
Point by point response to reviewers’ comments  

 

 

Reviewer # 1 (Remarks to the Author): 

We thank the reviewer for their comments and suggestions. Please find our response below 

in bold. 

 

[RC1-1] I had the pleasure of reviewing your manuscript, which I found very interesting and 

well written. Here you employed different measurements of variability to filter NEE from 

different models, showing that employing basic atmospheric constraints greatly improved 

consistency and reduces uncertainty. The approach is certainly promising and interesting, 

but also comes with several limitations that are not necessarily presented as they should. I 

believe the manuscript will be a strong contribution to the benchmarking field after a few 

things are addressed (see comments below). 

 

[AR1-1] We thank the reviewer for the constructive feedback that helped us to 

improve the manuscript. We describe our approach to addressing the 

reviewer’s specific comments below.  

 

Major comments: 

[RC1-2] I have only one major comment, which is the need to include a result sub-section 

for limitations of the approach. 

 

[AR1-2] We agree with the reviewer that this would be a valuable addition to 

the manuscript and included a paragraph detailing limitations of the approach 

in Section 3.3.3., lines 462 – 524 of the revised manuscript.  

 

Other comments (mostly minor). 

Mostly suggestions for improving tables and general readability for the reader. 

Abstract: 

[RC1-3] Is very well written, but the spatial scale is defined almost at the end of the abstract. 

To aid the reader, a mention of your spatial scales is needed in line 11 (e.g. Previous 

comparisons “in North America”), line 14 (e.g. varies with spatial scale “(pixel, country, 

continent)”), line 19 (North American carbon balance “at any spatial scale”). 

 

[AR1-3] We updated the text to mention and define the spatial scales in line 12, 

14 – 15, and 20. 

 

Introduction: 

[RC1-4] Line 27.- change “beyond the plot scale” for “greater than a plot (1km2)” 

 

 [AR1-4] We incorporated this change on lines 29 – 30. 



 

[RC1-5] Line 28.- change “larger” for “broader” 

 

 [AR1-5] We incorporated this change on line 31. 

 

[RC1-6] Second paragraph: incomplete ideas. At least two things need to be included here: 

1) a line that helps the reader connecting the ideas with the next paragraph (i.e. “the issue 

arises from the particular characteristics of TBMs and Inversions”) and 2) a stronger 

argument for the need to reduce uncertainties beyond an academic interest (e.g. reducing 

uncertainty also helps creating better mitigation policies).   

 

[AR1-6] We edited the introduction in accordance with this suggestion on lines 

39 – 43.   

 

[RC1-7] Line 48.- actually the highest discrepancies across models are likely how they 

incorporate land use change, vegetation dynamics and fire (I believe far more than nitrogen 

or permafrost).  Perhaps is worth mentioning a list (e.g. however other large discrepancies 

also arise from the different approaches on how to model land use change, vegetation 

dynamics and fire). 

 

[AR1-7] We added a sentence detailing the various potential sources of 

discrepancies across models in lines 51 – 53.  

 

[RC1-8] Line 48.- is not only differences in parametrization, but also on the driving data. 

TRENDY models sorted this issue by employing the same forcing and protocol, otherwise 

this is a major issue of variability. In summary, there are three elements that create model 

discrepancies: 1) structure, 2) parametrization and 3) driving data. 

 

[AR1-8] We agree with the reviewer’s comment and edited this sentence on 

lines 53 – 55 of the revised manuscript.  

 

[RC1-9] Line 50.- you can take the argument further (since you are filtering models in this 

work), argue that you by addressing the sources of uncertainty you can benchmark model 

results, which can quickly lead to overall model improvement (e.g. if you know which model 

structure yields more realistic results, you can push other models to incorporate said 

structure). 

 

[AR1-9] We edited the manuscript to include the argument that this approach 

can help with model improvement by allowing for quick identification of which 

models yield more realistic results on lines 137 – 140. 

 



[RC1-10] Line 52.- the first sentence is too long. You could perhaps start with something 

simpler (e.g. “For inversions, uncertainties arise from several measurement and processing 

aspects”). 

 

[AR1-10] We modified the first sentence as suggested on lines 61 – 62. 

 

[RC1-11] Line 57.- why? Can you explain a bit why we find large spread despite having high 

data availability? 

