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Abstract. Landscapes are often assumed to be homogeneous when interpreting eddy covariance fluxes, which can lead to

biases when gap-filling and scaling-up observations to determine regional carbon budgets. Tundra ecosystems are heteroge-

neous at multiple scales. Plant functional types, soil moisture, thaw depth, and microtopography, for example, vary across the

landscape and influence net ecosystem exchange (NEE) of carbon dioxide (CO2) and methane (CH4) fluxes. With warming

temperatures, Arctic ecosystems are changing from a net sink to a net source of carbon to the atmosphere in some locations, but5

the Arctic’s carbon balance remains highly uncertain. In this study we report results from growing season NEE and CH4 fluxes

from an eddy covariance tower in the Yukon-Kuskokwim Delta in Alaska. We used footprint models and Bayesian Markov

Chain Monte Carlo (MCMC) methods to unmix eddy covariance observations into constituent landcover fluxes based on high

resolution landcover maps of the region. We compared three types of footprint models and used two landcover maps with

varying complexity to determine the effects of these choices on derived ecosystem fluxes. We used artificially created gaps10

of withheld observations to compare gap-filling performance using our derived landcover-specific fluxes and traditional gap-

filling methods that assume homogeneous landscapes. We also compared resulting regional carbon budgets when scaling-up

observations using heterogeneous and homogeneous approaches. Traditional gap-filling methods performed worse at predict-

ing artificially withheld gaps in NEE than those that accounted for heterogeneous landscapes, while there were only slight

differences between footprint models and landcover maps. We identified and quantified hot spots of carbon fluxes in the land-15

scape (e.g., late growing season emissions from wetlands and small ponds). We resolved distinct seasonality in tundra growing

season NEE fluxes. Scaling while assuming a homogeneous landscape overestimated the growing season CO2 sink by a factor

of two and underestimated CH4 emissions by a factor of two when compared to scaling with any method that accounts for

landscape heterogeneity. We show how Bayesian MCMC, analytical footprint models, and high resolution landcover maps

can be leveraged to derive detailed landcover carbon fluxes from eddy covariance timeseries. These results demonstrate the20

importance of landscape heterogeneity when scaling carbon emissions across the Arctic.
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1 Introduction

Eddy covariance (EC) towers provide some of the longest and highest resolution timeseries of in situ observations of energy,

water, and carbon fluxes. Eddy covariance flux data provide landscape-level insight into numerous ecosystem processes, such

as water-use efficiency, crop yields, and carbon balances (Baldocchi, 2003; Baker and Griffis, 2005; Reichstein et al., 2007;25

Knauer et al., 2018). Global and regional networks of EC towers, such as FLUXNET and AmeriFlux (Novick et al., 2018;

Papale, 2020), are commonly used to benchmark Earth system models, provide a priori fluxes for atmospheric inversion models,

or train remote-sensing based models to scale bottom-up carbon budgets (Friend et al., 2007; Wang et al., 2007; Jung et al.,

2009, 2020; Chevallier et al., 2012; Tramontana et al., 2016; Chen et al., 2018; Schiferl et al., 2022). The surface source

area contributing to EC flux measurements (i.e., the footprint) is much larger than other types of direct flux measurements,30

such as chambers, but is spatially and temporally variable, and can change with wind direction and atmospheric stability. The

dynamic spatial influence on EC fluxes is often ignored under implicit assumptions that landscapes within the EC footprint are

homogeneous or spatially representative (Griebel et al., 2016; Giannico et al., 2018).

Numerous footprint models have been developed to quantify source area contribution to EC tower flux observations (Schmid,

2002) and inform interpretations and analysis of these fluxes. Aggregate footprints are commonly used to determine the general35

spatial extent and seasonal patterns in EC tower source areas (Amiro, 1998). When combined with landcover maps of EC tower

locations, footprints have been used to filter flux observations to include only those from distinctly uniform source areas for

further interpretation and analysis, though the practicality of this is highly dependent on landscape heterogeneity and the EC

tower site location (Jammet et al., 2017; Juutinen et al., 2022; Beckebanze et al., 2022). Studies using concurrent chamber-

based fluxes within EC tower source areas have used footprints to scale-up chamber fluxes and compare to EC tower fluxes,40

which can provide confidence in the flux measurements, the representativeness of the chamber fluxes, and the landcover map

used (Kade et al., 2012; Stoy et al., 2013; Morin et al., 2017; Davidson et al., 2017). However, disagreement between scaled

chamber and EC tower fluxes is difficult to diagnose; chamber fluxes are often limited in temporal resolution and spatial

extent, and landcover maps might not capture detail or distinctions relevant for fluxes (Fox et al., 2008; Forbrich et al., 2011;

Budishchev et al., 2014). Footprints have been used to identify hotspots of methane (CH4) fluxes (Matthes et al., 2014; Rößger45

et al., 2019; Reuss-Schmidt et al., 2019), and in circumstances where there is a single known source location against a known

or zero flux background, the footprint-weighted flux maps can derive CH4 fluxes at these hotspots (Rey-Sanchez et al., 2022).

However, footprint-weighted flux maps cannot derive actual fluxes in circumstances with multiple different CH4 sources, or

when fluxes, such as carbon dioxide (CO2), have high temporal variability. Tuovinen et al. (2019) used footprints to weight

contributions to CH4 fluxes from land cover classifications in heterogeneous Siberian tundra, and by assuming fluxes were50

constant through time, was able to solve for landcover specific CH4 fluxes using ordinary least squares.

Despite the documented effects of heterogeneous surfaces on the interpretation of fluxes, most uses of EC fluxes ignore

the dynamic nature of flux source areas. For applications such as model benchmarking, bottom-up scaling, and gap-filling,

the landscape around EC towers is implicitly assumed to be homogeneous. Gap-filled timeseries are often required to create

seasonal or annual carbon budgets. One of the most widely used gap-filling approaches for CO2 fluxes, marginal distribution55
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sampling (MDS), primarily uses the mean flux of CO2 from similar meteorological conditions within a certain window of

time, irrespective of the wind direction and source area of the gap-filled timepoint, or of the observations used to do the

filling (Reichstein et al., 2005; Wutzler et al., 2018). Both model benchmarking and bottom-up carbon flux scaling rely on

EC tower fluxes being spatially representative of a larger region (Williams et al., 2009). While landscape representativeness

or homogeneity is a reasonable assumption for some EC tower sites, such as agricultural fields, it is rarely tested explicitly60

with footprints. A recent study by Chu et al. (2021) tested the spatial representativeness of AmeriFlux sites using footprint

climatologies, and found a minority of sites were representative of areas more than one kilometer away from the EC tower.

A recent synthesis of circumpolar CH4 fluxes excluded EC measurements that could not be attributed wholly to wetland or

waterbody sources (Kuhn et al., 2021).

