

1	The additionality problem of Ocean Alkalinity Enhancement
2	
3	Lennart T. Bach
4	
-	Institute for Marine and Anterestic Studies University of Termania Habert TAS Australia
5	institute for Marine and Antarctic Studies, University of Fasinania, Hobart, TAS, Austrana.
0	
/	Correspondence to: Lennart T. Bach (Lennart.bach@utas.edu.au)
8	
9	
10	Abstract. Ocean Alkalinity Enhancement (OAE) is an emerging approach for atmospheric carbon dioxide
11	removal (CDR). The net climatic benefit of OAE depends on how much it can increase carbon sequestration
12	relative to a baseline state without OAE. This so-called 'additionality' can be calculated as:
13	
14 15	Additionality = $C_{OAE} - \Delta C_{baseline}$
16	So far feasibility studies on OAF have mainly focussed on enhancing alkalinity in the oceans (C_{OAE}) but not
17	primarily how such anthropogenic alkalinity would modify the natural alkalinity cycle (ACheoslina). Here I present
18	incubation experiments where materials considered for OAE (sodium hydroxide, steel slag, olivine) are exposed
19	to beach sand to investigate the influence of anthronogenic alkalinity on natural alkalinity sources and sinks. The
20	experiments show that anthropogenic alkalinity can strongly reduce the generation of natural alkalinity, thereby
21	reducing additionality. This is because the anthropogenic alkalinity increases the calcium carbonate saturation
22	state, which reduces the dissolution of calcium carbonate from sand, a natural alkalinity source. I argue that this
23	'additionality problem' of OAE is potentially widespread and applies to many marine systems where OAE
24	implementation is considered – far beyond the beach scenario investigated in this study. However, the problem
25	can potentially be mitigated by dilute dosing of anthropogenic alkalinity into the ocean environment, especially
26	at hotspots of natural alkalinity cycling such as in marine sediments. Understanding a potential slowdown of the
27	natural alkalinity cycle through the introduction of an anthropogenic alkalinity cycle will be crucial for the
28	assessment of OAE.
29	n an
30	1. Introduction
31	
32	Keeping global warming between 1.5 to 2°C requires rapid reduction of greenhouse gas emissions and gigatonne-
33	scale atmospheric carbon dioxide removal (CDR), using a portfolio of terrestrial and marine CDR methods
34	(Nemet et al., 2018). Ocean alkalinity enhancement (OAE) is considered as an important CDR method of the
35	marine portfolio (Hartmann et al., 2013). OAE can be achieved through a variety of geochemical and
36	electrochemical processes (Renforth and Henderson, 2017). All of them enhance surface ocean alkalinity to
37	reduce the hydrogen ion (H^+) concentration in seawater (i.e. increase pH). This reduction in $[H^+]$ causes a shift in
38	the carbonate chemistry equilibrium:
39	

40 41	$CO_2 + H_2O \leftrightarrow H^+ + HCO_3^- \leftrightarrow 2H^+ + CO_3^{2-}$	(1)
42 43 44 45	from CO ₂ on the left towards bicarbonate (HCO ₃ [•]) and carbonate ion (CO ₃ ^{2•}) on the right. The of the CO ₂ partial pressure in seawater (pCO ₂) enables atmospheric CO ₂ influx into the ocear outflux if pCO ₂ > atmospheric pCO ₂). This transfer (retention) of atmospheric CO ₂ into the increase of the dissolved inorganic carbon (DIC) concentration in seawater:	associated reduction ans (or reduces CO ₂ ne ocean leads to an
40	$DIC = [CO_2] + [HCO_3^-] + [CO_3^{2-}]$	(2)
49 50 51 52 53	Among the widely discussed OAE approaches are coastal enhanced weathering and electrodia (Eisaman et al., 2023). Coastal Enhanced Weathering achieves alkalinity increase via the ad alkaline rocks like limestone, olivine, or alkaline industrial products like steel slag to coastal et al., 2017; Harvey, 2008; Meysman and Montserrat, 2017; Renforth, 2019; Schuiling and R the case of limestone, alkalinity enhancement and CDR are generated through the dissolution	alytical acid removal ldition of pulverized environments (Feng Krijgsman, 2006). In n of e.g. CaCO ₃ :
54 55 56	$CaCO_3 + CO_2 + H_2O \rightarrow Ca^{2+} + 2HCO_3^-$	(3)
57 58	For olivine, alkalinity enhancement and CDR are driven predominantly by the dissolution of F	orsterite (Mg ₂ SiO ₄):
60	$Mg_2SiO_4 + 4CO_2 + 4H_2O \rightarrow 2Mg^{2+} + 4HCO_3 + H_4SiO_4$	(4)
61 62 63	For steel slags, the predominant source for alkalinity contained within the material are hydrox oxide (CaO) (Shi, 2004). Here, the net reaction of OAE and associated CDR is:	ides such as calcium
64 65	$CaO + 2 CO_2 + H_2O \rightarrow Ca^{2+} + 2 HCO_3^-$	(5)
66 67 68	Electrodialytical OAE is somewhat different from the above approaches since no m seawater. Instead, water is split into H ⁺ and a hydroxide ion (OH-) using electrical energy membranes (de Lannov et al. 2018). H ⁺ is captured as hydrochloric acid whilst OH- is	aterials are added to and electrodialytic
69 70 71 72	hydroxide (NaOH). The hydrochloric acid needs to be utilised, neutralized in deep ocean sec save reservoirs outside the ocean (Eisaman et al., 2018; Tyka et al., 2022). NaOH is enrich seawater, which is released back into the surface convert CO_2 into HCO_3^- (Eisaman et al., 2018)	diments, or stored in ned in the processed 8; Tyka et al., 2022):
73	$NaOH + CO_2 \rightarrow Na^+ + HCO_3^-$	(6)
75 76 77 78 79	A critical side-effect of OAE is the associated increase in CO_3^{2-} concentrations, which comes the marine carbonate equilibrium through H ⁺ absorption (see above). This increase elevates for calcium carbonate (Ω_{CaCO3}), the metric which determines the solubility of CaCO ₃ in seawat as:	s through the shift in s the saturation state er. Ω_{CaCO3} is defined

