al. 

(2019)). 

The model was coupled with AVIRIS-NG to calibrate sediment parameters. Sand density and median diameter (D50) were 
set to be constant at 2650 kg/m3 and 0.14 mm, respectively. Note that in the case of non-cohesive particles, Delft3D does not 

require to specify a value for the settling velocity, since it is directly computed from the median diameter and density using 

the Van Rijn et al. (1993) approach. Thus, the calibration of the parameters refers to the properties of the mud fraction. The 

default transport equation of Van Rijn (2007) was used for sand. In Delft3D, the cohesive sediment is defined by density, 

settling velocity, critical shear stress for erosion/sedimentation, and erosion parameter. In this case, the settling velocity, ws, 

and critical shear stress for erosion, τcr,e, were calibrated. In particular, the last parameter is the threshold above which the 

applied shear stress is able to entrain bottom sediment. More details on the The default Delft3D sediment transport formulation 

adopted in Delft3D are found in of Partheniades-Krone (Partheniades, 1965) and the Delft3D-FLOW manual was used for the 

cohesive fraction. In total, five possible values for ws (0.1, 0.175, 0.25, 0.325, 0.4 mm/s) and five possible values for τcr,e (0.05, 

0.075, 0.1, 0.125, 0.15 Pa) were tested. Mud density was set at 1600 kg/m3 (Liu et al., 2018), while the erosion parameter was 

fixed at 1·10−5 kg m−2s−1 consistently to previous modelling studies of US coastal bays (Ganju and Schoellhamer, 2010; 

Wiberg et al., 2015). 
 

2.5 Small-scale Terrebonne model set-up 
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Delft3D was utilized to simulate the hydrodynamics in one of the Delta-X intensive field study sites near CRMS station 421 of 

the Coastwide Reference Monitoring System (CRMS) network (blue rectangle in Figure 1) from 25 March 2021 to 18 April 

2021. An additional interval of time of 5 days was used as a spin-up period. The numerical grid had a resolution of 10 m and 

consists of 300 × 520 cells. Bathymetric information comes from LiDAR, and is given with respect to NAVD88 (Denbina et al., 

2020). B Water levels were imposed as boundary conditions were the water levels imposed at the bottom south and upper north 

boundaries. The former were the water levels measured by the CRMS site 421, while the latter were computed using water 

levels measured by CRMS at site 421 and Trouble Bayou. Specifically, a uniform tidal dissipation was assumed between the 

two stations and used the distance between station 421 and Trouble Bayou and the distance between station 421 and the upper 

boundary to infer the water levels at the upper boundary. Water levels at both boundaries were extracted from the large-scale 

model in the respective locations. Bottom friction was imposed in terms of Chezy coefficients: 55 m1/2s−1 for the channels 

and 35 m1/2s−1 for the marsh platform. A depth threshold of 1 cm was set as water depth threshold for the wetting-drying 

scheme. 

UAVSAR-derived water-level changes were used To correct marsh topography, the methodology proposed by Zhang et al. 

(2022a) was followed, in which errors in topography elevation were removed corrected by comparing modelled water-level 

changes with those observed via UAVSAR (see Figure S1). In this procedure, the first simulation is run using the original 

topography and the difference between modelled and observed water level change is computed in each cell. If the modelled 

water level change is larger than UAVSAR, the elevation of the cell is increased. In the opposite case, the elevation is decreased. 
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The updated topography is used in the subsequent simulation. The procedure is run with the updated topography iteratively 

until the minimum RMSE is reached. As suggested by Zhang et al. (2022a), changes in elevation in each iteration were small 

and gradual to allow the system to adjust. The method is considered successful only if converges to one solution and the final 

topography is realistic. This iterative procedure is based on the principle that increasing (decreasing) marsh elevation leads 

to less (more) tidal propagation, and therefore smaller (greater) water-level changes. In each iteration, we corrected marsh 

topography based on the difference between observed water-level changes and those obtained via numerical modelling until 

the numerical solution converged to UAVSAR as close as possible. 

2.6 Atchafalaya model set-up 
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Similar to the large-scale model in Terrebonne, a Delft3D-FLOW model was developed to simulate water levels and sediment 

transport in the Atchafalaya basin (Figure 1) during the Delta-X 2021 Spring campaign. The model had 927 × 787 cells with a 

90x90 m resolution. The model ran from 15 March 2021 to 25 April 2021. Bathymetric data was were referenced to NAVD88 

(Denbina et al., 2020). The model had a total of three imposed boundary conditions. Water discharge from the USGS station at 

Calumet (ID: 07381590) was imposed for the Wax Lake Outlet, while water discharge from the USGS station at Morgan City 

(ID: 07381600) was imposed for the Atchafalaya River. The two stations also provided suspended sediment concentration data 

that were imposed as boundary conditions for the sediment transport model. Water levels from the NOAA station at Eugene 

Island (ID: 8764314) are were used to set at the oceanic boundary. Since the oceanic boundary is located further offshore, we 

adjusted the signal using the same procedure described in the Terrebonne large scale model. Hourly wind speed and direction 

data were retrieved from the same station and applied uniformly over the domain. 

