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Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to biases

when gap-filling and scaling-up observations to determine regional carbon budgets. Tundra ecosystems are heterogeneous

at multiple scales, with variation in plant functional types, soil moisture, thaw depth, and microtopography, for example,

influencing net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming temperatures,

Arctic ecosystems could change
::
are

::::::::
changing

:
from a net sink to a net source of carbon to the atmosphere in some locations, but5

the
::::::
Arctic’s

:
carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes

from an eddy covariance tower in the Yukon-Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov

Chain Monte Carlo (MCMC) methods to un-mix tower
:::::
unmix

::::
eddy

::::::::::
covariance observations into constituent landcover fluxes

based on high resolution landcover maps of the tower region. We compared three types of footprint models and used two

landcover maps with varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used10

artificially created gaps of withheld observations to compare gap-filling performance using our derived landcover-specific

fluxes and traditional gap-filling methods that assume homogeneous landscapes. We also compared resulting regional carbon

budgets when scaling-up observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods

performed worse at predicting artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes,

while there were only slight differences between footprint models and landcover maps. We identified and quantified hot spots15

of carbon fluxes in the landscape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct

seasonality in tundra growing season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing

season CO2 sink by a factor of two and underestimated CH4 emissions by a factor of two when compared to scaling with any

method that accounts for landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high

resolution landcover maps can be leveraged to derive detailed landcover carbon fluxes from eddy covariance timeseries. These20

results demonstrate the importance of landscape heterogeneity when scaling carbon emissions across the Arctic.
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1 Introduction

Eddy covariance
::::
(EC) towers provide some of the longest and highest resolution timeseries of in situ observations of energy,

water, and carbon fluxes. Eddy covariance flux data provide landscape-level insight into numerous ecosystem processes, such

as water-use efficiency, crop yields, and carbon balances (Baldocchi, 2003; Baker and Griffis, 2005; Reichstein et al., 2007;25

Knauer et al., 2018). Global and regional networks of eddy covariance
:::
EC towers, such as FLUXNET and AmeriFlux (Novick

et al., 2018; Papale, 2020), are commonly used to benchmark Earth system models, provide a priori fluxes for atmospheric

inversion models, or train remote-sensing based models to scale bottom-up carbon budgets (Friend et al., 2007; Wang et al.,

2007; Jung et al., 2009, 2020; Chevallier et al., 2012; Tramontana et al., 2016; Chen et al., 2018; Schiferl et al., 2022). The

surface source area contributing to eddy covariance
::
EC

:
flux measurements (i.e., the footprint) is much larger than other types30

of direct flux measurements, such as chambers, but is spatially and temporally variable, and can change with wind direction and

atmospheric stability. The dynamic spatial influence on eddy covariance
::
EC

:
fluxes is often ignored under implicit assumptions

that landscapes within the eddy covariance
::
EC

:
footprint are homogeneous or spatially representative (Griebel et al., 2016;

Giannico et al., 2018).

Numerous footprint models have been developed to quantify source area contribution to
::
EC

:
tower flux observations (Schmid,35

2002) and inform interpretations and analysis of these fluxes. Aggregate footprints are commonly used to determine the general

spatial extent and seasonal patterns in
:::
EC tower source areas (Amiro, 1998). When combined with landcover maps of

:::
EC tower

locations, footprints have been used to filter flux observations to include only those from distinctly uniform source areas for

further interpretation and analysis, though the practicality of this is highly dependent on landscape heterogeneity and the
:::
EC

tower site location (Jammet et al., 2017; Juutinen et al., 2022; Beckebanze et al., 2022). Studies using concurrent chamber-40

based fluxes within
:::
EC tower source areas have used footprints to scale-up chamber fluxes and compare to

:::
EC tower fluxes,

which can provide confidence in the flux measurements, the representativeness of the chamber fluxes, and the landcover map

used (Kade et al., 2012; Stoy et al., 2013; Morin et al., 2017; Davidson et al., 2017). However, disagreement between scaled

chamber and
:::
EC

:
tower fluxes is difficult to diagnose; chamber fluxes are often limited in temporal resolution and spatial

extent, and landcover maps might not capture detail or distinctions relevant for fluxes (Fox et al., 2008; Forbrich et al., 2011;45

Budishchev et al., 2014). Footprints have been used to identify hotspots of methane (CH4) fluxes (Matthes et al., 2014; Rößger

et al., 2019; Reuss-Schmidt et al., 2019), and in circumstances where there is a single source
::::::
known

:::::
source

:::::::
location

:
against

a known or zero flux background, the footprint-weighted flux maps can derive CH4 fluxes at these hotspots (Rey-Sanchez

et al., 2022). However, footprint-weighted flux maps cannot derive actual fluxes in circumstances with multiple different CH4

sources, or when fluxes, such as carbon dioxide (CO2), have high temporal variability. Tuovinen et al. (2019) used footprints50

to weight contributions to CH4 fluxes from land cover classifications in heterogeneous Siberian tundra, and by assuming fluxes

were constant through time, was able to solve for landcover specific CH4 fluxes using ordinary least squares.

Despite the documented effects of heterogeneous surfaces on the interpretation of fluxes, most uses of eddy covariance
:::
EC

fluxes ignore the dynamic nature of flux source areas. For applications such as model benchmarking, bottom-up scaling, and

gap-filling, the landscape around
::
EC

:
towers is implicitly assumed to be homogeneous. Gap-filled timeseries are often required55
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to create seasonal or annual carbon budgets. One of the most widely used gap-filling approaches for CO2 fluxes, marginal

distribution sampling (MDS), primarily uses the mean flux of CO2 from similar meteorological conditions within a certain

window of time, irrespective of the wind direction and source area of the gap-filled timepoint, or of the observations used to

do the filling (Reichstein et al., 2005; Wutzler et al., 2018). Both model benchmarking and bottom-up carbon flux scaling rely

on
:::
EC tower fluxes being spatially representative of a larger region (Williams et al., 2009). While landscape representativeness60

or homogeneity is a reasonable assumption for some
::
EC

:
tower sites, such as agricultural fields, it is rarely tested explicitly

with footprints. A recent study by Chu et al. (2021) tested the spatial representativeness of AmeriFlux sites using footprint

climatologies, and found a minority of sites were representative of areas more than one kilometer away from the
::
EC

:
tower. A

recent synthesis of circumpolar CH4 fluxes excluded eddy covariance measurements because they
:::
EC

:::::::::::
measurements

::::
that could

not be unmixed and attributed to specific
::::::::
attributed

::::::
wholly

::
to wetland or waterbody sources (Kuhn et al., 2021).65

Arctic ecosystems in particular require a representative network of
:::::::::::
representative carbon flux observations to accurately

derive seasonal and annual budgets. Rapid arctic warming is thawing and mobilizing carbon stored in permafrost, leading

to direct climate feedbacks through decomposition and indirect consequences through changing hydrology, vegetation, and

disturbances (Rantanen et al., 2022)
::::::::::::::::::::::::::::::::::
(Schuur et al., 2015; Rantanen et al., 2022). There is large uncertainty in the arctic carbon

budget, and it remains unclear whether the arctic is currently a carbon source or sink (McGuire et al., 2009, 2018; Natali et al.,70

2019, 2021; Virkkala et al., 2021; Watts et al., 2021, 2023). Tundra ecosystems are extremely heterogeneous at multiple scales

(Virtanen and Ek, 2014), which when combined with logistical difficulties in monitoring in the arctic, can lead to difficulties in

:::::::::
calculating representative bottom-up carbon scaling (Goodrich et al., 2016; Lara et al., 2020; Pallandt et al., 2022). For example,

bottom-up scaling models estimate twice as much CH4 from the arctic as top-down atmospheric inversions (Thornton et al.,

2016; Saunois et al., 2020).75

This study addresses how landscape heterogeneity affects gap-filling and bottom-up scaling of CO2 and CH4 eddy covariance

:::
EC fluxes. We used footprint models and landcover maps to unmix eddy covariance

::
EC

:
fluxes into constituent landcover fluxes

in heterogeneous tundra in the Yukon-Kuskokwim (YK) Delta, Alaska. We investigated how the choice of footprint model

affects gap-filling and carbon budgets by comparing results using three of the most commonly used footprint models. We

compared net ecosystem exchange (NEE) results from
::
of CO2 fluxes using both a simple and a complex landcover map80

to determine how the scale of heterogeneity that we consider impacts our resulting carbon budgets. Lastly, we compared

gap-filled NEE fluxes and scaled-up carbon budgets to an identical approach that only differs by assuming a homogenous

landscape, and to a commonly used gap-filling approach (MDS), which implicitly assumes a homogeneous landscape. We

discuss the implications of the resulting CO2 and CH4 fluxes and carbon budgets for the YK Delta and arctic carbon feedbacks.

