
Please find our response to the reviewers below. We have copied the reviewer comments and our 
responses are in blue, with the revised text and line numbers further indicated in italics below our 
responses.  

We appreciate the thoroughness of the reviewers’ comments and believe they will improve the 
manuscript. We have taken significant steps to address the reviewers’ comments. In addition to 
addressing all of the minor comments, we have added several figures that will help communicate 
our results. We have included in figure 1 the mapped region surrounding the EC tower. We have 
added a figure (S2) demonstrating no relationship between methane fluxes and environmental 
variables measured at the EC tower. We have added a figure (S4) to help visualize the predicted 
and observed EC fluxes both as a timeseries and as 1:1 plots. Major changes to the text include 
an expanded discussion in section 3.7 and statistical differences or similarities indicated in a 
consistently quantified way via Bayesian 89% credible intervals.  

We believe these changes in response to the reviewer’s comments have significantly improved 
the manuscript, and we thank them for their effort. 

Reviewer Comment #1: 

This manuscript addresses an important problem that is often ignored when analysing data 
collected with the eddy covariance (EC) technique, a key method for measuring fluxes between 
ecosystems and the atmosphere. This problem relates to the representativeness of measurement 
data, which can be compromised if the measurement site is heterogeneous with respect to 
vegetation and other land cover properties affecting the fluxes. Heterogeneous small-scale flux 
distribution makes it difficult to derive an unbiased budget estimate for the study area because 
the EC measurement unevenly weights different land cover elements. It is also difficult to 
differentiate between land cover types as the measurement represents a spatially integrated flux, 
making interpretation and regional upscaling of the data challenging. 

Ludwig et al. tackle these challenges by developing a statistical technique that can, in their 
words, ’un-mix’ the EC flux measurement. They use this Bayesian method to estimate the 
contribution of different land cover types to the carbon dioxide and methane fluxes measured at 
their tundra site in Alaska. As part of the analysis, they compare three different flux footprint 
models and two data gap-filling approaches. Furthermore, in the context of spatial upscaling of 
fluxes, they assess the effect of land cover map complexity. 

The study is interesting, well focused and suitable for the scope of Biogeosciences. The data 
appear reliable, and the methods are basically sound. Overall, the analysis is convincing and 
demonstrate the importance of acknowledging the surface heterogeneity when interpreting EC 
flux data. However, I find the presentation unsatisfactory in various places and thus recommend 
major revisions before publication. My concerns are detailed below. 

Major comments 

(1) The authors say that ”numerous footprint models have been developed” (line 35) and 
”recommend always using an ensemble of footprint models” (line 458). Their analysis is based 



on three models, which produce partly diverging results. I have the following questions about 
this ensemble approach. First, how many models should be optimally used? What were the 
criteria for choosing these specific models? Did you consider any alternatives? Second, the 
authors present the results separately for the three models but do not discuss how the results 
could be combined. How should three different estimates of carbon balance be interpreted, or 
would it be possible to combine them into a single value and incorporate the variation into an 
uncertainty estimate? 

We selected these three models because they are the most commonly used and referenced for 
carbon flux interpretations, and all three of these models have been used in other comparisons 
(Rey-Sanchez et al. 2022). The point about combining the results rather than just comparing 
between models is very useful. With the Bayesian approach used in this study, we can combine 
the posterior distributions from each footprint model results and present an overall distribution of 
scaled carbon that has uncertainty from all three carried through. We have added text to clarify 
that approach to estimating a scaled carbon budget: 

Line 412-415: We can combine the posterior distributions of scaled carbon from all three 
footprint model results to calculate a single carbon budget estimate that accounts for across-
model uncertainties. Doing this we find that growing season CH4 emissions (mean: 16633, 89\% 
CI: 15208 to 18212 Mg-C CO2eq) more than offset the CO2 growing season sink (mean: -
12512, 89\% CI: -15718 to -9189 Mg-C). 

(2) While Introduction is rich in citations, the same is not true for the Results & Discussion 
section. Here, the authors should better acknowledge previously published findings. This is 
especially apparent in Section 3.7 that deals with application of the results. Overall, this is the 
weakest section of the manuscript and would benefit from a thorough revision; this should be 
based on tangible results that are related to existing literature (see specific comments). 

We have expanded section 3.7 to include examples in the literature that use spatial drivers that 
could be applied with this footprint un-mixing method, as well as an example of discontinuities 
in measurement height benefitting from explicit footprint calculations. Detailed responses can be 
found in the specific comments below. 

(3) There are a few places where the text is not supported by data or references. 

- lines 163-165: An assumption (about invariability of methane fluxes) central to the statistical 
approach is presented in the Methods subsection titled ”Gap-filling methods”. No justification or 
supporting data analysis is provided for stating the constancy. It would of course be possible to 
formulate such a hypothesis and try and confirm it later with data (both in an appropriate 
manuscript section), or simply present it as a model assumption and then discuss how the results 
depend on that assumption. 

Thank you for pointing this out, we agree. We have added a figure to the SI (Fig S2) 
demonstrating the lack of relationship between observed methane fluxes and air temperature and 
PAR, as well as citing several examples of other studies that similarly approach methane as a 



spatially variable but not temporally variable flux (Rey-Sanchez 2022 et al., Tuovinen et al. 
2019, Hannun et al. 2020) 

 

Figure S2. Methane fluxes from the 2020 growing season (May - September) as a function of 
PAR (a) and air temperature (b). 