Three categories were considered for the bed friction calibration with AirSWOT. The Chezy coefficient was fixed at 35 
m1/2s−1 for the marsh, and 8 m1/2s−1 for the forest (Zhang et al., 2022a). The evaluated values for open water friction were 

45, 55, and 65 m1/2s−1. 

For sediment transport, three sediment types composing the bottom classes were considered: sand, silt, and mud were con- 

sidered. The initial sediment distribution was derived from the usSEABED database and set uniform at 22% sand, 39% silt, 

and 39% clay. Settling velocities for silt and clay were fixed at 1 mm/s and 0.5 mm/s, respectively, while the median diameter 

of sand was set at 0.1 mm. Due to the limited number of samples in the area, a bed spin-up process of one year was run with 

a morphological speeding factor of 50 to reach bottom equilibrium. During this process, the bed level was kept fixed, and the 

bed fractions changed to adapt to the hydrodynamics (see similar approaches in van der Wegen et al. (2011) and Zhang et al. 

(2020b)). The bed composition after this spin-up process became realistic and the coarser fractions appeared in areas with 

strong bottom shear stress . Settling velocities for silt and clay were fixed at 1 mm/s and 0.5 mm/s, respectively, while the 

median diameter of sand was set at 0.1 mm. AVIRIS-NG sediment concentration maps were used to calibrate the critical shear 

stress for erosion. Evaluated values were 0.025, 0.03, 0.04. 0.05, 0.1 Pa for clay, and 0.05, 0.1, 0.2 Pa for silt. For this model, 

p Performance of the sediment transport model was also evaluated with and without waves, which were computed with SWAN. 
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Table 1. Calibrated parameters and relative remote sensing data used for each model. 
 

Model Calibrated parameter Remote sensing data used 

Large scale Terrebonne Ch / ws, τcr,e AirSWOT/AVIRIS-NG 

Small scale Terrebonne Bathymetry UAVSAR 

Atchafalaya Ch / τcr,e AirSWOT/AVIRIS-NG 

 

 
 

2.7 Coupling between imagery and numerical model 
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Table 1 summarizes the calibrated parameters for each model and the correspondent ing remote sensing data used, while Figure 

3 shows the chosen flight lines of the three instruments. 

In all three models, the coupling between remote sensing images and model allowed to tune models parameters to best 

match models numerical outputs and the observations. Water levels and sediment concentration from the numerical models 

were extracted using the spatial extent of the chosen flight lines and overlapped to enable comparisons. The comparison was 

first performed visually, in order to identify evident discrepancies. Then, a pixel-by-pixel comparison was performed to better 

quantify model performance. For the Terrebonne large-scale model and the Atchafalaya model, because of the 90 m mesh 

resolution, both AirSWOT and AVIRIS-NG resolution was lowered by averaging values within a 90 m pixel mesh element. 

The evaluation of the models was performed by computing the error as the difference between the measurement and the 
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Figure 3. Extension of the flight lines used in this study. The extension of the numerical models is also reported with thinner lines.The 

location of Caillou Lake is also indicated. 
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modelled values, with a positive error indicating underestimation. The root mean square error (RMSE) was adopted as a global 

metric in order to compare the overall performance of each simulation. Parameter values providing the lowest RMSE were 

identified as the optimal ones. 

In the large-scale Terrebonne model, a second calibration of the Chezy coefficient and sediment properties was performed 

using only in-situ observations. Simulated water levels during the Spring campaign were compared with timeseries of 13 tidal 

gauges within the CRMS network (Figure S3). The RMSE and Nash-Sutclife Model Efficiency (ME) (Allen et al., 2007) were 

used to evaluate model performance for the different friction coefficients. The validation with timeseries allowed to evaluate 

the temporal coherence of the results that cannot be captured by remote sensing. The two calibrations were validated in the 

Fall campaign by comparing water levels. In the same model, a calibration of sediment parameters using in-situ measurements 

was carried out. Measured TSS concentrations from Fichot et al. (2022) were compared to simulation results (see Figure S5). 

Finally, the two calibrations were validated with in-situ TSS data collected during the Fall campaign (Fichot et al., 2022). 

RMSE was used to compare model results. 

For the large scale Terrebonne model, a validation of the outputs was performed following the calibration. Water levels were 

compared with the timeseries of 13 stationary gauges within the Coastwide Reference Monitoring System (CRMS) network 

distributed across the domain. 
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To validate the topographic correction in the small-scale model, the original and calibrated topography were compared with 

Real Time Kinematics elevation measurements collected during the Delta-X Spring 2021 campaign (Twilley and Rovai, 2022) 

and the site 421 elevation provided by the CRMS. 