Arctic ecosystems in particular require representative carbon flux observations to accurately derive seasonal and annual65

budgets. Rapid arctic warming is thawing and mobilizing carbon stored in permafrost, leading to direct climate feedbacks

through decomposition and indirect consequences through changing hydrology, vegetation, and disturbances (Schuur et al.,

2015; Rantanen et al., 2022). There is large uncertainty in the arctic carbon budget, and it remains unclear whether the arc-

tic is currently a carbon source or sink (McGuire et al., 2009, 2018; Natali et al., 2019, 2021; Virkkala et al., 2021; Watts

et al., 2021, 2023). Tundra ecosystems are extremely heterogeneous at multiple scales (Virtanen and Ek, 2014), which when70

combined with logistical difficulties in monitoring in the arctic, can lead to difficulties in calculating representative bottom-up

carbon scaling (Goodrich et al., 2016; Lara et al., 2020; Pallandt et al., 2022). For example, bottom-up scaling models estimate

twice as much CH4 from the arctic as top-down atmospheric inversions (Thornton et al., 2016; Saunois et al., 2020).

This study addresses how landscape heterogeneity affects gap-filling and bottom-up scaling of CO2 and CH4 EC fluxes. We

used footprint models and landcover maps to unmix EC fluxes into constituent landcover fluxes in heterogeneous tundra in75

the Yukon-Kuskokwim (YK) Delta, Alaska. We investigated how the choice of footprint model affects gap-filling and carbon

budgets by comparing results using three of the most commonly used footprint models. We compared net ecosystem exchange

(NEE) of CO2 fluxes using both a simple and a complex landcover map to determine how the scale of heterogeneity that we

consider impacts our resulting carbon budgets. Lastly, we compared gap-filled NEE fluxes and scaled-up carbon budgets to

an identical approach that only differs by assuming a homogenous landscape, and to a commonly used gap-filling approach80

(MDS), which implicitly assumes a homogeneous landscape. We discuss the implications of the resulting CO2 and CH4 fluxes

and carbon budgets for the YK Delta and arctic carbon feedbacks.

2 Methods

2.1 Site Description

The study region is located in the Izaviknek and Kingaglia Uplands of the Yukon-Kuskokwim Delta in Alaska, approximately85

90 km northwest of Bethel, Alaska and 110 km inland from the coast. Mean annual air temperature in Bethel was 1.2 ◦C for

2019 to 2020, 13.8 ◦C during summer (June, July, August), -11.9 ◦C during winter (December, January, and February), and

above freezing from May to October. The study region is underlain by discontinuous permafrost, with permafrost underlying
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peat plateaus and absent under wetlands and lakes (Frost et al., 2020). Thaw depths on peat plateaus averaged 30 to 40 cm

in June and July 2016 to 2017 and 60 to 70 cm in September 2016 (Ludwig et al., 2022). Vegetation on the peat plateaus is90

heterogeneous, and is dominated by lichen (primarily Cladonia spp), Sphagnum fuscum, or low-lying shrubs, while wetland

vegetation is typically Sphagnum and graminoid spp. (Zolkos et al., 2022). The EC tower was installed in July 2019 on a peat

plateau in unburned tundra at (N 61.2548◦, W 163.2589◦).

We used a landcover map developed by Ludwig et al. (2022) to characterize the EC tower location and a nearby region

of unburned tundra used for scaling up carbon budget (Ludwig et al., 2023a). The landcover map is 5 m x 10 m resolution95

and derived from Sentinel-1 synthetic aperture radar (SAR), Sentinel-2 multispectral instrument (MSI), and the ArcticDEM.

Two versions of landcover were used: (1) a simple version with only four categories: surface water, tundra, wetland, and

degrading permafrost, and (2) a complex version where tundra was further split into lichen tundra, shrub tundra, sedge tundra,

and tundra at the edge of degrading permafrost (Fig. 1). Tundra landcover categories were primarily located on peat plateaus,

and share the same dominant vegetation types of lichens, dwarf shrubs, mosses, and sedges. The differences within tundra100

categories were subtle; shrub tundra was often located at the edges of peat plateaus bordering and along banks with slightly

larger shrubs; sedge tundra was located on peat plateau slopes that were slightly greener; lichen tundra was the least green and

largest area of tundra types within the region, dominated by lichen, moss (Sphagnum spp. and Dicranum spp.), graminoids

(Carex spp. and Eriophorum angustifolium) (Baillargeon et al., 2022); and edge of degraded tundra included tundra bordering

degraded permafrost, often wetter, mossier, and slightly subsided. Degraded areas included isolated shallow depressions on105

peat plateaus, more evolved networks of flowpaths draining peat plateaus into wetlands, and recently drained waterbodies.

Depending on seasonality and antecedent rain, degraded areas could have standing water, saturated soils, exposed mud, or

graminoid-dominated vegetation. The wetland category included a range of wetland vegetation such as mosses, graminoids,

and tall shrubs, often with complex underlying hydrology. Wetland soils were usually saturated, with small, sub-pixel channels

or waterbodies undetectable at the resolution of the landcover map. Surface water includes all lakes, ponds, and streams110

detectable at the landcover map resolution (Ludwig et al., 2023b). There are likely smaller ponds or channels within wetlands

and degraded areas, but higher resolution mapping would be needed to identify that level of heterogeneity. The full distribution

of landcover areas in a 300 m radius circle around the EC tower location and in the region used for scaling is described in table

1. The scaling region was approximately 150 km2, which is similar to the average size of a grid cell in earth system models

(Williams et al., 2009).115

2.2 Eddy covariance data processing

Data used in this study span from July 12th, 2019 to September 30th, 2020, though we only include May through September

months. The EC tower instrumentation consisted of a Gill WindMaster Pro sonic anemometer, LI-7500DS open path analyzer

for CO2 and H2O, LI-7700 for CH4, Vaisala HMP155 humidity and temperature probe, LI-190R quantum sensor for photosyn-

thetically active radiation (PAR), Kipp and Zonen CNR4 four component net radiometer, and HukseFlux HFP01SC soil heat120

plates. All instrumentation was connected to a LI-7550 interface equipped with a LICOR SmartFlux system. The measurement

height was 2.5 m above ground level. Half-hourly flux calculations were made using the eddy covariance method (Baldocchi
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Table 1. Landcover category percentages in the immediate eddy covariance tower area (radius of 300 m) and in the region used to scale-up

ecosystem carbon fluxes (Fig. 1).