(7)

80 $\Omega_{CaCO3} = \frac{[Ca^{2+}]_{SW} \times [CO_3^{2-}]_{SW}}{K_{sp}}$

81

where $[Ca^{2+}]_{SW}$ and $[CO_3^{2-}]_{SW}$ are calcium ion (Ca^{2+}) and CO_3^{2-} concentration in seawater and K_{sp} is the empirically determined solubility product (Mucci, 1983). K_{sp} differs for different crystal forms of CaCO_3. It is higher for Aragonite than for Calcite, meaning Aragonite is more soluble (Mucci, 1983). Aragonite (Ara) and Calcite (Cal) precipitation is thermodynamically favoured when Ω_{Ara} and Ω_{Cal} are ≥ 1 . CaCO_3 precipitation is of high relevance for the assessment of OAE as the drawdown of CO_3^{2-} through precipitation reduces alkalinity, shifts the carbonate chemistry equilibrium (eq. 1) towards CO_2 and thus counters the CDR efficiency of OAE (Fuhr et al., 2022; Hartmann et al., 2023; Moras et al., 2022).

89 Logistical constraints suggest that OAE would at least initially more likely to be conducted in coastal 90 environments (He and Tyka, 2023; Lezaun, 2021; Renforth and Henderson, 2017). Here, alkalinity-enhanced 91 seawater would likely be in contact with marine sediments (Feng et al., 2017; Harvey, 2008; Meysman and 92 Montserrat, 2017). The highly abundant particles in marine sediments can serve as nuclei for CaCO₃ precipitation 93 thereby catalysing alkalinity loss when Ω_{CaCO3} is ≥ 1 (Morse et al., 2003; Zhong and Mucci, 1989). This constitutes 94 a problem for OAE because alkalinity-enhanced seawater with its high Ω_{CaCO3} is then exposed to particles that 95 catalyse precipitation. Indeed, recent studies have demonstrated that this particle-catalysed precipitation can 96 rapidly reduce alkalinity, with the degree and rate of alkalinity reduction depending on the amount of alkalinity 97 added and the particle concentrations (Fuhr et al., 2022; Hartmann et al., 2023; Moras et al., 2022).

98 Particle-catalysed CaCO₃ precipitation has received significant consideration as a loss term for OAE efficiency
99 (Fuhr et al., 2022; Hartmann et al., 2013, 2023; Moras et al., 2022; Renforth and Henderson, 2017). However,
100 there is another complication associated with OAE near sediments, which has to the best of my knowledge not
101 been considered so far. Sediments can not only provide precipitation nuclei but also constitute natural alkalinity
102 sources, for example via dissolution of CaCO₃ or other carbonates.

103 Sandy beaches are often rich in biogenic carbonates. They can also be rich in organic matter thereby 104 creating environments of high respiratory CO₂. Accordingly, Ω_{CaCO3} is low close to the sediments or within pore 105 waters and CaCO3 dissolution is favoured (Liu et al., 2021; Perkins et al., 2022; Reckhardt et al., 2015). This form 106 of natural alkalinity formation via CaCO₃ dissolution sequesters respired CO₂ which may have otherwise be 107 released into the atmosphere (Aller, 1982; Fakhraee et al., 2023; Krumins et al., 2013; Saderne et al., 2021). OAE 108 within these naturally low Ω_{CaCO3} environments could have two effects. First, it would have the desired effect of 109 consuming H⁺ and increasing CO₂ sequestration via the generation of anthropogenic alkalinity (eqs. 2-4). Second, 110 the consumption of H⁺ would increase Ω_{CaCO3} , which could reduce the dissolution of CaCO3 and thus reduce 111 natural CO₂ sequestration since less natural alkalinity is produced. Due to this second effect, the first (desired) 112 effect of CO₂ sequestration may be significantly reduced. Accordingly, the net gain in CO₂ sequestration would 113 be lower than one would have hoped for.