 

[AR1-11] While high data availability helps to reduce variability, it is not the 

only cause of variability in inverse modeling and it is possible that other 

sources of uncertainty are also significant contributors to variability. 

Variability can arise from other aspects of the inverse modeling framework 

such as choice of priors, model resolution, transport model, or fossil fuel 

inventory and there is not a clear consensus on the main source of uncertainty 

(Gaubert et al., 2019; Kondo et al., 2020). For example, some studies have 

found transport errors to be a primary source of uncertainty (Peylin et al. 2011; 

Schuh et al., 2019) while other studies have shown that fossil fuel emission 

uncertainties play a key role in variability (Gurney et al. 2005; Peylin et al. 

2011;  Saeki and Patra 2017). We discuss this point on lines 66 – 71 of the 

revised manuscript.  

 

[RC1-12] Line 58.- change “Another challenge” for “Despite their usefulness, a key 

limitation” 

 

[AR1-12] We changed “Another challenge” to “Another limitation” on line 71 to 

reflect the reviewer’s suggested term. 

 

[RC1-13] Line 62.- change “how well we understand” for “our understanding of” 

 

[AR1-13] We incorporated this change on line 76. 

 

[RC1-14] Line 64.- is not that the confidence in both types of model increases, I would say 

that they become more reliable as sources of “realistic” information. 

 

[AR1-14] We agree and edited the wording to reflect this on lines 77 – 78. 

 

[RC1-15] Lines 66- 70. Please expand on the examples, as you are comparing different 

spatial scales and regions. Particularly, please provide detailed examples for previous 

results in North America. 

 



[AR1-15] We expanded this paragraph to include concrete examples of 

agreement/disagreement between bottom-up and top-down approaches with a 

focus on providing examples specific to North America on lines 83 – 88.   

 

[RC1-16] Line 70 (sixth paragraph). The paragraph provides incomplete reasoning and 

needs to be improved grammatically. You could start with an opening line such as: “There 

are different approaches to compare TBMs with inversions. On the first hand, there are 

direct comparisons of the means, which is usually referred to as “agreement” (citation); on 

the other hand, there are approaches centered on the variability, which we defined as 

“consistency” (citation). The first provides XXX type of information, while the second XXX”. 

 

[AR1-16] We updated the paragraph to improve the grammar and provide 

clarity on the definitions of consistency and agreement on lines 90 – 95.  

 

[RC1-17] Line 75.- add “Previous” to the beginning of the sentence. Change “reveal” to 

“have revealed”. Add- the agreement “between estimates”. 

 

[AR1-17] We modified the sentence according to the feedback given on line 97.  

 

[RC1-18] Line 76.- remove “do” 

 

[AR1-18] We incorporated this change on line 98. 

 

[RC1-19] Line 77.- move “,however,” to the beginning of the sentence. 

 

[AR1-19] We incorporated this change on line 99. 

 

[RC1-20] Line 78.- remove the “,” before the “and”. 

 

[AR1-20] We incorporated this change on line 100. 

 

[RC1-21] Line 87. Opening sentence is too long. Perhaps start with: “A key step forward is 

to look at agreement and comparison across scales”. 

 

[AR1-21] We updated the sentence to be shorter on line 111.  

 

[RC1-22] Line 101.- This argument is always complicated. In theory, you would expect that 

models who provide better estimates in historical runs, would be better suit for future 

projections; however, this is not always the case. For example, models that include a N 

cycle usually perform worst than C-only models in present-day conditions, however they are 

likely better at recreating future scenarios where N becomes limiting for NPP. 

 



I believe you can leave the sentence as is in the introduction, but the arguments presented 

need to be included in the discussion. 

 

[AR1-22] We agree that better performance under present conditions does not 

necessarily translate to better performance under future conditions. We now 

allude to this in the introduction (lines 137 – 140) and discussion of the revised 

manuscript (lines 522 – 524).  

 

[RC1-23] Lines 101-103. Repetitive, you have already defined the terms. Not needed. 

 

[AR1-23] We removed the definitions of the terms to avoid repetition in lines 

125 – 126. 

 

[RC1-24] Line 116. Change “North American NEE” for “NEE in North America” 

 

[AR1-24] We incorporated this change in line 142. 

