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Abstract. Recent metanalyses suggest that microzooplankton biomass density scales linearly with phytoplankton 

biomass density, suggesting a simple, general rule may underpin trophic structure in the global ocean. Here, we 

use a set of highly simplified food-web models, solved within a global general circulation model, to examine the 

core drivers of linear predator-prey scaling. We examine a parallel food-chain model which assumes 

microzooplankton grazers feed on distinct size-classes of phytoplankton, and contrast this with a diamond food-15 

web model allowing shared microzooplankton predation on a range of phytoplankton size classes. Within these 

two contrasting model structures, we also evaluate the impact of fixed vs. density-dependent microzooplankton 

mortality. We find that the observed relationship between microzooplankton predators and prey can be reproduced 

with density-dependent mortality on the highest predator, regardless of choices made about plankton food-web 

structure. Our findings point to the importance of parameterizing mortality of the highest predator for simple food 20 

web models to recapitulate trophic structure in the global ocean. 

 

1. Introduction 

 

Over the past decades, there has been considerable progress in our understanding of marine planktonic ecosystems. 25 

Both satellite and in situ observations have helped to elucidate the biogeography, phenology, and structure of these 

systems. Much of this knowledge has been incorporated in numerical models to make projections and perform 

sensitivity analyses, in particular pertaining to the impacts of global change (Dutkiewicz et al. 2013; Henson et al. 

2021). As a result, marine ecosystem models have become increasingly detailed and complex, with a particular 
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focus on improving the representation of the rich diversity of plankton. For example, the European Regional Seas 30 

Ecosystem Model (ERSEM) contains 10 different plankton functional types and 3 types of bacteria (Butenschön 

et al. 2016), whereas the current version of the Plankton Type Ocean Model (PlankTOM11) includes 9 plankton 

functional types, bacteria, and jellyfish (Wright et al. 2021). The Darwin model uses allometric scaling to model 

dozens of plankton size classes (Ward et al. 2012; Henson et al. 2021) 

 35 

                                                                       

        
Figure 1. Recent metanalyses suggest microzoopankton biomass density scales linearly with phytoplankton 

biomass density in the global ocean a) sampling locations and b) relationship between microzooplankton and 

phytoplankton biomass in mg C m-3 (Rajakaruna et al. 2022). 

 

As ecosystem models become increasingly complex, it becomes increasingly challenging to understand how their 

structure impacts the bulk biogeochemical properties of the system. For example, assumptions about 

microzooplankton predation on phytoplankton determines model predictions of phytoplankton carbon in the 

surface ocean, which in turn influences rates of carbon fixation, and eventually, carbon sequestration from the 

surface layer to the deep ocean. Due to their influence on carbon cycling globally, Earth system models typically 40 

contain representations of ocean ecosystems, and are incorporating expanded plankton diversity (Séférian et al. 

2020), raising questions about how much model complexity is required to capture biogeochemically relevant 

properties (Kwiatkowski et al. 2014).  

Observational datasets provide a critical resource to discriminate between models with different 

assumptions about modeled food web interactions (Luo et al. 2022; Petrik et al. 2022). The relationship between 45 

microbial predators and prey (for example, microzooplankton and phytoplankton, respectively) is one observed 
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phenomenon with profound implications for global biogeochemical cycles, for example by controlling the biomass 

of autotrophs that fix carbon, and impacting carbon export through microzooplankton excretion of fecal pellets 

(Buck and Newton 1995).  One recent metanalysis suggests a relatively simple set of observational relationships 

between microbial predators and their prey (Rajakaruna et al. 2022). Specifically, predator biomass (say, Y) appears 50 

to scale with prey biomass, (say, X), following a simple, linear relationship, i.e. Y~X (Figure 1). These 

observational compilations present the opportunity to identify key features of ocean biogeochemical models that 

capture relationships between predator and prey biomass.  

Here, we undertake this task with a highly idealized set of ecosystem models, solved in the global ocean 

with a general circulation model. The models we examine are highly abstracted (Figure 2), capturing some essential 55 

features that are general to a wide class of ecosystem and biogeochemical models.  

All ecosystem models with descriptions of diversity beyond the classic nutrient-phytoplankton-

zooplankton-detritus (NPZD) formulation (Wroblewski 1989; Fasham et al. 1990), must make assumptions about 

which predators feed on which prey. However, it is unclear whether empirically rooted contrasting assumptions 

(Holt et al. 1995; Armstrong 1999) about predator preference for prey type impact the scaling between predator 60 

and prey biomass, in a manner that is consistent with patterns observed by Rajakaruna et al. (2022). Our models 

are put forth specifically to address this question. 

In addition to asking whether food-web structure impacts plankton predator-prey relationships, we also 

consider the role of predation on the highest predator, in this case the zooplankton. By their nature, planktonic 

ecosystem models do not explicitly resolve the dynamics of higher trophic levels. Therefore, the effects of higher 65 

predation on the highest predator are usually parameterized (Steele and Henderson 1992; Edwards and Brindley 

1999; Rhodes and Martin 2010). The assumptions made here profoundly influence biogeochemical properties such 

as primary production and chlorophyll distribution (Aumont and Bopp 2006; Stock and Dunne 2010; Yool et al. 

2013; Stock et al. 2014; Aumont et al. 2015). However, it is unclear if and how their effects are dependent on 

choices made about food web structure. 70 

By explicitly examining the role of predation on the highest predator in the context of two contrasting food 

webs, we seek to identify the core, underlying drivers of linear scaling between microbial predators and prey 

(Figure 1). We then “sample” the model and compare predictions to observations of trophic structure covering a 

large range of temperate, subtropical, and tropical ecosystems. In doing so, we evaluate how these contrasting 

model structures impose trophic structure globally. While our ecosystem models are relatively simple by 75 

comparison to many extant biogeochemical models (e.g. Dutkiewicz et al. 2020), they are comparable to the ocean 
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biology component of many extant Earth system models (Rohr et al. 2023), and allow clear insight. We discuss the 

implications of our findings for more complex models of ecosystem dynamics. 