Landcover category Tower area Scaling region

Lichen tundra 12 % 27 %

Shrub tundra 18 % 11 %

Sedge tundra 23 % 16 %

Edge of degraded permafrost 21 % 11 %

Degraded permafrost 3 % 5 %

Wetland 20 % 18 %

Water 3 % 12 %

et al., 1988) from 10 Hz data using the EddyPro software program (Fratini and Mauder, 2014). We used the double coordinate

rotation method, spike removal, block averaging, and time lag removal by covariance maximization (Moncrieff et al., 1997). We

made corrections for air density fluctuations for CO2, CH4, and H2O fluxes following Webb et al. (1980). We removed fluxes125

with nonstationarity (Foken et al., 2004)
:::::
(flags

:
=
::

2
::
in

:::
the

::::::
overall

::::
flag

::::::
system)

::::::::::::::::::::::
(Mauder and Foken, 2015). We filtered fluxes to

remove times of low signal strength (< 15%) and low turbulence (friction velocity (u*) < 0.1 ms−1 threshold was chosen where

CO2 fluxes were independent of u*). Energy balance closure at the site was typical (70%). Lastly, we filtered fluxes to remove

spikes using the double median absolute deviation method (Mauder et al., 2013). The resulting timeseries had 26% and 61%

missing data for CO2 and CH4 fluxes respectively. Due to limited access for site maintenance during the COVID-19 pandemic130

and the remote site location, power outages contributed to 1.5% missing data in fluxes, air temperature, and PAR. While only

actual observations of air temperature and PAR were used for training gap-filling models, we used a complete timeseries of

drivers for scaling and to sum fluxes to monthly carbon budgets. To interpolate missing data in air temperature and PAR for

scaling we used the marginal distribution sampling and mean diurnal course method from REddyProc (Wutzler et al., 2018).

Annual timeseries of CO2 fluxes, CH4 fluxes, air temperature, and PAR observations can be found in the SI (Fig. S1a-d).135

2.3 Eddy covariance footprint modeling

We compared three commonly used footprint models to determine source areas for fluxes: the Hsieh model (with the 2D

extension from Detto et al. (2006)), the Kljun model, and the Kormann and Meixner model (Hsieh et al., 2000; Kormann and

Meixner, 2001; Kljun et al., 2015). The Hsieh model is a hybrid approach blending a forward Lagrangian stochastic numerical

model with an analytical solution. The Kljun model uses multiple parameterizations of a backward Lagrangian particle model140

to be applicable across atmospheric stability regimes. The Kormann and Meixner model is a Eulerian analytical footprint model

based on Monin-Obukhov similarity theory. All three footprint models assume Gaussian dispersion in the crosswind direction

and horizontal homogeneity in turbulence effects (Schmid, 2002). Given the flat deltaic landscape and extremely short tundra

canopy height relative to instrument measurement height, this site was an ideal location for footprint modeling, while still
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Figure 1. Scaling region within the YK Delta used in this study. Sentinel-2 RGB imagery (a) with the location of the grid within Alaska as

an inset, simple landcover map (b), and complex landcover map (c). Panel (d) shows 300 m radius regions around the eddy covariance (EC)

tower for the same Sentinel-2 RGB imagery as (a) in the upper left, the same simple landcover map as (b) in the upper right, and the same

complex landcover map as (c) in the lower left. The EC tower is indicated by the star at N 61.2548◦, W 163.2589◦.

encompassing heterogeneity in CO2 and CH4 fluxes. We calculated a single roughness length for the site (0.02 m) from the145

measured wind speed and friction velocity under neutral conditions assuming a logarithmic wind profile and zero displacement

height. For each half-hour flux observation, 1 x 1 m grid footprints were generated using each of the three model types, and

then rotated into the wind direction. Each footprint was modeled 1000 m in the downwind direction, and 250 m to either side

in the crosswind direction. These values were chosen as they were well in excess of the 90% contours of all footprints (peak
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influences were < 100 m and the 90% contours averaged 200 m from the EC tower). These footprints were then reprojected150

to match the resolution and extent of the landcover maps at 5 x 10 m. Footprints were normalized to total 100% by dividing

by the sum of the weights within each observation. The footprint weights were then summed over each landcover type (k) for

each flux observation (i) as Ωi,k (see equation 1 in section 2.4.1).

2.4 Unmixing and gap-filling models

We compared several modeling approaches for predicting and gap-filling the EC NEE timeseries. First, we explicitly consider155

landscape heterogeneity by unmixing EC tower fluxes using each of the three types of footprint models when summarized over

both the simple and complex landcover map (Section 2.4.1). In order to do so, NEE fluxes were partitioned into respiration and

gross primary productivity (GPP) with simple empirical models driven by PAR and air temperature. Second, we used the same

method of flux partitioning, modeling, and parameter estimation to gap-fill NEE, but instead assume a homogeneous landscape.

Each of the heterogeneous types of gap-filling models and the similar homogeneous variation were trained separately for each160

month in the growing season (May through September) to accommodate seasonality. Observations from both 2019 and 2020

were used to train the gap-filling models, though we only predicted and scaled for 2020, since the 2019 growing season

was incomplete. We tested the inclusion of 2019 observations for August and September, and there was little effect on the

derived landcover fluxes. Last, we compared these results to a widely-used approach by gap-filling NEE with MDS, which

implicitly assumes a homogeneous landscape. CH4 fluxes were not as temporally variable as NEE and largely unrelated to165

biometeorological drivers measured at the EC tower (Fig. S2). CH4 fluxes were subsequently treated as landcover-specific

constant fluxes through time and solved for separately in each month of the growing season, as has been done similarly in other

studies (Rey-Sanchez et al., 2022; Tuovinen et al., 2019; Hannun et al., 2020).

2.4.1 Heterogeneous gap-filling models

Assuming that every pixel within a landcover type is characterized by a similar flux, then for a given (kth) half-hour measure-170

ment, the observed EC tower NEE flux is the sum of each (ith) landcover flux (NEEi,k) times the total influence of those

pixels within a footprint (Ωi,k) across all (P ) landcovers (Eq 1).

NEEObs,k =

P∑
i=1

NEEi,k ∗Ωi,k (1)

CO2 fluxes are often highly variable in time, especially from vegetated environments. Tundra NEE has been well characterized

as the difference between respiration — modeled as an exponential function of temperature — and gross primary productiv-175

ity—modeled as a light-saturating response curve often attenuated by temperature or vapor pressure deficit (Williams et al.,

2006; Shaver et al., 2007; Loranty et al., 2011). For the heterogeneous gap-filling models, we structured the (NEEi,k) fluxes

from vegetated landcovers as temporally variable and dependent on air temperature (Tairk), light (PARk), and air tempera-

ture rescaled between 0 and 1 (Tscalek):

NEEi,k =Ri,k −GPPi,k (2)180
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Ri,k = αi ∗ eβi∗Tairk (3)

GPPi,k = Tscalek ∗
E0i ∗Pmaxi ∗PARk

Pmaxi +E0i ∗PARk
(4)

185

Tscalek =
(Tairk −Tmin)(Tairk −Tmax)

(Tairk −Tmin)(Tairk −Tmax)− (Tairk −Topt)2
(5)

The parameters are the baseline respiration (αi), the temperature sensitivity of respiration (βi), the light-use efficiency of

GPP (E0i), and the maximum photosynthetic capacity (Pmaxi). GPP is attenuated by temperature using Tscalek, where

Tmin =−1.5 ◦C, Tmax = 40 ◦C, and Topt = 15 ◦C (Luus and Lin, 2015; Luus et al., 2017; Schiferl et al., 2022). For the simple

landcover map, NEE fluxes from tundra, wetland and degrading permafrost were all parameterized according to equations 2 to190

5. Surface water CO2 fluxes were parameterized as a constant flux over time. While this is likely an over-simplification, a more

complex lake emissions model was not feasible because the surface waters within the footprint were too small an area and too

small in footprint influence to inform a more complex model. Similarly, for the complex landcover map, all NEE fluxes from

tundra landcover types as well as from wetland and degrading permafrost were structured according to equations 2 to 5 with

water as a constant flux.195

CH4 fluxes were assumed to be constant over time for each landcover type.