117 (8) $Additionality = C_{OAE} - \Delta C_{baseline}$ 118

¹¹⁴ The concept "additionality" describes the net gain in CO₂ sequestration achieved through the
115 implementation of a CDR method. It can be defined in simple terms as:
116

119	where C_{OAE} is the CO ₂ sequestration achieved through OAE, and $\Delta C_{baseline}$ is the change in the baseline CO ₂
120	sequestration through the implementation of OAE.
121	This study aims to reveal and describe how anthropogenic alkalinity affects natural alkalinity release. I
122	present some observational data and three experiments where 3 types of anthropogenic alkalinity sources (NaOH,
123	steel slag, olivine) are exposed to a natural alkalinity source and sink (beach sand) to investigate their interactions.
124	Afterwards, I examine these interactions (termed "additionality problem"), discuss their relevance, and how it
125	could be mitigated.
126	
127	2. Methods
128	
129	2.1. Carbonate chemistry and dissolved silicate transects along Southern Tasmanian beaches
130	
131	The project was initialised with near-shore alkalinity, pH, and dissolved silicate (DSi) transects from the swash
132	zone to ~200 m offshore on 4 beach locations (Clifton South, Clifton North, Goats, Wedge) near Hobart
133	(Tasmania). Goal of these transects was to determine whether the beaches are detectable alkalinity sinks or sources
134	and to inform the incubation experiments. An overview of the sampled beaches with approximate conditions and
135	exact coordinates is provided in Table S1 and Fig. S1.
136	Samples for alkalinity and DSi were taken by filling 200 mL seawater from 0.2 m depth into a
137	polyethylene (PE) bottle. Samples for pH were collected in a 60 mL polystyrene (PS) jars filled and closed at 0.2
138	m depth. Both the PE bottles and the PS jars were pre-rinsed with sample. The sample closest to shore was taken
139	in the swash zone at the spot where a wave reached highest within \sim 5 minutes of observation. A \sim 0.2 m deep hole
140	was dug (Fig. S1) and water was collected from the groundwater with a 60 mL syringe. The second sample was
141	from the upper part of the swash zone where waves pushed water up the beach. Samples further out were taken
142	from within the wave breaking zone to about 50-100 m beyond the wave breaking zone. Samples were taken by
143	walking into the water to the point it became too deep and a surfboard was used as sampling vehicle.
144	The samples were transported back to the beach where pH was measured immediately (i.e. within 15
145	minutes after sampling) as described in section 2.4. Alkalinity and DSi samples were filtered after pH
146	measurements with a 0.22 syringe filter (nylon membrane) into a 125 mL PE bottle (alkalinity) or 60 mL PS
147	plastic jar (DSi). Both containers, the syringe, and the syringe filter were pre-rinsed with sample.
148	
149	2.2. Laboratory experiments
150	
151	2.2.1. Experiment 1: Replicated mineral dissolution assays to monitor interaction between
152	beach sand and weathering minerals
153	
154	Experiment 1 was designed to investigate the interaction between 4 different beach sands and alkaline minerals
155	during the incubation in seawater. The experiment required 60 HDPE bottles, each with a volume of 125 mL.
156	These 60 bottles were thoroughly cleaned with double-deionised water and dried at 60°C. Twelve bottles were
157	filled with sand from one of the 4 sampling locations (section 2.3.), respectively (totalling 48 bottles). Another
158	set of 12 bottles were not filled with sand. This yielded 5 sets of 12 bottles (Fig. 1). Of each set, 3 bottles remained