2 Methods85

2.1 Site Description

The study region is located in the Izaviknek and Kingaglia Uplands of the Yukon-Kuskokwim Delta in Alaska, approximately

90 km northwest of Bethel, Alaska and 110 km inland from the coast. Mean annual air temperature in Bethel was 1.2 ◦C for
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2019-2020
::::
2019

::
to

::::
2020, 13.8 degrees ◦C during summer (June, July, August), -11.9 ◦C during winter (December, January, and

February), and above freezing from May-October
:::
May

::
to
:::::::

October. The study region is underlain by discontinuous permafrost,90

with permafrost underlying peat plateaus and absent under wetlands and lakes (Frost et al., 2020). Thaw depths on peat plateaus

averaged 30-40
::
30

::
to

::
40

:
cm in June and July 2016-2017 and 60-70

::::
2016

::
to

::::
2017

::::
and

::
60

::
to

:::
70 cm in September 2016 (Ludwig

et al., 2022). Vegetation on the peat plateaus is heterogeneous, and is dominated by lichen (primarily Cladonia spp), Sphagnum

fuscum, or low-lying shrubs, while wetland vegetation is typically Sphagnum and graminoid spp. (Zolkos et al., 2022). The

eddy covariance
:::
EC

:
tower was installed in July 2019 on a peat plateau in unburned tundra at (N 61.2548◦, W 163.2589◦).95

We used a landcover map developed by Ludwig et al. (2022) to characterize the eddy
:::
EC tower location and a nearby region

of unburned tundra used for scaling up carbon budget (Ludwig et al., 2023a). The landcover map is 5 m x 10 m resolution

and derived from Sentinel-1 synthetic aperture radar (SAR), Sentinel-2 multispectral instrument (MSI), and the ArcticDEM.

Two versions of landcover were used: (1) a simple version with only four categories: surface water, tundra, wetland, and

degrading permafrost, and (2) a complex version where tundra was further split into lichen tundra, shrub tundra, sedge tundra,100

and tundra at the edge of degrading permafrost (Fig 1). Tundra landcover categories were primarily located on peat plateaus,

and share the same dominant vegetation types of lichens, dwarf shrubs, mosses, and sedges. The differences within tundra

categories were subtle; shrub tundra was often located at the edges of peat plateaus bordering and along banks with slightly

larger shrubs; sedge tundra was located on peat plateau slopes that were slightly greener; lichen tundra was the least green and

largest area of tundra types within the region, dominated by lichen, moss (Sphagnum spp. and Dicranum spp.), graminoids105

(Carex spp. and Eriophorum angustifolium) (Baillargeon et al., 2022); and edge of degraded tundra included tundra bordering

degraded permafrost, often wetter, mossier, and slightly subsided. Degraded areas included isolated shallow depressions on

peat plateaus, more evolved networks of flowpaths draining peat plateaus into wetlands, and recently drained waterbodies.

Depending on seasonality and antecedent rain, degraded areas could have standing water, saturated soils, exposed mud, or

graminoid-dominated vegetation. The wetland category included a range of wetland vegetation such as mosses, graminoids,110

and tall shrubs, often with complex underlying hydrology. Wetland soils were usually saturated, with small, sub-pixel channels

or waterbodies undetectable at the resolution of the landcover map. Surface water includes all lakes, ponds, and streams

detectable at the landcover map resolution (Ludwig et al., 2023b). There are likely smaller ponds or channels within wetlands

and degraded areas, but higher resolution mapping would be needed to identify that level of heterogeneity. The full distribution

of landcover areas in a 300 m radius circle around the
:::
EC tower location and in the region used for scaling is described in table115

1. The scaling region was approximately 150 km2, which is similar to the average size of a grid cell in earth system models

(Williams et al., 2009).

2.2 Eddy covariance data processing

Data used in this study span from July 12th 2019 to September 30th 2020, though we only include May through September

months. The
::
EC

:
tower instrumentation consisted of a Gill WindMaster Pro sonic anemometer, LI-7500DS open path ana-120

lyzer for CO2 and H2O, LI-7700 for CH4, Vaisala HMP155 humidity and temperature probe, LI-190R quantum sensor for

photosynthetically active radiation (PAR), Kipp and Zonen CNR4 four component net radiometer, and HukseFlux HFP01SC
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Table 1. Landcover category percentages in the immediate eddy covariance tower area (radius of 300 meters) and in the region used to

scale-up ecosystem carbon fluxes (Fig 1).

Landcover category Tower area Scaling region

Lichen tundra 12 % 27 %

Shrub tundra 18 % 11 %

Sedge tundra 23 % 16 %

Edge of degraded permafrost 21 % 11 %

Degraded permafrost 3 % 5 %

Wetland 20 % 18 %

Water 3 % 12 %

soil heat plates. All instrumentation was connected to a LI-7550 interface equipped with a LICOR SmartFlux system. The

measurement height was 2.5 meters above ground level. Half-hourly flux calculations were made using the eddy covariance

method (Baldocchi et al., 1988) from 10 Hz data using the EddyPro software program (Fratini and Mauder, 2014). We used125

the double coordinate rotation method, spike removal, block averaging, and time lag removal by covariance maximization

(Moncrieff et al., 1997). We made corrections for air density fluctuations for CO2, CH4, and H2O fluxes following (Webb et

al. 1980). Fluxes with nonstationarity were removed (Foken et al., 2004). Fluxes were further filtered to remove times of low

signal strength (rssi < 15%) and low turbulence (
:::::
friction

:::::::
velocity

:
(u*

:
) < 0.1

::
ms−1 threshold was chosen where CO2 fluxes were

independent of u*). Energy balance closure at the site was good
:::::
typical

:
(70%). Lastly, fluxes were filtered to remove spikes130

using the double median absolute deviation method (Mauder et al., 2013). The resulting timeseries had 26% and 61% missing

data for CO2 and CH4 fluxes respectively. Due to limited access for site maintenance during the COVID-19 pandemic and the

remote site location, power outages contributed to 1.5% missing data in fluxes, air temperature, and PAR. While only actual

observations of air temperature and PAR were used for training gap-filling models, we used a complete timeseries of drivers

for scaling and to sum fluxes to monthly carbon budgets. To interpolate missing data in air temperature and PAR for scaling135

we used the marginal distribution sampling and mean diurnal course method from REddyProc (Wutzler et al., 2018). Annual

timeseries of CO2 fluxes, CH4 fluxes, air temperature, and PAR observations can be found in the SI (Fig S1a-d).

2.3 Eddy covariance data processing
::::::::
footprint

::::::::
modeling

We compared three commonly used footprint models to determine source areas for fluxes: the Hsieh model (with the 2D

extension from Detto et al. (2006)), the Kljun model, and the Kormann and Meixner model (Hsieh et al., 2000; Kormann and140

Meixner, 2001; Kljun et al., 2015). The Hsieh model is a hybrid approach blending a forward Lagrangian stochastic numerical

model with an analytical solution. The Kljun model uses multiple parameterizations of a backward Lagrangian particle model

to be applicable across atmospheric stability regimes. The Kormann and Meixner model is a Eulerian analytical footprint model

based on Monin-Obukhov similarity theory. All three footprint models assume Gaussian dispersion in the crosswind direction
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Figure 1. Scaling region within the YK Delta used in this study. Sentinel-2 RGB imagery (a) with the location of the grid within Alaska as

an inset, simple landcover map (b),
:::
and complex landcover map (c).

::::
Panel

:::
(d)

:::::
shows

:::
300

:::::
meter

::::
radius

::::::
regions

::::::
around

::
the

::::
eddy

:::::::::
covariance

:::
(EC)

:::::
tower

:::
for

::
the

:::::
same

::::::::
Sentinel-2

::::
RGB

::::::
imagery

::
as

:::
(a)

::
in

::
the

:::::
upper

:::
left,

:::
the

::::
same

::::::
simple

:::::::
landcover

::::
map

::
as

::
(b)

::
in
:::
the

:::::
upper

::::
right,

:::
and

:::
the

::::
same

::::::
complex

::::::::
landcover

:::
map

::
as
:::
(c)

::
in

::
the

:::::
lower

:::
left.