 

Methods 

[RC1-25] One aspect that is complicated is how very little information there is to benchmark 

models based on seasonality. There are only 4 towers employed in the seasonality 

analysis, all of which are located in croplands; even in the larger Tower compendium, there 

is little representation across drylands which have been shown to drive most of the IAV of 

the CO2 cycle. This needs to be addressed in the discussion into detail. 

 

[AR1-25] We agree that just because models perform well for these four towers 

does not necessarily mean the models will perform well elsewhere. We note 

that Sun et al. (2021) found that TBMs that showed strong carbon uptake in 

croplands during the growing season were in better agreement with 

atmospheric observations from 44 towers, highlighting that croplands are key 

in capturing North American carbon fluxes. We also note that the tower 

location within a specific biome does not necessarily mean its observations 

are only influenced by fluxes within that biome. We now reference Sun et al., 

(2023) in lines 463 – 465 of the revised manuscript as they performed an 

analysis demonstrating this (Extended data Fig. 2).  

 

However, this comment prompted us to do further analysis into the impact of 

including additional towers on our results, which we included in the revised 

version of the manuscript in lines 463 – 472. We found that including more 

towers in other parts of North America (as a result of loosening the criteria for 

inclusion in the seasonality analysis) did not change our overall conclusions.  

 



Specifically, we kept the requirement that a tower must have observations for 

at least half of the days in the study period, but we loosened the requirement 

of maximum allowable data gap from 31 to 80 consecutive days. This resulted 

in four additional towers being included (SGP, AMT, OFR, and EGB). Using 

these towers we first re-calculated the seasonality metric using only these four 

towers (SGP, AMT, OFR, and EGB) and then re-calculated the seasonality 

metric using these towers in addition to the towers that meet the original 

selection criteria (AME, WKT, ETL, LEF, SGP, OFR, AMT, and EGB).  

 

We found that ten models perform well based on the seasonality metric 

regardless of which subset of towers is used, while six and four additional 

models also meet the metric when original and new sets of four towers are 

used, respectively. While this impacts the consistency of ensembles based on 

the seasonality metric alone, the impact on the consistency and agreement of 

models that meet all three metrics is minimal. We included a discussion of this 

additional analysis in the revised manuscript in lines 463 – 472 and included a 

figure showing this (Fig. S8). 

 

[RC1-26] Lines 147-153. One key issue with TRENDY data is the land-mask employed to 

remove ocean fractions. This needs to be clearly stated. If the data was crop first at the 

original resolution (0.5°) then regridded, this is not an issue; but if you regridded first (to a 

1x1 grid), the estimates for NEE become much larger. Please specify how you perform 

post-processing of the data. 

 

[AR1-26] The native resolution of the TRENDY models is not uniform across 

models. For this reason, we first regridded the data to 1°x1° resolution using 

xESMF conservative regridding algorithm (Zhuang et al., 2023, Zenodo) for the 

global data and then cropped the data to a uniform North American domain. 

The conservative regridding method preserves the source field’s integral (e.g., 

total fluxes for North America), ensuring that the total NEE at the native 

resolution is preserved after regridding to 1°x1° resolution. As these models 

are all terrestrial biosphere models, the ocean fluxes are not represented and 

therefore cannot explain the gap between bottom-up and top-down NEE 

estimates. We clarify the post-processing steps used in lines 190 – 191 of the 

revised manuscript. 

 

[RC1-27] Line 175. Why not using MODIS GPP? 

 

[AR1-27] We chose to use APAR because we wanted to use the simplest data-

driven baseline possible. We view APAR as a simpler and more direct baseline 

than MODIS GPP because MODIS GPP is modeled using multiple parameters and 

is therefore itself a type of model (Running and Zhao, 2015). We added in an 



explanation for why we did not use MODIS GPP in the revised manuscript on lines 

223 – 226. 

 

Acknowledgements 

[RC1-28] Please notice that the TRENDY data policy states that you need to clearly 

acknowledge them for using their data. 

 

[AR1-28] We did confirm with the data provider that the acknowledgement as 

written is appropriate before we submitted the original manuscript.  

 

Results 

[RC1-29] Line 276.- Please change the “however” to the beginning of the paragraph, and 

merge this paragraph with the previous one. 

 

[AR1-29] We  moved the “however” to the beginning of the paragraph as 

suggested on line 330, though we feel that keeping these paragraphs separate 

helps to convey the two separate ideas within them. 