159 without further addition, 3 received 51.3 µL of 1 molar NaOH, 3 received 0.0065 g of ground steel slag, and 3 160 received 1 g of ground olivine (Fig. 1; sand, steel slag, and olivine properties were determined as described in 161 section 2.3.). The 48 bottles that contained sand were filled with 10 g of sand if slag or NaOH was added or 9 g 162 of sand if olivine was added. This was done so that the weights of added sand plus alkalinity feedstock was always 163 ~10 g. 164 Once the solid components were added, each bottle was filled with 120 (+/-4) g of seawater (S=35 ±2, alkalinity 165 = 2259.7 µmol/kg) collected in July 2022 in the Derwent Estuary near Taroona. Salinity and pH of the seawater 166 was determined a few minutes before transfer into the incubation bottles with a Metrohm 914 pH/conductivty 167 meter as described in section 2.4. The transfer of the seawater into the incubation bottles took 30 minutes in total 168 (please note that in the case of NaOH additions, seawater was added to the bottles before 51.3 µL of 1 molar 169 NaOH was added). The incubation bottles were immediately mounted on plankton wheel (1.06 m diameter, 2 170 rounds per minute), which was placed in a temperature-controlled room set to 15°C (Fig. S2). The plankton wheel 171 kept the various mixtures of sand, alkalinity source, and seawater moving inside the bottles. The experiment 172 commenced at 16:00 on the 17th of August, 2022. 173 After ~6.8 days (24th of August), bottles were consecutively removed from the plankton wheel in random order 174 between 8:00 and 15:30. pH was measured inside the bottle with a pH electrode, directly after a bottle was taken 175 off the plankton wheel. Afterwards, the alkalinity sample was filtered with a syringe through a 0.2 µm nylon filter 176 into a dry and clean 125 mL HDPE bottle and stored in the dark at 7°C. 177 178 **Experiment 2: Alkalinity formation at Omega gradients** 2.2.2. 179 180 Experiment 2 was designed to investigate whether a decline of Ω_{CaCO3} enhances the formation of natural alkalinity 181 via CaCO3 dissolution and how anthropogenic alkalinity sources (olivine, slag, NaOH) influence this process. The 182 experiment required 60 HDPE bottles (125 mL) cleaned with acid and double-deionised water (note that acid was 183 used in Experiment 2 to make sure all remnants from Experiment 1 were washed out of the bottles). All 60 184 incubation bottles were filled with sand from Clifton Beach (section 2.4.). The treatments were then set up as 185 follows: Twelve bottles were filled only with 10 g of sand; Twelve with 10 g of sand and 0.006515 (+/-0.00007) 186 g steel slag; Twelve with 9 g of sand and 1 (+/-0.002) g of olivine; Eight with 10 g of sand at "un-equilibrated" 187 NaOH addition; Sixteen with 10 g of sand at "equilibrated" NaOH addition (Fig. 1). 188 For each treatment, a gradient in seawater CO₂ concentrations was established from bottle 1 (lowest CO₂) to bottle 189 8-16 (highest CO₂). This was achieved with the following approach: A batch of seawater (S= 35 ± 0.2 , alkalinity = 190 2266.8 µmol/kg) was collected in November 2022 in the Derwent Estuary near Taroona. About 0.3L of the batch 191 was bubbled with pure CO2 gas for about 5 minutes to generate highly CO2-enriched seawater. Another ~7L of 192 the batch was used as source water to fill the incubation bottles. pH and temperature were measured in this batch 193 prior to filling the incubation bottles. The low CO2 incubation bottles (bottle 1 in the sequence from e.g. 1 to 12, 194 Fig. 1) were then filled first. Afterwards, about 20 mL of the CO2-enriched water was added to the batch, shaken 195 thoroughly to mix it and the pH and temperature were measured again. Once a stable pH/temperature reading was 196 achieved, the next bottles (bottle 2) were filled. This procedure was repeated until all bottles in a treatment were 197 filled with an increasing CO2 concentration. For the equilibrated and un-equilibrated NaOH treatments, I followed 198 the same procedure but separate 0.3L and 7L batches were used for the CO₂ enrichment that had previously been

199 amended with NaOH to elevate alkalinity from 2266.8 to 2757.4 µmol/kg prior to filling the incubation bottles. 200 All 60 bottles were filled with 120 +/-4 g of seawater and immediately mounted on the plankton wheel (2nd of 201 December, 2022; 17:00) under the same conditions as in Experiment 1 (i.e. 15°C, 2 rounds per minute, Fig. S2). 202 After ~6.8 days (9th of December), bottles were removed from the plankton wheel between 9:00 and 16:00. pH 203 and alkalinity were sampled as described in section 2.2.1. 204 205 2.2.3. Experiment 3: pH dependency of alkalinity formation from slag and olivine 206 207 Experiment 3 was designed to investigate whether a lower seawater pH would promote alkalinity formation from 208 steel slag and olivine. 209 The experiment required 12 new HDPE bottles (125 mL) cleaned with double-deionised water and dried thereafter. Six of the 12 bottles were filled with 0.00644 (±0.00007) g steel slag and the other six with 1.0003 210 211 (±0.002) g of olivine. Three slag and three olivine bottles were filled with seawater from the same seawater source 212 as used in Experiment 2 (S= 35 ± 0.2 , alkalinity= $2263.2 \mu mol/kg$, pH_T = 7.82). pH and temperature were measured 213 prior to filling the bottles with seawater (section 2.4.). Afterwards, the ~2L seawater batch was amended with 214 about 80 mL of CO_2 -enriched seawater as explained in section 2.2.2. This enrichment lowered the pH_T (total 215 scale) from 7.82 to 6.846. This low pH_T (high CO₂) seawater was used to fill the other 3 slag and olivine incubation 216 bottles. The 12 bottles with 122.8 (±0.15) g of seawater were immediately mounted on the plankton wheel (Fig. 217 S2) after filling (16th of December, 2022; 16:40) under the same conditions as in Experiment 1 and 2 (i.e. 15°C, 218 2 rounds per minute). 219 After ~6.8 days (23rd of December), the 12 bottles were randomly removed from the plankton wheel between 9:00 220 and 11:00. pH and alkalinity were sampled as described in section 2.2.1.

221

- Figure 1. Design of Experiments 1, 2, and 3. Bottles represent treatments with incubation of seawater, sand, and
 alkalinity sources (color code represents alkalinity source). In Experiment 2, NaOH was used as alkalinity source
 in two explicit scenarios as described in section 2.2.2.
- 226

222

227 228

2.3. Preparation and characterization of weathering minerals and beach sand

229 In total, 5 sand samples (0.5-1kg) were collected for Experiments 1 and 2 at Clifton Beach, Tasmania (Fig. S1,

230 Table S1). Sampling permission was granted by the Department of Natural Resources and Environment (Authority

231 No. ES 22314). Wet sand was sampled on the upper end of the swash zone and stored in zip bags at 15°C. Samples

1-4 were used for Experiment 1, ~24 hours after sampling while sample 5 was used for Experiment 2, ~72 hours
after sampling.