 
3 Results 

 

275  3.1  Coupling with AirSWOT 
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For the Terrebonne large scale model, results of simulations with Chezy values of 65 and 45 m1/2s−1 are shown for four one 

acquisitions of the same flight line at different times during the tidal cycle (Figure 4). The comparisons for four acquisitions 

of the same flight line at different times during the tidal cycle are reported in Figure S2. The flight line has south-west to 

north-east direction. At On the bottom south, it crosses a channel with a 500-700 m cross-section and one of the major lakes in 

Terrebonne (Caillou Lake). At the top On the north, it intersects a portion of other lakes and small channels. With the exception 
of the last acquisition on 07 April (Figure 4D) where similar results were found independently from the friction coefficient, a 

Chezy coefficient of 45 m1/2s−1 allows the model to better match the AirSWOT observations (see also Figure S1). A Chezy 

coefficient of 65 m1/2s−1 returns a better match with the AirSWOT observations excepth for the third acquisition on 06 April 

2010 UTC (Figure S2C), were slightly better results were found for a Chezy coefficient of 45 m1/2s−1 In all cases, t The 

model displays better agreement in the bottom south section of the flight line, whereas the discrepancy between remote sensing 

data and model results tends to increase in the top north section. In particular, in the north-most portion, the model always 
overestimates water elevation The use of a friction coefficient of 65 m1/2s−1 allows to better represent the water levels in the 

northern section of the flight line. 

The validation of the model with Ch = 45 m1/2s−1 using timeseries reveals temporal coherence between data and modelled 
values good, with an RMSE of 0.067 m (see Figures S1 and S2, and Table S1). 

Figures S4a and S4b show the results of the calibration using timeseries of stationary gauges. The calibration shows similar 
results, with Ch = 45 m1/2s−1 providing the better RMSE. The validation of the friction coefficient during the Fall campaign 

(Figures S4c and S4d) shows better performance for Ch = 65 m1/2s−1, with a RMSE of 0.047 m compared to the 0.066 m for 

the 45 m1/2s−1 case. 
The calibrated value of 65 m1/2s−1 for the Chezy coefficient is comparable to Manning values for the area. If we consider 

an average modelled water depth of 1.34 m during the AirSWOT acquisitions and use the water depth as an approximation 

for hydraulic radius, it can be estimated a correspondent Manning coefficient n = H1/6C−1 (Limerinos, 1970). The equation 

yields n = 0.02 m1/3s−1 which is within the range of values suggested by the 1992 NLCD and LA-GAP classification for the 
open water class (Bunya et al., 2010). 

For the Atchafalaya model results of simulations with Chezy values of 45 m1/2s−1 and 65 m1/2s−1 (Figure 5 and S2) 

are shown focusing on for the Wax Lake Delta. A Chezy coefficient of 65 m1/2s−1 drastically improves model performance 

compared to the 45 m1/2s−1 case, with a reduction of the RMSE from 25.6 cm to 14.3 cm. In particular, the reduction of 

bottom friction allows the model to better represent water elevations in the main channel, but especially in the vicinity of the 
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Figure 4. Comparison between measured water levels by AirSWOT and modelled water levels within the large-scale Terrebonne model. 

In each of the four panels on the top row the measured and modelled water levels are shown (with Ch=45 m1/2s−1). On the bottom row 

the difference between AirSWOT and the model results are displayed with the overall RMSE. In each panel the date and time (GMT) of 

the acquisition is reported. From left to right are presented AirSWOT elevation, modelled elevation with Ch = 45 m1/2s−1 and modelled 

elevation with Ch = 65 m1/2s−1. On the bottom row the difference between AirSWOT and the model results are displayed with the overall 

RMSE. 
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Table 2. Parameters for the large-scale models calibrated with AirSWOT and AVIRIS-NG data. 

 

Parameter Terrebonne Atchafalaya 

Ch (m1/2s−1) 65 65 
 

Mud: ws (mm/s) 0.25 - 

Mud: τcr,e (Pa) 0.1 - 

Clay: τcr,1 (Pa) - 0.03 

Silt: τcr,2 (Pa) - 0.1 

 
distributary channels of the delta where the model with 45 m1/2s−1 tends to overestimate the water elevations. Furthermore, 

305  the 65 m1/2s−1 simulation is able to detects the west-to-east surface slope. 
 

 Coupling with UAVSAR 
 

Data of water-level changes measured during the 12 April 2021 UAVSAR flight were used to correct marsh topography. 
The campaign took place between t1=19:29 and t2= 22:59 (UTC time). The data collected in this temporal window offer a 

synoptic view of water-level change across the marsh landscape during falling tides. Since water level change is computed 

310  as the difference between the measurements at t2 and t1, the negative values in Figure 6d a confirms that the waters on the 
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Figure 5. Comparison between measured water levels by AirSWOT and modelled water levels in Atchafalaya Bay (with focus on the Wax 

Lake Delta). From left to right are presented AirSWOT elevation, modelled elevation with Ch = 45 m1/2s−1 and modelled elevation with 

Ch = 65 m1/2s−1. 
 

marsh are receding. Results from the first run (Figures 6b and 6d) highlight two critical areas. shows the tendency of the First, 

the model to overestimates the water level change in the bottom southern area, indicating an error in the marsh elevation 

derived from LiDAR data. The opposite is verified occurring in the northern area, where waters are found to recede too slowly 

and consequently underestimate the water level change is underestimated. Thus, the original topography (Figure 6a f) was 

315 modified with the described step-wise approach, and after four iterations the new topography (Figure 6b g) increased model 

performance (Figure 6b c), with RMSE decreasing from 4.9 to 3.9 cm. During each step, model performance increased and 

after four iterations, changes in topography and RMSE were negligible. On average the total elevation change was -0.013 m, 

indicating the general need to lower the elevation. The topography modifications (Figure 6c h) well reproduced water level 

changes (Figure 6f a), particularly in the critical areas previously highlighted. 