 

[RC1-30] Line 371-379.- I believe these values should be presented as a table. Particularly 

show the how the mean and deviation for the region (and land categories) changes with 

model filtering. 

 

[AR1-30] We created a new table that includes these values (see Table 2).  

 

[RC1-31] Please add a section on limitations of the study and the approach. I believe this 

should be clearer. While the results are really interesting and promising, several data-

limitation issues are presented (mentioned above). 

 

[AR1-31]. Please refer to response [AR1-2].  

 

Tables. 

[RC1-32] Table 1.- please organize the table by type of ensemble instead of model name. 

 

[AR1-32] We organized the table by type of ensemble instead of model name 

(see Table 1).  

 

[RC1-33] Tables 1 & 2.- I strongly suggest to merge both tables. A simple solution is to add 

four columns to table one (one for each metric and the total). This way the reader can 

quickly see which models meet which metrics. 

 

[AR1-33] We merged the two tables into one table (see Table 1).  

 



Figures 

[RC1-34] Figure 2.- I believe this figure should go into the supplementary 

 

[AR1-34] We believe this figure is helpful in illustrating the approach we use 

for determining consistency across spatial scales and therefore think it is 

useful to have this figure in the main text.  

 

[RC1-35] Figure 5.- Why is there no comparison for grasslands and drylands? They 

represent a major proportion of land across NA! 

 

[AR1-35] This comes down to the lack of data available from ObsPack in these 

biomes so we only compared the biomes with the largest data constraint. We 

reference Sun et al., (2023), who did an analysis showing the data constraint 

for individual biomes in lines 437 – 439. 

 

References used in the response to Reviewer # 1 

Gaubert, B., Stephens, B. B., Basu, S., Chevallier, F., Deng, F., Kort, E. A., Patra, P. K., Peters, W., 

Rödenbeck, C., Saeki, T., Schimel, D., Van der Laan-Luijkx, I., Wofsy, S., and Yin, Y.: Global 

atmospheric CO2 inverse models converging on neutral tropical land exchange, but disagreeing on 

fossil fuel and atmospheric growth rate, Biogeosciences, 16, 117–134, https://doi.org/10.5194/bg-16-

117-2019, 2019. 

  

Gurney, K. R., Chen, Y.-H., Maki, T., Kawa, S. R., Andrews, A., and Zhu, Z.: Sensitivity of 

atmospheric CO2 inversions to seasonal and interannual variations in fossil fuel emissions, J. 

Geophys. Res., 110, D10308, https://doi.org/10.1029/2004JD005373, 2005. 

  

Jiawei Zhuang, raphael dussin, David Huard, Pascal Bourgault, Anderson Banihirwe, Stephane 

Raynaud, Brewster Malevich, Martin Schupfner, Filipe, Sam Levang, André Jüling, Mattia Almansi, 

RichardScottOZ, RondeauG, Stephan Rasp, Trevor James Smith, Jemma Stachelek, Matthew 

Plough, Pierre, … Xianxiang Li. (2023). pangeo-data/xESMF: v0.7.1 (v0.7.1). Zenodo. 

https://doi.org/10.5281/zenodo.7800141 

 

Kondo, M., Patra, P. K., Sitch, S., Friedlingstein, P., Poulter, B., Chevallier, F., ... & Ziehn, T. (2020). 

State of the science in reconciling top‐down and bottom‐up approaches for terrestrial CO2 budget. 

Global change biology, 26(3), 1068-1084. 

  

Peylin, P., Houweling, S., Krol, M. C., Karstens, U., Rödenbeck, C., Geels, C., Vermeulen, A., 

Badawy, B., Aulagnier, C., Pregger, T., Delage, F., Pieterse, G., Ciais, P., and Heimann, M.: 

Importance of fossil fuel emission uncertainties over Europe for CO2 modeling: model 

intercomparison, Atmos. Chem. Phys., 11, 6607–6622, https://doi.org/10.5194/acp-11-6607-2011, 

2011 

 

Running, S. W., & Zhao, M. (2015). Daily GPP and annual NPP (MOD17A2/A3) products NASA Earth 

Observing System MODIS land algorithm. MOD17 User’s Guide, 2015, 1-28. 