 

 80 

2. Models and Methods 

 

In the sections that follow, we explain and justify the full equations used to parameterize phytoplankton and 

microzooplankton growth dynamics. We then describe model implementation in a global ocean ecosystem context 

and the comparison of simulations with a published compilation of relevant ocean data. 85 

 

2.1 Food-web models 

 

The main ecosystem model parameterization is reported in Table 1, and a schematic representation is provided in 

Figure 2. Model equations are described in detail in the Appendix, and our source code is provided in a publicly 90 

available repository (https://github.com/werdna-spatial/GUD_closure). The most important model parameters are 

provided in Tables 2 and 3, a more complete list is provided in Table A3, and a fully exhaustive list is provided in 

the online GitHub repository. We compared predictions of a model with ‘diamond food-web’ structure (shared 

predation), to a model assuming predators feed in parallel on distinct prey types: 

 95 

Parallel food-chain model. Here it was assumed that microzooplankton grazers feed in parallel on 

microzooplankton prey (Armstrong 1999; Ward et al. 2012, 2013), mimicking predation that is specific to different 

size classes or functional groups. Models with parallel feeding have led to realistic predictions of plankton 

community composition in the global ocean (Ward et al. 2013; Dutkiewicz et al. 2020). Furthermore, parallel 

feeding was a component of five of ten Earth system models that were part of the most recent Coupled Model 100 

Intercomparison project (CMIP6) evaluated by Rohr et al. (2023), making it a useful food-web structure to examine 

in a global ocean context. 

 

Diamond food-web model. An alternative to parallel feeding is a model with shared predation.  Here, 

microzooplankton predators may feed on multiple plankton types. Since this general predation resembles a 105 

diamond, models with shared predation are referred to as having ‘diamond’ food-web structure (Holt et al. 1995). 

A recent study examining plankton community composition along a resource availability gradient in the North 
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Pacific indicated a model with shared predation on Prochlorococcus and heterotrophic bacteria may in some 

circumstances lead to improved predictions of plankton community composition (Follett et al. 2022). Furthermore, 

shared predation was a component of six of ten CMIP6 Earth system models evaluated by Rohr et al. (2023), 110 

making it a useful model structure to examine in a global ocean context. 

 

Table 1. Plankton ecosystem model equations. 

Let the biomass of any plankton size class (either phytoplankton or 

microzooplankton) be represented generally Bi. Each of these biomass groups is 

constrained with mass balance equations for advection, mixing, sinking, and 

biological source and sink terms, as follows: 
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Where 𝒖  and 𝜿  velocity and diffusion coefficients, respectively, 𝑤!  is a sinking 

speed, and 𝑆"!  represents all biological sources and sinks. Let 𝑃!  and 𝑍!  represent 

any phytoplankton and microzooplankton size class, respectively. The planktonic 

sources and sinks for the diamond food-web and parallel model, respectively, are as 

follows: 

 

Diamond food-web 

 

𝑆2! = 𝜇!𝑃! − 𝑔!𝑍3 − 𝛿2𝑃! 	                         

                                                                              (1) 

𝑆4" = 𝜀
<=

𝑔!
!53,7

>
𝑍3 − 𝛿8𝑍3 − 𝛿88𝑍37 

 

Parallel feeding 
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𝑆2! = 𝜇!𝑃! − 𝑔!𝑍! − 𝛿2𝑃! 	 

                                                                               (2) 

𝑆4! = 𝜀𝑔!𝑍! − 𝛿8𝑍! − 𝛿88𝑍!7 

 

Where 𝜇! is the growth rate for each phytoplankton size class, that is sensitive to 

nutrient availability, light, and temperature. The functional sensitivity of 𝜇! to these 

environmental variables, along with mass balances for nutrients and detritus, are 

described in the Appendix. The grazing rate for each phytoplankton size class is 𝑔!, 

and the proportion of material ingested into zooplankton biomass is 𝜀. The mortality 

coefficients for linear and quadratic microzooplankton losses are 𝛿8  and 𝛿88 , 

respectively. 

 

The parallel food chain and diamond food web models use established allometric scaling laws to assign traits 115 

according to phytoplankton cell size (Banse 1976; Litchman et al. 2007; Ward et al. 2012; and see Appendix). In 

both formulations, small and large phytoplankton represent cells with ~0.5 and 5µm equivalent spherical radius, 

and are representative of picocyanobacteria and eukaryotic algae, respectively. In the parallel model, small and 

large microzooplankton represent protists with ~7 and 50µm equivalent spherical radius and are representative of 

microzooplankton in the ciliate size range. The generalist predator in the diamond food-web model has 15µm 120 

equivalent cell radius. 

 

2.2 Parameterizing microzooplankton mortality 

 

All lower trophic ecosystem models must make choices about the mortality of the highest predator. Here, loss 125 

processes must be mimicked, without being explicitly resolved. This requirement to parameterize presents a 

problem for plankton ecosystem modelers wishing to motivate model form and function with mechanism. 

Nevertheless, one way to evaluate the strength of different assumptions about model closure is to examine the 

influence of contrasting assumptions on the model predictions in a holistic manner. Here, we sought to do this by 

applying two widely assumed microzooplankton loss processes: 130 
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Linear microzooplankton losses. Here, it is assumed that the rate of microzooplankton mortality is independent of 

its biomass density (Table 1). As such, linear losses may equivalently be thought of as density independent 

mortality. This assumption has been applied within ecological and biogeochemical models to predict biogeography 140 

of cyanobacteria and heterotrophic bacteria in the North Pacific (Follett et al. 2022), and in the global ocean (Ward 

et al. 2012, 2013). 

 

Quadratic microzooplankton losses. Here, the rate of microzooplankton mortality increases with biomass density. 

