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Abstract. Recent metanalyses suggest that microzooplankton biomass density scales linearly with phytoplankton 10 

biomass density, suggesting a simple, general rule may underpin trophic structure in the global ocean. Here, we 

use a set of highly simplified food-web models, solved within a global general circulation model, to examine the 

core drivers of linear predator-prey scaling. We examine a parallel food-chain model which assumes 

microzooplankton grazers feed on distinct size-classes of phytoplankton, and contrast this with a diamond food-

web model allowing shared microzooplankton predation on a range of phytoplankton size classes. Within these 15 

two contrasting model structures, we also evaluate the impact of fixed vs. density-dependent microzooplankton 

mortality. We find that the observed relationship between microzooplankton predators and prey can be reproduced 

with density-dependent mortality on the top predator, regardless of choices made about plankton food-web 

structure. Our findings point to the importance of parameterizing mortality of the top predator for models to 

recapitulate trophic structure in the global ocean. 20 

 

1. Introduction 

 

Over the past decades, there has been considerable progress in our understanding of marine planktonic ecosystems. 

Both satellite and in situ observations have helped to elucidate the biogeography, phenology, and structure of these 25 

systems. Much of this knowledge has been incorporated in numerical models to make projections and perform 

sensitivity analyses, in particular pertaining to the impacts of global change (Dutkiewicz et al. 2013; Henson et al. 

2021). As a result, marine ecosystem models have become increasingly detailed and complex, with a particular 

focus on improving the representation of the rich diversity of plankton. For example, the European Regional Seas 
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Ecosystem Model (ERSEM) contains 10 different plankton functional types and 3 types of bacteria (Butenschön 30 

et al. 2016), whereas the current version of the Plankton Type Ocean Model (PlankTOM11) includes 9 plankton 

functional types, bacteria, and jellyfish (Wright et al. 2021). The Darwin model uses allometric scaling to model 

dozens of plankton size classes (Ward et al. 2012; Henson et al. 2021) 

 

                                                                       

        

Figure 1. Recent metanalyses suggest microzoopankton biomass density scales linearly with phytoplankton 

biomass density in the global ocean a) sampling locations and b) relationship between microzooplankton and 

phytoplankton biomass in mg C m-3 (Rajakaruna et al. 2022). 

 

As ecosystem models become increasingly complex, it becomes increasingly challenging to understand how their 35 

structure impacts the bulk biogeochemical properties of the system. For example, assumptions about 

microzooplankton predation on phytoplankton determines model predictions of phytoplankton carbon in the 

surface ocean, which in turn influences rates of carbon fixation, and eventually, carbon sequestration from the 

surface layer to the deep ocean. Due to their influence on carbon cycling globally, Earth system models typically 

contain representations of ocean ecosystems, and are incorporating expanded plankton diversity (Séférian et al. 40 

2020), raising questions about how much model complexity is required to capture biogeochemically relevant 

properties (Kwiatkowski et al. 2014).  

Observational datasets provide a critical resource to discriminate between models with different 

assumptions about modeled food web interactions. The relationship between microbial predators and prey (for 

example, microzooplankton and phytoplankton, respectively) is one observed phenomenon with profound 45 

implications for global biogeochemical cycles, for example by controlling the biomass of autotrophs that fix carbon, 
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and impacting carbon export through microzooplankton excretion of fecal pellets (Buck and Newton 1995).  One 

recent metanalysis suggests a relatively simple set of observational relationships between microbial predators and 

their prey (Rajakaruna et al. 2022). Specifically, predator biomass (say, Y) appears to scale with prey biomass, 

(say, X), following a simple, linear relationship, i.e. Y~X (Figure 1). These observational compilations present the 50 

opportunity to identify key features of ocean biogeochemical models that capture relationships between predator 

and prey biomass.  

Here, we undertake this task with a highly idealized set of ecosystem models, solved in the global ocean 

with a general circulation model. The models we examine are highly abstracted (Figure 2), capturing some essential 

features that are general to a wide class of ecosystem and biogeochemical models.  55 

All ecosystem models with descriptions of diversity beyond the classic nutrient-phytoplankton-

zooplankton-detritus (NPZD) formulation (Wroblewski 1989; Fasham et al. 1990), must make assumptions about 

which predators feed on which prey. However, it is unclear whether empirically rooted contrasting assumptions 

(Holt et al. 1995; Armstrong 1999) about predator preference for prey type impact the scaling between predator 

and prey biomass, in a manner that is consistent with patterns observed by Rajakaruna et al. (2022). Our models 60 

are put forth specifically to address this question. 

In addition to asking whether food-web structure impacts plankton predator-prey relationships, we also 

consider the role of predation on the top predator, in this case the zooplankton. By their nature, planktonic 

ecosystem models do not explicitly resolve the dynamics of higher trophic levels. Therefore, the effects of higher 

predation on the top predator are usually parameterized (Steele and Henderson 1992; Edwards and Brindley 1999; 65 

Rhodes and Martin 2010). The choices made here often are not examined carefully with respect to the 

biogeochemical and ecological properties of the system.  

By explicitly examining the role of predation on the top predator in the context of two contrasting food 

webs, we seek to identify the core, underlying drivers of linear scaling between microbial predators and prey 

(Figure 1). We then “sample” the model and compare predictions to observations of trophic structure covering a 70 

large range of temperate, subtropical, and tropical ecosystems. In doing so, we evaluate how these contrasting 

model structures impose trophic structure globally. While our ecosystem models are relatively simple by 

comparison to many extant biogeochemical models (e.g. Dutkiewicz et al. 2020), they are comparable to the ocean 

biology component of many extant Earth system models (Rohr et al. 2023), and allow clear insight. We discuss the 

implications of our findings for more complex models of ecosystem dynamics. 75 
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2. Models and Methods 

 

In the sections that follow, we explain and justify the full equations used to parameterize phytoplankton and 80 

microzooplankton growth dynamics. We then describe model implementation in a global ocean ecosystem context 

and the comparison of simulations with a published compilation of relevant ocean data. 