  

https://doi.org/10.5194/bg-16-117-2019
https://doi.org/10.5194/bg-16-117-2019
https://doi.org/10.1029/2004JD005373
https://doi.org/10.5281/zenodo.7800141
https://doi.org/10.5194/acp-11-6607-2011


Saeki, T. and Patra, P. K.: Implications of overestimated anthropogenic CO2 emissions on East 

Asian and global land CO2 flux inversion, Geoscience Letters, 4, 9, https://doi.org/10.1186/s40562-

017-0074-7, 2017. 

  

Schuh, A. E., Jacobson, A. R., Basu, S., Weir, B., Baker, D., Bowman, K., Chevallier, F., Crowell, S., 

Davis, K. J., Deng, F., Denning, S., Feng, L., Jones, D., Liu, J., and Palmer, P. I.: Quantifying the 

Impact of Atmospheric Transport Uncertainty on CO2 Surface Flux Estimates, Global Biogeochem. 

Cy., 33, 484–500, https://doi.org/10.1029/2018GB006086, 2019. 

  

Sun, Wu, Yuanyuan Fang, Xiangzhong Luo, Yoichi P. Shiga, Yao Zhang, Arlyn E. Andrews, Kirk W. 

Thoning, Joshua B. Fisher, Trevor F. Keenan, and Anna M. Michalak. "Midwest US croplands 

determine model divergence in North American carbon fluxes." AGU Advances 2, no. 2 (2021): 

e2020AV000310. 

 

Sun, W., Luo, X., Fang, Y., Shiga, Y. P., Zhang, Y., Fisher, J. B., Keenan, T. F., and Michalak, 

A. M.: Biome-scale temperature sensitivity of ecosystem respiration revealed by atmospheric 

CO2 observations, Nat Ecol Evol, 7, 1199–1210, https://doi.org/10.1038/s41559-023-02093-x, 

2023. 

 

 

Reviewer # 2 (Remarks to the Author): 

We thank the reviewer for their comments and suggestions. Please find our response below 

in bold. 

 

[RC2-1] The manuscript is generally well written and delves into the discrepancies between 

NEE as estimated by terrestrial biosphere models (TBMs) and those derived from top-down 

atmospheric inversions across different scales. Addressing this topic is important in 

developing reliable carbon budgets. However, the manuscript misinterprets the NEEs 

estimated by these TBMs. Furthermore, the discussion section seems to lack 

comprehensive analysis, leaving out essential arguments that could better support the 

authors' conclusions. These sections would benefit significantly from a detailed review and 

subsequent refinement. 

 

[AR2-1] We thank the reviewer for the constructive comments that helped to 

improve the manuscript. We address the reviewer’s specific comments in the 

responses below.  

 

Comments: 

[RC2-2] 1) In Table 1, results from both the BG1 and SG3 scenarios of MsTMIP are 

presented. However, in the methods section, only the usage of BG1 results is detailed. 

Could you please provide an explanation for this discrepancy? 

 

https://doi.org/10.1186/s40562-017-0074-7
https://doi.org/10.1186/s40562-017-0074-7
https://doi.org/10.1029/2018GB006086
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[AR2-2] In lines 138 - 140 we state that we use both BG1 and SG3 simulations. 

We updated the wording to more clearly convey that we use both scenarios in 

lines 161 – 163.  

 

[RC2-3] 2) In the MsTMIP project, the participating TBMs do not estimate the NEE directly; 

instead, they utilize the stock change approach. It's important to note that while some 

models incorporate factors like fire and harvesting into their simulations, others do not. This 

distinction should be clearly addressed in the manuscript. Additionally, while certain models 

use fire and harvesting data in calculating the NEE, Line 175 of the manuscript only 

acknowledges the photosynthesis and ecosystem respiration factors. This discrepancy 

needs addressing. 

 

[AR2-3] We appreciate this feedback from the reviewer, which led us not only 

to edit the description in the manuscript, but to explore more deeply how 

differences in the processes incorporated in the various models included in 

the MsTMIP ensemble impact the consistency across the ensemble. We 

included the results of this analysis in the revised version of this manuscript 

in lines 354 – 365 and lines 503 – 512. 

 

More specifically, we examined how using a simple definition of NEE 

(respiration minus GPP) impacts both consistency within the MsTMIP 

ensemble and the agreement between the MsTMIP models and inversions. 