This increase in mortality rate can be justified on several grounds, including intraspecific competition (Barbier and 145 

Loreau 2019) and sinking (Schartau et al. 2007), which may both increase with microzooplankton density. Here, 

we invoke density-dependent mortality on the highest trophic level to mimic the effects of unresolved predation on 

the highest predator. 

 

Table 2. Size-independent parameters. All parameters were held constant in all simulations, except for the linear 150 

and quadratic mortality terms, which were set to zero in simulations where these terms were not considered. 

Parameter Symbol Value Units 

Linear zooplankton mortality rate 𝛿8 0.02 day-1 

Quadratic zooplankton mortality rate 𝛿88 0.08 m3 mmol-1 day-1 

Grazing half-saturation constant 𝐾%,! 20 mmol m-3 

Grazing assimilation efficiency 𝜀 0.3 n.d. 

 

 

Table 3. Size-dependent parameters and scaling coefficients. Coefficients a and b constrain allometric relations of 

the form aVb where V represents cell volume (µm3). Scaling parameters and coefficients were held constant across 155 

all simulations. 

Parameter Symbol a b Units 

Phytoplankton sinking rate 𝑤 0.06 0.28 m day-1 

Maximum phytoplankton growth rate 𝜇9': 2.0,0.6 (large, small) -0.16 day-1 

Ammonium half-saturation constant 𝐾;<#$ 0.17 0.27 mmol m-3 

Nitrite half-saturation constant 𝐾;<%$ 0.17 0.27 mmol m-3 

Nitrate half-saturation constant 𝐾;=&' 0.085 0.27 mmol m-3 
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Phosphorus half-saturation constant 𝐾2<&#$ 2.6 0.27 mmol m-3 

Grazer maximum ingestion rate 𝑔9':,! 23 -0.15 day-1 

 160 

 

2.3 Global ocean ecosystem models 

 

To explore the ecological and biogeochemical implications of these characteristics, we introduced these 

parameterizations of primary and secondary producers into a global ocean ecosystem, biogeochemistry, and 165 

circulation model (MITgcm). The ecosystem model simulates flow of C, N, and other elements (Figure 2) between 

inorganic nutrients, photo-autotrophs, microzooplankton, and detritus. It is embedded in a coarse-resolution (1° × 

1° horizontal, 24 vertical levels), climatologically averaged, global ocean circulation model that has been 

constrained with satellite and in situ observations (Wunsch and Heimbach 2007). 

 170 

2.4 Model-data comparison and statistical analyses 

 

We ‘sampled’ the model in locations where there are environmental samples in the compilation of Rajakaruna et 

al. (2022) (Figure 1). After log-transforming phytoplankton and microzooplankton biomass density, we conducted 

ordinary least squares type 2 (OLS II) regression and quantified a Pearson correlation coefficient. We compared 175 

the regression slope and Pearson R value, between the models and the environmental datasets. To identify whether 

sampling locations were representative of the broader global ecosystem, we repeated the same analysis, sampling 

the entire global ocean. In doing so, we asked which model assumptions were necessary for the ecosystem model 

to reproduce internally the observed relationships between microzooplankton and phytoplankton biomass density 

(Figure 1). 180 

 

2.5 Sensitivity studies 

 

Our assumed phytoplankton and zooplankton sizes are narrow by comparison to the diversity of plankton sizes that 

exists in nature, that in some cases is captured by other ecosystem (Ward et al. 2012; Dutkiewicz et al. 2020) and 185 

Earth system models (Kearney et al. 2021). To assess the sensitivity of our findings to assumptions about plankton 

size, we conducted simulations for all four models in which i) the phytoplankton volume was increased by ~3-fold 
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ii) zooplankton volume was increased by ~3-fold and iii) phytoplankton and zooplankton volumes both were 

increased by ~3-fold. 190 

 Predator feeding assumptions profoundly influence modeled dynamics of phytoplankton and 

microzooplankton (Rohr et al. 2022).  To evaluate the sensitivity of our findings to assumptions about plankton 

feeding, we conducted simulations in which i) the microzooplankton in the diamond model were allowed to actively 

switch feeding preference to more abundant prey (see Vallina et al. 2014 and Appendix Equation A21) and ii) 

microzooplankton preyed upon phytoplankton according to a type III feeding curve (see Rohr et al. 2022 and 195 

Appendix Equation A21). 

  

 

 

Figure 2: Two contrasting models considered here a) parallel food-chains b) shared predation in the form of a 

diamond food-web. Both models cycle elements (C, N and P) through inorganic and organic forms. Iron 

biogeochemistry was included in the model in a manner similar to C, N, and P but is not shown for parsimony. 

Model equations along with parameter definitions and units are detailed in the Appendix.  

 

3. Results 

 200 
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We first describe model predictions of ecosystem structure in the global ocean and go on to examine which of the 

models leads to predictions of predator and prey biomass density consistent with the observations in Figure 1. In 

all that follows, we compare the predictions for both the diamond and parallel food chain models with and without 205 

density-dependent microzooplankton losses. 

 

3.1 Surface ocean phytoplankton carbon. All models make qualitatively similar predictions of surface ocean total 

planktonic carbon (Figure 3). Plankton carbon density is lowest in the low-latitude oligotrophic gyres, and highest 

in coastal regions, the equatorial upwelling, and at high latitude. These predictions are all qualitatively consistent 210 

with predictions of phytoplankton biomass density indicated by satellite remote sensing of ocean color (Hu et al. 