CH4Obs,k =

P∑
i=1

CH4,i ∗Ωi,k (6)

The only parameters in this simpler version of unmixing are the landcover CH4 fluxes themselves, CH4,i with the footprint

influences (Ωi,k) as the only time-variable driver (Eq 6). All three footprint models were similarly compared for CH4 fluxes.

Only the complex landcover map was used to unmix CH4 fluxes, since the categories within tundra were known to be divergent,200

e.g., known very small fluxes from lichen tundra, while tundra at the edge of degraded could possibly be a large source (Ludwig

et al., 2018b).

2.4.2 Parameter estimation and flux prediction

We unmixed EC tower fluxes to landcover CH4 and NEEi,k fluxes by using a Bayesian analysis with Markov Chain Monte

Carlo (MCMC) simulation. We chose this method partly because unmixing approaches such as ordinary least squares (as used205

by Tuovinen et al. (2019)) are not applicable with the non-linear relationships used here between CO2 and air temperature and

PAR, and non-linear ordinary least squares (as used by Rößger et al. (2019)) assumes normal distributions for parameters and

error variance, which is often not the case. In addition, there are several advantages to using a Bayesian approach to solve for

landcover fluxes. First, we can provide prior information on flux parameters. This prior information could be specific (e.g.,

from chamber fluxes from landcovers within the footprints), it could be more general (e.g., dictating one landcover known to210

have higher GPP than another), or it could be mostly uninformative, and merely place restrictions on parameter space based on

physical properties (e.g., non-negative Pmaxi). We used the latter approach to NEE priors for this study to demonstrate the
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impacts of unmixing EC tower NEE on gap-filling accuracy and bottom-up scaling while using the fewest assumptions. Given

the simpler approach used to unmix CH4 fluxes, there were multiple solutions if all prior fluxes were strictly uninformative.

We used mostly uninformative prior fluxes for landcovers anticipated to support CH4 emissions
:::::
known

::
to

::::
emit

::::
CH4::::

(e.g.
:::::
fully215

:::::::
saturated

:::::
soils

:::
and

:::::
open

::::::
water) by disallowing CH4 uptake for degraded, edge of degraded, wetland, and water landcover

classes (Ludwig et al., 2018b)
::::::::::::::::::
(Ludwig et al., 2018a). Peat plateau chamber flux measurements from 2017 demonstrate a very

small but non-zero CH4 flux at the driest time of the growing season (Ludwig et al., 2018b), and we assigned prior fluxes

for tundra types accordingly. Prior distributions can be found in the SI (Table S1-S3). The second benefit of using Bayesian

analysis with MCMC is that derived quantities and predictions of new data are inherently treated as random variables with their220

own probability distributions, thus enabling easy calculations of uncertainties. Therefore, we carry through uncertainty from

both partitioning and gap-filling to uncertainty in predicted landcover NEEi,k or CH4 fluxes, which, when summed over time

and scaled up by area, leads to distributions of carbon budgets from which we can calculate explicit uncertainties.

For each month of the growing season (May to September), gap-filling models were fit separately for each footprint-type and

landcover map combination. First, NEEObs,k were filtered to dark data (PAR < 50 µmol m−2 s−1 ) and respiration parameters225

(equation 3) were determined while using uninformative priors. The GPP parameters (equation 4) were then estimated using

the NEEObs,k from the full dataset, with uninformative GPP priors but using the posterior distributions of the respiration

parameters as strict prior information for the respiration component of equation 2. CH4 fluxes were fit separately by month as

well, but all times of day were used. We used Gibbs sampler for the MCMC iterations (Just Another Gibbs Sampler; JAGS)

implemented with the runjags R package (Denwood, 2016), with a burn-in of 5,000 iterations, an adaptation of 5,000 iterations,230

and retained 3,000 iterations in the final chains. Three parallel chains were used for each model with different initial parameter

values (Table S1-3). We evaluated parameter convergence using the Gelman diagnostic (Gelman and Rubin, 1992; Brooks and

Gelman, 1998). Model performance was further checked using posterior predictive checks of the mean, standard deviation, and

sum of squared residuals (Gelman et al., 1996).

2.4.3 Homogeneous gap-filling models235

We used several methods to gap-fill the EC tower NEE and CH4 fluxes that both assume a homogeneous landscape/footprint

for comparison. The first method is a Bayesian analysis with MCMC sampling that mirrors our landcover flux unmixing

approach in every way except by assuming a homogeneous landscape. For the homogeneous Bayesian model, we assume a

single landcover type everywhere that accounts for 100% of the footprint influence at every flux observation. The homogeneous

landcover NEE was modeled monthly by equations 2 to 4, with the same partitioning and parameter estimation as described240

in section 2.4.2. The second homogeneous NEE gap-filling approach we used was MDS (Reichstein et al., 2005). We used

the REddyProc package with default settings to implement the MDS gap-filling (Wutzler et al., 2018). Since the CH4 fluxes

did not have relationships to any
:::::::
observed

:
biometeorological drivers such as air temperature or PAR (Fig. S2), we estimated

monthly budgets by calculating the monthly average CH4 flux for each half hour of the diurnal cycle, and then applying these

averages to each day within the month.245
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2.4.4 Artificial gaps

Artificial gaps in the NEE and CH4 flux observation timeseries were created in order to be able to evaluate and compare

gap-filling approaches. Since the MDS gap-filling method requires at least 90 days of half-hourly measurements, it could only

be applied to the 2020 growing season (data in 2019 began in mid-July). Therefore, we only created artificial gaps in the

2020 growing season for comparability. Artificial gaps were generated separately for each month to ensure each portion of the250

growing season had a similar amount of withheld data. Between 15 and 20% of the timeseries of each month was withheld as

random artificial gaps of stratified sizes, with ≈5% as larger gaps (10 observations), ≈5% as smaller gaps (4 observations), and

the remainder as single gaps. The withheld drivers corresponding to the artificial gaps (PAR, air temperature, footprint weights)

were then used to predict EC tower NEE or CH4, and gap-filling methods were evaluated by calculating the root mean square

error (RMSE).255

2.5 Scaling up NEE and CH4

We used the parameter posterior distributions from MCMC simulations and full timeseries of air temperature and PAR to

predict complete, gap-filled, CH4 and NEEi,k flux timeseries for the landcover types as described in sections 2.4.2. We then

summed these distributions of half-hourly fluxes over time and multiplied by their respective areas in the scaling region (section

2.1, Fig. 1) to determine estimations of monthly carbon budgets for each landcover type. Monthly landcover carbon budgets260

were calculated for each footprint model and landcover map combination. Landcover carbon budgets were then summed to

create monthly and growing season carbon budgets for each footprint model and map type. Monthly and growing season

carbon budget distributions for the Bayesian homogeneous gap-filling models were similarly estimated. The observed EC

tower NEE fluxes with MDS gap-filling were also summed over time and multiplied by the total scaling region to arrive

at comparative monthly carbon budget estimates. CH4 was presented alongside NEE in carbon budgets as CO2-equivalents265

(CO2-eq) by multiplying by a factor of 28, a conservative choice among commonly used approximations of relative global

warming potentials (Bastviken et al., 2011; Stocker, 2013; Euskirchen et al., 2014; Beaulieu et al., 2020; Skytt et al., 2020).