Surprisingly, we found that estimates from the MsTMIP ensemble are less 

consistent across models when using only GPP, heterotrophic respiration and 

autotrophic respiration in the calculation of NEE. In other words, the models 

are more consistent when they include other components of NEE, even though 

the included components differ from model to model. This seems to suggest 

that models may implicitly target a presumed net land sink irrespective of the 

processes included. Only four models define NEE as NEE = Rh + Ra + Fdisturbance + 

Fproduct - GPP (CLM4, CLM4VIC, TEM and VEGAS) and how well these models 

agree with inversions varies by biome. We did find that agreement with 

inversions was slightly better when a simple definition of NEE is used. We 

included a discussion of this new analysis in lines 354 – 365 and lines 5034 – 

512 and included an associated figure in the revised manuscript (Fig. S7). 

 

 

[RC2-4] 3) In your study, I noticed that a singular value was presented for all the TBMs and 

AIMs. Could you clarify how you combined the results from these models on Line 150? If 

you simply averaged them, I suggest referencing the 'integration approach' detailed by 

Schwalm et al. (2015), Toward 'optimal' integration of terrestrial biosphere models, 

Geophysical Research Letters. Given the significance of spatial patterns in this study, 

relying solely on a simple average might introduce notable uncertainties. It's worth 



mentioning that the NEEs estimated by different TBMs can vary significantly. Hence, it 

would be beneficial to analyze each model's estimates separately and delve into the 

biogeochemical processes that might account for the discrepancies observed between top-

down and bottom-up approaches. 

 

[AR2-4] We clarified that we use the model ensemble average for TBMs and 

inversions in lines 193 – 196. In the context of Schwalm et al., (2015), it is 

noteworthy that one of the key findings was that the added complexity of skill-

based integration does not materially change flux estimates based on TBM 

ensembles . Given this, we feel that the model ensemble average approach 

used here is appropriate. We agree that it is important to mention the different 

ways that NEE is estimated and we discuss this in the methods section 

2.1.1(lines 163 – 172) and results section (lines 354 – 365 and lines 503 – 512) 

of the revised manuscript. We agree that it is important to discuss potential 

reasons for the discrepancies between bottom-up and top-down approaches. 

We therefore include a discussion of the sensitivity analyses we performed to 

determine potential causes of discrepancies and reference papers that have 

also looked into this in Section 3.3.3, lines 463 – 512. We believe that analyzing 

each model’s estimates separately and determining which biogeochemical 

processes might account for the observed discrepancies between bottom-up 

and top-down approaches is beyond the scope of this study, however. One of 

the main goals of this study is to identify which models perform better in terms 

of reproducing basic features of observed atmospheric CO2 variability so that 

further analysis can be done to understand the potential causes in specific 

models.  

 

 

[RC2-5] 4) To explain the discrepancy between top-down and bottom-up estimates of NEE, 

numerous studies have been conducted, including notable publications by Peter A. 

Raymond and David E. Butman. The discrepancy is attributed to the lateral carbon flux of 

dissolved organic carbon, particulate organic carbon, and carbon in inorganic formats. 

Given that these TBMs have been calibrated and validated using field measurements, such 

as soil organic carbon, it is possible to incorporate the lateral carbon fluxes when estimating 

each carbon pool. Unfortunately, this process seems to have been overlooked in the current 

discussion. 

 

[AR2-5] We agree that it is important to discuss the role of lateral fluxes and 

thank the reviewer for this suggestion. We added a paragraph to discuss the 

impact of lateral fluxes on the discrepancy between bottom-up and top-down 

estimates in lines 484 – 501. This comment also prompted us to explore the 

role of lateral fluxes by comparing the impact of including two different lateral 



flux estimates from Byrne et al. (2023) on agreement between bottom-up and 

top-down methods.  

  

More specifically, we added the gridded lateral fluxes from river export, crop 

trade, and wood trade to TBMs to make them more comparable with fluxes 

seen by inversions and we assess the impact of doing so. In our analysis, we 

use two different estimates of river export from Byrne et al., (2023). The first is 

the gridded product which incorporates data from Global NEWS and the 

second is the same gridded product rescaled so that the total river export from 

the gridded product equals the reported country total river export in Byrne et 

al., (2023), which is the mean of two models (Global NEWS and DLEM). It is 

important to note the differences in these two river export estimates highlight 

some of the uncertainties associated with estimating lateral fluxes and that 

there are significant uncertainties associated with estimating river export 

(Byrne et al., 2023; Drake et al., 2017). Given this, we are not fully able to 

account for lateral fluxes, but rather show the potential impact that lateral 

fluxes could have.  