:::
The

:::
EC

:::::
tower

:
is
:::::::
indicated

:::
by

::
the

:::
star

::
at

::
N

::::::
61.2548◦,

::
W

::::::::
163.2589◦.

and horizontal homogeneity in turbulence effects (Schmid, 2002). Given the flat deltaic landscape and extremely short tundra145

canopy height relative to instrument measurement height, this site was an ideal location for footprint modeling, while still

encompassing heterogeneity in CO2 and CH4 fluxes. We calculated a single roughness length for the site (0.02 m) from the

measured wind speed and friction velocity under neutral conditions assuming a logarithmic wind profile
:::
and

::::
zero

:::::::::::
displacement

:::::
height. For each half-hour flux observation, 1 x 1 meter grid footprints were generated using each of the three model types, and
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then rotated into the wind direction. These footprints were
::::
Each

:::::::
footprint

:::
was

::::::::
modeled

::::
1000

::::::
meters

::
in

:::
the

:::::::::
downwind

::::::::
direction,150

:::
and

::::
250

::::::
meters

::
to

:::::
either

::::
side

::
in

:::
the

:::::::::
crosswind

::::::::
direction.

::::::
These

:::::
values

:::::
were

::::::
chosen

::
as

::::
they

:::::
were

::::
well

::
in

::::::
excess

::
of

:::
the

:::::
90%

:::::::
contours

::
of

:::
all

::::::::
footprints

:::::
(peak

:::::::::
influences

::::
were

::
<

:::
100

::::::
meters

:::
and

:::
the

:::::
90%

:::::::
contours

::::::::
averaged

:::
200

::::::
meters

::::
from

:::
the

::::
EC

::::::
tower).

:::::
These

::::::::
footprints

:::::
were then reprojected to match the resolution and extent of the landcover maps at 5 x 10 meters. Footprints

were normalized to total 100% by dividing by the sum of the weights within each observation. The footprint weights were then

summed over each landcover type (k) for each flux observation (i) as Ωi,k (see equation 1 in section 2.4.1).155

2.4 Gap-filling
:::::::::
Unmixing

:::
and

::::::::::
gap-filling models

We compared several approaches for
::::::::
modeling

::::::::::
approaches

::
for

:::::::::
predicting

::::
and gap-filling the eddy covariance

::
EC

:
NEE time-

series. First, we explicitly consider landscape heterogeneity by unmixing
::
EC

:
tower fluxes using each of the three types of

footprint models when summarized over both the simple and complex landcover map (Section 2.4.1). In order to do so, NEE

fluxes were partitioned into respiration and gross primary productivity (GPP) with simple empirical models driven by PAR and160

air temperature. Second, we used the same method of flux partitioning, modeling, and parameter estimation to gap-fill NEE, but

instead assume a homogeneous landscape. Each of the heterogeneous types of gap-filling models and the similar homogeneous

variation were trained separately for each month in the growing season (May through September) to accommodate seasonality.

Observations from both 2019 and 2020 were used to train the gap-filling models, though we only predicted and scaled for 2020,

since the 2019 growing season was incomplete. We tested the inclusion of 2019 observations for August and September, and165

there was little effect on the derived landcover fluxes. Last, we compare these results to a widely-used approach by gap-filling

NEE with MDS, which implicitly assumes a homogeneous landscape. CH4 fluxes were not as temporally variable as NEE and

largely unrelated to biometeorological drivers measured at the tower
::
EC

:::::
tower

::::
(Fig

::::
S2). CH4 fluxes were subsequently treated

as landcover-specific constant fluxes through time and solved for separately in each month of the growing season,
::
as

:::
has

:::::
been

::::
done

:::::::
similarly

:::
in

::::
other

::::::
studies

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Rey-Sanchez et al., 2022; Tuovinen et al., 2019; Hannun et al., 2020).170

2.4.1 Heterogeneous gap-filling models

Assuming that every pixel within a landcover type is characterized by a similar flux, then for a given (kth) half-hour measure-

ment, the observed
:::
EC tower NEE flux is the sum of each (ith) landcover flux (NEEi,k) times the total influence of those

pixels within a footprint (Ωi,k) across all (P ) landcovers equation 1
:::
(Eq

::
1).

NEEObs,k =

P∑
i=1

NEEi,k ∗Ωi,k (1)175

If the landcover-specific NEE fluxes were constant in time, then they could be solved for using ordinary least squares, such

as Tuovinen et al. (2019) do for CH4 fluxes. However, CO2 fluxes are often highly variable in time, especially from vegetated

environments. Tundra NEE has been well characterized as the difference between respiration — modeled as an exponential

function of temperature — and gross primary productivity—modeled as a light-saturating response curve often attenuated by

temperature or vapor pressure deficit (Williams et al., 2006; Shaver et al., 2007; Loranty et al., 2011). For the heterogeneous180
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gap-filling models, we structured the (NEEi,k) fluxes from vegetated landcovers as temporally variable and dependent on air

temperature (Tairk), light (PARk), and air temperature rescaled between 0 and 1 (Tscalek):

NEEi,k =Ri,k −GPPi,k (2)

Ri,k = αi ∗ eβi∗Tairk (3)185

GPPi,k = Tscalek ∗
E0i ∗Pmaxi ∗PARk

Pmaxi +E0i ∗PARk
(4)

Tscalek =
(Tairk −Tmin)(Tairk −Tmax)

(Tairk −Tmin)(Tairk −Tmax)− (Tairk −Topt)2
:::::::::::::::::::::::::::::::::::::::::::::::::::

(5)

The parameters are αi the baseline respiration, βi the temperature sensitivity of respiration, E0i the light-use efficiency of190

GPP, and Pmaxi the maximum photosynthetic capacity.
::::
GPP

::
is

::::::::
attenuated

:::
by

::::::::::
temperature

::::
using

::::::::
Tscalek,

::::::
where

:::::::::::
Tmin =−1.5

◦
::
C,

:::::::::
Tmax = 40

:

◦
::
C,

::::
and

::::::::
Topt = 15 ◦

::
C

:::::::::::::::::::
(??Schiferl et al., 2022)

:
. For the simple landcover map, NEE fluxes from tundra, wetland

and degrading permafrost were all parameterized according to equations 2 -4
:
to

::
5. Surface water CO2 fluxes were parameterized

as a constant flux over time. While this is likely an over-simplification, a more complex lake emissions model was not feasible

because the surface waters within the footprint were too small an area and too small in footprint influence to inform a more195

complex model. Similarly, for the complex landcover map, all NEE fluxes from tundra landcover types as well as from wetland

and degrading permafrost were structured according to equations 2 -4
::
to

:
5
:
with water as a constant flux.

An alternative model structure for GPP was investigated that uses leaf area index (LAI) as a driver (Shaver et al., 2007). In

lieu of field-based LAI data, we used a timeseries of NDVI from cloud-free Sentinel-2 imagery and the empirical relationship

to LAI from pan-Arctic tundra described in Shaver et al. (2013). The LAI-version GPP model failed posterior predictive checks200

for most months of data, and was not further pursued. This failure is likely because the approximation from NDVI was a poor

representation of LAI for this site, particularly during May, August, and September where sub-pixel water presence could lead

to erroneous NDVI and LAI. Furthermore, lichen and moss species dominated the vegetation biomass on peat plateaus and

LAI may not be an appropriate metric in such cases. However, a spatially resolved driver such as LAI might be effective in

other applications for un-mixing NEE, particularly if LAI can be mapped from higher resolution imagery based on site-specific205

field-observations.CH4 fluxes were assumed to be constant over time for each landcover type.

CH4,Obs,k =

P∑
i=1

CH4,i ∗Ωi,k (6)

The only parameters in this simpler version of unmixing are the landcover CH4 fluxes themselves, CH4,i with the footprint

influences (Ωi,k) as the only time-variable driver equation 5
:::
(Eq

::
6). All three footprint models were similarly compared for

CH4 fluxes. Only the complex landcover map was used to unmix CH4 fluxes, since the categories within tundra were known to210

be divergent, e.g., known very small fluxes from lichen tundra, while tundra at the edge of degraded could possibly be a large

source
:::::::::::::::::
(Ludwig et al., 2018).