For discussion of uncertainty in carbon budgets, we calculate 89% Bayesian credible intervals (CI), which are analogous to

frequentist 95% confidence intervals (Kruschke, 2014; McElreath, 2015; Hobbs and Hooten, 2015), using the highest density

interval method from the ‘baysetestR’ package (Makowski et al., 2019).270

3 Results & Discussion

3.1 Footprint influence

The most common and most influential landcover within the footprints was tundra, averaging 70% influence over the growing

season for all three footprint model types. There was a fairly even distribution between tundra category types, though sedge

tundra had slightly more influence than lichen, shrub, and degraded edges. The footprint influence from wetlands was compa-275

rable to that of individual tundra types. The least represented landcovers were degraded permafrost and surface water, both of
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Figure 2. Scatterplot demonstrating comparison of footprint influence weights between the three models (Hsieh, Kljun, Kormann and

Meixner) for lichen tundra. Other landcover footprint influence comparisons can be found in the SI (Fig. S3). The dashed red line indi-

cates the 1:1 line.

which were between 0 to 20% influence (Fig. S3). The vast majority of footprints were a mix of landcover types, with almost

no individual footprints having a landcover type with more than 75% influence (Fig. S3). There was a fair amount of agreement

between the three footprint models, with the majority of footprint influences close to the 1:1 line on regressions between model

types (Fig. 2, Fig. S3). Other studies that have sought to compare the ability of these footprint models to recover known flux280

sources have found little distinction between them, despite the differences in their methodology (Coates et al., 2021; Rey-

Sanchez et al., 2022). However, the landcover influences used here were sums of all pixel influences within a landcover type,

therefore small differences between models on a pixel basis were cumulative and would lead to larger discrepancies overall.

There are also distinct periods of larger differences between footprint models, for example when the peak footprint influence

was near the boundary between two landcover types; thus, a small shift in peak location between model types would lead to285

a large difference in landcover influences. A higher resolution landcover map (e.g., 3 m or smaller) would minimize some

footprint model discrepancies, though this is relative to the extent of the footprints and the scale of landscape heterogeneity

affecting carbon fluxes.

3.2 Model performance

All posterior predictive checks were passed (Bayesian p-values of 0.1 < p < 0.9), and all parameters converged (Gelman290

diagnostics ≈1) for every Bayesian gap-filling model. All Bayesian gap-filling models were able to accurately reconstruct the

EC tower NEE across the growing season as a function of PAR, air temperature, and source attributions (Fig. 3, Fig. S4). The

only notable deviations were exclusive to outliers in EC tower NEE observations. This result is not unexpected, as EC data are

often noisy. Mismatch with EC tower NEE outliers could also be a consequence of processes dominating fluxes that were not

represented in our models, e.g., high CO2 emissions from ebullition aligning with high lake influence within a footprint. When295

comparing performance for filling the same artificial gaps, all Bayesian models had a lower (better) RMSE than the MDS
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method (Fig. 3). The Bayesian models, both heterogeneous and homogeneous, drive NEE as deterministic functions of PAR

and temperature. This may be why they were more accurate than MDS, which has been shown to be biased in high-latitudes

due to the effects of skewed distributions of net radiation (Vekuri et al., 2023). The heterogeneous gap-filling models often

performed better than their homogeneous equivalent (Fig. 3). For most months, the heterogeneous complex map solutions had300

lower RMSEs than those of the simple map, though the Bayesian 89% CI overlapped between all months but May (Fig. 3).

In May near the shoulder season, tundra types exhibited greater differences in seasonality. For example, the lichen tundra had

very little GPP while the sedge tundra was a distinct carbon sink (Fig. 4), and this could be accommodated in the complex map

while the simple map attempted to fit both to a single ‘tundra’ flux. While there were clear improvements in gap-filling RMSE

using this unmixing method, the differences in RMSE were small relative to the magnitude of the fluxes. The drawbacks of the305

flux unmixing method used here are site-specific solutions and longer computation times, which increase with the landscape

complexity considered. MDS remains faster to implement and could be preferred when landscape homogeneity can be safely

assumed.

None of the three footprint models consistently performed better in terms of RMSE, and for most outcomes, the Bayesian

89% CI for their RMSEs overlapped (Fig. 3, Fig. S5). Given that none of the three footprint model types quantify their310

uncertainty, we continued to evaluate all three as an ensemble of footprint models that represents the range in footprint influence

outcomes. Another way to evaluate performance of the three footprint models is by comparing their consistency in predicting

landcover NEE fluxes when the underlying landcover map switches from simple to complex. The degraded permafrost, water,

and wetland landcovers were identical between the two maps and ideally should have the same derived fluxes even if the

tundra categories were treated differently. Similarly, the overall tundra footprint-weighted flux should match between simple315

and complex landcovers, even though the complex tundra was a combination of four types where there was only one tundra type

for the simple map. By weighting the predicted landcover NEE by their respective footprint influences for each observation,

we regressed the simple vs. complex solutions (Fig. S6-10). While the EC tower NEE and tundra total weighted NEE were

very consistent between landcover maps for all footprint models, the Hsieh and Kormann and Meixner models were notably

inconsistent for degraded permafrost for June and July (Fig. S7-8), while the Kljun footprint model was always distinctly320

consistent (Fig. S6-10). This outcome might indicate the Kljun footprint model was more representative of landcover influences

at peak growing season. In the absence of extensive concurrent chamber fluxes to conclusively distinguish between derived

landcovers from the footprint models, we recommend a footprint model ensemble approach.

3.3 Derived landcover fluxes

There was enough similarity between footprint model influences to yield similar patterns in derived landcover fluxes (Fig. 4,325

Fig. S11, Table S4-10). For example, in all three footprints both shrub tundra and tundra at the edge of degrading permafrost

had higher peak carbon uptake (-0.342, -0.266, -0.308 kg-C month−1 m−2, for Hsieh, Kljun, and Kormann and Meixner

respectively) than sedge and lichen tundra (-0.175, -0.175, -0.139 kg-C month−1 m−2, for Hsieh, Kljun, and Kormann and

Meixner respectively) (Fig. 4). This aligns with previous studies that have found higher productivity in shrub tundra and areas

adjacent to disturbed tundra, possibly the result of increased nutrient availability (Schuur et al., 2007; Bowden et al., 2008;330
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Figure 3. Monthly RMSE (a-e) and growing seasonal total (f) for 2020 from artificial gap-filling NEE fluxes. Boxes are the median and

interquartile range (IQR), whiskers are 1.5*IQR, for the Bayesian model gap-filling RMSEs. The red line indicates MDS (marginal distri-

bution sampling) gap-filling RMSEs. Distributions with overlapping Bayesian 89% credible intervals are designated with matching letters.