- lines 203-205: How do you know such details about methane flux variation? 

Chamber-based fluxes of methane from nearby peat plateau landcovers (tundra vegetation types) 
were measured in 2017 and these data were archived on the Arctic Data Center. We have added 
the citation for this dataset. 

- lines 217-218: Again, the authors have an idea how methane fluxes behave but do not reveal 
the source of this information. The Bayesian prior selection should be justified more carefully. 
Disallowing methane uptake clearly affects the posterior methane flux distribution of the 
degraded permafrost (Fig. 5). 

The more specific prior information used here came from the archived dataset of chamber-based 
methane fluxes from these landcovers, which is cited here. 

- lines 244-245: Here, the flux independency of biometeorological drivers is presented as if it 
were shown above in the manuscript (”Since the CH4 fluxes did not have relationships…”). 

We have added a figure to the SI (Fig S2 in the response above) demonstrating the lack of 
relationship between methane fluxes and biometeorological variables. 

Lines 241-242: Since the CH4 fluxes did not have relationships to any biometeorological drivers 
such as air temperature or PAR (Fig S2)… 

- lines 290-292: The authors state that ”[a]ll Bayesian gap-filling models were able to accurately 
reconstruct the tower NEE across the growing season as a function of PAR, air temperature, and 
source attributions” but show no data, which is a major shortcoming. Only the model 
performance with respect to filling artificial data gaps is presented (Fig. 3). Also, the ”Tower 



Total” in Figs. S4-8 are scaled fluxes, not actual EC data. Please include a comparison (plots, 
statistics) of measured vs modelled NEE and CH4 fluxes. 

We have added a figure to the SI (Fig S4) showing observed and predicted tower fluxes for the 
various models to help visualize model accuracy. Please note that the RMSE of the artificial gaps 
(Fig 3) best demonstrates model accuracy. Best practices for examining model prediction 
accuracy is to withhold a portion of observations as a testing dataset (the artificial gaps in this 
study) and use the remaining observations only for training (as we have done) and then predict 
and evaluate prediction accuracy using only the testing data (RMSE in figure 3). For example, 
see Vekuri et al. 2023 in Scientific Reports for a similar approach to EC model testing and 
visualization. 

 

Figure S4. Top: example 10-day timeseries of eddy covariance tower 30-minute fluxes of CO2 
observations and predictions from the homogeneous map and complex landcover map using 
Hsieh, Kljun, and Kormann and Meixner footprint models. Bottom: the entire month (July 2020) 
dataset of predicted vs. observed tower fluxes for the same set of models. 

 

(4) Why is the temperature scaling needed in the light response of GPP (Eq. 4)? As far as I can 
see, none of the papers cited here (line 175) include the temperature (or VPD) attenuation 
incorporated into Eq. 4. It is also unclear how the temperature scale (Tscale_k) is defined. 



Thank you for pointing that out, we have added a line defining Tscale (line 185). We chose to 
account for a temperature effect this way as it is similar to the parameterization used in 
PolarVPRM scaling models (e.g, Luus and Lin 2015, Luus et al 2017, Schiferl et al. 2022).  We 
have clarified this in the methods and added these citations. 

T scale_k = (T air_k − Tmin)(T air_k − Tmax)/{(T air_k − Tmin)(T air_k − Tmax) − (T 
air_k − Topt)2 } (Eq 5) 
 
Lines 188-189: GPP is attenuated by temperature using T scale_k, where Tmin = −1.5 
◦C, Tmax = 40 ◦C, and Topt = 15 ◦C (Luus and Lin, 2015; Luus et al., 2017; Schiferl et al., 
2022).  

(5) What is the rationale behind calculating the carbon budget as CO2-equivalents where 
methane fluxes are multiplied by 28 (lines 265-266), which refers to the global warming 
potential due to a pulse emission over a time horizon of 100 years. What does this quantity 
indicate in this context? Why a 100-year period? Why a pulse emission approach for a natural 
ecosystem with fluxes sustained for thousands of years? Also, it is somewhat misleading to call 
the resulting sum “carbon budget” (that would logically be CO2-C + CH4-C).   

We have chosen to do this because these systems are highly subject to climate warming and there 
is wide interest in interpreting methane emissions on the same scale of impact as carbon dioxide 
(as seen in Bastviken et al., 2011; Stocker, 2013; Euskirchen et al., 2014; Beaulieu et al., 2020; 
Skytt et al., 2020). While the 28 global warming potential is not a perfect representation of 
methane emission impacts and there are other values (ranging from 25- 100) people have used, 
we chose this because it is a conservative value and common way of interpreting methane 
emissions in the context of carbon dioxide emissions. Given the disparity in the mass of carbon 
in CO2 and CH4 emissions, simply adding them together can be misleading and often just 
reflects the pattern in CO2. We have added citations of other papers that similarly present CH4 
and CO2 budget comparisons using CO2-equivalents.  

Line 261-263: CH4 was presented alongside NEE in carbon budgets as CO2-equivalents 
(CO2-eq) by multiplying CH4 by a factor of 28, a conservative choice among commonly used 
approximations of relative global warming potentials (Bastviken et al., 2011; Stocker, 2013; 
Euskirchen et al., 2014; Beaulieu et al., 2020; Skytt et al., 2020). 

Specific comments 

lines 4-6: Does ’carbon balance’ refer to the Arctic or to ’some locations’? 