8



2.4.2 Parameter estimation and flux prediction

We unmixed
::
EC

:
tower fluxes to landcover CH4 and NEEi,k fluxes by using a Bayesian analysis with Markov Chain Monte

Carlo (MCMC) simulation. We chose this method partly because unmixing approaches such as ordinary least squares (Tuovinen et al., 2019)215

::
(as

:::::
used

::
by

:::::::::::::::::::
Tuovinen et al. (2019))

:
are not applicable with the non-linear relationships used here between CO2 and air tem-

perature and PAR
:
,
::::
and

::::::::
non-linear

::::::::
ordinary

::::
least

:::::::
squares

:::
(as

::::
used

:::
by

:::::::::::::::::
Rößger et al. (2019))

::::::::
assumes

::::::
normal

:::::::::::
distributions

:::
for

:::::::::
parameters

:::
and

:::::
error

::::::::
variance,

:::::
which

::
is

:::::
often

:::
not

:::
the

::::
case. In addition, there are several advantages to using a Bayesian ap-

proach to solve for landcover fluxes. First, we can provide prior information on flux parameters. This prior information could

be specific (e.g., from chamber fluxes from landcovers within the footprints), it could be more general (e.g., dictating one land-220

cover known to have higher GPP than another), or it could be mostly uninformative, and merely place restrictions on parameter

space based on physical properties (e.g., non-negative Pmaxi). We used the latter approach to NEE priors for this study to be

comparable between footprint model and landcover map solutions, and to better demonstrate the impacts of unmixing eddy
:::
EC

tower NEE on gap-filling accuracy and bottom-up scaling
::::
while

:::::
using

:::
the

::::::
fewest

::::::::::
assumptions. Given the simpler approach used

to unmix CH4 fluxes, there were multiple solutions if all prior fluxes were strictly uninformative. We used mostly uninformative225

prior fluxes for landcovers anticipated to support CH4 emissions by disallowing CH4 uptake for degraded, edge of degraded,

wetland, and water landcover classes
:::::::::::::::::
(Ludwig et al., 2018). Peat plateau chamber flux measurements from 2017 demonstrate

a very small but non-zero CH4 flux at the driest time of the growing season (Ludwig et al., 2018), and we assigned prior fluxes

for tundra types accordingly. Prior distributions can be found in the SI (Table S1-S3). The second benefit of using Bayesian

analysis with MCMC is that derived quantities and predictions of new data are inherently treated as random variables with their230

own probability distributions, thus enabling easy calculations of uncertainties. Therefore, we carry through uncertainty from

both partitioning and gap-filling to uncertainty in predicted landcover NEEi,k or CH4 fluxes, which, when summed over time

and scaled up by area, leads to distributions of carbon budgets from which we can calculate explicit uncertainties.

For each month of the growing season (May-September
::::
May

::
to

:::::::::
September), gap-filling models were fit separately for each

footprint-type and landcover map combination. First, NEEObs,k were filtered to dark data (PAR < 50 ppfd
:::::
µmol

::
m−2

:
s−1235

) and respiration parameters (equation 3) were determined while using uninformative priors. The GPP parameters (equation

4) were then estimated using the NEEObs,k from the full dataset, with uninformative GPP priors but using the posterior

distributions of the respiration parameters as strict prior information for the respiration component of equation 2. CH4 fluxes

were fit separately by month as well, but all times of day were used. We used Gibbs sampler for the MCMC iterations (Just

Another Gibbs Sampler; JAGS) implemented with the runjags R package (Denwood, 2016), with a burn-in of 5,000 iterations,240

an adaptation of 5,000 iterations, and retained 3,000 iterations in the final chains. Three parallel chains were used for each

model with different initial parameter values (Table S1-3). We evaluated parameter convergence using the Gelman diagnostic

(Gelman and Rubin, 1992; Brooks and Gelman, 1998). Model performance was further checked using posterior predictive

checks of the mean, standard deviation, and sum of squared residuals (Gelman et al., 1996).
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2.4.3 Homogeneous gap-filling models245

We used several methods to gap-fill the
:::
EC

:
tower NEE and CH4 fluxes that both assume a homogeneous landscape/footprint

for comparison. The first method is a Bayesian analysis with MCMC sampling that mirrors our landcover flux un-mixing

::::::::
unmixing approach in every way except by assuming a homogeneous landscape. For the homogeneous Bayesian model, we

assume a single landcover type everywhere that accounts for 100% of the footprint influence at every flux observation. The

homogeneous landcover NEE was modeled monthly by equations 2 -
::
to 4, with the same partitioning and parameter estimation250

as described in section 2.4.2. The second homogeneous NEE gap-filling approach we used was MDS (Reichstein et al., 2005).

We used the REddyProc package with default settings to implement the MDS gap-filling (Wutzler et al., 2018). Since the

CH4 fluxes did not have relationships to any biometeorological drivers
::::
such

::
as

:::
air

::::::::::
temperature

::
or

::::
PAR

::::
(Fig

:::
S2), we estimated

monthly budgets by calculating the
::::::
monthly

:
average CH4 flux for each half hour period across the month

:
of

:::
the

::::::
diurnal

:::::
cycle,

and then applying these averages to each day within the month.255

2.4.4 Artificial gaps

Artificial gaps in the NEE and CH4 flux observation timeseries were created in order to be able to evaluate and compare

gap-filling approaches. Since the MDS gap-filling method requires at least 90 days of half-hourly measurements, it could

only be applied to the 2020 growing season (data in 2019 began in mid-July). Therefore, we only created artificial gaps in

the 2020 growing season for comparability. Artificial gaps were generated separately for each month to ensure each portion260

of the growing season had a similar amount of withheld data. Between 15-20
::
15

::::
and

::
20% of the timeseries

::
of

::::
each

::::::
month

was withheld as random artificial gaps of stratified sizes, with ≈ 5% as larger gaps (10 observations), ≈ 5% as smaller gaps (4

observations), and the remainder as single gaps. The withheld drivers corresponding to the artificial gaps (PAR, air temperature,

footprint weights) were then used to predict
:::
EC tower NEE or CH4, and gap-filling methods were evaluated by calculating the

root mean square error (RMSE).265

2.5 Scaling up NEE and CH4

We used the parameter posterior distributions from MCMC simulations and full timeseries of air temperature and PAR to

predict complete, gap-filled, CH4 and NEEi,k flux timeseries for the landcover types as described in sections 2.4.2. We then

summed these distributions of half-hourly fluxes over time and multiplied by their respective areas in the scaling region (section

2.1, Fig 1) to determine estimations of monthly carbon budgets for each landcover type. Monthly landcover carbon budgets270

were calculated for each footprint model and landcover map combination. Landcover carbon budgets were then summed to

create monthly and growing season carbon budgets for each footprint model and map type. Monthly and growing season carbon

budget distributions for the Bayesian homogeneous gap-filling models were similarly estimated. The observed
::
EC

:
tower NEE

fluxes with MDS gap-filling were also summed over time and multiplied by the total scaling region to arrive at comparative

monthly carbon budget estimates. CH4 was presented alongside NEE in carbon budgets as CO2-equivalents (CO2-eq) by mul-275

tiplying by a factor of 28, a commonly used approximation
::::::::::
conservative

::::::
choice

::::::
among

:::::::::
commonly

::::
used

:::::::::::::
approximations of rela-
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tive global warming potential
::::::::
potentials

:::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Bastviken et al., 2011; Stocker, 2013; Euskirchen et al., 2014; Beaulieu et al., 2020; Skytt et al., 2020)

. For discussion of uncertainty in carbon budgets, we calculate 89% Bayesian credible intervals (CI), which are analogous to

frequentist 95% confidence intervals (Kruschke, 2014; McElreath, 2015; Hobbs and Hooten, 2015), using the highest density

interval method from the ‘baysetestR’ package (Makowski et al., 2019).280

3 Results & Discussion

3.1 Footprint influence

The most common and most influential landcover within the footprints was tundra, averaging 70% influence over the growing

season for all three footprint model types. There was a fairly even distribution between tundra category types, though sedge

tundra had slightly more influence than lichen, shrub, and degraded edges. The footprint influence from wetlands was com-285

parable to that of individual tundra types. The least represented landcovers were degraded permafrost and surface water, both

of which were between 0-20
:
0
:::

to
::
20% influence (Fig S2

::
S3). The vast majority of footprints were a mix of landcover types,

with almost no individual footprints having a landcover type with more than 75% influence (Fig S2
::
S3). There was a surprising

:::
fair amount of agreement between the three footprint models, with the majority of footprint influences close to the 1:1 line on

regressions between model types (Fig 2, Fig S2
::
S3). Other studies that have sought to compare the ability of these footprint290

models to recover known flux sources have found little distinction between them, despite the differences in their methodology

(Coates et al., 2021; Rey-Sanchez et al., 2022). However, the landcover influences used here were sums of all pixel influences

within a landcover type, therefore small differences between models on a pixel basis were cumulative and would lead to larger

discrepancies overall. There are also distinct periods of larger differences between footprint models, likely
:::
for

:::::::
example when

the peak footprint influence was near the boundary between two landcover types; thus, a small shift in peak location between295

model types would lead to a large difference in landcover influences. A higher resolution landcover map (e.g., 3 m or smaller)

would minimize some footprint model discrepancies, though this is relative to the extent of the footprints and the scale of

landscape heterogeneity affecting carbon fluxes.