 

2.1 Food-web models 

 85 

The main ecosystem model parameterization is reported in Table 1, and a schematic representation is provided in 

Figure 2. Model equations are described in detail in the Appendix, and our source code is provided in a publicly 

available repository (https://github.com/werdna-spatial/GUD_closure). We compared predictions of a model with 

‘diamond food-web’ structure (shared predation), to a model assuming predators feed in parallel on distinct prey 

types: 90 

 

Parallel food-chain model. Here it was assumed that microzooplankton grazers feed in parallel on 

microzooplankton prey (Armstrong 1999; Ward et al. 2012, 2013), mimicking predation that is specific to different 

size classes or functional groups. Models with parallel feeding have led to realistic predictions of plankton 

community composition in the global ocean (Ward et al. 2013; Dutkiewicz et al. 2020). Furthermore, parallel 95 

feeding is assumed in the biological component of many Earth system models (Rohr et al. 2023), making it a useful 

food-web structure to examine in the global ocean. 

 

Diamond food-web model. An alternative to parallel feeding is a model with shared predation.  Here, 

microzooplankton predators may feed on multiple plankton types. Since this general predation resembles a 100 

diamond, models with shared predation are referred to as having ‘diamond’ food-web structure (Holt et al. 1995). 

A recent study examining plankton community composition along a resource availability gradient in the North 

Pacific indicated a model with shared predation on Prochlorococcus and heterotrophic bacteria may in some 

circumstances lead to improved predictions of plankton community composition (Follett et al. 2022). Furthermore, 

shared predation is assumed in the biological component of many Earth system models (Rohr et al. 2023), and it is 105 

therefore useful to examine the predictions of models that assume individual grazers prey on individual size classes 

of phytoplankton. 
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The parallel food chain and diamond food web models use established allometric scaling laws to assign traits 

according to phytoplankton cell size (Banse 1976; Litchman et al. 2007; Ward et al. 2012; and see Appendix). In 110 

both formulations, small and large phytoplankton represent cells with be ~0.5 and 7µm equivalent spherical radius, 

and are representative of picocyanobacteria and eukaryotic algae, respectively. Small and large microzooplankton 

represent protists ~3.2 and 4.7µm equivalent spherical radius and are representative of microzooplankton in the 

ciliate size range. The generalist predator in the diamond food-web model has 3.2µm equivalent cell radius, 

matching the small predator of the parallel model. 115 

 

2.2 Parameterizing microzooplankton mortality 

 

All lower trophic ecosystem models must make choices about the mortality of the top predator. Here, loss processes 

must be mimicked, without being explicitly resolved. This requirement to parameterize presents a problem for 120 

plankton ecosystem modelers wishing to motivate model form and function with mechanism. Nevertheless, one 

way to evaluate the strength of different assumptions about model closure is to examine the influence of contrasting 

assumptions on the model predictions in a holistic manner. Here, we sought to do this by applying two widely 

assumed microzooplankton loss processes: 

 125 

Linear microzooplankton losses. Here, it is assumed that the rate of microzooplankton mortality is independent of 

its biomass density (Table 1). As such, linear losses may equivalently be thought of as density independent 

mortality. This assumption has been applied within ecological and biogeochemical models to predict biogeography 

of cyanobacteria and heterotrophic bacteria in the North Pacific (Follett et al. 2022), and in the global ocean (Ward 

et al. 2012, 2013). 130 

 

Quadratic microzooplankton losses. Here, the rate of microzooplankton mortality increases with biomass density. 

This increase in mortality rate can be justified on several grounds, including intraspecific competition (Barbier and 

Loreau 2019) and sinking (Schartau et al. 2007), which may both increase with microzooplankton density. Here, 

we invoke density-dependent mortality on the highest trophic level to mimic the effects of unresolved predation on 135 

the highest predator. 
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Table 1. Plankton ecosystem model equations. 140 

Let the biomass of any plankton size class (either phytoplankton or 

microzooplankton) be represented generally Bi. Each of these biomass groups is 

constrained with mass balance equations for advection, mixing, sinking, and 

biological source and sink terms, as follows: 

 

𝜕𝐵𝑖
𝜕𝑡

= 𝑆𝐵𝑖⏟
𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

 − ∇ ∙ (𝒖𝐵𝑖)⏟      
𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+ ∇ ∙ (𝜿∇𝐵𝑖)⏟      
𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

+
𝜕𝑤𝑖𝐵𝑖
𝜕𝑧⏟  

𝑠𝑖𝑛𝑘𝑖𝑛𝑔

 

 

Where 𝒖  and 𝜿  velocity and diffusion coefficients, respectively, 𝑤𝑖  is a sinking 

speed, and 𝑆𝐵𝑖  represents all biological sources and sinks. Let 𝑃𝑖  and 𝑍𝑖  represent 

any phytoplankton and microzooplankton size class, respectively. The planktonic 

sources and sinks for the diamond food-web and parallel model, respectively, are as 

follows: 

 

Diamond food-web 

 

𝑆𝑃𝑖 = 𝜇𝑖𝑃𝑖 − 𝑔𝑖𝑍𝑖 − 𝛿𝑃𝑃𝑖                          

                                                                              (1) 

𝑆𝑍1 = 𝜀 (∑ 𝑔𝑖
𝑖=1,2

)𝑍1 − 𝛿𝑧𝑍1 − 𝛿𝑧𝑧𝑍1
2 

 

Parallel feeding 

 

𝑆𝑃𝑖 = 𝜇𝑖𝑃𝑖 − 𝑔𝑖𝑍𝑖 − 𝛿𝑃𝑃𝑖  

                                                                               (2) 

𝑆𝑍𝑖 = 𝜀𝑔𝑖𝑍𝑖 − 𝛿𝑧𝑍𝑖 − 𝛿𝑧𝑧𝑍𝑖
2 
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Where 𝜇𝑖 is the growth rate for each phytoplankton size class, that is sensitive to 

nutrient availability, light, and temperature. The functional sensitivity of 𝜇𝑖 to these 

environmental variables, along with mass balances for nutrients and detritus, are 

described in the Appendix. The grazing rate for each phytoplankton size class is 𝑔𝑖 , 

and the proportion of material ingested into zooplankton biomass is 𝜀. The mortality 

coefficients for linear and quadratic microzooplankton losses are 𝛿𝑧  and 𝛿𝑧𝑧 , 

respectively. 