2019). Interestingly, however, there are clear differences in the total plankton carbon density predicted by the four 

models, with the most notable contrast between the models with parallel feeding and the diamond food-web 

(compare columns, Figure 3). Specifically, the model with parallel feeding tends to predict greater total 

phytoplankton carbon density at high latitude and in equatorial upwelling and coastal regions. There are more subtle 215 

increases in total plankton carbon density when quadratic microzooplankton losses are assumed instead of linear 

microzooplankton mortality (compare bottom and top rows in Figure 3). The quadratic closure allows far greater 

contribution of phytoplankton to total carbon (Figures S1 and S2), raising total planktonic carbon inventories 

globally (Figure 3). Qualitatively similar differences in these four models are found in depth integrated primary 

production (Figure S3), carbon export (Figure S4), and secondary production (Figure S5). These results identify a 220 

subtle interplay between food-web structure and microzooplankton mortality on predictions of plankton carbon 

density in the global ocean. 
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Figure 3. Depth integrated total plankton carbon predicted by all four contrasting models. Color represents total 

plankton carbon density  averaged over a seasonal cycle. 

 

3.2 Surface Ocean community composition. All four models predict qualitatively similar patterns in phytoplankton 225 

community composition in the surface ocean (Figure 4). Specifically, the small phytoplankton size-class dominates 

in the low-latitude oligotrophic gyres (deep red colors, Figure 4) and the large phytoplankton size class dominates 

at high latitudes (deep blue colors, Figure 4).  Nevertheless, the model with shared predation (diamond food-web) 

predicts far greater competitive exclusion of the small phytoplankton size-class at high latitude. The parallel food-

web model predicts coexistence of the small and large phytoplankton throughout much of the surface ocean, 230 

regardless of which microzooplankton closure is used (left-hand column, figure 4).  
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Figure 4. Phytoplankton community composition in the surface ocean. Red indicates dominance of small 

phytoplankton; blue indicates dominance of large phytoplankton. 

 

3.3 Interplay between community composition and total carbon density. Interestingly, the impact of food-web 

structure (diamond vs. parallel) and microzooplankton closure (linear vs. quadratic) appears to be mirrored in the 235 

model predictions of plankton carbon density (Figure 3) and community composition (Figure 4). Specifically, the 

greatest differences are between the diamond and parallel models (comparing columns) with more nuanced 

differences between closure assumption (comparing rows). This mirroring points to community composition as a 

driver of total plankton carbon density. Specifically, anywhere in the ocean with greater representation of the 

smaller size class tends to predict elevated total plankton carbon density. 240 

 

3.4 Quadratic microzooplankton closure predicts global trophic structure. The results in Figures 3-4 point to the 

importance of food-web structure for predictions of planktonic ecosystem carbon in the global ocean. We now turn 

our attention to ask, which of these models is consistent with observations that microzooplankton carbon density 

scales linearly with phytoplankton carbon density (Figure 1, Rajakaruna et al., 2022). 245 

 

In Figure 5, we show the relationship between total microzooplankton and phytoplankton carbon for the global 

ocean. Each colored point represents the number of 1° grid cells falling within the microzooplankton and 
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phytoplankton carbon density marked by its position on the axes. The dashed black line represents the OLS II 250 

regression slope. Interestingly, we find here that any differences between the parallel and diamond food-web are 

minimal (compare columns, Figure 5), and the largest differences are between the linear and quadratic 

microzooplankton closure (compare rows, Figure 5). Therefore, in predicting ecosystem trophic structure, which 

we think of here as the relationship between microzooplankton and phytoplankton carbon density, the impacts of 

food-web on phytoplankton community composition that were revealed in Figures 3-4 cease to play an important 255 

role.  Moreover, only the model with quadratic microzooplankton losses predicts a relationship between 

microzooplankton and phytoplankton carbon density that is consistent with the linear scaling in the observation 

dataset in Figure 1 (bottom row, Figure 5). The model with linear microzooplankton mortality predicts far less 

correlation between microzooplankton and phytoplankton carbon density (reflected in the lower r values) and a 

negative slope relating total microzooplankton carbon with phytoplankton carbon. 260 

 

 

Figure 5: The relationship between phytoplankton and microzooplankton carbon density in the global ocean for 

a) parallel food chain model with linear closure b) diamond food-web with linear closure c) parallel food chain 

model with quadratic closure and d) diamond food-web model with quadratic closure. The color within each 
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hexagon represents the number of 1° grid cells that fall within the biomass range marked by their position on the 

axes. Slopes are OLS Type II regression slopes and r values are Pearson correlation coefficients. Density-

dependent microzooplankton mortality reproduces the relationship between Z and P, regardless of food-web 

structure. 

 

Why does the linear closure predict such a variable relationship between microzooplankton and phytoplankton 

carbon density? To investigate these predictions, we attempted to separate out spatial and temporal impacts on the 

relationship.  265 

 

In figure 6, we show seasonal variability in the relationship between microzooplankton and phytoplankton carbon 

density, for a single site in the English Channel. Observations of time-dependent biomass dynamics (Figure 6a) are 

associated with a strikingly linear relationship between microzooplankton and phytoplankton biomass density 

(Figure 6b).  Consistent with prior analyses (Steele and Henderson 1992; Fasham 1995; Edwards and Brindley 270 

1999; Edwards and Yool 2000) models with linear zooplankton losses predicts oscillations in phytoplankton and 

microzooplankton biomass (Figure 6c,e), irrespective of whether parallel or diamond food-web structure is 

assumed. The regression slopes for this single location mirror the regression slopes for the global ocean – the linear 

microzooplankton closure predicts a shallow regression slope with low r value (Figure 6d,f) and the quadratic 

closure predicts far higher correlation between phytoplankton and microzooplankton biomass (Figure 6h,j), again 275 

consistent with the global collection (Figure 5). Notably, there are many inconsistencies between the modeled time-

dependent biomass dynamics and the observations (Figure 6). For example, the quadratic closure predicts a 

premature spring bloom initiation and termination (Figure 6g,i). Therefore, the correct relationship between 

phytoplankton and microzooplankton biomass density can be retrieved even when the bloom dynamics are 

incorrect, pointing to the limitation of biomass scaling relationships as a sole indicator of model performance. 280 

Nevertheless, these results demonstrate the tendency of the linear closure to predict predator-prey oscillations as a 

key driver of the global relationship between phytoplankton and microzooplankton biomass density. The cyclic 

behavior is true irrespective of assumptions about parallel food-chains vs. a diamond food-web. 
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Figure 6: Time dependent biomass dynamics in observational data (a) and across models 

(c,e,g,i) with corresponding relationships between total microzooplankton and 

phytoplankton carbon density (d,f,h,j) during a seasonal cycle in the English Channel. 