Olivine rocks were sourced from the Mount Shadwell Quarry in Mortlake (Australia, Table S1). Basic oxygen
slag (hereafter just called slag) was sourced from the Liberty Primary Steel – Whyalla Steelworks (Australia,
Table S1). Olivine rocks and slag (Fig. S3) were crushed with a hydraulic crusher into smaller pieces of about 10
mm and then milled with a ring mill in a chrome milling pot. Milled slag and olivine were sieved, first with a 250
µm sieve and then with a 150 µm sieve. The fractions retained on the 150 µm sieve were used for experiments.

Wet and dry weight of the sand used for laboratory experiments was determined by weight difference of a wet
and a dry sample. The wet sample (~80 g) was put into a clean plastic jar and dried for 24-72 hours. The particle
size spectra of the 5 dried sand samples as well as slag and olivine mineral were determined with a Sympatec
QICPIC particle imager.

243 For total particulate carbon (TPC) and particulate organic carbon (POC) analyses, dried sand samples were milled 244 for 12 minutes in a Retsch MM200 ball mill. Between 4-10 mg of each of the pulverized sand samples were 245 weighed into 10 tin cups for TPC or 10 silver cups for POC (2 TPC and POC replicates for each sample). The 246 POC samples were moisturized with 50µL of MilliQ water, placed for 18 hours in a dessicator that contained 36% 247 HCl to remove all carbonates and then dried. TPC and POC samples were analysed for carbon content using a 248 Thermo Finnigan EA 1112 Series Flash Elemental Analyser. Particulate inorganic carbon (PIC) content of the 249 samples was then calculated as the difference between TPC and POC. Percent content of carbonates was estimated 250 by multiplying % PIC content by the molecular weight of CaCO₃ (100 g/mol) and MgCO₃ (84.3 g/mol) for upper 251 and lower estimates.

252

253 254

2.4. Carbonate chemistry, salinity, and dissolved silicate measurements

pH was determined potentiometrically using a Metrohm 914 pH meter following Standard Operation Procedure 6a described in (Dickson et al., 2007) but omitting the test for ideal Nernst behaviour of the electrode (ideal Nernst behaviour was assumed). A new pH electrode (Metrohm Aquatrode Plus) was calibrated on the total pH scale (pH_T) with certified reference material (CRM) TRIS buffer (batch #37), provided by Prof. Andrew Dickson's laboratory. The calibration procedure for the relevant temperature range (~8 – 18°C) followed the exact workflow as described by (Ferderer et al., 2022). Precision of the pH measurement was assumed to be ±0.015 based on experience with the probe.

262 alkalinity was determined in an open cell titration following (Dickson et al., 2003). Samples were measured in 263 duplicate with a Metrohm 811 titration unit equipped with a Metrohm Aquatrode Plus. Alkalinity was calculated 264 from titration curves using the Calkulate function of PyCO2sys (Humphreys et al., 2020). The difference in 265 alkalinity between duplicate titrations of the sample was on average 1.95 μ mol/kg and >75% were within 4 266 μ mol/kg (N=185), which was assumed to be the precision of the measurement (±2 μ mol/kg). Accuracy was 267 controlled by correcting alkalinity values with CRM provided by A.G. Dickson's laboratory. Alkalinity was 268 measured within maximally 20 days after sampling.

269 Salinity was measured with a Metrohm conductivity probe with a PT1000 temperature sensor connected to a

- 270 Metrohm 914 conductivity meter. The probe was calibrated with DIC/alkalinity CRM from A.G. Dickson's
- 271 laboratory for which a salinity of 33.464 has been reported (CRM batch 200). Conductivity was measured in