 

2.3 Global ocean ecosystem models 

 

To explore the ecological and biogeochemical implications of these characteristics, we introduced these 

parameterizations of primary and secondary producers into a global ocean ecosystem, biogeochemistry, and 145 

circulation model (MITgcm). The ecosystem model simulates flow of C, N, and other elements (Figure 2) between 

inorganic nutrients, photo-autotrophs, microzooplankton, and detritus. It is embedded in a coarse-resolution (1° × 

1° horizontal, 24 vertical levels), climatologically averaged, global ocean circulation model that has been 

constrained with satellite and in situ observations (Wunsch and Heimbach 2007). 

 150 

2.4 Model-data comparison and statistical analyses 

 

We ‘sampled’ the model in locations where there are environmental samples in the compilation of Rajakaruna et 

al. (2022) (Figure 1). After log-transforming phytoplankton and microzooplankton biomass density, we conducted 

ordinary least squares type 2 (OLS II) regression and quantified a Pearson correlation coefficient. We compared 155 

the regression slope and Pearson R value, between the models and the environmental datasets. To identify whether 

sampling locations were representative of the broader global ecosystem, we repeated the same analysis, sampling 

the entire global ocean. In doing so, we asked which model assumptions were necessary for the ecosystem model 

to reproduce internally the observed relationships between microzooplankton and phytoplankton biomass density 

(Figure 1). 160 
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Figure 2: Two contrasting models considered here a) parallel food-chains b) shared predation in the 

form of a diamond food-web. Both models cycle elements (C, N and P) through inorganic and organic 

forms. Iron biogeochemistry was included in the model in a manner similar to C, N, and P but is not 

shown for parsimony. Model equations along with parameter definitions and units are detailed in the 

Appendix.  

 

3. Results 

 

We first describe model predictions of ecosystem structure in the global ocean and go on to examine which of the 165 

models leads to predictions of predator and prey biomass density consistent with the observations in Figure 1. In 

all that follows, we compare the predictions for both the diamond and parallel food chain models with and without 

density-dependent microzooplankton losses. 

 

3.1 Surface ocean phytoplankton carbon. All models make qualitatively similar predictions of surface ocean total 170 

carbon (Figure 3). Phytoplankton carbon density is lowest in the low-latitude oligotrophic gyres, and highest in 

coastal regions, the equatorial upwelling, and at high latitude. These predictions are all qualitatively consistent with 

predictions of phytoplankton biomass density indicated by satellite remote sensing of ocean color (Hu et al. 2019). 

Interestingly, however, there are clear differences in the total phytoplankton carbon density predicted by the four 

models, with the most notable contrast between the models with parallel feeding and the diamond food-web 175 
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(compare columns, Figure 3). Specifically, the model with parallel feeding tends to predict greater total 

phytoplankton carbon density at high latitude and in equatorial upwelling and coastal regions. There are more subtle 

increases in total phytoplankton carbon density when quadratic microzooplankton carbon density is assumed 

instead of linear microzooplankton mortality (compare bottom and top rows in Figure 3). These results identify a 

subtle interplay between food-web structure and microzooplankton mortality on predictions of phytoplankton 180 

carbon density in the global ocean. 

 

 

Figure 3. Total phytoplankton carbon in the surface ocean predicted by all four contrasting models. 

Color represents total phytoplankton carbon density for the surface ocean averaged over a seasonal 

cycle. 

 

3.2 Surface ocean community composition. All four models predict qualitatively similar patterns in phytoplankton 

community composition in the surface ocean (Figure 4). Specifically, the small phytoplankton size-class dominates 185 

in the low-latitude oligotrophic gyres (deep red colors, Figure 4) and the large phytoplankton size class dominates 

at high latitudes (deep blue colors, Figure 4).  Nevertheless, the model with shared predation (diamond food-web) 

predicts far greater competitive exclusion of the small phytoplankton size-class at high latitude. The parallel food-

web model predicts coexistence of the small and large phytoplankton throughout much of the surface ocean, 

regardless of which microzooplankton closure is used (left-hand column, figure 4).  190 
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Figure 4. Phytoplankton community composition in the surface ocean. Red indicates dominance 

of small phytoplankton; blue indicates dominance of large phytoplankton. 

 

3.3 Interplay between community composition and total carbon density. Interestingly, the impact of food-web 

structure (diamond vs. parallel) and microzooplankton closure (linear vs. quadratic) appear to be mirrored in the 

model predictions of phytoplankton carbon density (Figure 3) and community composition (Figure 4). Specifically, 

the greatest differences are between the diamond and parallel models (comparing columns) with more nuanced 195 

differences between closure assumption (comparing rows). This mirroring points to community composition as a 

driver of total phytoplankton carbon density. Specifically, anywhere in the ocean with greater representation of the 

smaller size class tends to predict elevated total phytoplankton carbon density. 

 

3.4 Quadratic microzooplankton closure predicts global trophic structure. The results in Figures 3-4 point to the 200 

importance of food-web structure for predictions of planktonic ecosystem carbon in the global ocean. We now turn 

our attention to ask, which of these models is consistent with observations that microzooplankton carbon density 

scales linearly with phytoplankton carbon density (Figure 1, Rajakaruna et al., 2022). 

 

In Figure 5, we show the relationship between total microzooplankton and phytoplankton carbon for the global 205 

ocean. Each colored point represents the number of 1° grid cells falling within the microzooplankton and 

phytoplankton carbon density marked by its position on the axes. The dashed black line represents the OLS II 
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regression slope. Interestingly, we find here that any differences between the parallel and diamond food-web are 

minimal (compare columns, Figure 5), and the largest differences are between the linear and quadratic 

microzooplankton closure (compare rows, Figure 5). Therefore, in predicting ecosystem trophic structure, which 210 

we think of here as the relationship between microzooplankton and phytoplankton carbon density, the impacts of 

food-web on phytoplankton community composition that were revealed in Figures 3-4 cease to play an important 

role.  Moreover, only the model with quadratic microzooplankton losses predicts a relationship between 

microzooplankton and phytoplankton carbon density that is consistent with the linear scaling in the observation 

dataset in Figure 1 (bottom row, Figure 5). The model with linear microzooplankton mortality predicts far less 215 

correlation between microzooplankton and phytoplankton carbon density (reflected in the lower r values) and a 

shallower slope relating total microzooplankton carbon with phytoplankton carbon. 