17  

 
 
 

320 Validation results are reported in Figure S5. Overall, the correction based on UAVSAR decreases the elevation error from 

18.94 cm to 9.78 cm. Despite the general improvement, for some specific points the correction increased the error. In particular, 

the bathymetry was strongly deepened at three locations. 

 Coupling with AVIRIS-NG 
 

First, f For the Terrebonne model, the AVIRIS-NG acquisition taken on 05 April 2021 at 19:57:00 GMT (Figures 7 and 8) 

325  is considered. The majority of area within the flight line crosses the open coastal area and Caillou Lake from south-west to 

north-east. Results show that sediment concentrations tend to decrease as the critical shear stress increases (Figure 7). For τcr,e 
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Figure 6. Comparison between (a) water-level changes in vegetated areas measured by UAVSAR during the April 12 2021 UAVSAR flight 

between 19:29 and 22:59 (UTC time), and water-level changes obtained via numerical modelling by using: (b) the initial marsh topography, 

and (c) the corrected topography after four iterations. Subplots (d) and (e) show the model error at the first and fourth iteration respectively. 

Elevation data are given with respect to NAVD88. Comparison between (d) water-level changes in vegetated areas measured by UAVSAR 

during the April 12 2021 UAVSAR flight between 19:29 and 22:59 (UTC time), and water-level changes obtained via numerical modelling 

by using: (e) the initial marsh topography, and (f) the topography after four iterations. Subplots (g) and (h) show the model error at first and 

fourth iteration respectively. Comparison between (f) initial marsh topography and (g) marsh topography after four iterations of the correction 

method. Subplot (h) shows the total implemented changes in bed elevation. 
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Figure 7. Comparison between AVIRIS-NG and the modelled sediment concentration. In Panel A, t The settling velocity is fixed at 0.25 

mm/s and the critical shear stress is changed, while in Panel B, the latter is fixed at 0.1 Pa and the settling velocity changed. In Panel B 

AVIRIS-NG map, the red dot locates the position of the in-situ TSS sample. For each panel t The first map on the top row shows the sediment 

concentration derived from AVIRIS-NG, while the next five three maps show the modelled sediment concentration for each case of different 

critical shear stress and settling velocity. The bottom rows show the error between measurements and model. At the top of each error map 

the RMSE is indicated. The sediment concentration colorbar is fixed between the minimum and maximum value of the measured sediment 

concentration, while the error colorbar is fixed between the overall minimum and maximum computed error. 
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Figure 8. Comparison between AVIRIS-NG and the modelled sediment concentration. The critical shear stress is fixed at 0.1 Pa and the 

settling velocity is changed. The first map on the top row shows the sediment concentration derived from AVIRIS-NG, while the next three 

maps show the modelled sediment concentration for different settling velocities. The bottom rows show the error between measurements and 

model. At the top of each error map the RMSE is indicated. 
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= 0.05 Pa, the models tends to overestimate the sediment concentrations. The best agreement (lowest RMSE) occurs at value 

0.1 Pa. For τcr,e = 0.125 and 0.15 Pa, the error increases again with an underestimation of sediment concentration. Figure 

8B shows the effect of the settling velocity. When ws = 0.1 mm/s the sediment concentration is grossly overestimated. With 

higher values of settling velocity, the comparison improves, until it reaches the lowest RMSE of 34.79 mg/L for ws = 0.25 

mm/s. For higher values, the agreement declines, and the model tends to underestimate sediment concentrations. The flight 

line also crosses a meander of a large channel (center-right position). Here, the model tends always to to always overestimate 

sediment concentration and the error decreases as critical shear stress and settling velocity increases. Overall, the model better 

performs performs better in the more open sections of the flight line, while at the extremities, performance declines. Overall 

the best The combination that provides the best comparison with measurements as is a critical shear stress of 0.1 Pa and a 

sediment settling velocity of 0.25 mm/s. 
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Figure 9. Comparison between AVIRIS-NG and the modelled sediment concentration in Wax Lake Delta without waves. Scenarios show 

model results with different critical shear stresses for clay (τcr,1) and silt (τcr,2). Panel A reports results without waves, while Panel B results 

with waves. 
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Settling velocity calibrated using only in-situ measurements was found to be 0.325 mm/s, different from the value obtained 

from the remote sensing images (Figure S7). The optimal critical shear stress was identical (0.1 Pa). This combination provided 

the lowest RMSE of 25.26 mg/L. During the Fall campaign, when the two calibrations were compared, the calibration per- 

formed using AVIRIS-NG provided better agreement with in-situ measurements than the calibration with in-situ measurements 

only (Figure S8). 