We have clarified this sentence. 

Line 4-6: With warming temperatures, Arctic ecosystems are changing from a net sink to a net 
source of carbon to the atmosphere in some locations, but the Arctic's carbon balance remains 
highly uncertain 



line 64: This in inexact. The synthesis excluded EC measurements only if they could not be 
attributed to a specific land cover type. 

Thank you for pointing this out, we have rephrased to be more accurate. 

Line 63-64: A recent synthesis of circumpolar CH4 fluxes excluded EC measurements that could 
not be attributed wholly to wetland or waterbody sources 

line 64: I have not previously seen the term ’unmix’ (or ’un-mix’) being used to mean estimation 
of land cover specific fluxes. Please define the meaning. 

We have added a line defining “un-mix” in the context of eddy covariance fluxes. 

Line 75: We used footprint models and landcover maps to unmix EC fluxes into constituent 
landcover fluxes in heterogeneous tundra in the Yukon-Kuskokwim (YK) Delta, Alaska 

lines 66-67: You should refer to regional budgets rather than individual ecosystems, which do 
not require a network. 

Multiple flux observation sites are required to characterize the variability within ecosystems. We 
have removed the word ‘network’ in case that implies a regular grid of EC towers. 

Line 65: Arctic ecosystems in particular require representative carbon flux observations to 
accurately derive seasonal and annual budgets. 

lines 67-69: Rantanen et al. only studied warming, not carbon dynamics or related climate 
feedbacks. 

We thank the reviewer for catching that. We have included additional references in this line 
related to carbon dynamics and feedbacks (Schuur et al. 2015) 

line 83: I do not find any discussion on ”arctic carbon feedbacks”. 

We discuss Arctic carbon feedbacks in lines 503-509: The consequence of assuming 
homogeneity in the landscape when gap-filling and scaling-up instead of using landcover-
specific carbon fluxes was substantial: over the growing season (May --- September) the 
homogeneous carbon budgets had half as much CH4 emissions and twice as much net CO2 
uptake, greatly overestimating the carbon sink in the region and potential negative feedback to 
climate from carbon emissions. Accounting for landscape heterogeneity in carbon fluxes from 
EC towers could reduce uncertainty in bottom-up carbon budgets and the mismatch with top-
down carbon budgets. 

lines 98-100: How were the land cover classes defined? Did you have any vegetation or soil 
survey data available? Did you validate the land cover maps? 



The details of how the landcover map was created, landcover classes defined and validated, are 
in the reference cited where the map was first published (Ludwig et al. 2022) and in the archived 
landcover map on the ORNL DAAC which was cited as well (Ludwig et al. 2023). 

See lines 94-95: We used a landcover map developed by Ludwig et al. 2022 to characterize the 
EC tower location and a nearby region of unburned tundra used for scaling up carbon budget 
(Ludwig et al. 2023a). 

Table 1: It would be useful to show similar percentages for the average footprint-weighted land 
cover proportions during the study period, estimated with different footprint models. 

The full distributions for the footprint-weighted landcover proportions for each of the three 
footprint models are in Figure 2 and in the SI. We chose to display the tower area proportions 
instead of footprint-weighted averages since none of the distributions are Gaussian and 
displaying the average is not a useful metric or central-tendency in this case. We believe that 
including the actual distributions where the range and variance are clear is a better way to 
communicate this. 

line 127: What criterion was used for nonstationarity? 

We used the Foken et al. 2004 method, as is cited in line 126 (implemented in EddyPro). This 
method assigns integers to indicate fluxes that pass or fail these QA/QC checks on the high 
frequency data. This method is a widely used in established EC networks (e.g. Ameriflux and 
Fluxnet). 

line 127: What is ’rssi’? 

We have removed the acronym for clarification. 

line 128: u* should be defined. You could include the CO2 flux vs u* analysis in the supplement. 

We have explicitly defined u*. All of the QA/QC and filtering steps, including the figures 
demonstrating where the u* threshold is located, are in publicly available code in a repository 
linked in our code and data availability statement. 

Lines 127-128: …low turbulence (friction velocity (u*) < 0.1 ms−1 threshold was chosen where 
CO2 fluxes were independent of u*). 

lines 128-129: I’m not sure if I’d call an energy balance closure of 70% ’good’. It is a typical 
value, probably rather low than high. Data or citation needed if this is included. 

We have replaced ‘good’ with ‘typical’. 

Figure 1: Please indicate the location of the EC tower. 



The tower is located in a section of unburned tundra just SW of this lat-long bounding box. We 
have added the mapped 300m circle surrounding the tower (as described in Table 1) as another 
panel. We chose not to extend the bounding box in panels a-c further SW because there are 
various fire scars nearby are not being mapped or scaled-to, and would be an unnecessary 
confusion to include visually in Figure 1.  

Section 2.4: Why is this section written from the gap-filling point of view only? The methods 
presented here are central to flux ’unmixing’, which is the key topic of the manuscript. 

We have included ‘unmixing’ in the section title to be more inclusive, as well as clarified below 
that the gap-filling models can be understood more broadly as models that predict carbon fluxes. 

Lines 155-156: We compared several modeling approaches for predicting and gap-filling the EC 
NEE timeseries. 

lines 171-172: The solution of model equations is presented in Section 2.4.2 and is irrelevant 
here. 

We have removed this line from the methods. 

lines 190-198: This sounds like discussion. Especially the last sentences would improve the 
actual discussion section. 