 

Figure 5: The relationship between phytoplankton and microzooplankton carbon density in the global 

ocean for a) parallel food chain model with linear closure b) diamond food-web with linear closure c) 

parallel food chain model with quadratic closure and d) diamond food-web model with quadratic 

closure. The color within each hexagon represents the number of 1° grid cells that fall within the 

biomass range marked by their position on the axes. Slopes are OLS Type 2 regression slopes and r 

values are Pearson correlation coefficients. Density-dependent microzooplankton mortality reproduces 

the relationship between Z and P, regardless of food-web structure. 
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Why does the linear closure predict such a variable relationship between microzooplankton and phytoplankton 

carbon density? To investigate these predictions, we attempted to separate out spatial and temporal impacts on the 220 

relationship.  

 

In figure 6, we show seasonal variability in the relationship between microzooplankton and phytoplankton carbon 

density, for a single site in the English Channel. Here, the model with linear zooplankton losses predicts a cyclic 

relationship between phytoplankton and microzooplankton biomass, irrespective of parallel vs. diamond food-web 225 

structure. The regression slopes for this single location mirror the regression slopes for the global ocean – the linear 

microzooplankton closure predicts a shallow regression slope whereas the diamond food-web model predicts 

approximately linear scaling. Furthermore, the quadratic closure predicts far higher correlation between 

phytoplankton and microzooplankton biomass, again consistent with the global collection (Figure 5). These results 

point to the tendency of the linear closure to predict predator-prey oscillations as a key driver of the global 230 

relationship between phytoplankton and microzooplankton biomass density. The cyclic behavior is true irrespective 

of assumptions about parallel food-chains vs. a diamond food-web. 

 

https://doi.org/10.5194/bg-2023-120
Preprint. Discussion started: 1 August 2023
c© Author(s) 2023. CC BY 4.0 License.



13 

 

 

Figure 6: The relationship between total microzooplankton and 

phytoplankton carbon density during a seasonal cycle in the English 

Channel for a) parallel food chain model with linear closure b) diamond 

food-web with linear closure c) parallel food chain model with quadratic 

closure and d) diamond food-web model with quadratic closure. Linear 

losses on the microzooplankton predict cyclic behavior in the predator-

prey relationship that are inconsistent with observations (Figure 1). 

 

In Figure 7, we show spatial variation in the Z:P ratio in the surface ocean, where the color in each location 235 

represents the seasonally averaged Z:P ratio. Interestingly, there is considerable spatial variability in Z:P for either 

food-web assuming linear closure (top row, Figure 7), with the Z:P ratio rising at higher latitudes (top row, Figure 

7). This prediction is consistent with prior estimates of Z:P variability in the global ocean that assumed linear 

closure and parallel feeding (Ward et al. 2012). The quadratic closure removes much of this spatial variation (note 

the narrower color bar range in the bottom row, Figure 7). In steady-state, linear losses on the microzooplankton 240 

allows them to place a limit on the phytoplankton biomass, causing carbon to accumulate in the predator (Follett 
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et al. 2022). Density-dependent mortality on the microzooplankton forces the microzooplankton to be removed at 

a rate that is commensurate with their biomass density, inhibiting their ability to limit the phytoplankton population 

size, and causing both predators and prey to rise together as the system is enriched with resources.  

 245 

 

Figure 7. Seasonally averaged surface ocean Z:P ratio. Spatial variability in Z:P ratio 

is lessened by quadratic microzooplankton losses, irrespective of food-web 

structure. 

 

4. Discussion 

 

Microzooplankton predation on phytoplankton determines phytoplankton carbon in the surface ocean, which in 

turn influences rates of carbon fixation, and eventually, carbon sequestration from the surface layer to the deep 250 

ocean.  Models of plankton ecosystem structure are becoming increasingly complex, but models with relatively 

simple representation of plankton food-webs are important components of many extant Earth system models (Rohr 

et al. 2023). Here, we have examined a set of models with minimal complexity, in the context of environmental 

data, to examine core drivers of system structure globally. We find that total phytoplankton carbon density, and 

community composition, are profoundly impacted by choices regarding food-web structure and losses on the 255 

highest predator (in this case, microzooplankton grazers). The diamond food-web predicts competitive exclusion 

of small and large phytoplankton size-classes, whereas parallel feeding allows the small phytoplankton size class 

to persist throughout much of the surface ocean, during high latitude blooms and in coastal upwelling regions.  
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Persistence of small phytoplankton size-classes at higher latitudes is consistent with observational data showing 

pico (<2µm) and nano plankton (2-20 µm) persist through temperature and resource gradients in a wide range of 260 

ocean environments (Marañón et al. 2012). These findings, in tandem with our study and prior modeling studies 

(Ward et al. 2012, 2013), points to parallel feeding as a pervasive influence on planktonic system structure. 

Nevertheless, shared predation has been invoked to explain Prochlorococcus die-off with latitude (Follett et al. 

2022) and is invoked in many extant Earth system models (Rohr et al. 2023). Therefore, both food-web structures 

considered here (parallel feeding and the diamond food-web) may exist in natural planktonic systems, and are also 265 

assumed within models of the global ocean that inform climate change projections. Our findings point to the need 

to carefully consider assumptions about predation on the highest trophic level with application of either model 

structure, since these have profound implications both for phytoplankton carbon inventories, and community 

composition. 

 By comparison to the models considered here, plankton communities are considerably more complex and 270 

diverse, regarding organism size (Hansen et al. 1994), metabolism (Alexander et al. 2015; Posfai et al. 2017) and 

resource affinities (Litchman et al. 2007). Furthermore, neither representation of microzooplankton grazing 

considered here provides a realistic view of planktonic feeding, which can involve microzooplankton switching 

between prey types, with implications for community composition and system structure (Vallina et al. 2014). Our 

modeling could have been made considerably more complex to evaluate these more realistic influences on system 275 

structure. Similarly, when it comes to parameterizing microzooplankton losses, there are more complex 

assumptions to be made beyond our very crude contrast between linear (density-independent) and quadratic 

(density-dependent) mortality, again with implications for system properties (Rhodes and Martin 2010; Omta et al. 

2023). 