 

We find that at the North American scale, incorporating lateral fluxes improved 

agreement between bottom-up and top-down models somewhat, but the 

change was not sufficient to explain discrepancies. For example, in the 

deciduous broadleaf & mixed forests and cropland biomes, lateral fluxes only 

partially explained discrepancies and applying the seasonality, variability, and 

magnitude metrics still has an impact on improving agreement between 

bottom-up and top-down estimates (see Fig. S9 in the revised manuscript). 

This is in contrast to the evergreen and needleleaf forest biome where the 

inclusion of lateral fluxes led to better agreement between inversions and 

TBMs for the subset with all models included, but ultimately exacerbated 

differences between bottom-up and top-down methods once models that meet 

all three criteria were selected. 

 

[RC2-6] Line 75: The lateral carbon flux should be discussed see Casas-Ruiz et al. (2023), 

Integrating terrestrial and aquatic ecosystems to constrain estimates of land-atmosphere 

carbon exchange, Nature Communications. 

 

[AR2-6] We added in a discussion of how lateral carbon fluxes impact 

agreement between bottom-up and top-down models, as discussed in [AR2-5].  

 

[RC2-7] Line 101: To adequately convey the concept of "consistency" in the article, it's 

crucial to delve into the differences among the models. These models vary significantly in 

their simulation processes, leading to considerable variations in NEE. It's important to note 

that the models participating in the MsTMIP project use the same input data. I am not 



familiar with the TRENDY project. Ensure that both projects utilize the same input data; if 

not, the differing input data could be a significant source of variance. 

 

[AR2-7] Please refer to [AR2-3]. 

 

[RC2-8] Line 204: From where did you obtain the biome map? Additionally, did both 

MsTMIP and TRENDY projects utilize the same biome map? 

 

[AR2-8] We added a sentence detailing where the biome map comes from and 

whether MsTMIP-v2 and TRENDY-v9 use the same biome map in lines 177 – 

187. We used the same biome map as Shiga et al., 2018 and Sun et al., 2021 

that is based on an IGBP landcover classification map. MsTMIP-v2 imposes a 

consistent biome map for all models (Wei et al., 2014), while models from 

TRENDY use various sets of plant functional types (PFTs), resulting in 

differences in land cover representations, though they do use common land 

use and land cover change (LULCC) forcing data (Seiler et al., 2022). 

Understanding the impact of various biome maps used by models is difficult 

as few models provide outputs at the resolution necessary to do a 

comprehensive analysis such as evaluating whether specific PFTs are present 

at in situ observation sites (Seiler et al., 2022). However, Sun et al., (2021) did 

compare the impact of model-specific biome classifications for four models 

that provided PFT information at finer resolutions and showed that model-

specific biome classifications did not impact their overall conclusions.  

 

 

[RC2-9] Line 311: Could you please list the two-thirds of TBMs and analyze the potential 

reasons for their behavior? Specifically, do these models incorporate certain key 

processes? 

[AR2-9]  Figure S2 shows which models represent the space-time variability of 

atmospheric CO2 less well than APAR. We now reference this figure line 371. 

We believe that looking into individual models is beyond the scope of this 

study, but in [AR2-3] we describe how we have explored the impact of what 

processes are included on consistency and agreement. 

 

[RC2-10] Line 351: TBMS – TBMs 

[AR2-10] We incorporated this change on line 412.  

 

[RC2-11] Line 380: The current discussion is insufficient. It's essential to address the role of 

lateral carbon flux in causing discrepancies between bottom-up and top-down estimates. 

Furthermore, the method of NEE calculation across different models should be discussed. 



NEE estimation approaches for these TBMs: 

NEE=-GPP+TR 

NEE=-GPP+TR+Fire 

NEE=-GPP+TR+ Harvesting 

NEE=-GPP+TR+Fire+Harvesting 

 

[AR2-11] Please refer to [AR2-3] where we discuss how we will explore the role 

of which processes are included in models on consistency and agreement, 

and please refer to [AR2-5] where we describe how we will address the role of 

lateral fluxes.  
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