We thank the reviewer for this point. We have moved this paragraph to section 3.7 where it does 
indeed improve the discussion section.  

lines 207-208: It sounds a bit strange to present ordinary least squares as the only alternative to 
MCMC simulations. There exists a plethora of fitting methods suitable for non-linear 
relationships. 

We have rephrased this sentence and included a reference to Rößer et al. 2019, as an example of 
a non-linear solution.  

Line 204-207: We chose this method partly because unmixing approaches such as ordinary least 
squares (as used by Tuovinen et al. (2019)) are not applicable with the non-linear relationships 
used here between CO2 and air temperature and PAR, and non-linear ordinary least squares (as 
used by Rößger et al. (2019)) assumes normal distributions for parameters and error variance, 
which is often not the case.  

lines 214-216: I do not understand this explanation for using uninformative priors. Please clarify. 

We have added clarification. We chose to show that the method works with reasonable certainty 
without needing to provide specific prior information. More specific priors would reduce the 
uncertainty in posterior distributions, which is useful for reducing uncertainty in scaled carbon 
budget, but is not strictly necessary here.  



Lines 211-213: We used the latter approach to NEE priors for this study to demonstrate the 
impacts of unmixing EC tower NEE on gap-filling accuracy and bottom-up scaling while using 
the fewest assumptions. 

lines 245-246: Unclear what is meant by ”calculating the average CH4 flux for each half hour 
period”. Aren’t you rather calculating the daily (and monthly) averages? 

We have rephrased to clarify. We are calculating the monthly average CH4 flux of each half-
hour of a diurnal cycle. For example, the average of all July CH4 fluxes at 16:30 was used to 
scale up CH4 fluxes for 16:30 all days in July. 

Lines 242-243: we estimated monthly budgets by calculating the monthly 
average CH4 flux for each half hour of the diurnal cycle, and then applying these averages to 
each day within the month. 

lines 252: What does the percentage range represent? 

There was a little variation between months in the total amount of withheld data using random 
stratified gaps. We have clarified the percentage range is between months. 

Line 249: Between 15 — 20% of the timeseries of each month… 

lines 253-254: Was there any rationale behind this gap scenario; i.e., does it reflect the gaps 
found in real measurement data? 

Yes, these gap lengths were chosen to have similarities to commonly found real gap sizes. A 
detailed analysis of gaps in EC timeseries (such as in Kim et al. 2019) is beyond the purview of 
this study. 

line 277: Why do you find the agreement between the footprint models ’surprising’? 

We have edited this sentence to be less vague. 

Lines 276-277: There was a fair amount of agreement between the three footprint models, with 
the majority of footprint influences close to the 1:1 line on regressions between model types (Fig 
2, Fig S3). 

line 283: Why ’likely’? You can check these ”distinct periods” from the data. 

We have rephrased line 283 to be less ambiguous.  

Line 282: There are also distinct periods of larger differences between footprint models, for 
example when the peak footprint influence was near the boundary between two landcover types 

lines 305-306: But, as you say, MDS is biased in high latitudes. 



This was worth mentioning because MDS is still by far the most widely used gap-filling method 
including in high latitudes, and its convenience could outweigh any cons for some investigators. 

lines 307-308: In many cases, the RMSE differences between models are larger than the 
differences between land cover maps, so it is not clear what ’overlapped’ implies. The 
comparisons should be based on a statistical criterion. 

We have added letter designations to Fig 3 to show which RMSEs have credible intervals that 
overlap. However, in Bayesian approaches it is unusual to use an arbitrary threshold, such as p-
values, to decide if something is significant or not. In the frequentist realm for example, if two 
95% confidence intervals overlap they are considered not significantly different and the amount 
that they overlap (or don’t overlap) has no meaningful interpretation. On the other hand, for 
Bayesian credible intervals one can interpret the amount of overlap or separation as a measure of 
similarity or difference. For example, one could compare credible intervals that overlap by 50%, 
5%, or have separation of 10% or 150%, and these differences are meaningful in a way that has 
no analog in frequentist confidence intervals. Credible intervals that have some overlap would 
not necessarily be interpreted to have statistically insignificant differences the same as one would 
interpret overlapping confidence intervals.  

lines 308-309: Comparing the RMSE medians, this is true only for the monthly CH4 data, but for 
the growing season CH4 total the Kormann-Meixner model performs better than the Kljun 
model. For NEE, the K-M model has the highest RMSE for two out of five months for both land 
cover maps, so ”more often than not” does not check out. Considering this and observing the 
large dispersion, I would not imply that the K-M model showed the worst performance. 

While the KM model does perform worse more often than the others, the margins on these 
differences are small and we recommend using all three models to capture footprint model 
uncertainty in interpreting EC data. Since this study is not attempting to validate footprint 
models against known fluxes (such as Rey-Sanchez et al. 2022), but rather capture the impacts of 
footprint model choice on scaling carbon, we have rephrased this discussion point. 

Lines 307-309: None of the three footprint models consistently performed better in terms of 
RMSE, and for most outcomes, the Bayesian 89% CI for their RMSEs overlapped (Fig 3, Fig 
S5). Given that none of the three footprint model types quantify their uncertainty, we continued 
to evaluate all three as an ensemble of footprint models that represents the range in footprint 
influence outcomes. 

lines 318-319. While there clearly is the stated difference for degraded permafrost in June, 
without supporting statistics it is not possible to generalize the model performance for other 
landcover types and for other months. I also do not understand why the footprint models are not 
assessed in relation to the measured 30-min EC fluxes. 