Linear losses on the microzooplankton predict cyclic behavior in the predator-prey 

relationship that are inconsistent with observations (Figure 1). 

 

In Figure 7, we show spatial variation in the Z:P biomass ratio in the surface ocean, where the color in each location 

represents the seasonally averaged Z:P biomass ratio. Interestingly, there is considerable spatial variability in Z:P 

for either food-web assuming linear closure (top row, Figure 7), with the Z:P biomass ratio rising at higher latitudes 

(top row, Figure 7). This prediction is consistent with prior estimates of Z:P biomass variability in the global ocean 290 

that assumed linear closure and parallel feeding (Ward et al. 2012). The quadratic closure removes much of this 

spatial variation (note the narrower color bar range in the bottom row, Figure 7). In steady-state, linear losses on 

the microzooplankton allows them to place a limit on the phytoplankton biomass, causing carbon to accumulate in 

the predator (Follett et al. 2022). Density-dependent mortality on the microzooplankton forces the 

microzooplankton to be removed at a rate that is commensurate with their biomass density, inhibiting their ability 295 

to limit the phytoplankton population size, and causing both predators and prey to rise together as the system is 

enriched with resources.  
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Figure 7. Seasonally averaged surface ocean Z:P biomass ratio. Spatial variability in Z:P ratio is lessened by 

quadratic microzooplankton losses, irrespective of food-web structure. 

 

Our findings regarding quadratic closure as a driver of linear phytoplankton and microzooplankton biomass scaling 300 

are insensitive to different assumption about phytoplankton and microzooplankton size (Figure S6). Furthermore, 

allowing microzooplankton to switch actively to prey on more abundant phytoplankton allows greater coexistence 

of phytoplankton in the diamond food web (Figure S7 and Vallina et al. 2014) but unsurprisingly does not 

qualitatively modify the scaling relationships reported in Figure 5. Microzooplankton feeding according to type III 

functional response leads to far greater correlation between predators and prey across models (Figure S8). These 305 

results are consistent with prior studies identifying type III feeding as a stabilizing mechanism on 

microzooplankton-phytoplankton dynamics (Rohr et al., 2022). Nevertheless, even when a type III response is 

assumed, the quadratic closure still leads to more realistic correlation between microzooplankton and 

phytoplankton than the linear closure (Figure S8) pointing to the quadratic closure as an important control on 

trophic structure globally. 310 

 

 

4. Discussion 
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 315 

Microzooplankton predation on phytoplankton determines phytoplankton carbon in the surface ocean, which in 

turn influences rates of carbon fixation, and eventually, carbon sequestration from the surface layer to the deep 

ocean.  Models of plankton ecosystem structure are becoming increasingly complex, but models with relatively 

simple representation of plankton food-webs are important components of many extant Earth system models (Rohr 

et al. 2023). Here, we have examined a set of models with minimal complexity, in the context of environmental 320 

data, to examine core drivers of system structure globally. We find that total phytoplankton carbon density, and 

community composition, are profoundly impacted by choices regarding food-web structure and losses on the 

highest predator (in this case, microzooplankton grazers). The diamond food-web predicts competitive exclusion 

of small and large phytoplankton size-classes, whereas parallel feeding allows the small phytoplankton size class 

to persist throughout much of the surface ocean, during high latitude blooms and in coastal upwelling regions.  325 

Persistence of small phytoplankton size-classes at higher latitudes is consistent with observational data showing 

pico (<2µm) and nano plankton (2-20 µm) persist through temperature and resource gradients in a wide range of 

ocean environments (Marañón et al. 2012). These findings, in tandem with our study and prior modeling studies 

(Ward et al. 2012, 2013), point to parallel feeding as a pervasive influence on planktonic system structure. 

Nevertheless, shared predation has been invoked to explain Prochlorococcus die-off with latitude (Follett et al. 330 

2022) and is invoked in many extant Earth system models (Rohr et al. 2023). Therefore, both food-web structures 

considered here (parallel feeding and the diamond food-web) may exist in natural planktonic systems and are also 

assumed within models of the global ocean that inform climate change projections. Our findings point to the need 

to carefully consider assumptions about predation on the highest trophic level with application of either model 

structure, since these have profound implications both for phytoplankton carbon inventories, and community 335 

composition. 

 The food-web model structures assumed here are so simple that they exclude many mechanisms already 

considered in extant Earth system models. For example, many Earth system models contain representations of both 

microzooplankton and mesozooplankton. In some cases, these are explicitly represented with multiple state-

variables (Stock et al. 2014; Aumont et al. 2015). In others, a single ‘adaptive’ zooplankton class mimics the effects 340 

of micro- and meso-zooplankton by feeding differently on phytoplankton prey types (Moore et al. 2004; Long et 

al. 2021). Future studies may evaluate the impact of different closures in the context of these more sophisticated 

structures. Despite the simplicity of our models, we anticipate that our central conclusions will hold in a more 

general setting. Specifically, assumptions made about highest predator mortality constrain biomass scaling 

relationships regardless of model predictions about community composition within a trophic level. 345 
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 By comparison to the models considered here, plankton communities are considerably more complex and 

diverse, regarding organism size (Hansen et al. 1994), metabolism (Alexander et al. 2015; Posfai et al. 2017) and 

resource affinities (Litchman et al. 2007). Similarly, when it comes to parameterizing microzooplankton losses, 

there are more complex assumptions to be made beyond our very crude contrast between linear (density-