272 mS/cm² and salinity was subsequently calculated on the practical salinity scale following Lewis and Perkins 273 (1978), following the workflow described by (Moras et al., 2022). A relatively low precision of +/- 0.2 was 274 determined from repeat measurements. 275 Si concentrations for beach transects were measured 18 hours after sampling following Hansen and Koroleff 276 (1999). No Si measurements were conducted for Experiments 1-3. 277 278 2.5. Carbonate chemistry calculations 279 280 Carbonate chemistry conditions were calculated with the "carb function" in Seacarb (Gattuso et al., 2021), with 281 pH_T, alkalinity, salinity, temperature, phosphate and silicate concentrations as input variables, stoichiometric 282 equilibrium constants from Lueker et al. (2000), and default settings for the other equilibrium constants. Si was 283 not measured due to volume limitations so I assumed a values of 50 µmol/kg at the end of the experiments, when 284 either sand, olivine, or slag were incubated. Likewise, phosphate was not measured and I assumed 2 µmol/kg at 285 the end of the experiments when slag was incubated. These Si and phosphate releases were based upon previous 286 trials. Note, however, that concentrations of Si and phosphate within these ranges have negligible impact on 287 calculated carbonate chemistry parameters (e.g. pCO₂ changes by $\sim 1 \mu$ atm when Si is assumed to be 0 instead of 288 50 µmol/kg). 289 Propagated errors in derived carbonate chemistry parameters (e.g., DIC) were calculated with the 290 "errors" function in Seacarb using measurement precisions described in section 2.4. for pH (±0.015), alkalinity 291 $(\pm 2 \mu mol/kg)$, and salinity (± 0.2) , default uncertainties for equilibrium constants and temperature, and when 292 applicable (see above) $\pm 50 \ \mu mol/kg$ for silicate and $\pm 2 \ \mu mol/kg$ for phosphate. 293 294 2.6. Calculations of the CO₂ uptake ratio (η_{CO2}) for carbonate and non-carbonate alkalinity 295 sources 296 297 The atmospheric CO₂ uptake ratio for OAE (η_{CO2}) was defined as the number of moles DIC absorbed per number 298 of moles alkalinity added (Tyka et al., 2022). nco2 was shown to range roughly between 0.75 and 0.9 mol:mol in 299 the surface ocean (Schulz et al., 2023; Tyka et al., 2022). However, this η_{CO2} range only applies for alkalinity

and the surface ocean (Schulz et al., 2023, Tyka et al., 2022). However, this f(c) range only applies for arkaninty source materials that exclusively increase alkalinity without a concomitant increase in DIC when they are added to seawater (Alk_{non-carbonate}). Such sources comprise for example NaOH, slag, and olivine. The estimated range does not apply when all or fractions of the added alkalinity comes from carbonates (Alk_{carbonate}), since CaCO₃ dissolution contributes 2 moles of alkalinity and 1 mole of (non-atmospheric) DIC when they dissolve. The dependency of η_{CO2} on the relative contribution of Alk_{carbonate} and Alk_{non-carbonate} was calculated as: $\eta_{CO2} = \frac{\text{DIC}_{equilibrated} - (\frac{\text{Alk}_{carbonate}}{2}) - \text{DIC}_{initial}}{\text{Alk}_{non-carbonate} + \text{Alk}_{carbonate} - \text{Alk}_{initial}}$ (9)

Where DIC_{initial} and Alk_{initial} are DIC and alkalinity in seawater before alkalinity was increased, assuming a seawater pCO₂ in equilibration with the atmosphere. DIC_{equilibrated} is the amount of DIC from the environment (e.g. from the atmosphere) that can be stored in seawater after the increase of Alk_{carbonate} and Alk_{non-carbonate}, assuming

seawater pCO₂ in equilibrium with the atmosphere. η_{CO2} was first calculated for a theoretical case where Alk_{initial}
was 2350 μmol/kg and DIC_{initial} was calculated for the surface ocean (15°C, S = 35, carbonate chemistry constants
as in section 2.5), assuming a pCO₂ of 420 μatm. Alk_{carbonate} and Alk_{non-carbonate} were then varied in a range of
scenarios (from 0 to 100% Alk_{carbonate}) to increase the sum of them by 1 μmol/kg. η_{CO2} was calculated for each
scenario.
Next, η_{CO2} was calculated specifically for Experiment 1 as follows: The increase of alkalinity (ΔAlkalinity) was

higher in the NaOH and slag treatments when no sand was present compared to incubations with sand (section 3.2). Δ Alkalinity was very likely Alk_{non-carbonate} in all incubations while the reduced Δ Alkalinity in the incubations with sand was likely due to secondary precipitation of carbonates (section 4.2.1). Based on these conclusions, η_{CO2} was estimated as:

321

323

 $\eta_{CO2} = \frac{(\Delta Alkalinity_{no-sand} - \Delta Alkalinity_{sand}) \times 0.5 + \Delta Alkalinity_{sand} \times 0.86}{\Delta Alkalinity_{no-sand}}$ (10)

324 where $\Delta Alkalinity_{no-sand}$ and $\Delta Alkalinity_{sand}$ are the changes in alkalinity measured in incubations without sand and 325 with sand, respectively; 0.5 is the η_{CO2} when Alk_{non-carbonate} is lost via the precipitation of carbonates where 2 moles 326 of alkalinity and 1 mol of DIC are sequestered; 0.86 is the η_{CO2} when all Δ Alkalinity is Alk_{non-carbonate} under the 327 conditions set up in the experiments (i.e. 15°C, S=35; see above). Please note that Δ Alkalinity was higher in the 328 olivine incubations when sand was present, which is opposite to the NaOH and slag incubations for reasons 329 discussed in section 4.2.1. Therefore, η_{CO2} was calculated assuming all Δ Alkalinity was Alk_{non-carbonate} for the 330 olivine incubations (i.e. $\eta_{CO2} = 0.86$). For the incubations without an added alkalinity source all Δ Alkalinity was 331 assumed to be Alk_{carbonate} so that η_{CO2} was 0.36.