Note the scales on y-axes are different between panels to highlight the comparability of footprint models and landcover maps within months.

Lee et al., 2011). The range of NEE fluxes derived for tundra vegetation was similar to ranges in NEE observed at other

tundra sites (Euskirchen et al., 2012; Howard et al., 2020; Virkkala et al., 2022). All three footprint models also derived higher
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Figure 4. Monthly violin plots of predicted NEE fluxes from 2020 growing season by landcover (columns) for each of the three footprint

models (rows) using the complex landcover map to unmix the EC tower fluxes. Distributions for violin plots are derived from posterior

distributions of predicted NEE. Black dots indicate medians.

CO2 and CH4 emissions from surface water and wetlands later in the growing season (Fig. 4, Fig. 5), which could be the

result of increased thaw depths contributing to greater lateral carbon transport from peat plateaus. Porewater dissolved organic

carbon and dissolved CO2 and CH4 was extremely high on peat plateaus during the growing season (Zolkos et al., 2022),335

and open water in both wetlands (sub-pixel) and waterbodies were likely hotspots for decomposition and outgassing (Ludwig

et al., 2022). The wetlands were also characterized by deep, carbon-rich soil, which could be contributing to higher baseline

respiration (Fig. 4, Table S9). The derived CH4 fluxes from landcover classes in this study were within the ranges reported

in the Boreal-Arctic Wetland and Lake Dataset (BAWLD-CH4), including from wetlands and edge of degraded permafrost

(wetlands and wet tundra in BAWLD), peat plateau (dry tundra in BAWLD), and waterbody CH4 fluxes (small peatland lakes340

in BAWLD) (Kuhn et al., 2021). The CO2 fluxes reported here are similar in range to those observed in small ponds in other

subarctic tundra ecosystems (Kuhn et al., 2018).

14



The three footprint models followed similar patterns in peat plateau seasonality as well, with NEE uptake peaking in July

for most tundra types (Fig. 4). Lichen and sedge tundra were very small CH4 sources (Fig. S11), though given the large area of

lichen tundra in the landscape this resulted in a notable contribution to total CH4 (Fig. 5) when scaling up. Shrub tundra was345

either zero or a very small CH4 source, depending on the footprint model (Fig. 5). Tundra at the edge of degrading permafrost

was a significant CH4 source, and behaved more similarly to wetlands than degraded areas in terms of seasonal patterns

(Fig. 5). Interestingly, degraded permafrost was a sink of CO2 earlier in the growing season (Fig. 4), but all GPP parameters

converged to zero in August and September (Fig. 4, Table S8). Degraded permafrost was a source of CH4 early in the growing

season, decreased near to zero as the depressions dried down, and then increased again later in the growing season (Fig. 5, Fig.350

S11). This aligns with the wettest portion of the growing season, when the small depressions of degrading permafrost become

inundated as small ponds (Mullen et al., 2023), which could explain the renewed CH4 emissions and decline in GPP.

There were differences as well between the derived landcover fluxes for the three footprint models. These differences were

off-setting between adjacent landcover types. For example, degrading permafrost and tundra at the edge of degrading per-

mafrost were always, by definition, near one another. When the Kljun model had high CO2 uptake in degrading permafrost355

it had lower uptake at the edge of degrading permafrost, whereas, Hsieh and Kormann and Meixner displayed the opposite

pattern (Fig. 4). This discrepancy was the result of slight differences between footprint models in peak influence positioning at

the boundary of the two landcovers (Fig. 2, Fig. S3). The differences in effects of the footprint models can likely be minimized

by using a relatively higher resolution map, or including spatial drivers such as LAI, soil moisture, and soil temperature, which

would provide further constraints for landcover fluxes.360

The complex heterogeneous models captured distinctive seasonality. Lichen and shrub tundra were net neutral in May, had

peak CO2 uptake in July, and remained small sinks in September (Fig. 4). In contrast, the sedge tundra and edge of degrading

permafrost were small sinks in May, peaked earlier, and were net neutral or CO2 sources by September (Fig. 4). Increasing the

complexity of the underlying map allowed us to determine this separate but ecologically significant seasonality in peat plateau

CO2 cycling. However, there is a limit to how complex one can get. The landcover map used in this study identified two types365

of wetlands, one much more prevalent near the EC tower than the other. Attempting to use both wetland types failed, as the

parameters for the less prevalent wetland could not to converge. We subsequently lumped both wetland categories as ‘wetland’.

This failure to converge serves as a check against over-fitting, which can be used in addition to comparing against withheld

data via artificial gaps. In the event that a landcover with small area or influence is significant to the research questions posed

and this unmixing method cannot derive a flux, then we recommend supplying stricter prior information for the landcover via370

chamber fluxes. By combining chamber fluxes and EC tower flux unmixing, one can leverage both the spatial coverage and

temporal frequency of EC tower fluxes with the specificity of chamber fluxes.

3.4 Landcover scaling

Scaling up fluxes to the region led to distinct landcover hotspots of carbon sinks and sources, with all three footprint models

having similar monthly NEE and CH4 budgets by landcover type (Fig. 5, Fig. 6). Lichen tundra was the largest sink of carbon375

(the 89% CI of July carbon uptake was (-2628 to -5075 Mg-C) for the Hsieh model, (-2715 to -5452 Mg-C) for the Kljun
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Figure 5. Monthly violin plots of CH4 2020 growing season budgets by landcovers (columns) for each footprint model (rows). Distributions

for violin plots are derived from posterior distributions of predicted CH4 fluxes scaled by their landcover areas in figure 1. Black dots indicate

medians.

model, and (-2493 to -4428 Mg-C) for the Kormann and Meixner model), though this was driven in part by occupying the

largest area in the region (Fig. 1; Table 1). Wetlands and surface waters were significant sources of both CO2 and CH4 in the

latter half of the growing season (July-September), with large enough emissions to offset the carbon uptake in some of the peat

plateau landcovers (Fig. 5, Fig. 6). Wetlands account for, on average, only 7% of what the EC tower sees, but 18% of the area in380

the region. If we were to use a coarser landcover map, such as the recently updated circumpolar arctic vegetation map (CAVM)

(Raynolds and Walker, 2022), we would have attributed 100% of the EC tower fluxes to wetland-complex vegetation, which

would scale up to 26% of the region using CAVM. Given the clearly distinctive carbon dynamics between wetlands and peat

plateau vegetation, using a landcover resolution appropriate to the scale of heterogeneity is important for obtaining an accurate

regional carbon budget and understanding the ecosystem.385
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Figure 6. Monthly violin plots of 2020 growing season NEE carbon budgets by landcovers (columns) in the complex map for each footprint

model (rows). Distributions for violin plots are derived from posterior distributions of predicted NEE fluxes scaled by their landcover areas

in figure 1. Black dots indicate medians.