For the Wax Lake model, the acquisition taken on 02 April 2021 at 19:59:22 GMT is considered (Figures 9 and 10). It is ob- 
served that a A lower critical shear stress generates higher sediment concentrations (Figure 8), consistent with the Terrebonne 

model. In particular, the best comparison match is given obtained for τcr,1 = 0.03 Pa (clay) and τcr,2 = 0.1 Pa (silt), where the 

comparison between model and observation gives with a RMSE of 35.88 mg/L (Figure 10g). In this case, results improve when 
waves are included in the simulation. This is evident in the shallow areas near the shallow shoals near the delta, suggesting that 
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Figure 10. Comparison between AVIRIS-NG and the modelled sediment concentrations in Wax Lake Delta with the effect of waves. Sce- 

narios show model results with different critical shear stresses for clay (τcr,1) and silt (τcr,2). 

 
wave resuspension must be included despite the system is river-dominated system. In the other two cases the model tends to 

underestimate (τcr,1 = 0.1 Pa and τcr,2 = 0.2 Pa) and overestimate (τcr,1 = 0.025 Pa and τcr,2 = 0.05 Pa) sediment concentrations. 

 
4 Discussion 

 

350 The combination of AirSWOT, UAVSAR, and AVIRIS-NG enables calibration and evaluation of different parameters of the 

numerical model at spatial scales that in-situ point measurements cannot capture. AirSWOT and UAVSAR data can greatly 

improve hydrodynamic models. In particular, their combination enables evaluation of the goodness of computed water fluxes 

in bays and , tidal channels, and on the marsh platform. AVIRIS-NG-derived sediment concentration enables evaluation of the 

models’ ability to reproduce sediment resuspension and transport. 
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355  4.1  AirSWOT 
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The comparison between hydrodynamic models and remote sensing imagery shows that the model is able to can reproduce 

the water levels in the lower southern half of the flight line. The calibrated value of 45 m1/2s−1 for the Chezy coefficient is 

comparable to Manning values for the area. If we consider an average modelled water depth of 1.34 m during the AirSWOT 

acquisitions and use the water depth as an approximation for hydraulic radius, we can estimate the correspondent Manning 

coefficient n = H1/6C−1 (Limerinos, 1970). The equation yields n = 0.0233 m1/3s−1 which is within the range of values 

suggested by the 1992 NLCD and LA-GAP classification (Bunya et al., 2010). The results are comparable to other modeling 

studies at the same location and in similar intertidal areas along the US Atlantic coast. For instance, Mariotti et al. (2010) and 

Palazzoli et al. (2020) developed models for the shallow coastal bays of the Virginia Coastal Reserve and obtained RMSE of 

0.07-0.11 m and 0.26 m respectively. In Louisiana, Freeman et al. (2015) modelled the impact of Hurricane Rita in one of the 

major coastal lakes in Terrebonne Bay obtaining a RMSE of 0.1 m, whereas Ou et al. (2020) developed a salinity model in 

Barataria Bay and found a RMSE between 0.05 and 0.14 m for water levels. 

In the northern areas part of the large-scale Terrebonne Bay model, water levels tend to be regularly underestimated espe- 

cially in the most areas further north not shown in Figures 4 and Figure S2. AirSWOT data highlight areas zones where model 

performance needs to be addressed. Errors can be related to uncalibrated bed friction coefficients. In some cases, the model 

underestimates the water levels by 0.3 m on average, which represents a significant error since the average tidal range is around 

0.4 m (Georgiou et al., 2005). The issue could be addressed by increasing the Chezy coefficient, . h However for such high 

discrepancy between water levels, it is this would likely to yield to large and unrealistic values. In this case, there is a hydraulic 

connectivity problem, namely, the model is not able to fully propagate the tides in the upper northern areas. The limitation lies 

in the coarse resolution of the mesh (90x90 m), which cannot capture the intricate network of narrow channels that connects 

the upper and lower portions of the domain. One way to address the issue is to carve and enlarge the channels until there is a 

satisfactory match between the model and remote sensing data and the model (Zhang et al., 2022b). It has to be noted that the 

AirSWOT flight lines presents a large error at the edges (blue areas in Figure 5a) because the incident angle of the outer swath 

mode is within 4 and 25 degrees (Denbina et al., 2019). 

In the Atchafalaya model, similar errors are observed to those described for Terrebonne. Water elevations in areas located 

in the wetlands north of Wax Lake Delta tend to be overestimated. The reason can be similarly explained as in the Terrebonne 

model, : in that the low spatial resolution that does not correctly represent the narrow channels. However, the model well 

replicated the water levels in the delta due to the wide cross section of the main distributaries (between 200-500 m). 

It is also worth noting that the correct boundary conditions must be imposed before calibration with the remote sensing im- 

agery, the correct boundary conditions must be imposed. As mentioned previously, t The boundary condition in the Terrebonne 

large-scale model is the water level signal from the Gulf of Mexico, which was indirectly inferred from a USGS water level 

gauge located along the coast. Similarly, the boundary conditions at the ocean in the Atchafalaya model was indirectly inferred 

from a NOAA station located off-shore. Although it was not used here for this purpose, AirSWOT can also be used to verify 

discharge boundary conditions in models where a riverine discharge is imposed (Zhang et al., 2022a). 
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The validation of the water levels across the domain using in-situ measurements further confirms the goodness of the cali- 

brated friction coefficient using AirSWOT (Figures S4). Despite the lack of spatial information, timeseries can fill the temporal 

gap of the remote sensing imagery. This highlights that a A combination of both types of data is a powerful tool for a holistic 

calibration and validation of numerical models. 