 Despite these limitations, our modeling points to a simple set of principles that we anticipate will extend 280 

to more sophisticated representations of plankton ecology. In particular, the quadratic microzooplankton closure 

provides a realistic and important constraint on the relationship between microzooplankton and phytoplankton 

carbon density, irrespective of the assumed food-web. This generality and consistency with observational data may 

also apply to other predator-prey interactions. Linear scaling between predators and prey abundance has also been 

observed between viruses and heterotrophic bacteria (Rajakaruna et al. 2022). Viral infection is thought to be highly 285 

host-specific (Flores et al. 2011) suggesting parallel food-web structure between predators and prey may be more 

appropriate. Our finding that linear scaling between predators and prey can be reproduced with the quadratic 

closure, regardless of food-web structure, provides insight that may inform models of plankton ecosystems that 

include even more diverse representations of microbial life.  
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 290 

Appendix A: Model description. 

 

Here we provide details of the ecosystem model represented graphically in Figure 2. The description is very similar 

to other implementations of the Darwin ecosystem model (Dutkiewicz et al. 2009, 2012; Ward et al. 2012; Zakem 

et al. 2018). All model parameter variable definitions and units are provided in Tables A1-A3. 295 

Inorganic nutrients such as ammonium are governed by a mass balance for advection, diffusion, and 

biological sources and sinks: 

 

𝜕𝑁𝐻4
+

𝜕𝑡
= 𝑆𝑁𝐻4+⏟  
𝐵𝑖𝑜𝑙𝑜𝑔𝑖𝑐𝑎𝑙
𝑟𝑒𝑎𝑐𝑡𝑖𝑜𝑛𝑠

− ∇ ∙ (𝒖𝑁𝑂3
−)⏟      

𝑎𝑑𝑣𝑒𝑐𝑡𝑖𝑜𝑛

+ ∇ ∙ (𝜿∇𝑁𝑂3
−)⏟        

𝑑𝑖𝑓𝑓𝑢𝑠𝑖𝑜𝑛

 
 

(A1) 

 

Tracers describing nitrate, nitrite, phosphate, dissolved inorganic carbon, and iron are described similarly: 300 

 

𝜕𝑁𝑂3
−

𝜕𝑡
= 𝑆𝑁𝑂3− − ∇ ∙ (𝒖𝑁𝑂3

−) + ∇ ∙ (𝜿∇𝑁𝑂3
−) 

(A2) 

𝜕𝑁𝑂2
−

𝜕𝑡
= 𝑆𝑁𝑂2− − ∇ ∙ (𝒖𝑁𝑂2

−) + ∇ ∙ (𝜿∇𝑁𝑂2
−) 

(A3) 

𝜕𝑃𝑂4
3−

𝜕𝑡
= 𝑆𝑃𝑂43− − ∇ ∙

(𝒖𝑃𝑂4
3−) + ∇ ∙ (𝜿∇𝑃𝑂4

3−) 
(A4) 

𝜕𝐷𝐼𝐶

𝜕𝑡
= 𝑆𝐷𝐼𝐶 − ∇ ∙ (𝒖𝐷𝐼𝐶) + ∇ ∙ (𝜿∇𝐷𝐼𝐶) 

(A5) 

𝜕𝐹𝑒

𝜕𝑡
= 𝑆𝐹𝑒 − ∇ ∙ (𝒖𝐹𝑒) + ∇ ∙ (𝜿∇𝐹𝑒) 

(A6) 

Pools of dissolved organic material for carbon, nitrogen, phosphorus, and iron are governed by a similar mass 

balance: 

𝜕𝐷𝑂𝐶

𝜕𝑡
= 𝑆𝐷𝑂𝐶 − ∇ ∙ (𝒖𝐷𝑂𝐶) + ∇ ∙ (𝜿∇𝐷𝑂𝐶) 

(A7) 

𝜕𝐷𝑂𝑁

𝜕𝑡
= 𝑆𝐷𝑂𝑁 − ∇ ∙ (𝒖𝐷𝑂𝑁) + ∇ ∙ (𝜿∇𝐷𝑂𝑁) 

(A8) 
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𝜕𝐷𝑂𝑃

𝜕𝑡
= 𝑆𝐷𝑂𝑃 − ∇ ∙ (𝒖𝐷𝑂𝑃) + ∇ ∙ (𝜿∇𝐷𝑂𝑃) 

(A9) 

𝜕𝐷𝑂𝐹𝑒

𝜕𝑡
= 𝑆𝐷𝑂𝐹𝑒 − ∇ ∙ (𝒖𝐷𝑂𝐹𝑒) + ∇ ∙ (𝜿∇𝐷𝑂𝐹𝑒) 

(A10) 

As are pools of particulate detritus for these three elements: 

𝜕𝑃𝑂𝐶

𝜕𝑡
= 𝑆𝑃𝑂𝐶 − ∇ ∙ (𝒖𝑃𝑂𝐶) + ∇ ∙ (𝜿∇𝑃𝑂𝐶) − 

𝜕𝑤𝑃𝑂𝐶𝑃𝑂𝐶

𝜕𝑧
 

(A11) 

𝜕𝑃𝑂𝑁

𝜕𝑡
= 𝑆𝑃𝑂𝑁 − ∇ ∙ (𝒖𝑃𝑂𝑁) + ∇ ∙ (𝜿∇𝑃𝑂𝑁) − 

𝜕𝑤𝑃𝑂𝑁𝑃𝑂𝐶

𝜕𝑧
 

(A12) 

𝜕𝑃𝑂𝑃

𝜕𝑡
= 𝑆𝑃𝑂𝑃 − ∇ ∙ (𝒖𝑃𝑂𝑃) + ∇ ∙ (𝜿∇𝑃𝑂𝑃) − 

𝜕𝑤𝑃𝑂𝑃𝑃𝑂𝐶

𝜕𝑧
 

(A13) 

𝜕𝑃𝑂𝐹𝑒

𝜕𝑡
= 𝑆𝑃𝑂𝐹𝑒 − ∇ ∙ (𝒖𝑃𝑂𝐹𝑒) + ∇ ∙ (𝜿∇𝑃𝑂𝐹𝑒) − 

𝜕𝑤𝑃𝑂𝐹𝑒𝑃𝑂𝐹𝑒

𝜕𝑧
 

(A14) 

where particles are assumed to also sink at rate 𝑤𝑃𝑂𝐶, 𝑤𝑃𝑂𝑁, 𝑤𝑃𝑂𝑃, 𝑤𝑃𝑂𝐹𝑒 for carbon, nitrogen, phosphorus, and 305 

iron, respectively. 