3.2 Model performance

All posterior predictive checks were passed (Bayesian p-values of 0.1 < p < 0.9), and all parameters converged (Gelman300

diagnostics ≈ 1) for every Bayesian gap-filling model. All Bayesian gap-filling models were able to accurately reconstruct

the
:::
EC

:
tower NEE across the growing season as a function of PAR, air temperature, and source attributions

:::
(Fig

::
3,

::::
Fig

:::
S4). The only notable deviations were exclusive to outliers in

::
EC

:
tower NEE observations. This result is not unexpected,

as eddy covariance data
::
EC

:
are often noisy. Mismatch with

:::
EC tower NEE outliers could also be a consequence of processes

dominating fluxes that were not represented in our models, e.g., high CO2 emissions from ebullition aligning with high lake305

influence within a footprint. When comparing performance for filling the same artificial gaps, all Bayesian models had a better

(lower) RMSE than the MDS method (Fig 3). The Bayesian models, both heterogeneous and homogeneous, drive NEE as

11



Figure 2. Scatterplot demonstrating comparison of footprint influence weights between the three models (Hsieh, Kljun, Kormann and

Meixner) for lichen tundra. Other landcover footprint influence comparisons can be found in the SI (Fig S2
::
S3). The dashed red line in-

dicates the 1:1 line.

deterministic functions of PAR and temperature. This may be why they were more accurate than MDS, which has been shown

to be biased in high-latitudes due to the effects of skewed distributions of net radiation (Vekuri et al., 2023). The heterogeneous

gap-filling models almost always
::::
often

:
performed better than their homogeneous equivalent (Fig 3). For most months, the310

heterogeneous complex map solutions outperformed
:::
had

:::::
lower

:::::::
RMSEs

::::
than

:
those of the simple map,

:::::::
though

:::
the

::::::::
Bayesian

::::
89%

::
CI

::::::::::
overlapped

:::::::
between

:::::
them

:::
for

::
all

::::
but

::::
May

:
(Fig 3). This was particularly notable

:
In

:::::
May near the shoulder seasons,

where
::::::
season,

:
tundra types exhibited greater differences in seasonality. For example, in May the lichen tundra had very little

GPP while the sedge tundra was a distinct carbon sink (Fig 4), and this could be accommodated in the complex map while the

simple map attempted to fit both to a single ‘tundra’ flux. While there were clear improvements in gap-filling RMSE using this315

un-mixing
:::::::
unmixing

:
method, the differences in RMSE were small relative to the magnitude of the fluxes. The drawback of the

flux un-mixing
:::::::
unmixing

:
method used here are site-specific solutions and longer computation times, which increase with the

landscape complexity considered. MDS remains faster to implement and could be preferred when landscape homogeneity can

be safely assumed.

None of the three footprint models consistently performed better in terms of RMSE, and for most outcomes, the distributions320

about
::::::::
Bayesian

::::
89%

:::
CI

:::
for

:
their RMSEs overlapped (Fig 3, Fig S3). However, more often than not the Hsieh and Kljun

footprint models performed better than the Kormann and Meixner model.
:::
S5). Given that none of the three footprint model

types quantify their uncertainty, we continued to evaluate all three as an ensemble of footprint models that represents instead

the range in footprint influence outcomes. Another way to evaluate performance of the three footprint models is by comparing

their consistency in predicting landcover NEE fluxes when the underlying landcover map switches from simple to complex.325

The degraded permafrost, water, and wetland landcovers were identical between the two maps and ideally should have the same

derived fluxes even if the tundra categories were treated differently. Similarly, the overall tundra footprint-weighted flux should

match between simple and complex landcovers, even though the complex tundra was a combination of four types where there
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was only one tundra type for the simple map. By weighting the predicted landcover NEE by their respective footprint influences

for each observation, we regressed the simple vs. complex solutions (Fig S4-8
::::
S6-10). While the

:::
EC tower NEE and tundra total330

weighted NEE were very consistent between landcover maps for all footprint models,
:::
The

:::::
Hsieh

::::
and

::::::::
Kormann

:::
and

::::::::
Meixner

::::::
models

::::
were

:::::::
notably

:::::::::::
inconsistent

:::
for

::::::::
degraded

:::::::::
permafrost

:::
for

:::::
June

:::
and

:::::
July

::::
(Fig

:::::
S7-8),

::::::
while the Kljun footprint model

was distinctly more consistent for the less represented landcovers (wetland, water, and degraded permafrost) (Fig S4-8
::::::
always

:::::::
distinctly

:::::::::
consistent

::::
(Fig

:::::
S6-10). This outcome might indicate the Kljun footprint model was more representative of landcover

influences
:
at

::::
peak

:::::::
growing

::::::
season. In the absence of extensive concurrent chamber fluxes to conclusively distinguish between335

derived landcovers from the footprint models, we recommend a footprint model ensemble approach.

3.3 Derived landcover fluxes

There was enough similarity between footprint model influences to yield similar patterns in derived landcover fluxes (Fig 4, Fig-

ure S9
:::
S11, Table S4-10). For example, in all three footprints both shrub tundra and tundra at the edge of degrading permafrost

had higher peak carbon uptake
::::::
(-0.342,

::::::
-0.266,

::::::
-0.308

:::::
kg-C

:::::
month−1

:
m−2,

:::
for

::::::
Hsieh,

:::::
Kljun,

:::
and

::::::::
Kormann

::::
and

::::::::
Meixner) than340

sedge and lichen tundra (
:::::
-0.175,

:::::::
-0.175,

::::::
-0.139

::::
kg-C

::::::
month−1

:
m−2,

:::
for

::::::
Hsieh,

::::::
Kljun,

:::
and

::::::::
Kormann

::::
and

::::::::
Meixner)

:
(Fig 4).

This aligns with previous studies that have found higher productivity in shrub tundra and areas adjacent to disturbed tundra,

possibly the result of increased nutrient availability (Schuur et al., 2007; Bowden et al., 2008; Lee et al., 2011). The range

of NEE fluxes derived for tundra vegetation was similar to ranges in NEE observed at other tundra sites (Euskirchen et al.,

2012; Howard et al., 2020; Virkkala et al., 2022). All three footprint models also derived higher CO2 and CH4 emissions from345

surface water and wetlands later in the growing season (Fig 4, Fig 5), which could be the result of increased thaw depths

contributing to greater lateral carbon transport from peat plateaus. Porewater dissolved organic carbon and dissolved CO2 and

CH4 was extremely high on peat plateaus during the growing season (Zolkos et al., 2022), and open water in both wetlands

(sub-pixel) and waterbodies were likely hotspots for decomposition and outgassing (Ludwig et al., 2022). The wetlands were

also characterized by deep, carbon-rich soil, which could be contributing to higher baseline respiration (Fig 4, Table S9). The350

derived CH4 fluxes from landcover classes in this study were within the ranges reported in the Boreal-Arctic Wetland and Lake

Dataset (BAWLD-CH4), including from: wetlands and edge of degraded permafrost ( wetlands and wet tundra in BAWLD);

peat plateau (dry tundra in BAWLD); and waterbody CH4 fluxes (small peatland lakes in BAWLD) (Kuhn et al., 2021). The

CO2 fluxes reported here are similar in range to those observed in small ponds in other subarctic tundra ecosystems (Kuhn

et al., 2018).355

The three footprint models followed similar patterns in peat plateau seasonality as well, with NEE uptake peaking in July

for most tundra types (Fig 4). Lichen and sedge tundra were very small CH4 sources (Fig S9
:::
S11), though given the large area

of lichen tundra in the landscape this resulted in a notable contribution to total CH4 (Fig 5) when scaling up. Shrub tundra was

either zero or a very small CH4 source, depending on the footprint model (Fig 5). Tundra at the edge of degrading permafrost

was a significant CH4 source, and behaved more similarly to wetlands than degraded areas in terms of seasonal patterns360

(Fig 5). Interestingly, degraded permafrost was a sink of CO2 earlier in the growing season (Fig 4), but all GPP parameters

converged to zero in August and September (Fig 4, Table S8). Degraded permafrost was a source of CH4 early in the growing
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Figure 3. Monthly RMSE (a-e) and growing seasonal total (f) for 2020 from artificial gap-filling NEE fluxes. Boxes are the median and

interquartile range (IQR), whiskers are 1.5*IQR, for the Bayesian model gap-filling RMSEs. The red line indicates MDS (marginal distribu-

tion sampling) gap-filling RMSEs.
::::::::::
Distributions

:::
with

:::::::::::::
non-overlapping

:::::::
Bayesian

:::
89%

:::::::
credible

::::::
intervals

:::
are

::::::::
designated

::::
with

::::::
different

::::::
letters.