332 η_{CO2} was also specifically calculated for Experiment 2. This required knowledge of how much of the measured 333 AAlkalinity was contributed by Alkcarbonate and Alknon-carbonate. In the treatments where only sand was incubated, 334 alkalinity and DIC increased roughly in a 2:1 molar ratio over the course of the experiment (i.e. Δ Alkalinity: Δ DIC 335 = 2:1 mol:mol). Thus, it can be assumed that the vast majority of the measured alkalinity increase is Alkcarbonate. 336 In contrast, when sand was incubated with alkaline materials, alkalinity and DIC generally increased with a molar 337 ratio that was >2:1 because alkaline materials release alkalinity without a concomitant increase of DIC. Based on 338 these constraints, we can roughly approximate the contribution of Alkcarbonate and Alknon-carbonate to the measured 339 alkalinity increase (AAlkalinity) as:

340

Where %Alk_{carbonate} is the percentage contribution of Alk_{carbonate} to ΔAlkalinity. Based on eq. (11), a
ΔAlkalinity:ΔDIC of for example 8:1 mol:mol would suggest that 25% of the ΔAlkalinity is Alk_{carbonate} and the
other 75% Alk_{non-carbonate}. Alk_{carbonate} and Alk_{non-carbonate} were calculated with eq. 11 for all incubations in Experiment
2 and this information was then used to calculate η_{CO2} with eq. (10). Finally, the amount of DIC that can be stored
in seawater due to an increase of Alk_{carbonate} and Alk_{non-carbonate} (DICOAE) was calculated as:

348

(12)

349 $DIC_{OAE} = \eta_{CO2} * \Delta Alkalinity$

350

351 for experiments 1 and 2.

352 353

2.7. Statistical analysis

354

355 Experiment 1 and 3 were analysed with a two-way analysis of variance (ANOVA) where either "sand" and 356 "alkalinity source material" (Experiment 1) or "carbonate chemistry" and "alkalinity source material" 357 (Experiment 3) were defined as independent variables. The dependent variables were the changes in carbonate 358 chemistry (e.g. Δ Alkalinity) over the course of the incubations. Homogeneity of variance was assessed by visually 359 inspecting if plotted model residuals vs. fitted values is scattering similarly around 0. Normality of the residuals 360 was assessed by inspecting qqplots where theoretical quantiles plotted against standardized residuals should 361 ideally resemble a straight line. Such a straight-line appearance (i.e. ideal normality) was not always given, so 362 some datasets were rank-transformed. However, transformation did not improve normality substantially so that 363 non-transformed data was used for all analyses. Statistical differences between individual treatments were 364 assessed with a Tukey post-hoc. Significant differences were assumed when p<0.05.

365 Experiment 2 was analysed by plotting Δ Alkalinity for each alkalinity source material and sand against the 366 increase in DIC that was established via additions of CO₂-saturated seawater (section 2.2.2). The data was fitted 367 with the polynomial equation a*x2+bx+c, where x is the amount of DIC added to each treatment and a, b, c are 368 fit parameters. The curve fitted to the treatments where only sand was added was compared to the curves fitted to 369 the treatments where sand and a certain alkalinity source were added.

370

372

371 3. Results

3.1. Beach transects

373 374

375 Beach transects consisted of 8-9 sampling points from the just above the swash zone to 150-220 m offshore at 376 four locations (Table S1, Fig. S1). Alkalinity showed distinct patterns across the locations. At Clifton South and 377 Wedge, alkalinity was higher in the swash zone than in the open water. This was particularly pronounced at Clifton 378 South with a value of 2418 µmol/kg relative to open water values of about 2300 µmol/kg (Fig. 2A). At Goats 379 Beach, no such alkalinity gradient was observed across the transect, while alkalinity was lower in the swash zone 380 at Clifton North (Fig. 2A). Wedge differed to the other locations in that alkalinity was generally lower (~2160 381 compared to ~2300 µmol/kg in open water). 382 pH_T was lowest in samples just above the swash zone at all four locations (Fig. 2B). The difference relative to 383 open water was most pronounced at Clifton South with pH_T of 7.76 just above the swash zone compared to

approximately 8.05 in the open water, while least pronounced at Goats. Gradients at Clifton North and Wedge
were in between these two extremes. pH_T at Wedge was on average higher in the open water than at the other
locations, i.e. 8.08 compared to 8.05 (Fig. 2B).

387 Si(OH)₄ concentrations were highest in samples from just above the swash zone at all four locations (Fig. 2C).

388 The most pronounced gradient was observed at Clifton South, with Si(OH)4 of 8.6 µmol/L just above the swash

- 389 zone and ~1.6 μ mol/L in open water. The least pronounced gradient was observed at Goats, and intermediate
- **390** gradients at Clifton North and Wedge (Fig. 2C).
- 391 Overall, the data shows consistency across the three parameters measured in that Clifton South showed most
- 392 pronounced trends, Goats the least pronounced trends, and Clifton North and Wedge being in between (Fig. 2).