We rephrased this section to clarify. The Kljun model is the best at estimating a consistent 
landcover flux for degrading permafrost between the simple and complex landcover maps. Each 
landcover class is estimated simultaneously since the weights must sum to 100%, so a 



discrepancy in degrading permafrost means it is being offset in another landcover, and the 
performance across landcover classes need to be considered as a set.   

Lines 317-319: The Hsieh and Kormann and Meixner models were notably inconsistent for 
degraded permafrost for June and July (Fig S7-8), while the Kljun footprint model was always 
distinctly consistent (Fig S6-10) 

The footprint models were assessed in relation to the measured 30-min EC data. Data were 
withheld via artificial gaps and used to test the models’ abilities to predict the 30 min EC fluxes 
(Fig 3).  

lines 326-339: Here, the presentation would benefit from more quantitative comparisons (instead 
of inexact expressions such as ”aligns with”, ”similar to” and ”similar in range”). 

We have included the maximum value of CO2 uptake amongst tundra vegetations in the text.  

Lines 325-326: had higher peak carbon uptake (-0.342, -0.266, -0.308 kg-C month−1 m−2, for 
Hsieh, Kljun, and Kormann and Meixner) than sedge and lichen tundra (-0.175, -0.175, -0.139 
kg-C month−1 m−2, for Hsieh, Kljun, and Kormann and Meixner) (Fig 4). 

We used ‘aligns with previous studies that have found…’ appropriately.  

lines 342-343: Posterior distributions (Fig. 5), parameter estimates (Supplement) and actual flux 
data (Fig. S1b) show that you cannot rule out the possibility of occasional CH4 uptake by tundra. 
Comments on this would be useful. 

The few sporadic negative fluxes of methane in Fig S1b are noise and not true uptake. Eddy 
covariance timeseries are noisy, particularly methane fluxes, and removing negative values is not 
recommended because this will lead to a positive bias. Neither are the parameter distributions 
indicating uptake, just tails of distributions that cross zero, or the parameters are functionally 
deriving a zero or very small flux whose distribution includes zero. The chamber data (cited 
above) does not show any evidence of methane uptake for the range of ecosystems near the 
tower.  

lines 358-362: This text deals with NEE (Fig. 4), not carbon. Please rephrase. 

We have replaced ‘carbon’ with ‘carbon dioxide’ 

line 363: ”less prevalent”, please quantify; ”wetland could not to converge”, unclear meaning. 

Thank you for pointing this out. We have clarified this discussion point. 

Lines 363-364: The landcover map used in this study identified two types of wetlands, one much 
more prevalent near the EC tower than the other. Attempting to use both wetland types failed, as 
the parameters for the less prevalent wetland could not converge. 



lines 371-372: carbon or CO2-C? 

This sentence is correct as is with ‘carbon’. 

lines 387-388: How do you know you have a representative sample of these fluxes? The 
footprint coverage of water areas is low and often zero. How does this relate to the sporadic 
nature of ebullition and the seasonality of plant-mediated gas transport? And earlier in the same 
paragraph you concluded that the water fluxes are likely overestimated. 

We agree, the water fluxes here are not likely to be representative. This is why we discuss the 
approach in Ludwig et al. 2023, and reference it as a better method for water carbon flux scaling. 
The method described in Ludwig et al. 2023 deals with the representativeness of various 
waterbodies, watersheds, water chemistry, etc. As we described in this paragraph, it is well 
documented in many ecosystems and specifically in this region that smaller waterbodies have 
larger carbon fluxes, as such using the fluxes derived from the small waterbodies near the tower 
to scale to all waterbodies throughout the region is likely an overestimate. The sporadic nature of 
ebullitive and plant mediated fluxes and their low contribution in footprint weight is likely why 
here we could estimate a mean and variance for methane fluxes but nothing more mechanistic, 
and this is explained in the methods (lines 185-188). 

lines 390-391: Fig. 7 shows the CO2-eq. budget, not the carbon budget. 

Please see in the methods: 
 
Line 261-263: CH4 was presented alongside NEE in carbon budgets as CO2-equivalents 
(CO2-eq) by multiplying by a factor of 28, a conservative choice among commonly used 
approximations of relative global warming potentials (Bastviken et al., 2011; Stocker, 2013; 
Euskirchen et al., 2014; Beaulieu et al., 2020; Skytt et al., 2020). 

lines 391-393: How do you define ”detectable differences” and ”small differences”? 

We have updated this discussion using to clarify ‘overlapping 89% credible intervals’. Posterior 
distributions with no overlap in credible intervals are denoted with different letters in Fig 7. 

line 395: Why would increasing the number of model parameters increase uncertainty? I would 
have assumed that this makes the model more flexible and thus decreases uncertainty. 

Increasing uncertainty with increasing complexity is a common occurrence across modeling. See 
Puy et al. 2022 (https://www.science.org/doi/10.1126/sciadv.abn9450) for a nice summary. 

line 398: Not in September. 

This is likely because MDS is most biased in shoulder seasons, where light and temperature 
distributions are even more skewed. We have added that comment to the discussion. 