4.2 UAVSAR 
 

The difference between observed and modelled changes in water level over a fixed period of time were as employed to correct 

marsh topography. If such difference is large, more flow conveyance is needed to increase water level changes, and vice versa. 

This can be done by modifying either the marsh elevation or the drag coefficient or both. As suggested by Zhang et al. (2022a), 

friction plays a marginal role in affecting water levels on marsh platforms. They run a sensitivity analysis with a wide range 

of friction values and found little effect on model performance. The calibration of topography inherently contains information 

on friction, which can lead to its small effect on the computed flow field. Applying the same iterative method to friction 

only, without modifying marsh elevation, would lead to unrealistically large spatial variations of the friction coefficient. As 

such Therefore, it was decided to only change marsh elevation to match modelled water-level variations with those derived via 

UAVSAR. 

The ability of a model to correctly simulate water fluxes is tightly dependent on having accurate and precise marsh topogra- 

phy. This is especially true in locations such as coastal Louisiana where tidal ranges are small. Here, even a small topographic 

change can lead to notable variations in the flooding period (Donatelli et al., 2023a). Bathymetric data from LiDAR may 

present a positive bias in vegetated areas due to the inability of laser pulses to penetrate dense thick vegetation (Rosso et al., 

2006). Furthermore, such bias is spatially variable and depends on vegetation characteristics (Medeiros et al., 2015). UAVSAR 

data can fill this gap. A simple comparison between model results and remote sensing data allowed precise identifications of 

critical parts of the domain and improvement of water fluxes on the marsh. The adjustment of the marsh elevation could be also 

carried out by adding or subtracting a constant value. However, UAVSAR allows to adjust the elevation at each point based on 

local hydrodynamics since it provides information, unraveling the effect of micro-topography on water flow. 

Starting from the initial topography, in at each iteration model performance the RMSE decreases until the minimum value 

of 3.9 cm is reached at the fourth iteration. After this iterations, t The error in the subsequent ones iterations increases as 

the procedure begins to over-correct the topography and introduces errors that result in worse performance. It is important 

to highlight that this methodology is empirical and might have some theoretical issues. For instance, by modifying the bed 

elevation at some location of a marsh, water levels will change in the surrounding areas. Thus, this iterative procedure might 

introduce errors in areas where the topography is correct. The methodology also depends on how well the model can solve the 

tidal channels. This effect can be noted for the three points before mentioned where the marsh was deepened. In this case, the 

points are located in proximity to a narrow channel with a 1.5-2 m cross section. The 10 m resolution of the model represents 

a limitation because features such as channels and levees that are smaller than 10 m cannot be captured by the mesh. In this 

example, the UAVSAR flight line captured the flow during falling tide, and in this phase, areas of the marsh close to the 

channels drained faster than internal ones. Since the model does not capture these channels, the method tries to compensate 
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by lowering the marsh to increase water fluxes even if the elevation is correct. This is what happens after the fourth iteration, 

where the procedure begins to over-correct the topography and introduces errors that result in worse performance. 

Another drawback of this approach is that the bathymetric correction is based on the water-level changes detected by 

UAVSAR during a very short period the radar instrument during the UAVSAR flight on April 12 2021 between 19:29 to and 

22:59 (UTC time) on 12 April 2021. Such changes are only representative over a limited time length and are related to of the 

temporal window in which the UAVSAR campaign took place. Although the solution was improved, the choice of a different 

acquisition might yield a different final marsh topography. 

4.3 AVIRIS-NG 
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The use of AVIRIS-NG is possible after the calibration and validation of the hydrodynamic model, since sediment concentra- 

tion depends on both the properties of sediment particles and hydrodynamic forcing. For the large-scale Terrebonne model, the 

calibrated critical shear stress and settling velocity are comparable with those of previous studies of the in Terrebonne area Bay 

(e.g., Liu et al. (2018)). Along the flight line, the lower portion of the model in the coastal waters of the Gulf of Mexico and 

the Caillou Lake portion in the middle provide the best match with the imagery, despite the fact that the modelled concen- 

tration tends to be more homogeneous. Overall, considering the relatively low RMSE compared to the full range of sediment 

concentration, it is concluded that the model is able to can capture the resuspension of bottom sediments. The model is also 

able to reproduce the sediment plume entering Caillou Lake, although with the tendency to overestimate ing the concentration. 

Concurrently to the AVIRIS-NG acquisition, an in-situ sample was collected (see red dot in Figure 7B) with TSS concentration 

of 48.7 mg/L. At this location, the model with the best set of parameters (ws = 0.25 mm/s, τcr,e = 0.1 Pa) underestimates 

the concentration by computing 21.43 mg/L. The model with one of worst set of parameters (ws = 0.25 mm/s, τcr,e = 0.05 

Pa) returns a concentration of 52.19 mg/L, a values much closer to the measurement. A similar situation can be found for 

the Atchafalaya model, where a TSS sample was collected along a secondary channel (see red dot in Figure 8B) for which 

112.2 mg/L was measured. Here, the model with the best set of parameters (τcr,1 = 0.03 Pa, τcr,2 = 0.1 Pa) underestimates the 

concentration at 27.9 mg/L. However, the model with the worst set of parameters (τcr,1 = 0.025 Pa, τcr,2 = 0.05 Pa) returns a 

value of 100.96 mg/L. A calibration using only measurements in the field presents limitations. The optimal set of parameters 

is ws = 0.325 mm/s, τcr,e = 0.1 Pa (Figure S6h), which differs from the best set found using AVIRIS-NG (ws = 0.25 mm/s, 