independent) and quadratic (density-dependent) mortality, again with implications for system properties (Rhodes 350 

and Martin 2010; Omta et al. 2023). Despite these limitations, our modeling points to a simple set of principles that 

we anticipate will extend to more sophisticated representations of plankton ecology. In particular, the quadratic 

microzooplankton closure provides a realistic and important constraint on the relationship between 

microzooplankton and phytoplankton carbon density, irrespective of the assumed food-web. This generality and 

consistency with observational data may also apply to other predator-prey interactions. Linear scaling between 355 

predators and prey abundance has also been observed between viruses and heterotrophic bacteria (Rajakaruna et 

al. 2022). Viral infection is thought to be highly host-specific (Flores et al. 2011) suggesting parallel food-web 

structure between predators and prey may be more appropriate. Our finding that linear scaling between predators 

and prey can be reproduced with the quadratic closure, regardless of food-web structure, provides insight that may 

inform models of plankton ecosystems that include even more diverse representations of microbial life.  360 

 

Appendix A: Model description. 

 

Here we provide details of the ecosystem model represented graphically in Figure 2. The description is very similar 

to other implementations of the Darwin ecosystem model (Dutkiewicz et al. 2009, 2012; Ward et al. 2012; Zakem 365 

et al. 2018). All model parameter variable definitions and units are provided in Tables 1 and 2 of the main text, and 

Tables A1-A3 of this Appendix. An exhaustive list of all parameter values can be found in the online code 

repository (https://github.com/werdna-spatial/GUD_closure). 

Dissolved organic and inorganic material are all governed by a mass balance for advection, diffusion, and 

biological sources and sinks: 370 

 
𝜕𝑋
𝜕𝑡

= 𝑆>&
"!#$#%!&'$
()'&*!#+,

− ∇ ∙ (𝒖𝑋)./0/1
'-.)&*!#+

+ ∇ ∙ (𝜿∇𝑋).//0//1
-!//0,!#+

 
 

(A1) 

 

Where X represents ammonium, nitrate, nitrite, phosphorus, dissolved inorganic carbon (DIC) and iron, as well as 
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pools of dissolved organic carbon, nitrogen, phosphorus, and iron. Pools of particulate detritus follow a similar 

mass balance but are also assumed to sink at rate 𝑤?: 375 

𝜕𝑌
𝜕𝑡

= 𝑆2? − ∇ ∙ (𝒖𝑌) + ∇ ∙ (𝜿𝑌) −	
𝜕𝑤?𝑌
𝜕𝑧

 
 

(A2) 

where Y represents carbon, nitrogen, phosphorus, and iron, respectively. 

Several of the biological source and sink terms are described in the main text (Table 1). Here we describe 

additional source and sink terms for inorganic nutrients and detritus. Ammonium is produced by remineralization 

of organic material, and lost by nitrification and phytoplankton growth: 

𝑆;=&' = 𝑟@<;𝐷𝑂𝑁 + 𝑟2<;𝑃𝑂𝑁.//////0//////1
()9!+)('$!8'*!#+

− 𝜁;=&'𝑁𝐻A
B.//0//1

+!*(!/!&'*!#+

− =𝑉;=&'𝑃C
C.//0//1

+0*(!)+*	0E*'1)

 (A3) 

Biological source and sink terms for nitrate, nitrite, phosphorus, and dissolved inorganic carbon are as follows: 380 

 

𝑆;<#$ = 𝜁;<%$𝑁𝑂7
F.//0//1

+!*(!/!&'*!#+

− 𝑄;:H=𝑉;<#$,C𝑃C
C.////0////1

+!*('*)	0E*'1)

 (A4) 

𝑆;<%$ = 𝜁;=&'𝑁𝐻A
B.//0//1

+!*(!/!&'*!#+

− 𝜁;<%$𝑁𝑂7
F.//0//1

+!*(!/!&'*!#+

− 𝑄;:H=𝑉;<%$,C𝑃C
C.////0////1

+!*(!*)	0E*'1)

 (A5) 

𝑆2<&#$ =	𝑟@<2𝐷𝑂𝑃 + 𝑟2<2𝑃𝑂𝑃.//////0//////1
()9!+)('$!8'*!#+

− 𝑄2:H=𝑉@IH,C𝑃C
C.////0////1

EJ#,EJ'*)	0E*'1)

 (A6) 

𝑆@IH = 𝑟@<H𝐷𝑂𝐶 + 𝑟2<H𝑃𝑂𝐶.//////0//////1
()9!+)('$!8'*!#+

−=𝑉@IH,C𝑃C
C.//0//1
@IH	0E*'1)

 (A7) 

𝑆K) = 𝑟@<K)𝐷𝑂𝐹𝑒 + 𝑟2<K)𝑃𝑂𝐹𝑒.///////0///////1
()9!+)('$!8'*!#+

− 𝑄K):H=𝑉@IH,C𝑃C
C.////0////1

!(#+	0E*'1)

 (A8) 

Where fixed elemental ratios convert carbon uptake to other elements (e.g. multiplication by 𝑄2:H  in Equation A6 

converts carbon uptake to phosphorus uptake). 