Note the scales on y-axes are different between panels to highlight the comparability of footprint models and landcover maps within months.

season, decreased near to zero as the depressions dried down, and then increased again later in the growing season (Fig 5,
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Figure 4. Monthly violin plots of predicted NEE fluxes from 2020 growing season by landcover (columns) for each of the three footprint

models (rows) using the complex landcover map to un-mix
:::::
unmix the

:::
EC tower fluxes. Distributions for violin plots are derived from

posterior distributions of predicted NEE. Black dots indicate medians.

Fig S9
:::
S11). This aligns with the wettest portion of the growing season, when the small depressions of degrading permafrost

become inundated as small ponds (Mullen et al., 2023), which could explain the renewed CH4 emissions and decline in GPP.365

There were differences as well between the derived landcover fluxes for the three footprint models. These differences were

off-setting between adjacent landcover types. For example, degrading permafrost and tundra at the edge of degrading per-

mafrost were always, by definition, near one another. When the Kljun model had high carbon
:::
CO2:uptake in degrading per-

mafrost it had lower uptake at the edge of degrading permafrost, where on the other hand, Hsieh and Kormann and Meixner

displayed the opposite pattern (Fig 4). This discrepancy was the result of slight differences between footprint models in peak370

influence positioning at the boundary of the two landcovers (Fig 2, Fig S2
::
S3). The differences in effects of the footprint models

can likely be minimized by using a relatively higher resolution map, or including spatial drivers such as LAI, soil moisture,

and soil temperature, which would provide further constraints for landcover fluxes.
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The complex heterogeneous models captured distinctive seasonality; lichen and shrub tundra were net neutral in May, had

peak carbon
:::
CO2:uptake in July, and remained small sinks in September (Fig 4). In contrast, the sedge tundra and edge of375

degrading permafrost were small sinks in May, peaked earlier, and were net neutral or carbon
::::
CO2:sources by September

(Fig 4). Increasing the complexity of the underlying map allowed us to determine this separate but ecologically significant

seasonality in peat plateau carbon
::::
CO2:

cycling. However, there is a limit to how complex one can get.
:::
The

:::::::::
landcover

::::
map

::::
used

::
in

:::
this

:::::
study

:::::::::
identified

:::
two

:::::
types

::
of

:::::::::
wetlands,

:::
one

:::::
much

:::::
more

::::::::
prevalent

::::
near

:::
the

:::
EC

::::::
tower

::::
than

:::
the

:::::
other.

:
Attempting

to use multiple
::::
both wetland types failed, as the

:::::::::
parameters

:::
for

:::
the

:
less prevalent wetland could not to converge, and we380

subsequently lumped all
:
.
:::
We

:::::::::::
subsequently

::::::
lumped

::::
both

:
wetland categories as ‘wetland’. This failure to converge serves as a

check against over-fitting, in addition to comparing to withheld data via artificial gaps. In the event that a landcover with small

area or influence is significant to the research questions posed, but this un-mixing
:::::::
unmixing

:
method cannot derive a flux, then

we recommend supplying stricter prior information for the landcover via chamber fluxes. By combining chamber fluxes and

eddy tower flux un-mixing
:::
EC

:::::
tower

::::
flux

::::::::
unmixing, one can leverage both the spatial coverage and temporal frequency of

:::
EC385

tower fluxes with the specificity of chamber fluxes.

3.4 Landcover scaling

Scaling up fluxes to the region led to distinct landcover hotspots of carbon sinks and sources, with all three footprint models

having similar monthly NEE and CH4 budgets by landcover type (Fig 5, Fig 6). Lichen tundra was the largest sink of carbon

(July carbon uptake 89% CI for Hsieh (-2628 to -5075), Kljun (-2715 to -5452), and Kormann and Meixner (-2493 to -4428)390

Mg-C), though this was driven in part by occupying the largest area in the region (Fig 1; Table 1). Wetlands and surface waters

were significant sources of both CO2 and CH4 in the latter half of the growing season (July-September), with large enough

emissions to offset the carbon uptake in some of the peat plateau landcovers (Fig 5, Fig 6). Wetlands account for, on average,

only 7% of what the
::
EC

:
tower sees, but 18% of the area in the region. If we were to use a coarser landcover map, such as the

recently updated circumpolar arctic vegetation map (CAVM) (Raynolds and Walker, 2022), we would have attributed 100% of395

the
:::
EC tower fluxes wetland-complex vegetation, which would scale up to 26% of the region using CAVM. Given the clearly

distinctive carbon dynamics between wetlands and peat plateau vegetation, using a landcover resolution appropriate to the scale

of heterogeneity is important for obtaining an accurate regional carbon budget and understanding of the ecosystem.

Regional surface water carbon emissions scaled-up from the eddy covariance
::
EC

:
tower fluxes are likely an overestimate,

since the waterbodies within the
:::
EC tower footprints were amongst the two smallest size-classes of waterbodies in the region,400

which have the largest diffusive carbon fluxes (Ludwig et al., 2023b). In comparison, the coarser CAVM landcover map does

not identify any surface waters in the entire scaling region, which would lead to these hotspots of emissions being completely

underestimated. Scaling-up surface water carbon emissions would be better done using an approach that includes both terrestrial

and aquatic landscape drivers and uses better spatial representation (e.g., Ludwig et al. (2023b)) than the area seen by a single

flux
::
EC

:
tower. However, we were able to capture both plant-mediated carbon fluxes and ebullition in addition to diffusive405

fluxes, as well as describe the broad seasonal trends in carbon emissions using this approach.
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Figure 5. Monthly violin plots of CH4 2020 growing season budgets by landcovers (columns) for each footprint model (rows). Distributions

for violin plots are derived from posterior distributions of predicted CH4 fluxes scaled by their landcover areas in figure 1. Black dots indicate

medians.

3.5 Regional carbon scaling

Landcover carbon budgets were summed to regional carbon budgets and compared to carbon budgets estimated using the

Bayesian and MDS homogeneous approaches (Fig 7). For May, August, and September, there were no detectable differences

in total NEE
::::
Total

:::::
NEE

:::
was

:::::::
similar between the three footprint models , with only small differences in June and July

::::
with410

:::::::::
overlapping

:::::
89%

:::
CI. Regional CH4 budgets were

:::
also

:
similar, with most months overlapping

:::
89%

:::
CI

:
between the three

footprints, and small differences in Julyand Augusta
:::::
small

:::::::::
difference

::
in

::::
July. There was also very little difference in median

::
no

::::::::
difference

::
in

:
total NEE budgets between the simple and complex map solutions. For most months the complex map solutions

were slightly more uncertain, a consequence of estimating almost twice as many parameters. The exception was May, where

the simple map was more uncertain likely because grouping all tundra vegetation as one class was a poor assumption for that415
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Figure 6. Monthly violin plots of 2020 growing season NEE carbon budgets by landcovers (columns) in the complex map for each footprint

model (rows). Distributions for violin plots are derived from posterior distributions of predicted NEE fluxes scaled by their landcover areas

in figure 1. Black dots indicate medians.

time. Despite the differences in methodologies, the two homogeneous approaches (Bayesian models and MDS) resulted in very

similar NEE budgets to one another when scaling up to the region
::
for

:::::
June,

::::
July,

::::
and

::::::
August

:
(Fig 7).

::
In

::::::
months

::::::
closer

::
to

:::
the

:::::::
shoulder

::::::
season

:::::
(May

:::
and

::::::::::
September),

:::
the

::::::::::
distributions

:::
of

::::
light

:::
and

::::::::::
temperature

:::
are

:::::
more

:::::::
skewed,

:::::
which

::
is

:
a
::::::
source

::
of

::::
bias

::
in

::
the

:::::
MDS

:::::::
method

:::
and

:::::
could

::::::
explain

:::
the

:::::
slight

::::::::::
differences

::
in

:::
the

:::::
MDS

:::
and

::::::::
Bayesian

:::::::::::
homogeneous

::::::
results

:::
for

:::::
those

:::::::
months.