τcr,e = 0.1 Pa). Interestingly, the validation shows that, despite the model tends to underestimate concentrations in both cases, 

the calibration with AVIRIS-NG provides the lowest RMSE (Figure S8). AVIRIS-NG provides the possibility to compare the 

results with spatially distributed data, allowing a more complete evaluation of model performance. Point measurements could 

also not cover the full range of concentration and lead to calibrated parameters not representative for the entire area. Despite 

being comparisons with single points, this shows that measurements located in fixed locations might be non representative and 

potentially lead to incorrect calibration parameters. Especially in coastal areas, cohesive sediment properties are highly affected 

by flocculation. In this process, f Fine sediment aggregate to form flocs, for which both settling velocity and bed shear strength 

of cohesive particles are highly uncertain and difficult to predict. both settling velocity and bed shear strength of cohesive 

particles are highly uncertain and difficult to predict due to the flocculation, in which particles aggregate forming flocs, which 
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have higher settling velocities compared to the single particles they are made of. In this context, maps of TSS derived from 

AVIRIS-NG offers a synoptic view, allowing a more spatially informed way to calibrate these uncertain parameters. 

In the Terrebonne large scale model there are also discrepancies at in the upper northern areas and within the channel meander 

in the center-right south-eastern areas portion of the flight line, where the model tends to overestimate sediment concentrations. 

These errors might be related to some the bathymetric modification of the mesh. To allow a correct tidal propagation, channels 

were dredged deepend and enlarged, which might have generated different flow velocity ies different compared to the from real 

ones. Errors can also be attributable to some model assumptions that are inherent to the developed model. Although Delft3D 

has tri-dimensional 3D capabilities, it was opted for a vertically averaged 2D model to avoid high computational costs and 

because of the potential numerical instability of 3D grids when wetting and drying of tidal flats and salt marshes are included. 

Moreover, tri-dimensional 3D models do not provide a substantial improvement of predictability in water levels with respect 

to bi-dimensional 2D models (Bates, 2022). 

It is fundamental to consider that AVIRIS-NG measures TSS concentration at the water surface. Since the models are depth- 

averaged, a well-mixed column is implicitly assumed, which is a condition that might not always be true. For example, Figure 

11 shows two examples of suspended sediment concentration (SSC) measured along the water column at the same location, 

but on different dates (Nghiem et al., 2022). Data in Figure 11 show that a depth averaged sediment concentration is not always 

representative. Along rivers, sediment concentration has been typically observed to increase from the surface to the bed (Lamb 

et al., 2020). Usually, the coarser fraction occupies the lower layers in the water column, while finer fractions are resuspended 

to the surface. Hence, since AVIRIS-NG can only characterize the water surface, TSS maps might not be representative of total 

transport, which represent a limitation for the calibration of sediment properties. The well-mixed conditions can be valid might 

not also be present in sheltered areas. In these locations, vertical heterogeneity is promoted by density gradients and low energy 

conditions during low wind speed conditions (Kjerfve and Magill, 1989). The lack of sediment heterogeneity could also be a 

reason behind for the concentration underestimation in the western side of the flight line in the large-scale Terrebonne model, 

where . Here, calibrated simulations with the best parameters tends to be 30 mg/L lower compared to AVIRIS-NG data. Since 

simulations with lower settling velocity and critical shear stress showed resuspension, i It is possible that in those areas only the 

finest fractions (not included in the current granulometry) are entrained in the water column. Another possible source of error 

due to the 2D nature of the model is the absence of secondary flows and 3D flow structures that might arise at the boundary 

between channels and marsh platform (Proust and Nikora, 2020). 
Data in Figure 11 show that a depth averaged sediment concentration is not always representative. Along rivers, sediment 

concentration has been typically observed to increase from the surface to the bed (Lamb et al., 2020). The well-mixed condi- 

tion can be valid in sheltered areas. In these locations, vertical heterogeneity is promoted by density gradients and low energy 

conditions during low wind speed conditions (Kjerfve and Magill, 1989) Another possible source of error due to the bi-dimen- 

sional nature of the model is the absence of secondary flows and 3D flow structures that might arise at the boundary between 

channels and marsh platform (Proust and Nikora, 2020). 

The AVIRIS-NG data suggest further evaluations. The comparison between the wave and no-wave cases (Figures 9 and 

10) shows that the inclusion of the wave-induced resuspension is fundamental to better capture SSC in the delta deltaic areas. 
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Figure 11. Vertical profiles of sediment concentration captured on the same location in two different dates. The samples were collected near 

CRMS sites 421 (red dot in Figure 1b) in the left channel of the Terrebonne small scale model. The blue profile on the left was collected on 

17 August 2021 when the water depth was 0.55 m. The red profile was collected on 19 August 2021 when the water depth was 3 m. 
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This result is consistent with previous research that highlighted the important role of waves in the development of river deltas 

and the redistribution of sediment along the coastal inner shelf (Shi et al., 1997; Walker and Hammack, 2000; Corbett et al., 

2007; Carniello et al., 2014). As a final note, it is worth to mention that maps of TSS from AVIRIS-NG can also be leveraged 

independently from the numerical models. For instance, TSS maps in the Wax Lake Delta reveal distinctive patterns called 

streaklines (Kundu et al., 2015) (see Figure 2c), that can be used to derive deposition/erosion patterns and flow velocity without 

the support of numerical models (Salter et al., 2022; Donatelli et al., 2023b). 