 Several of the biological source and sink terms are described in the main text (Table 1). Here we describe 

additional source and sink terms for inorganic nutrients and detritus. Ammonium is produced by remineralization 

of organic material, and lost by nitrification and phytoplankton growth: 

𝑆𝑁𝐻4+ = 𝑟𝐷𝑂𝑁𝐷𝑂𝑁 + 𝑟𝑃𝑂𝑁𝑃𝑂𝑁⏟              
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

− 𝜁𝑁𝐻4+𝑁𝐻4
+

⏟      
𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

− ∑𝑉𝑁𝐻4+𝑃𝑗
𝑗⏟      

𝑛𝑢𝑡𝑟𝑖𝑒𝑛𝑡 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A15) 

Biological source and sink terms for nitrate, nitrite, phosphorus, and dissolved inorganic carbon are as follows: 310 

 

𝑆𝑁𝑂3− = 𝜁𝑁𝑂2−𝑁𝑂2
−

⏟      
𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

−𝑄𝑁:𝐶∑𝑉𝑁𝑂3−,𝑗𝑃𝑗
𝑗⏟          

𝑛𝑖𝑡𝑟𝑎𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A16) 

𝑆𝑁𝑂2− = 𝜁𝑁𝐻4+𝑁𝐻4
+

⏟      
𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

− 𝜁𝑁𝑂2−𝑁𝑂2
−

⏟      
𝑛𝑖𝑡𝑟𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛

− 𝑄𝑁:𝐶∑𝑉𝑁𝑂2−,𝑗𝑃𝑗
𝑗⏟          

𝑛𝑖𝑡𝑟𝑖𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A17) 

𝑆𝑃𝑂43− = 𝑟𝐷𝑂𝑃𝐷𝑂𝑃 + 𝑟𝑃𝑂𝑃𝑃𝑂𝑃⏟              
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

−𝑄𝑃:𝐶∑𝑉𝐷𝐼𝐶,𝑗𝑃𝑗
𝑗⏟          

𝑝ℎ𝑜𝑠𝑝ℎ𝑎𝑡𝑒 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A18) 
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𝑆𝐷𝐼𝐶 = 𝑟𝐷𝑂𝐶𝐷𝑂𝐶 + 𝑟𝑃𝑂𝐶𝑃𝑂𝐶⏟              
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

−∑𝑉𝐷𝐼𝐶,𝑗𝑃𝑗
𝑗⏟      
𝐷𝐼𝐶 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A19) 

𝑆𝐹𝑒 = 𝑟𝐷𝑂𝐹𝑒𝐷𝑂𝐹𝑒 + 𝑟𝑃𝑂𝐹𝑒𝑃𝑂𝐹𝑒⏟                
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

− 𝑄𝐹𝑒:𝐶∑𝑉𝐷𝐼𝐶,𝑗𝑃𝑗
𝑗⏟          

𝑖𝑟𝑜𝑛 𝑢𝑝𝑡𝑎𝑘𝑒

 
(A20) 

Where fixed elemental ratios convert carbon uptake to other elements (e.g. multiplication by 𝑄𝑃:𝐶 in Equation A18 

converts carbon uptake to phosphorus uptake). 

Dissolved organic material, for example DOC, is produced through phytoplankton and zooplankton 

mortality and sloppy feeding, and consumed through remineralization: 315 

𝑆𝐷𝑂𝐶 = ∑(1 − 𝛽𝑝
𝑚𝑜𝑟𝑡) 𝛿𝑝𝑃𝑖

𝑖⏟            
𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

+ ∑(1 − 𝛽𝑧
𝑚𝑜𝑟𝑡)(𝛿𝑧𝑍𝑗 + 𝛿𝑧𝑧𝑍𝑗

2)

𝑗⏟                    
𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

+ ∑∑(1 − 𝛽𝑧
𝑔𝑟𝑎𝑧)(1 − 𝜀)𝑔𝑖𝑍𝑗

𝑗𝑖⏟                    
𝑠𝑙𝑜𝑝𝑝𝑦 𝑓𝑒𝑒𝑑𝑖𝑛𝑔

− 𝑟𝐷𝑂𝐶𝐷𝑂𝐶⏟      
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 

(A21) 

Dissolved nitrogen and phosphorus are governed by the same sources and sinks, converted from carbon with fixed 

stoichiometric ratios, e.g. for nitrogen 𝑄𝑁:𝐶 (units mol N (mol C)-1): 

𝑆𝐷𝑂𝑁 = 𝑄𝑁:𝐶∑(1− 𝛽𝑝
𝑚𝑜𝑟𝑡) 𝛿𝑝𝑃𝑖

𝑖⏟            
𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

+ 𝑄𝑁:𝐶∑(1− 𝛽𝑧
𝑚𝑜𝑟𝑡)(𝛿𝑧𝑍𝑗 + 𝛿𝑧𝑧𝑍𝑗

2)

𝑗⏟                      
𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

+ 𝑄𝑁:𝐶∑∑(1− 𝛽𝑧
𝑔𝑟𝑎𝑧)(1 − 𝜀)𝑔𝑖𝑍𝑗

𝑗𝑖⏟                      
𝑠𝑙𝑜𝑝𝑝𝑦 𝑓𝑒𝑒𝑑𝑖𝑛𝑔

− 𝑟𝐷𝑂𝑁𝐷𝑂𝑁⏟      
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 

(A22) 

The same basic processes are also biological sources and sinks for particulate organic carbon: 

𝑆𝑃𝑂𝐶 = ∑𝛽𝑝
𝑚𝑜𝑟𝑡  𝛿𝑝𝑃𝑖

𝑖⏟        
𝑝ℎ𝑦𝑡𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

+ ∑𝛽𝑧
𝑚𝑜𝑟𝑡(𝛿𝑧𝑍𝑗 + 𝛿𝑧𝑧𝑍𝑗

2)

𝑗⏟                
𝑧𝑜𝑜𝑝𝑙𝑎𝑛𝑘𝑡𝑜𝑛 𝑚𝑜𝑟𝑡𝑎𝑙𝑖𝑡𝑦

− ∑∑𝛽𝑧
𝑔𝑟𝑎𝑧(1 − 𝜀)𝑔𝑖𝑍𝑗

𝑗𝑖⏟                
𝑠𝑙𝑜𝑝𝑝𝑦 𝑓𝑒𝑒𝑑𝑖𝑛𝑔

− 𝑟𝑃𝑂𝐶𝑃𝑂𝐶⏟      
𝑟𝑒𝑚𝑖𝑛𝑒𝑟𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

 

(A23) 

Where 𝛽𝑝
𝑚𝑜𝑟𝑡 and 𝛽𝑍

𝑚𝑜𝑟𝑡 partitions phytoplankton and zooplankton losses between particulate and dissolved pools, 

with corresponding partitions for sloppy feeding given by 𝛽𝑝
𝑔𝑟𝑎𝑧

 and 𝛽𝑍
𝑔𝑟𝑎𝑧

. As with DOM (Equation A22), fixed 320 
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stoichiometric conversations are applied to convert carbon POC sources to PON and POP. These equations are not 

shown for brevity. 