Dissolved organic material, for example DOC, is produced through phytoplankton and zooplankton 

mortality and sloppy feeding, and consumed through remineralization: 385 
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𝑆@<H = =(1 − 𝛽E9#(*)	𝛿E𝑃!
!./////0/////1

EJL*#E$'+1*#+	9#(*'$!*L

+	=(1 − 𝛽89#(*)(𝛿8𝑍C + 𝛿88𝑍C7)
C./////////0/////////1

8##E$'+1*#+	9#(*'$!*L

+	==O1 − 𝛽8
%('8

P(1 − 𝜀)𝑔!𝑍C
C!./////////0/////////1

,$#EEL	/))-!+%

−	 𝑟@<H𝐷𝑂𝐶.//0//1
()9!+)('$!8'*!#+

 

(A9) 

Dissolved nitrogen and phosphorus are governed by the same sources and sinks, converted from carbon with fixed 

stoichiometric ratios, e.g. for nitrogen 𝑄;:H  (units mol N (mol C)-1): 

𝑆@<; = 𝑄;:H=(1 − 𝛽E9#(*)	𝛿E𝑃!
!./////0/////1

EJL*#E$'+1*#+	9#(*'$!*L

+	𝑄;:H=(1 − 𝛽89#(*)(𝛿8𝑍C + 𝛿88𝑍C7)
C.//////////0//////////1
8##E$'+1*#+	9#(*'$!*L

+	𝑄;:H==O1− 𝛽8
%('8

P(1 − 𝜀)𝑔!𝑍C
C!.//////////0//////////1
,$#EEL	/))-!+%

−	 𝑟@<;𝐷𝑂𝑁.//0//1
()9!+)('$!8'*!#+

 

(A10) 

The same basic processes are also biological sources and sinks for particulate organic carbon: 

𝑆2<H = =𝛽E9#(*	𝛿E𝑃!
!.///0///1

EJL*#E$'+1*#+	9#(*'$!*L

+	=𝛽89#(*(𝛿8𝑍C + 𝛿88𝑍C7)
C.///////0///////1
8##E$'+1*#+	9#(*'$!*L

−	==𝛽8
%('8

(1 − 𝜀)𝑔!𝑍C
C!.///////0///////1
,$#EEL	/))-!+%

−	 𝑟2<H𝑃𝑂𝐶.//0//1
()9!+)('$!8'*!#+

 

(A11) 

Where 𝛽E9#(* and 𝛽49#(* partitions phytoplankton and zooplankton losses between particulate and dissolved pools, 

with corresponding partitions for sloppy feeding given by 𝛽E
%('8 and 𝛽4

%('8. As with DOM (Equation A10), fixed 390 

stoichiometric conversations are applied to convert carbon POC sources to PON and POP. These equations are not 

shown for brevity. 

 The phytoplankton growth rate 𝜇!  is modified by light, nutrients, and temperature in a multiplicative 

manner:  

𝜇! = 𝜇9':,!𝛾M,!𝛾;,!𝛾N,! (A12) 

 395 

Where light limitation is based on the model of photoacclimation following Geider et al. (1997): 
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𝛾M,! = <
1 − exp

U
−𝛼𝜃𝐼

𝜇9':,!𝛾;,!𝛾N,!Y>
 

 

(A13) 

 

Nutrient limitation follows Monod kinetics and Liebig’s law of the minimum: 

𝛾; = 𝑚𝑖𝑛]𝑉;,! , 𝑉2,! , 𝑉K),!_  

(A14) 

Where nutrient limitation by nitrogen, phosphorus, and iron are governed by monod kinetics: 400 

𝑉;,! =
𝑁𝑂OF

𝑁𝑂OF + 𝐾;<#$
𝑒P;=&' +

𝑁𝑂7F

𝑁𝑂7F + 𝐾;<%$
𝑒P;=&' +

𝑁𝐻AB

𝑁𝐻AB + 𝐾;=&'
 

(A15) 

 

𝑉2,! =
𝑃𝑂AOF

𝑃𝑂AOF + 𝐾2<&#$
 

(A16) 

𝑉K),! =
𝐹𝑒

𝐹𝑒 + 𝐾K)
 (A17) 

 

Where nitrate and nitrite assimilation are inhibited in the presence of ammonium with Ψ, following (Follows et al. 

2007) and others l (Dutkiewicz et al. 2009, 2012; Ward et al. 2012; Zakem et al. 2018). Uptake of ammonium, 

nitrite, and nitrate are found by partitioning total realized nutrient uptake by the three different nitrogen species as 

follows:  405 

𝑉;=&',! =
1
𝑉;,!

𝑁𝐻AB

𝑁𝐻AB + 𝐾;=&'
𝛾; 

(A18) 

 

𝑉;<%$,! =
1
𝑉;,!

𝑁𝑂7F

𝑁𝑂7F + 𝐾;<%$
𝑒P;=&'𝛾; (A19) 

𝑉;<#$,! =
1
𝑉;,!

𝑁𝑂OF

𝑁𝑂OF + 𝐾;<#$
𝑒P;=&'𝛾; (A32) 

Growth is modulated by temperature with the Arrhenius equation: 

𝛾N = 𝜏exp
<
𝐴Q c

1
𝑇 + 273.15

−
1
𝑇Rj>

 
 

(A20) 

Grazing rate of zooplankton type 𝑗 follows a Type II or III functional response as a function of total phytoplankton 

biomass (Holling 1959), partitioned between phytoplankton size classes according to the proportion of total 

phytoplankton biomass in each size class: 



24 
 

𝑔!,C = 𝑔9':,C
𝑃!
S

∑ 𝑃!
S

!

(∑ 𝑃!)!
T

(∑ 𝑃!! )T + 𝐾%,CT
 

 

(A21) 

Here, the value of 𝛽 switching the grazers from passive (𝛽 = 1) to active (𝛽 = 2) switching  and the value of 𝛾 410 

switching from a Type II (𝛾 = 2) to a Type III (𝛾 = 3) functional response (Vallina et al. 2014). Our main 

simulations assumed passive switching and Type II functional response, but we conducted sensitivities to both 

assumptions, separately allowing active prey switching and Type III functional response. 

 

  415 
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Table A1. Model state variables. 