 
5  Conclusions 

 
This study shows the potential of calibrating different Delft3D numerical models using remote sensing imagery instead of 

traditional sparse field data. Images from two SAR sensors and one spectrometer sensor used flown during the recent NASA 

Delta-X airborne mission were adopted utilized for the calibration. UAVSAR measured water level change on the marsh plat- 

form, while AirSWOT derived water elevations in bays, lakes, channels, and AVIRIS-NG measured sediment concentrations. 

AirSWOT was used to calibrate the bottom friction coefficient in Terrebonne and Atchafalaya Basins, UAVSAR data to cor- 

rect bathymetric errors and improve wetland flooding, and TSS maps derived from AVIRIS-NG allowed to calibrate sediment 

transport parameters. The use of spatially extended remote sensing imagery enabled to quickly evaluate areas where models 

performed better and provided calibrated parameters that are consistent with previous literature values. Remote sensing data 

yield spatial information that point observations cannot capture. In the case of highly uncertain parameters, having a calibra- 
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tion based entirely on fixed location measurements can lead to wrong values, while imagery from remote sensing can provide 

more spatially coherent values dataset. At the same time, some limitations and considerations need to be accounted for when 

coupling imagery with a numerical model. 

Finally, the use of water-level time series at different locations for the validation informed the temporal performance of 

the models. Given the limited number of flyovers, these temporal data allow to verify the accuracy of the calibration and test 

whether the model reproduces coherent water elevations over a wider time window in specific points of the domain. 

The array of available remote sensing data will grow in the near future. This study showed that a new generation of numerical 

models will can be developed by leveraging the spatial information provided by remote sensors. 
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Figure S1. Flow diagram of the bathymetry calibration procedure using UAVSAR. The term dh/dt symbolizes the water level change. The

figure is adapted from Figure 3 in Zhang et al. (2022a).

2



Figure S2. Comparison between AirSWOT and modelled water levels in 4 different times for the same flight line. In each panel, (a) is the

measurements from AirSWOT, (b) and (c) the modelled water levels with friction coefficient of 45 and 65 m1/2s−1 respectively, (d) and (e)

the errors in the 45 and 65 m1/2s−1 cases respectively
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Figure S3. Location of the CRMS stations used in the separate calibration using only in-situ measurements. The same stations are use for

the comparison of the two calibrations. Basemap credit: ©Google Satellite
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Figure S4. Calibration and validation of the water levels using in-situ measurements. The first row shows the water levels comparison for the

calibration period during the Delta-X Spring 2021 campaign. The second row shows the water levels during the Delta-X Fall 2021 campaign.
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Figure S5. Validation of the topographic correction. The map at the top shows the location of the in-situ elevation measurements inside the

small-scale model domain. The bottom plot shows if the correction based on UAVSAR was able to improve the elevation. Basemap credit:

©Google Satellite
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Figure S6. Location of the TSS samples used for the sediment parameter calibration and validation with in-situ measurements. The red

rectangle shows the Terrebonne large-scale model boundaries. Basemap credit: ©Google Satellite
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Figure S7. Comparison between in-situ measurements and modelled sediment concentration in the calibration of the sediment transport.

Data were collected during the Delta-X Spring 2021 campaign. The red rectangle indicates the best case.
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Figure S8. Comparison between in-situ measurements and modelled sediment concentration in the calibration of the sediment transport.

Data were collected during the Delta-X Fall 2021 campaign.
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Figure S9. Example of comparison of measured and modelled water levels in 4 sites of the CRMS. In each subplot, the correspondent site is

indicated in the lower right corner. For specific model performance refer to Table S1.
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Figure S10. Comparison between measured and modelled water levels for all 13 CRMS used to validate the model.
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Table S1. Results of water levels validation in the large scale Terrebonne model. Longitude, Latitude, Root Mean Squared Error (RMSE),

and Model Efficiency (ME) for each CRMS site used to validate water levels.

Site ID Longitude Latitude RMSE (m) ME (-)

302 -90.9170 29.1478 0.078 0.878

307 -90.8230 29.2511 0.080 0.843

322 -91.1045 29.2438 0.100 0.699

337 -90.3559 29.3092 0.078 0.846

338 -90.4182 29.3309 0.084 0.817

341 -90.5123 29.3091 0.080 0.859

345 -90.7613 29.1712 0.057 0.907

347 -90.6996 29.1640 0.075 0.834

374 -90.7930 29.1567 0.054 0.909

376 -90.8567 29.1277 0.062 0.905

377 -91.0108 29.2293 0.083 0.862

383 -90.9489 29.2075 0.069 0.881

421 -90.8244 29.1712 0.059 0.913

Overall - - 0.067 0.865
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