Regional surface water carbon emissions scaled-up from the EC tower fluxes are likely an overestimate, since the waterbodies

within the EC tower footprints were amongst the two smallest size-classes of waterbodies in the region, which have the largest

diffusive carbon fluxes (Ludwig et al., 2023b). In comparison, the coarser CAVM landcover map does not identify any surface

waters in the entire scaling region, which would lead to these hotspots of emissions being completely underestimated. Scaling-

up surface water carbon emissions would be better done using an approach that includes both terrestrial and aquatic landscape390

drivers and uses better spatial representation (e.g., Ludwig et al. (2023b)) than the area seen by a single EC tower. However,

we were able to capture both plant-mediated carbon fluxes and ebullition in addition to diffusive fluxes, as well as describe the

broad seasonal trends in carbon emissions using this approach.
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3.5 Regional carbon scaling

Landcover carbon budgets were summed to regional carbon budgets and compared to carbon budgets estimated using the395

Bayesian and MDS homogeneous approaches (Fig. 7). Total NEE was similar between the three footprint models with over-

lapping 89% CI. Regional CH4 budgets were also similar, with most months overlapping 89% CI between the three footprints,

and a small difference in July. There was also no difference in total NEE budgets between the simple and complex map so-

lutions. For most months the complex map solutions were slightly more uncertain, a consequence of estimating almost twice

as many parameters
::
and

::::::::
carrying

::::::
through

:::
all

::
of

::::
their

:::::::::::
uncertainties. The exception was May, where the simple map was more400

uncertain likely because grouping all tundra vegetation as one class was a poor assumption for that time. Despite the differences

in methodologies, the two homogeneous approaches (Bayesian models and MDS) resulted in very similar NEE budgets to one

another when scaling up to the region for June, July, and August (Fig. 7). In months closer to the shoulder season (May and

September), the distributions of light and temperature were more skewed, which can be a source of bias in the MDS method

and could explain the slight differences in the MDS and Bayesian homogeneous results for those months.405

In contrast, all homogeneous scaled-up carbon results were quite different from the heterogeneous results. While the ho-

mogeneous approaches were worse at predicting to withheld gaps in the EC tower observations (Fig. 3), the differences in

RMSE were small. However, the consequences for scaling were large. At every part of the growing season the homogeneous

NEE overestimated the carbon sink relative to the heterogeneous NEE. This overestimation was smaller towards the shoulder

seasons in May and September and larger in June, July, and August. Assuming homogeneity at this site meant approximating410

the same diurnal cycle of NEE everywhere that averages over different sink and source strengths in the landscape. Similarly,

assuming a homogeneous landscape when scaling up an average CH4 flux led to consistently underestimating the regional CH4

emissions (Fig. 7). Because landcovers that were hotspots of emissions were farther from the footprint influence peaks, while

those that exhibited larger carbon uptake were more often nearer the peaks, applying the EC tower flux to the region without

accounting for footprints resulted in too much carbon uptake in NEE and too little carbon emissions in CH4.415

Throughout the growing season, incorrectly assuming a homogeneous landscape, regardless of gap-filling methodology,

resulted in nearly doubling the NEE growing season carbon sink while nearly halving the CH4 emissions (Fig. 7f). If we had

assumed a homogeneous landscape we would have determined the region to be a net growing season carbon sink even after

accounting for CH4 emissions as CO2-equivalents (89% CI: -9960 to -11919 Mg-C, Fig. 7f). We can combine the posterior

distributions of scaled carbon from all three footprint model results to calculate a single
::::::
CO2-eq carbon budget estimate that420

accounts for across-model uncertainties. Doing this we find that growing season CH4 emissions (mean: 16633, 89% CI: 15208

to 18212 Mg-C CO2-eq) more than offset the CO2 growing season sink (mean: -12512, 89% CI: -15718 to -9189 Mg-C).

Similarly, Kuhn et al. (2018) found that accounting for emissions from commonly overlooked small ponds offset much of the

wetland carbon sink in Northern Sweden. Other EC tower flux sites might see similar or opposite results from accounting for

footprint heterogeneity (Griebel et al., 2016; Giannico et al., 2018; Reuss-Schmidt et al., 2019). A heterogeneous site with low425

carbon uptake or high carbon emissions located near the peak of footprint influences would overestimate carbon emissions
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when scaling assuming homogeneity. Unaccounted-for heterogeneity such as this could help explain the mismatch between

bottom-up and top-down carbon budgets (Thornton et al., 2016; Saunois et al., 2020).

3.6 Uncertainty

A benefit of using this Bayesian approach, is that uncertainties in model fit, both for respiration, GPP and constant fluxes,430

were carried through into uncertainties in NEE and CH4 gap-filling and scaled-up carbon budgets. Sources of uncertainty

included times and locations where the deterministic models used here were over-simplifications and failed to capture other

important processes affecting carbon cycling. Instances where the landcover maps were not accurate delineations of carbon

cycling are also included in this uncertainty. For example, if an underlying gradient of soil moisture were causing different

CH4 fluxes within a vegetation type this would lead to greater uncertainty after the aggregation of footprint influences over the435

categorical map used here. Not all landcover carbon budgets were equal in terms of uncertainty; for example, among the tundra

vegetation types, NEE fluxes from edge of degraded areas were the most uncertain, followed by shrub, lichen, and sedge (Fig.

4, e.g. Kljun-June standard deviations: 0.061, 0.031, 0.030, and 0.016 kg-C month−1 m−2 respectively). After scaling up to

the region in (Fig. 1), lichen NEE carbon budgets were the most uncertain due to their larger area in the region, followed by

edge of degraded permafrost, shrub, and then sedge tundra (Fig. 6, e.g. Kljun-June standard deviations: 1199, 1009, 516, and440

388 Mg-C month−1 respectively).

Degraded permafrost NEE and CH4 fluxes had the most uncertainty (Fig. 4, Fig. S11). This was likely due to a combination

of their small extent and influence in the footprint supplying less signal to the EC tower fluxes, as well as the deterministic

models over-simplifying carbon processes. In this case, the fluxes from degraded permafrost were distinctive enough they could

be determined while unmixing the EC tower fluxes despite their small area in the footprints. Within the areas of degrading per-445

mafrost there was heterogeneity in vegetation and surface water on a scale smaller than the resolution of the landcover maps,

as well as more temporal dynamics related to hydrology. Similarly, NEE and CH4 fluxes from water had relatively large uncer-

tainty due to estimating an average flux rather than presenting diffusive, plant-mediated, and ebullitive fluxes deterministically.

In lieu of representing these processes explicitly, our simpler models had greater uncertainty. The uncertainty around degraded

NEE and CH4 fluxes had a smaller impact on NEE carbon budgets than other landcovers (Fig. 5, Fig. 6) due to the small area450

of degraded locations in the landscape (Fig. 1). Since all of the uncertainties in gap-filling fluxes and partitioning NEE were

carried through into carbon budget estimates, we lose nothing from including these small areas of heterogeneity despite not

representing them as well as other landcovers.