 

  420 
Symbol Description Units 

𝑁𝐻AB Ammonium mmol m-3 

𝑁𝑂OF Nitrate mmol m-3 

𝑁𝑂7F Nitrite mmol m-3 

𝑃𝑂AOF Phosphate mmol m-3 

𝐷𝐼𝐶 Dissolved inorganic carbon mmol m-3 

𝐹𝑒 Iron mmol m-3 

𝐷𝑂𝐶 Dissolved organic carbon mmol m-3 

𝐷𝑂𝑁 Dissolved organic nitrogen mmol m-3 

𝐷𝑂𝑃 Dissolved organic phosphorus mmol m-3 

𝐷𝑂𝐹𝑒 Dissolved organic iron mmol m-3 

𝑃𝑂𝐶 Particulate organic carbon mmol m-3 

𝑃𝑂𝑁 Particulate organic nitrogen mmol m-3 

𝑃𝑂𝑃 Particulate organic phosphorus mmol m-3 

𝑃𝑂𝐹𝑒 Particulate organic iron mmol m-3 
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Table A2. Biological source and sink variables. 

 

 

 

 425 

 

 

 

 

 430 
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 445 

 

 

 

 

 450 

Symbol Description Units 

𝑆;=&' Biological sources and sinks of ammonium mmol m-3 s-1 

𝑆;<#$ Biological sources and sinks of nitrate mmol m-3 s-1 

𝑆;<%$ Biological sources and sinks of nitrite mmol m-3 s-1 

𝑆2<&#$ Biological sources and sinks of phosphate mmol m-3 s-1 

𝑆@IH  Biological sources and sinks of DIC mmol m-3 s-1 

𝑆K) Biological sources and sinks of iron mmol m-3 s-1 

𝑆@<H  Biological sources and sinks of DOC mmol m-3 s-1 

𝑆@<; Biological sources and sinks of DON mmol m-3 s-1 

𝑆@<2 Biological sources and sinks of DOP mmol m-3 s-1 

𝑆@<K) Biological sources and sinks of DOFe mmol m-3 s-1 

𝑆2<H  Biological sources and sinks of POC mmol m-3 s-1 

𝑆2<; Biological sources and sinks of PON mmol m-3 s-1 

𝑆2<2 Biological sources and sinks of POP mmol m-3 s-1 

𝑆2<K) Biological sources and sinks of POFe mmol m-3 s-1 
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Table A3. Model parameters and variables. Specific parameter values assume default values listed in 

various publications (Ward et al. 2012; Dutkiewicz et al. 2020) and are available in our online repository  

(https://github.com/werdna-spatial/GUD_closure/tree/main/Paper_Data). Plankton traits (nutrient and 

grazing half-saturation constants, maximal grazing and nutrient uptake rates) were generated via 

allometric scaling relationships reported by Ward et al. (2012), and a subset of these is reported in Table 3. 

The large phytoplankton has a faster maximal growth rate and higher nutrient half-saturation constants 

than the small phytoplankton, representative of differences in growth rate between a eukaryotic algae and 

a cyanobacteria, respectively (Table 2 and 3; Litchman et al. 2007; Ward et al. 2012). 

Symbol Description Value and Units 

𝑤2<H  Particulate organic carbon sinking rate 10 m day-1 

𝑤2<; Particulate organic nitrogen sinking rate 10 m day-1 

𝑤2<2 Particulate organic phosphorus sinking rate 10 m day-1 

𝑤2<K) Particulate organic iron sinking rate 10 m day-1 

𝑟@<H  Particulate organic carbon remineralization rate 0.033 day-1 

𝑟@<; Particulate organic nitrogen remineralization rate 0.033 day-1 

𝑟@<2 Particulate organic phosphorus remineralization rate 0.033 day-1 

𝑟@<K) Particulate organic iron remineralization rate 0.033 day-1 

𝑟2<H  Dissolved organic carbon remineralization rate 0.033 day-1 

𝑟2<; Dissolved organic nitrogen remineralization rate 0.033 day-1 

𝑟2<2 Dissolved organic phosphorus remineralization rate 0.033 day-1 

𝑟2<K) Dissolved organic iron remineralization rate 0.033 day-1 

𝜁;=&' Rate of ammonium oxidation to nitrite 2.0 day-1 

𝜁;<%$ Rate of nitrite oxidation to nitrate 0.1 day-1 

𝑉;=&',! Rate of ammonium uptake by phytoplankton i allometric day-1 

𝑉;<#$,! Rate of nitrate uptake by phytoplankton i allometric day-1 

𝑉;<%$,! Rate of nitrite uptake by phytoplankton i allometric day-1 

𝑉@IH,! Rate of DIC uptake by phytoplankton i allometric day-1 
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𝑄;:H  Phytoplankton ratio of nitrogen to carbon 0.13 mol N (mol C)-1 

𝑄2:H  Phytoplankton ratio of phosphorus to carbon 8.3x10-3 mol P (mol C)-1 

𝑄K):H  Phytoplankton ratio of iron to carbon 8.3x10-6 mol Fe (mol C)-1 

𝛽E9#(* Proportion of phytoplankton mortality that goes to POC 0.4,0.1 (large,small) n.d. 

𝛽89#(* Proportion of zooplankton mortality that goes to POC 0.6 n.d. 

𝛽8
%('8 Proportion of sloppy feeding that goes to POC 0.1 n.d. 

𝛿E Phytoplankton linear rate of mortality 0.01 day-1 

𝜇! Growth rate of phytoplankton i variable day-1 

𝛾M,! Growth limitation by light variable n.d. 

𝛾;,! Growth limitation by nutrients variable n.d. 

𝛾N,! Growth modulation by temperature variable n.d. 

𝜃 Phytoplankton chlorophyll to carbon ratio 0.13 mg Chl (mmol C)-1 

𝛼 Phytoplankton light affinity 1x10-6 m2 mmol C  

(µmol photons)-1  

(mg Chl)-1  

𝐼 Photosynthetically available radiance variable µmol photons m-2 day-1 

Ψ;=&' Ammonium inhibition of nitrate and nitrite assimilation 4.6 m3 (mmol N)-1 

𝐴Q Temperature response function coefficient -4000 K 

𝜏 Temperature response function coefficient 0.8 n.d. 

𝑇R Reference temperature for Arrhenius growth response 293.15 K 
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