Line 400-403: In months closer to the shoulder season (May and September), the distributions of 
light and temperature are more skewed, which is a source of bias in the MDS method and could 
explain the slight differences in the MDS and Bayesian homogeneous results for those months. 

lines 413-415: It is misleading to use Mg-C as the unit for the CO2-eq budget. Note that Kuhn et 
al. (2018) you cite here presented carbon balances (CO2-C + CH4-C), not CO2-eq balances. 
Using the CO2-eq. concept implies that the ecosystem has a warming effect on climate. 

Using CO2-eq is a common way of presenting side by side methane and carbon dioxide 
emissions (as seen in Bastviken et al., 2011; Stocker, 2013; Euskirchen et al., 2014; Beaulieu et 
al., 2020; Skytt et al., 2020).  

Kuhn et al 2018 found that including commonly overlooked small pond CO2 and CH4 emissions 
offset a large portion of the wetland carbon sink. We find a similar result, though our study looks 
at multiple types of small-scale heterogeneity not just the presence of small ponds. We have 
rephrased so as to be clear we are not implying that Kuhn et al 2018 also reports methane in CO2 
equivalents.  

Line 420: Similarly, (Kuhn et al. 2018) found that accounting for emissions from commonly 
overlooked small ponds offset much of the wetland carbon sink in Northern Sweden. 

lines 417-420: This text basically repeats what is written in the previous paragraph. 

The previous paragraph described the results in this study in the context of this sites spatial 
arrangement of sources and sinks. Whereas in this sentence we explain that a different 
positioning of landcovers could have resulted in the opposite pattern, which is useful to 
understand in the context of comparing bottom-up and top-down scaling since the discrepancy 
there is one sided (bottom-up methane budgets are higher than top down). We have rephrased for 
clarity. 

Lines 424-425: A heterogeneous site with low carbon uptake or high carbon emissions located 
near the peak of footprint influences would overestimate carbon emissions when scaling 
assuming homogeneity 

line 434: In the previous paragraph, you said that the edge of the degraded areas was the most 
uncertain land cover type. 

Line 434 states that NEE fluxes from the edge of degraded areas were the most uncertain among 
tundra vegetation types.  

line 440: This obviously depends on the accuracy of the deterministic approach. Do models and 
data exist for this? 

Yes, for example see the discussion of water carbon fluxes earlier citing Ludwig et al. 2023. That 
study uses CO2 and CH4 measurements from hundreds of waterbodies in the region to scale 



carbon emissions as a function of waterbody size, color, shape, and watershed size and 
landcover. 

lines 447-455: This paragraph is basically a list of potential improvements to the method 
presented in the manuscript rather than a discussion of actual applications of the method as it is. 
Citations are needed to indicate previous occurrence of these ideas. 

We have expanded this section: 

New Lines 453-476: Heterogeneity within EC tower landscapes is a common problem, and 
employing this flux unmixing approach at sites such as those identified by (Chu et al. 2021) 
could improve accuracy in scaling carbon budgets and bench-marking models. Several studies 
have used summed spatial variables after weighting by EC footprints to relate to EC flux 
observations (Reuss-Schmidt et al. 2019, Xu et al. 2017, Metzger et al.  2013). While a useful 
way to incorporate heterogeneity, this approach reduces meaningful variation of spatial 
variables within footprints to single non-unique results. For example, there are multiple 
combinations of footprints weights and values of the spatial drivers that could result in the same 
weighted sum. Statistically unmixing fluxes could yield more informative relationships to spatial 
drivers. 

Future applications of the flux unmixing approach demonstrated in this study could 
incorporate spatially explicit drivers such as soil moisture and soil temperature, as well as more 
specific prior information from chamber fluxes. Doing so would further reduce uncertainty in 
landscape carbon fluxes. Seasonality could be represented through spatially explicit and 
temporally variable drivers such as solar induced fluorescence (SIF) ( Schiferl et al. 2022). 
Interannual variability could be investigated using a hierarchical model structure by, for 
example, fitting an underlying distribution of a vegetation-type specific Q10 from which each 
year’s specific Q10 is drawn. This method of interpreting EC fluxes could also be useful in sites 
with nested EC towers, multiple instrument heights, or where instrument heights have changed 
over time (e.g. (Klosterhalfen et al. 2023). Flux data from such circumstances could be analyzed 
concurrently, since each observation is a function of an explicit footprint distribution. Thus, it 
would not matter if instrument height or position were different between observations. 

An alternative model structure for GPP was investigated that uses leaf area index (LAI) as a 
driver (Shaver et al. 2007). In lieu of field-based LAI data, we used a timeseries of NDVI from 
cloud-free Sentinel-2 imagery and the empirical relationship to LAI from pan-Arctic tundra 
described in (Shaver et al. 2013). The LAI-version GPP model failed posterior predictive checks 
for most months of data, and was not further pursued. This failure is likely because the 
approximation from NDVI was a poor representation of LAI for this site, particularly during 
May, August, and September where sub-pixel water presence could lead to erroneous NDVI and 
LAI. Furthermore, lichen and moss species dominated the vegetation biomass on peat plateaus 
and LAI may not be an appropriate metric in such cases. However, a spatially resolved driver 
such as LAI might be effective in applications for unmixing NEE at other sites. 

lines 456-467: This paragraph is more relevant to the applicability of the method than the 
previous one. However, the discussion is rather superficial and requires more quantitative results. 