In contrast, all homogeneous scaled-up carbon results were quite different from any heterogeneous result, regardless of420

footprint model or landcover map choice
::
the

::::::::::::
heterogeneous

::::::
results. While the homogeneous approaches were worse at predict-

ing to withheld gaps in the
:::
EC tower observations (Fig 3), the differences in RMSE were small. However, the consequences

for scaling were large. At every part of the growing season the homogeneous NEE overestimated the carbon sink relative to

the heterogeneous NEE. This overestimation was smaller towards the shoulder seasons in May and September and larger in

June, July, and August. Assuming homogeneity at this site meant approximating the same diurnal cycle of NEE everywhere425
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that averages over different sink and source strengths in the landscape. Similarly, assuming a homogeneous landscape when

scaling up an average CH4 flux led to consistently underestimating the regional CH4 emissions (Fig 7). Because landcovers

that were hotspots of emissions were farther from the footprint influence peaks, while those that exhibited larger carbon uptake

were more often nearer the peaks, applying the
::
EC

:
tower flux to the region without accounting for footprints resulted in too

much carbon uptake in NEE and too little carbon emissions in CH4.430

Throughout the growing season, incorrectly assuming a homogeneous landscape, regardless of gap-filling methodology,

resulted in nearly doubling the NEE growing season carbon sink while nearly halving the CH4 emissions (Fig 7f). If we had

assumed a homogeneous landscape we would have determined the region to be a net growing season carbon sink even after

accounting for CH4 emissions as CO2-equivalents (89% CI: -9960 to -11919 Mg-C, Fig 7f). By deriving the heterogenous

landscape fluxes, we instead
:::
We

:::
can

:::::::
combine

:::
the

::::::::
posterior

::::::::::
distributions

::
of

::::::
scaled

::::::
carbon

::::
from

:::
all

::::
three

::::::::
footprint

:::::
model

::::::
results435

::
to

:::::::
calculate

:
a
:::::
single

::::::
carbon

::::::
budget

:::::::
estimate

::::
that

:::::::
accounts

:::
for

:::::::::::
across-model

:::::::::::
uncertainties.

:::::
Doing

:::
this

:::
we

:
find that growing season

CH4 emissions
:::::
(mean:

::::::
16633,

::::
89%

:::
CI:

::::::
15208

::
to

:::::
18212

::::::
Mg-C

:::::::
CO2-eq)

:
more than offset the CO2 growing season sink (

:::::
mean:

::::::
-12512,

:
89% CI: 1774 to 6403

::::::
-15718

::
to

:::::
-9189 Mg-C, Fig 7f), an outcome that has been described in other tundra ecosystems as

well (Kuhn et al., 2018). Other
:
).
::::::::
Similarly,

::::::::::::::::
Kuhn et al. (2018)

::::
found

::::
that

:::::::::
accounting

:::
for

::::::::
emissions

::::
from

:::::::::
commonly

::::::::::
overlooked

::::
small

::::::
ponds

::::
offset

:::::
much

::
of

:::
the

:::::::
wetland

::::::
carbon

:::
sink

::
in
::::::::
Northern

:::::::
Sweden.

:::::
Other

:::
EC

:
tower flux sites might see similar or opposite440

results from accounting for footprint heterogeneity (Griebel et al., 2016; Giannico et al., 2018; Reuss-Schmidt et al., 2019).

For example, if a site had landcovers
::
A

::::::::::::
heterogeneous

::::
site with low carbon uptake or high carbon emissions located near

the peak of footprint influences , while more abundant areas of high carbon sinks or low carbon emissions were at the edges

of footprint influence, then the resulting carbon budget from scaling while assuming homogeneitywould overestimate carbon

emissions
:::::
would

:::::::::::
overestimate

::::::
carbon

::::::::
emissions

:::::
when

::::::
scaling

::::::::
assuming

:::::::::::
homogeneity. Unaccounted-for heterogeneity such as445

this could help explain the mismatch between bottom-up and top-down carbon budgets (Thornton et al., 2016; Saunois et al.,

2020).
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Figure 7. Monthly total (a-e) and 2020 growing season total (f) carbon budgets for each gap-filling technique. Boxes are the median and

interquartile range (IQR), whiskers are 1.5*IQR, for the Bayesian model gap-filling carbon budgets using the three footprint models over

the complex and simple landcover maps, and without considering footprints and assuming a homogeneous landscape. The solid red line

indicates MDS (marginal distribution sampling) homogeneous gap-filling NEE budgets. The dashed red line indicates the diurnal average

CH4 gap-filling homogeneous budgets.
::::::::::
Distributions

:::
with

:::::::::::::
non-overlapping

:::::::
Bayesian

::::
89%

::::::
credible

:::::::
intervals

:::
are

::::::::
designated

::::
with

:::::::
different

:::::
letters. Note the scales on y-axes are different between panels to highlight the comparability of footprint models and landcover maps within

months.
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3.6 Uncertainty

Uncertainties
::
A

::::::
benefit

:::
of

:::::
using

:::
this

:::::::::
Bayesian

::::::::
approach,

::
is
::::

that
:::::::::::
uncertainties

:
in model fit, both for respiration, GPP and

constant fluxes, were carried through into uncertainties in NEE and CH4 gap-filling and scaled up
:::::::
scaled-up

:
carbon budgets.450

Sources of this uncertainty include
:::::::::
uncertainty

:::::::
included

:
times and locations where the deterministic models used here were

over-simplifications and failed to capture other important processes affecting carbon cycling. Instances where the landcover

maps were not accurate delineations of carbon cycling are also included in this uncertainty. For example, if an underlying

gradient of soil moisture were causing different CH4 fluxes within a vegetation type this would lead to greater uncertainty after

the aggregation of footprint influences over the categorical map used here. Not all landcover carbon budgets were equal in455

terms of uncertainty; for example, among the tundra vegetation types, NEE fluxes from edge of degraded areas were the most

uncertain, followed by shrub, lichen, and sedge (Fig 4, e.g. Kljun-June standard deviations: 0.061, 0.031, 0.030, and 0.016 kg-C

month−1 m−2 respectively). After scaling up to the region in (Fig 1), lichen NEE carbon budgets were the most uncertain due

to their larger area in the region, followed by edge of degraded permafrost, shrub, and then sedge tundra (Fig 6, e.g. Kljun-June

standard deviations: 1199, 1009, 516, and 388 Mg-C month−1 respectively).460

Degraded permafrost NEE and CH4 fluxes had the most uncertainty (Fig 4, Fig S9
:::
S11). This was likely due to a combination

of their small extent and influence in the footprint supplying less signal to the
:::
EC tower fluxes, as well as the deterministic

models over-simplifying carbon processes. In this case, the fluxes from degraded permafrost were distinctive enough they

could be determined while un-mixing the
::::::::
unmixing

:::
the

:::
EC tower fluxes despite their small area in the footprints. Within the

areas of degrading permafrost there was heterogeneity in vegetation and surface water on a scale smaller than the resolution of465

the landcover maps, as well as more temporal dynamics related to hydrology. Similarly, NEE and CH4 fluxes from water had

relatively large uncertainty due to estimating an average flux rather than presenting diffusive, plant-mediated, and ebullitive

fluxes deterministically. In lieu of representing these processes explicitly, our simpler models had greater uncertainty. The

uncertainty around degraded NEE and CH4 fluxes had a smaller impact on NEE carbon budgets than other landcovers (Fig 5,

Fig 6) due to the small area of degraded locations in the landscape (Fig 1). Since all of the uncertainties in gap-filling fluxes470

and partitioning NEE were carried through into carbon budget estimates, we lose nothing from including these small areas of

heterogeneity despite not representing them as well as other landcovers.

3.7 Applications and limitations of un-mixing
::::::::
unmixing eddy covariance fluxes

:::::::::::
Heterogeneity

::::::
within

:::
EC

:::::
tower

::::::::::
landscapes

::
is

:
a
::::::::
common

::::::::
problem,

:::
and

:::::::::
employing

::::
this

::::
flux

::::::::
unmixing

::::::::
approach

::
at

::::
sites

:::::
such

::
as

::::
those

::::::::
identified

:::
by

:::::::::::::::
Chu et al. (2021)

::::
could

:::::::
improve

::::::::
accuracy

::
in

::::::
scaling

::::::
carbon

:::::::
budgets

:::
and

:::::::::::::
bench-marking

::::::
models.