 The phytoplankton growth rate 𝜇𝑖  is modified by light, nutrients, and temperature in a multiplicative 

manner:  

𝜇𝑖 = 𝜇𝑚𝑎𝑥,𝑖𝛾𝐿,𝑖𝛾𝑁,𝑖𝛾𝑇,𝑖 (A24) 

 325 

Where light limitation is based on the model of photoacclimation following Geider et al. (1997): 

 

𝛾𝐿,𝑖 = (1 − exp (
−𝛼𝜃𝐼

𝜇𝑚𝑎𝑥,𝑖𝛾𝑁,𝑖𝛾𝑇,𝑖
)) 

 

(A25) 

 

Nutrient limitation follows Monod kinetics and Liebig’s law of the minimum: 

𝛾𝑁 = 𝑚𝑖𝑛{𝑉𝑁,𝑖 , 𝑉𝑃,𝑖 , 𝑉𝐹𝑒,𝑖}  

(A26) 

Where nutrient limitation by nitrogen, phosphorus, and iron are governed by monod kinetics: 330 

𝑉𝑁,𝑖 =
𝑁𝑂3

−

𝑁𝑂3
− +𝐾𝑁𝑂3−

𝑒Ψ𝑁𝐻4
+
+

𝑁𝑂2
−

𝑁𝑂2
− + 𝐾𝑁𝑂2−

𝑒Ψ𝑁𝐻4
+
+

𝑁𝐻4
+

𝑁𝐻4
+ + 𝐾𝑁𝐻4+

 
(A27) 

 

𝑉𝑃,𝑖 =
𝑃𝑂4

3−

𝑃𝑂4
3− +𝐾𝑃𝑂43−

 
(A28) 

𝑉𝐹𝑒,𝑖 =
𝐹𝑒

𝐹𝑒 + 𝐾𝐹𝑒
 

(A29) 

 

Where nitrate and nitrite assimilation are inhibited in the presence of ammonium with Ψ, following (Follows et al. 

2007) and others l (Dutkiewicz et al. 2009, 2012; Ward et al. 2012; Zakem et al. 2018). Uptake of ammonium, 

nitrite, and nitrate are found by partitioning total realized nutrient uptake by the three different nitrogen species as 

follows:  335 

𝑉𝑁𝐻4+,𝑖 =
1

𝑉𝑁,𝑖

𝑁𝐻4
+

𝑁𝐻4
+ + 𝐾𝑁𝐻4+

𝛾𝑁 
(A30) 

 

𝑉𝑁𝑂2−,𝑖 =
1

𝑉𝑁,𝑖

𝑁𝑂2
−

𝑁𝑂2
− + 𝐾𝑁𝑂2−

𝑒Ψ𝑁𝐻4
+
𝛾𝑁 

(A31) 
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𝑉𝑁𝑂3−,𝑖 =
1

𝑉𝑁,𝑖

𝑁𝑂3
−

𝑁𝑂3
− + 𝐾𝑁𝑂3−

𝑒Ψ𝑁𝐻4
+
𝛾𝑁 

(A32) 

Growth is modulated by temperature with the Arrhenius equation: 

𝛾𝑇 = 𝜏exp (𝐴𝐸 (
1

𝑇 + 273.15
−
1

𝑇0
)) 

 

(A33) 

Grazing rate of zooplankton type 𝑗 follows the Holling II functional response as a function of total phytoplankton 

biomass (Holling 1959), partitioned between phytoplankton size classes according to the proportion of total 

phytoplankton biomass in each size class: 

𝑔𝑖,𝑗 = 𝑔𝑚𝑎𝑥,𝑗
𝑃𝑖
∑ 𝑃𝑖𝑖

∑ 𝑃𝑖𝑖

∑ 𝑃𝑖𝑖 + 𝐾𝑔,𝑗
 

 

(A34) 

 340 
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Table A1. Model state variables. 345 

 

 

  
Symbol Description Units 

𝑁𝐻4
+ Ammonium mmol m-3 

𝑁𝑂3
− Nitrate mmol m-3 

𝑁𝑂2
− Nitrite mmol m-3 

𝑃𝑂4
3− Phosphate mmol m-3 

𝐷𝐼𝐶 Dissolved inorganic carbon mmol m-3 

𝐹𝑒 Iron mmol m-3 

𝐷𝑂𝐶 Dissolved organic carbon mmol m-3 

𝐷𝑂𝑁 Dissolved organic nitrogen mmol m-3 

𝐷𝑂𝑃 Dissolved organic phosphorus mmol m-3 

𝐷𝑂𝐹𝑒 Dissolved organic iron mmol m-3 

𝑃𝑂𝐶 Particulate organic carbon mmol m-3 

𝑃𝑂𝑁 Particulate organic nitrogen mmol m-3 

𝑃𝑂𝑃 Particulate organic phosphorus mmol m-3 

𝑃𝑂𝐹𝑒 Particulate organic iron mmol m-3 
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Table A2. Biological source and sink variables. 