3.7 Applications and limitations of unmixing eddy covariance fluxes

Heterogeneity within EC tower landscapes is a common problem, and employing this flux unmixing approach at sites such as455

those identified by Chu et al. (2021) could improve accuracy in scaling carbon budgets and bench-marking models. Several

studies have used summed spatial variables after weighting by EC footprints to relate to EC flux observations (Reuss-Schmidt

et al., 2019; Xu et al., 2017; Metzger et al., 2013). While a useful way to incorporate heterogeneity, this approach reduces

meaningful variation of spatial variables within footprints to single non-unique results. For example, there are multiple combi-
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Figure 7. Monthly total (a-e) and 2020 growing season total (f)
:::::
CO2-eq

:
carbon budgets for each gap-filling technique. Boxes are the median

and interquartile range (IQR), whiskers are 1.5*IQR, for the Bayesian model gap-filling carbon budgets using the three footprint models

over the complex and simple landcover maps, and without considering footprints and assuming a homogeneous landscape. The solid red line

indicates MDS (marginal distribution sampling) homogeneous gap-filling NEE budgets. The dashed red line indicates the diurnal average

CH4 gap-filling homogeneous budgets. Distributions with overlapping Bayesian 89% credible intervals are designated with matching letters.

Note the scales on y-axes are different between panels to highlight the comparability of footprint models and landcover maps within months.
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nations of footprints weights and values of the spatial drivers that could result in the same weighted sum. Statistically unmixing460

fluxes could yield more informative relationships to spatial drivers.

Future applications of the flux unmixing approach demonstrated in this study could incorporate spatially explicit drivers such

as soil moisture and soil temperature, as well as more specific prior information from chamber fluxes. Doing so would further

reduce uncertainty in landscape carbon fluxes. Seasonality could be represented through spatially explicit and temporally

variable drivers such as solar induced fluorescence (SIF) (Luus et al., 2017; Schiferl et al., 2022). Interannual variability could465

be investigated using a hierarchical model structure by, for example, fitting an underlying distribution of a vegetation-type

specific Q10 from which each year’s specific Q10 is drawn. This method of interpreting EC fluxes could also be useful in sites

with nested EC towers, multiple instrument heights, or where instrument heights have changed over time (e.g. (Klosterhalfen

et al., 2023)). Flux data from such circumstances could be analyzed concurrently, since each observation is a function of an

explicit footprint distribution. Thus, it would not matter if instrument height or position were different between observations.470

An alternative model structure for GPP was investigated that uses leaf area index (LAI) as a driver (Shaver et al., 2007). In

lieu of field-based LAI data, we used a timeseries of NDVI from cloud-free Sentinel-2 imagery and the empirical relationship

to LAI from pan-Arctic tundra described in Shaver et al. (2013). The LAI-version GPP model failed posterior predictive checks

for most months of data, and was not further pursued. This failure is likely because the approximation from NDVI was a poor

representation of LAI for this site, particularly during May, August, and September where sub-pixel water presence could lead475

to erroneous NDVI and LAI. Furthermore, lichen and moss species dominated the vegetation biomass on peat plateaus and

LAI may not be an appropriate metric in such cases. However, a spatially resolved driver such as LAI might be effective in

applications for unmixing NEE at other sites.

This method of unmixing EC fluxes relies upon accurate footprint influence maps with sufficient variability over the het-

erogeneity in the landscape. The analysis in this study assumes the footprints were observed perfectly, i.e., footprint influence480

is not a random variable. For this reason, we recommend always using an ensemble of footprint models. However, for sites

where the assumptions of footprint models are not met, and footprint influence maps are likely to be more error prone, this

study’s methodology will not work. Examples of such cases might include sites with instrument heights close to canopy heights

where the effects of the surface roughness sub-layer are a concern, or anywhere the assumption of horizontal homogeneity in

turbulence is invalid. In addition to valid footprint influences, this method requires variability in footprints. When footprint485

influences are aggregated over a landcover type for unmixing, there needs to be enough differences between observations to

avoid an underdetermined dataset, where finding a solution to landcover specific fluxes won’t be possible. Sites with consis-

tent wind directions and atmospheric stability that result in very similar footprints between observations could have this issue.

Small changes in the peak influence location could create enough variability between observations, even with consistent wind

directions, depending on the position and scale of heterogenous landcover patches at the site.490
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4 Conclusions and implications

We compared multiple footprint models and landcover maps in our analysis to investigate their effects on unmixing landcover

carbon fluxes. While the Kljun footprint model was the most consistent in determining fluxes when comparing outcomes using

simple and complex landcover maps, there was no clear, best footprint model. We recommend including all three footprint

models as an ensemble when interpreting EC fluxes. Flux estimates based on the more complex landcover map captured im-495

portant differences in seasonality in tundra vegetation carbon fluxes. However, there were only minor differences in regional

growing season carbon budgets between the two landcover maps, and using the more complex map had trade-offs such as

greater computation time and uncertainty due to increasing the number of parameters. Investigating carbon fluxes using mul-

tiple landcover maps allows for informed lumping of landcover classes based on the resulting fluxes and the investigator’s

research questions.500

Eddy covariance towers provide a wealth of high frequency flux data with large spatial extents. However, EC tower fluxes

are under-utilized or potentially misleading if footprints are not taken into account in heterogeneous landscapes. We have

demonstrated an approach to unmixing EC tower NEE and CH4 fluxes from heterogeneous tundra, which provided detailed

interpretations of landscape carbon cycling such as the detection and quantification of hot spots of carbon emissions and differ-

ent timing in peak carbon uptake and senescence in tundra vegetation. We find that methods that consider footprint influences505

during gap-filling NEE fluxes were more accurate at predicting missing NEE fluxes than methods that assume landscape ho-

mogeneity. By using a Bayesian approach, we were able to quantify and compare uncertainties between carbon fluxes from

different landcover classes. These uncertainties were carried through when gap-filling and scaling-up, providing an intrinsic

estimate of uncertainty for the resulting carbon budgets. The consequence of assuming homogeneity in the landscape when

gap-filling and scaling-up instead of using landcover-specific carbon fluxes was substantial: over the growing season (May to510

September) the homogeneous carbon budgets had half as much CH4 emissions and twice as much net CO2 uptake, greatly

overestimating the carbon sink in the region and potential negative feedback to climate from carbon emissions. Accounting

for landscape heterogeneity in carbon fluxes from EC towers could reduce uncertainty in bottom-up carbon budgets and the

mismatch with top-down carbon budgets.

Code and data availability. Eddy covariance flux data, summarized footprint influences, and analysis code are located in the repository:515

https://github.com/arctic-carbon/heterogeneous_C_fluxes. Code for the three footprint influence models and reprojecting and summarizing

over the landcover maps are located in the repository: https://github.com/arctic-carbon/eddy-footprint.
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