Would it be possible to specify the required ”variability in footprints” (line 462) and what kind 
of ”differences between observations” are ’enough’ (line 463)? In addition, the conclusion that 
violation of model assumptions increases uncertainty is rather trivial (line 459); isn’t 
heterogeneous turbulence a problem that concerns the EC measurements in the first place (if the 
measurements do not fulfil assumptions, then any related modelling is obviously redundant) 
(lines 461-462); suggesting that ”consistent wind directions and atmospheric stability” could be a 
problem requires a real-world example (lines 464-465).   

Assessing the variability in footprints and the corresponding minimum differences in landcover 
fluxes needed to be able to statistically un-mix the fluxes is a site-specific question. Generalizing 
the required variability for other sites is beyond the scope of this study but we have made our 
code available in a public repository and welcome others to try this approach at their site. Yes, 
homogeneous turbulence is an assumption for EC, but it is worth explicitly stating here since 
there are EC towers in non-ideal landscapes. The particular atmospheric conditions and 
invariance in wind directions that could make this method difficult to implement are a site-
specific problem, and evaluating that for other EC locations is also beyond the scope of this 
study. 

Table S10: A similar table showing monthly mean (SD) fluxes for all land cover types would be 
useful. 

The full distributions for each month and landcover for methane are in Figure S9. Figure 4 shows 
the full distribution by month and landcover for carbon dioxide, summed by month. Given the 
strong positive and negative diurnal signal in CO2 NEE, the monthly sum is informative and an 
appropriate choice instead of the mean. 

Technical comments 

line 73: Word(s) missing. 

 “difficulties in calculating representative” 

line 79: ”compared net ecosystem exchange (NEE) results from CO2 fluxes”; please rephrase. 

Clarified to:  

“We compared the net ecosystem exchange (NEE) of CO2”.  

While most commonly applied to CO2, the term net ecosystem exchange can apply to any gas 
(e.g. OCS, CH4, CO, VOCs, etc). Here, in the first use of NEE we specified we are using it in 
regards to CO2. 

line 128: Unit missing. 

We have added the unit (m s-1) 



Section 2.3: Incorrect title. 

Thank you for catching that, we have corrected the title to ‘Eddy covariance footprint modeling’ 

line 169: Remove ”equation 1”. 

Changed to (Eq 1) 

line 202: Remove ”equation 5”. 

Changed to (Eq 6). 

line 227: A wrong unit. 

We have updated to umol m-2 s-1 

Figure 4. Why is the corresponding CH4 plot placed in the supplement? The time unit (month) of 
the flux is rather uncommon. 

A monthly time unit is most appropriate here since each month of CH4 data was trained 
separately. The time unit of month is also a common way of summarizing carbon fluxes, 
especially methane (e.g. Miller et al., 2016). We included both the monthly fluxes and landcover 
area-scaled NEE of CO2 since the magnitudes and uncertainties of each flux are compared in the 
discussion. For methane, there is little value in including Figure S9 (methane per area) in the 
main text instead of the supplement, since it has a very similar pattern between landcovers as the 
scaled version (figure 5). 

lines 430-431: The word ’tundra’ missing. 

At the beginning of the sentence it states ‘among tundra vegetation types’ 

Whole text: There are inaccuracies in writing, some examples: 

- Expressions such as ”chamber fluxes”, ”tower fluxes”, ”tower NEE and CH4” and ”eddy 
tower” sound colloquial. 

We have updated the text to consistently use the term eddy covariance (EC) tower fluxes. 
Specifying ‘tower’ is useful to distinguish fluxes as modeled or observed at the tower from 
landcover fluxes that are also derived from the EC dataset. “Chamber” fluxes is a widely used 
and accepted term. For example, see Stoy et al. 2013 paper titled “Upscaling tundra CO2 
exchange from chamber to eddy covariance tower”.  

- Incorrect prepositions: ”from May-October”, ”Between 15-20%”, etc. 

We have replaced ‘-‘ with ‘to’ and ‘and’ .   



Tables S1-S3: Please explain the distribution notation. 

We have added a sentence explaining the JAGS distribution terminology to the SI. 

Tables S1 – S3 include prior distribution information following the format used in JAGS. Those 
reported here include normal distributions ‘dnorm’ with parameters mean and standard 
deviation, and uniform distributions ‘dunif’ with parameters minimum and maximum range. 

Tables S1-S10: Please unify the number of decimals. 

We use a consistent number of significant digits throughout. 

Table S3: A value missing. 

Thank you for catching that, we have added the missing value. 

Reviewer Comment #2: 

This paper explores the spatial heterogeneity in fluxes of CO2 and CH4 in a Tundra ecosystem in 
Alaska. The authors present a novel approach to decompose (“un-mix”) the EC signal from the 
different land covers. The authors find that using gap-filling methods that take into account the 
decomposed signal from this approach results in better performances than other gap-filling 
methods, and that scaling up using this decomposition approach can result in up to 2-fold 
differences in the total fluxes.               

I think the use of Markov Chain Monte Carlo (MCMC) simulations to predict the fluxes using 
footprint decomposition is novel and worth of publication. The manuscript is well-written, well 
organized and the message is clear. However, some methodological questions need to be 
addressed first: 

Perhaps the most important one is the assumption of constant fluxes of methane (L. 198) from 
different land covers. This is a big assumption since one would expect seasonal changes in 
methane driven by temperature and variability among land cover contributions driven by 
fluctuations in water level. For example, one land cover may have a larger flux than other under 
low water table conditions, but the relationship may switch under highwater tables. How can this 
be addressed? Some of these limitations are addressed in the discussion, but perhaps a bit more 
discussion on the specific limitations for methane flux calculation is needed. More comparison 
against chamber derived CH4 fluxes from different land covers can enhance this discussion. 