 350 

 

 

 

 

 355 

 

 

 

 

 360 

 

 

 

 

 365 

 

 

 

 

 370 

 

 

 

 

 375 

 

 

 

Symbol Description Units 

𝑆𝑁𝐻4+  Biological sources and sinks of ammonium mmol m-3 s-1 

𝑆𝑁𝑂3− Biological sources and sinks of nitrate mmol m-3 s-1 

𝑆𝑁𝑂2− Biological sources and sinks of nitrite mmol m-3 s-1 

𝑆𝑃𝑂43− Biological sources and sinks of phosphate mmol m-3 s-1 

𝑆𝐷𝐼𝐶 Biological sources and sinks of DIC mmol m-3 s-1 

𝑆𝐹𝑒  Biological sources and sinks of iron mmol m-3 s-1 

𝑆𝐷𝑂𝐶  Biological sources and sinks of DOC mmol m-3 s-1 

𝑆𝐷𝑂𝑁 Biological sources and sinks of DON mmol m-3 s-1 

𝑆𝐷𝑂𝑃  Biological sources and sinks of DOP mmol m-3 s-1 

𝑆𝐷𝑂𝐹𝑒  Biological sources and sinks of DOFe mmol m-3 s-1 

𝑆𝑃𝑂𝐶  Biological sources and sinks of POC mmol m-3 s-1 

𝑆𝑃𝑂𝑁 Biological sources and sinks of PON mmol m-3 s-1 

𝑆𝑃𝑂𝑃  Biological sources and sinks of POP mmol m-3 s-1 

𝑆𝑃𝑂𝐹𝑒  Biological sources and sinks of POFe mmol m-3 s-1 
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Table A3. Model parameters and variables. Specific parameter values assume default values listed 

in various publications (Ward et al. 2012; Dutkiewicz et al. 2020) and are available in the online 

documentation for the Darwin ecosystem model 

(https://darwin3.readthedocs.io/en/latest/phys_pkgs/darwin.html). Plankton traits (nutrient and 

grazing half-saturation constants, maximal grazing and nutrient uptake rates) were generated via 

allometric scaling relationships reported by Ward et al. (2012). The large phytoplankton has a faster 

maximal growth rate and higher nutrient half-saturation constants than the small phytoplankton, 

representative of differences in growth rate between a eukaryotic algae and a cyanobacteria, 

respectively (Litchman et al. 2007; Ward et al. 2012) 

Symbol Description Units 

𝑤𝑃𝑂𝐶 Particulate organic carbon sinking rate m s-1 

𝑤𝑃𝑂𝑁 Particulate organic nitrogen sinking rate m s-1 

𝑤𝑃𝑂𝑃 Particulate organic phosphorus sinking rate m s-1 

𝑤𝑃𝑂𝐹𝑒 Particulate organic iron sinking rate m s-1 

𝑟𝐷𝑂𝐶  Particulate organic carbon remineralization rate s-1 

𝑟𝐷𝑂𝑁 Particulate organic nitrogen remineralization rate s-1 

𝑟𝐷𝑂𝑃  Particulate organic phosphorus remineralization rate s-1 

𝑟𝐷𝑂𝐹𝑒  Particulate organic iron remineralization rate s-1 

𝑟𝑃𝑂𝐶  Dissolved organic carbon remineralization rate s-1 

𝑟𝑃𝑂𝑁 Dissolved organic nitrogen remineralization rate s-1 

𝑟𝑃𝑂𝑃 Dissolved organic phosphorus remineralization rate s-1 

𝑟𝑃𝑂𝐹𝑒 Dissolved organic iron remineralization rate s-1 

𝜁𝑁𝐻4+ Rate of ammonium oxidation to nitrite s-1 

𝜁𝑁𝑂2− Rate of nitrite oxidation to nitrate s-1 

𝑉𝑁𝐻4+,𝑖 Rate of ammonium uptake by phytoplankton i s-1 

𝑉𝑁𝑂3−,𝑖 Rate of nitrate uptake by phytoplankton i s-1 

𝑉𝑁𝑂2−,𝑖 Rate of nitrite uptake by phytoplankton i s-1 
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𝑉𝐷𝐼𝐶,𝑖 Rate of DIC uptake by phytoplankton i s-1 

𝑄𝑁:𝐶 Phytoplankton ratio of nitrogen to carbon mol N (mol C)-1 

𝑄𝑃:𝐶  Phytoplankton ratio of phosphorus to carbon mol P (mol C)-1 

𝑄𝐹𝑒:𝐶  Phytoplankton ratio of iron to carbon mol Fe (mol C)-1 

𝛽𝑝
𝑚𝑜𝑟𝑡 Proportion of phytoplankton mortality that goes to POC n.d. 

𝛽𝑧
𝑚𝑜𝑟𝑡 Proportion of zooplankton mortality that goes to POC n.d. 

𝛽𝑧
𝑔𝑟𝑎𝑧

 Proportion of sloppy feeding that goes to POC n.d. 

𝛿𝑝 Phytoplankton linear rate of mortality s-1 

𝛿𝑧 Zooplankton linear rate of mortality s-1 

𝛿𝑧𝑧 Zooplankton quadratic rate of mortality m3 (mol C)-1 s-1 

𝜇𝑖 Growth rate of phytoplankton i s-1 

𝜇𝑚𝑎𝑥,𝑖 Maximum growth rate of phytoplankton i   s-1 

𝛾𝐿,𝑖 Growth limitation by light n.d. 

𝛾𝑁,𝑖 Growth limitation by nutrients n.d. 

𝛾𝑇,𝑖 Growth modulation by temperature n.d. 

𝜃 Phytoplankton chlorophyll to carbon ratio mg Chl (mmol C)-1 

𝛼 Phytoplankton light affinity m2 mmol C  

(µmol photons)-1  

(mg Chl)-1  

𝐼 Photosynthetically available radiance µmol photons m-2 s-1 

𝐾𝑁𝑂3−,𝑖 Phytoplankton i half-saturation constant for nitrate mmol m-3 

𝐾𝑁𝑂2−,𝑖 Phytoplankton i half-saturation constant for nitrite mmol m-3 

𝐾𝑁𝐻4+,𝑖 Phytoplankton i half-saturation constant for ammonium mmol m-3 

𝐾𝑃𝑂43−,𝑖 Phytoplankton i half-saturation constant for phosphate mmol m-3 

𝐾𝐹𝑒 Phytoplankton i half-saturation constant for iron mmol m-3 

Ψ Ammonium inhibition of nitrate and nitrite assimilation m3 (mmol N)-1 

𝐴𝐸 Temperature response function coefficient ºC 

𝜏 Temperature response function coefficient n.d. 

𝑇0 Reference temperature for Arrhenius growth response ºC 
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𝑔𝑚𝑎𝑥,𝑖 Maximal grazing rate of zooplankton i   s-1 

𝜀 Proportion of grazed phytoplankton assimilated by zooplankton n.d. 

𝐾𝑔,𝑖 Grazing half-saturation constant for zooplankton i.  mmol m-3 
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