:::::::
Several475

::::::
studies

::::
have

::::
used

:::::::
summed

:::::
spatial

::::::::
variables

::::
after

::::::::
weighting

:::
by

:::
EC

::::::::
footprints

::
to

:::::
relate

::
to

:::
EC

:::
flux

::::::::::
observations

::::::::::::::::::::::::::::::::::::::::::::::::::::::
(Reuss-Schmidt et al., 2019; Xu et al., 2017; Metzger et al., 2013)

:
.
:::::
While

::
a
::::::
useful

::::
way

::
to

::::::::::
incorporate

::::::::::::
heterogeneity,

::::
this

::::::::
approach

:::::::
reduces

::::::::::
meaningful

:::::::
variation

:::
of

::::::
spatial

::::::::
variables

::::::
within

::::::::
footprints

::
to

::::::
single

::::::::::
non-unique

::::::
results.

::::
For

::::::::
example,

::::
there

::::
are

:::::::
multiple

::::::::::::
combinations

::
of

:::::::::
footprints

:::::::
weights

:::
and

::::::
values

:::
of

::
the

::::::
spatial

:::::::
drivers

:::
that

::::::
could

:::::
result

::
in

:::
the

:::::
same

::::::::
weighted

:::::
sum.

::::::::::
Statistically

::::::::
unmixing

::::::
fluxes

:::::
could

:::::
yield

:::::
more

::::::::::
informative

::::::::::
relationships

::
to

::::::
spatial

::::::
drivers.480
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Future applications of the flux un-mixing
::::::::
unmixing

:
approach demonstrated in this study could incorporate spatially explicit

drivers such as soil moisture and soil temperature, as well as more specific prior information from chamber fluxes. Doing

so would further reduce uncertainty in landscape carbon fluxes. Seasonality could be represented through spatially explicit

and temporally variable drivers such as LAI or solar induced fluorescence (SIF)
::::::::::::::::::
(?Schiferl et al., 2022). Interannual variability

could be investigated using a hierarchical model structure by, for example, fitting an underlying distribution of a vegetation-485

type specific Q10 from which each year’s specific Q10 is drawn. This study method interpreting eddy covariance
::::::
method

:::
of

:::::::::
interpreting

:::
EC

:
fluxes could also be useful in sites with nested

::
EC

:
towers, multiple instrument heights, or where instrument

heights have changed over time
::::
(e.g.

::::::::::::::::::::::
(Klosterhalfen et al., 2023)). Flux data from such circumstances could be analyzed con-

currently, since each observation is a function of an explicit footprint distribution. Thus, it would not matter if instrument height

or position were different between observations.490

This method of un-mixing eddy covariance
::
An

:::::::::
alternative

:::::
model

::::::::
structure

:::
for

::::
GPP

:::
was

::::::::::
investigated

::::
that

::::
uses

:::
leaf

::::
area

:::::
index

:::::
(LAI)

::
as

:
a
:::::
driver

:::::::::::::::::
(Shaver et al., 2007).

::
In

::::
lieu

::
of

:::::::::
field-based

::::
LAI

::::
data,

:::
we

::::
used

:
a
:::::::::
timeseries

::
of

:::::
NDVI

::::
from

:::::::::
cloud-free

:::::::::
Sentinel-2

:::::::
imagery

:::
and

:::
the

::::::::
empirical

::::::::::
relationship

::
to

::::
LAI

::::
from

:::::::::
pan-Arctic

::::::
tundra

::::::::
described

::
in

::::::::::::::::
Shaver et al. (2013)

:
.
:::
The

:::::::::::
LAI-version

::::
GPP

:::::
model

:::::
failed

::::::::
posterior

::::::::
predictive

::::::
checks

:::
for

:::::
most

::::::
months

:::
of

::::
data,

:::
and

::::
was

:::
not

::::::
further

::::::::
pursued.

::::
This

::::::
failure

::
is

:::::
likely

:::::::
because

::
the

:::::::::::::
approximation

::::
from

:::::
NDVI

::::
was

:
a
:::::
poor

:::::::::::
representation

:::
of

:::
LAI

:::
for

::::
this

:::
site,

::::::::::
particularly

::::::
during

::::
May,

:::::::
August,

::::
and

:::::::::
September495

:::::
where

::::::::
sub-pixel

:::::
water

:::::::
presence

:::::
could

::::
lead

::
to

:::::::::
erroneous

:::::
NDVI

::::
and

::::
LAI.

:::::::::::
Furthermore,

:::::
lichen

::::
and

::::
moss

:::::::
species

:::::::::
dominated

:::
the

::::::::
vegetation

:::::::
biomass

:::
on

::::
peat

:::::::
plateaus

::::
and

::::
LAI

::::
may

:::
not

::
be

:::
an

::::::::::
appropriate

:::::
metric

:::
in

::::
such

:::::
cases.

::::::::
However,

::
a
:::::::
spatially

::::::::
resolved

:::::
driver

::::
such

::
as

::::
LAI

:::::
might

::
be

::::::::
effective

::
in

::::::::::
applications

:::
for

::::::::
unmixing

::::
NEE

::
at
:::::
other

:::::
sites.

::::
This

::::::
method

::
of
:::::::::

unmixing
:::
EC

:
fluxes relies upon accurate footprint influence maps with sufficient variability over the het-

erogeneity in the landscape. The analysis in this study assumes the footprints were observed perfectly, i.e., footprint influence500

is not a random variable. For this reason, we recommend always using an ensemble of footprint models. However, for sites

where the assumptions of footprint models are not met, and footprint influence maps are likely to be more error prone, this

study’s methodology will not work. Examples of such cases might include sites with instrument heights close to canopy heights

where the effects of the surface roughness sub-layer are a concern, or anywhere the assumption of horizontal homogeneity in

turbulence is invalid. In addition to valid footprint influences, this method requires variability in footprints. When footprint505

influences are aggregated over a landcover type for un-mixing
::::::::
unmixing, there needs to be enough differences between obser-

vations to avoid an underdetermined dataset, where finding a solution to landcover specific fluxes won’t be possible. Sites with

consistent wind directions and atmospheric stability that result in very similar footprints between observations could have this

issue. Small changes in the peak influence location could create enough variability between observations, even with consistent

wind directions, depending on the position and scale of heterogenous landcover patches at the site.510

4 Conclusions and implications

We compared multiple footprint models and landcover maps in our analysis to investigate their effects on un-mixing
::::::::
unmixing

landcover carbon fluxes. While the Kljun footprint model was the most consistent in determining fluxes when comparing
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outcomes using simple and complex landcover maps, there was no clear, best footprint model. We recommend including all

three footprint models as an ensemble when interpreting eddy covariance
:::
EC fluxes. Flux estimates based on the more complex515

landcover map captured important differences in seasonality in tundra vegetation carbon fluxes. However, there were only

minor differences in regional growing season carbon budgets between the two landcover maps, and using the more complex

map had trade-offs such as greater computation time and uncertainty due to increasing the number of parameters. Investigating

carbon fluxes using multiple landcover maps allows for informed lumping of landcover classes based on the resulting fluxes

and the investigator’s research questions.520

Eddy covariance towers provide a wealth of high frequency flux data with large spatial extents. However,
::
EC

:
tower fluxes

are under-utilized or potentially misleading if footprints are not taken into account in heterogeneous landscapes. We have

demonstrated an approach to un-mixing
::::::::
unmixing

:::
EC

:
tower NEE and CH4 fluxes from heterogeneous tundra, which provided

detailed interpretations of landscape carbon cycling such as the detection and quantification of hot spots of carbon emissions

and different timing in peak carbon uptake and senescence in tundra vegetation. We find that methods that consider footprint525

influences during gap-filling NEE fluxes were more accurate at predicting missing NEE fluxes than methods that assume

landscape homogeneity. By using a Bayesian approach, we were able to quantify and compare uncertainties between carbon

fluxes from different landcover classes. These uncertainties were carried through when gap-filling and scaling-up, providing an

intrinsic estimate of uncertainty for the resulting carbon budgets. The consequence of assuming homogeneity in the landscape

when gap-filling and scaling-up instead of using landcover-specific carbon fluxes was substantial: over the growing season530

(May-September
:::
May

::
to
::::::::::
September) the homogeneous growing season

:::::
carbon

:
budgets had half as much CH4 emissions and

twice as much net CO2 uptake
:
,
::::::
greatly

::::::::::::
overestimating

:::
the

::::::
carbon

::::
sink

::
in

:::
the

:::::
region

::::
and

:::::::
potential

::::::::
negative

:::::::
feedback

::
to

:::::::
climate

::::
from

::::::
carbon

::::::::
emissions. Accounting for landscape heterogeneity in carbon fluxes from eddy covariance

::
EC

:
towers could reduce

uncertainty in bottom-up carbon budgets and the mismatch with top-down carbon budgets.

Code and data availability. Eddy covariance flux data, summarized footprint influences, and analysis code are located in the repository:535
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