We thank the reviewer for highlighting this point. We account for seasonal (monthly) and spatial 
differences in methane fluxes by deriving different distributions of fluxes trained separately on 
each month of data for each landcover. We do not have an explicit (sub-monthly) temporally-
varying driver of methane, since there was no relationship between methane and the other 
measured variables at the EC tower. We have added a figure to the SI that demonstrates this (fig 
S2 included above). Modeling methane as a temporally constant (within a month) but spatially 
variable flux is commonly done (Rey-Sanchez 2022 et al., Tuovinen et al. 2019, Hannun et al. 



2020). We discuss how landcover specific temporal drivers (such as soil moisture and 
temperature) could improve methane flux un-mixing, but we cannot discuss specifics as those 
data do not exist for this site concurrent with the flux measurements presented here.  

Lines 461-463: Future applications of the flux unmixing approach demonstrated in this study 
could incorporate spatially explicit drivers such as soil moisture and soil temperature, as well as 
more specific prior information from chamber fluxes. Doing so would further reduce uncertainty 
in landscape carbon fluxes. 

More details about the footprint calculations are needed. It is not mentioned if footprint contours 
were applied or if all the footprint weights were calculated for the domain of the area shown in 
Fig 1? This needs more detail. Perhaps a table with summaries of average percent footprint 
coverage before normalization, fetch at 80% footprint contour, average footprint width, and 
average distance from the tower to the point of maximum footprint weight, will inform the reader 
about the footprint differences for each model. 

We have added detail about the footprints.  

We defined each footprint across a 2000 m x 2000 m area centered on the tower, which was well 
in excess of 90% influence. This way every footprint even with different extents were well 
included. The pixels at the tails had effectively no impact since we were using only the summed 
footprint weights of each landcover, and all footprint models asymptote to zero. Similarly, 
normalization had little effect since the weights are unitless and all were very nearly 100% 
contained anyways. There was far more variation in footprints between observations through 
time than between footprint models, so comparing e.g. average widths between models was not 
found to be instructive. We aimed to show the range in outcomes for carbon scaling from 
choosing each model since most studies that use footprint models have picked just one of these 
three. See Rey-Sanchez et al. 2022 for a good comparison of these three models with a known 
point source of methane emissions with in the footprints.  

Lines 148-150: Each footprint was modeled 1000 meters in the downwind direction, and 250 
meters to either side in the crosswind direction. These values were chosen as they were well in 
excess of the 90% contours of all footprints (peak influences were < 100 meters and the 90% 
contours averaged 200 meters from the EC tower) 

The MCMC simulations is a useful approach but how good is it for methane emissions given the 
assumptions. One key question is how does this method compare to machine-learning gap-filling 
approaches (e.g. Artificial Neural Networks) that take into account the wind direction but also all 
the other important environmental drivers? 

Wind direction alone is not sufficient to represent heterogeneity within a footprint. At the site 
used in this study, a NN gap filling approach would not have worked any better since those 
methods rely on existing relationships between other measured drivers and methane fluxes, 
which was not observed here. Those methods would likely work better in a homogeneous 
landscape or in a landscape with heterogeneity that corresponds to clear sectors that can be 



captured by wind direction, provided a causal relationship existed between measured 
environmental drivers and methane fluxes as well. 

Specific Comments 

What are the references for the equations for Respiration and GPP? (Eqs 3 and 4) 

These are cited on line 177 (Williams et al., 2006; Shaver et al., 2007; Loranty et al., 2011). 

Fig 1. Is the location of the tower in the center of the map? 

We have included a panel with the 300 m radius area around the tower mapped as well, with the 
tower location indicated (Fig 1). The tower is located on a stretch of unburned landscape 
surrounded by several fire scars. We chose to scale to this region since it is all unburned and we 
are not mapping or scaling to the burned areas.  

1. 125 Is the time lag removal by covariance maximization necessary for open path 
instruments? 

Yes, although it is generally smaller than those for closed path instruments. 

L.127 an RSSI lower than 15% is an extremely low threshold. Can you provide justification for 
the use of this threshold? 

The median value of RSSI for the QA/QC’ed final dataset that was used here was 99.38%. We 
could have been less conservative about the RSSI threshold and it would have had very little 
affect on the dataset. This is the threshold used for designating bad values within the LI-7500DS 
diagnostic output.  

L.146 Can you provide more details about the roughness length calculation? It seems rather low. 
It is also not clear how canopy height was estimated. Was it assumed to be zero? 

This roughness length is a typical value for tundra (see McFadden et al. 2003 for a summary of 
tundra sites that shows similar values for canopy heights and roughness lengths). Monin-
Obukhov similarity theory is used to determine roughness length. Under neutral conditions, wind 
speed is equal to the friction velocity divided by the Von Karman constant, times the log of the 
measurement height over roughness length. The shrubs are less than a few centimeters tall and 
sporadic, so a canopy height of 0-10 cm for tundra is common. 
 
Lines 145-146: We calculated a single roughness length for the site (0.02 m) from the measured 
wind speed and friction velocity under neutral conditions assuming a logarithmic wind profile 
and zero displacement height 
 