393

Figure 2. Transects of (A) alkalinity, (B) pH_T, and (C) SiOH₄ at four different beach locations in southern
Tasmania (see Table S1 and Fig. S1 for locations). The first sampling was at the upper end of the swash zone and
then 7-8 more samples were taken until 150-200 m offshore. Lines and shaded areas show averages and
uncertainties, respectively.

398 399

3.2. Experiment 1

400

401 Alkalinity increased over the course of the 6.8 days in all treatments where alkaline materials were added (Fig. 402 3). Changes in alkalinity (Δ Alkalinity) were between ~610-400 µmol/kg for the slag, ~420-290 µmol/kg for the 403 NaOH, and 280-370 µmol/kg for the olivine treatment. In contrast, Δ Alkalinity changed very little (i.e. Δ Akalinity 404 ≤6 µmol/kg) when no alkaline materials were added. (Please note that an important outlier was observed in Sand 405 2 where ΔAlkalinity was 87.3 µmol/kg which will be discussed in section 4.3.). The two-way ANOVA revealed 406 significant effects of (1) the type of sand, (2) the type of alkalinity source, and (3) the interaction of these two on 407 Δ Alkalinity (p<0.05). For the slag and the NaOH treatment, Δ Alkalinity was significantly higher when these were 408 incubated with no sand but only small differences were observed across the four sand samples. In contrast, 409 AAlkalinity was slightly lower in the olivine treatment when no sand was present during incubations although the 410 difference was only significant relative to olivine incubated in Sand 4 (Fig. 3A). 411 Changes in pH_T (ΔpH_T) reflected the patterns described for $\Delta Alkalinity$ (Fig. 3B). ΔpH_T was highest in the slag

and the NaOH treatment when no sand was added, while this difference between the presence and absence of sand
 was not observed for olivine. ΔpH_T was slightly negative in treatments where no alkalinity source was added to

- 414 the incubated sand samples. The two-way ANOVA revealed significant effects of sand, alkalinity source and their
- 415 interaction on $\Delta p H_T$ (p<0.05).
- 416 η_{CO2} was prescribed to be 0.36 when sand without an anthropogenic alkalinity source was incubated and 0.86 for
- 417 olivine incubations (see section 2.6). Calculated η_{CO2} for NaOH and slag treatments were slightly lower due to
- **418** relatively lower ΔAlkalinity in the presence of sand than without the presence of sand (Fig 3C). This relatively
- 419 lower Δ Alkalinity was most likely due to some of the Δ Alkalinity was lost due to secondary precipitation of
- 420 carbonates. Statistics are not provided for η_{CO2} data because assumptions of the ANOVA model were heavily 421 violated.
- 422

423

Figure 3. Results of Experiment 1. Changes of (A) alkalinity and (B) pH_T from the beginning to the end of the
6.8 days experiment. (C) η_{CO2} at the end of the experiment. Boxplots are based on three replicates per treatment.
Colours refer to the added alkalinity source (No_Alk means no alkalinity source was added). The alignment on
the x-Axis indicates if or which sand sample was present in the incubation bottles ("No Sand" means no Sand was
added).

429 430

3.3. Experiment 2

431

432 The additions of CO2-enriched seawater established a gradient of increasing DIC and accordingly a decline in 433 pH_T and Ω_{Ara} . The rationale for this setup was that beach sediments can contain high amounts of respiratory CO₂ 434 so that anthropogenic alkalinity added to beaches has a high likelihood to be exposed to such high CO2 conditions 435 (Liu et al., 2021; Perkins et al., 2022; Reckhardt et al., 2015). Fig. 4 shows ΔAlkalinity along the DIC gradient 436 for different alkalinity source materials (NaOH, slag, olivine) and compares this to AAlkalinity along the same 437 DIC gradient where only sand from a beach was present. The "sand only" data is identical in all four plots (orange 438 lines in Fig. 4). It shows that $\Delta Alkalinity$ is close to zero in the sand-only incubations when no DIC is added but 439 increases exponentially with increasing DIC additions up to 537 µmol/kg.

- 440 OAE via NaOH additions was set up in two different scenarios (Fig. 4A, B). In the first scenario, the carbonate 441 system was equilibrated with atmospheric CO2 after the NaOH deployment and before exposed to the sand (Fig. 442 4A). This setup leads to a gradient in Ω_{Ara} from 2.1 to 0.2 along the DIC gradient at the beginning of the 6.8 days 443 incubations (highest Ω_{Ara} at the lowest DIC addition). In the second scenario, the carbonate system was not 444 equilibrated, thereby assuming that a NaOH-enriched patch of seawater would be exposed to sand sediments 445 before it had taken up atmospheric CO₂ (Fig. 4B). Here, initial Ω_{Ara} ranges from 7.1 to 2.3 along the DIC gradient. 446 In the equilibrated scenario, $\Delta Alkalinity$ was 482 µmol/kg when no DIC was added and increased exponentially 447 to 973 μ mol/kg at the highest DIC addition (Fig. 4A). In the unequilibrated scenario, Δ Alkalinity was 344 μ mol/kg 448 when no DIC was added and increased to 474 µmol/kg at the highest DIC addition. However, in contrast to the 449 equilibrated treatment, the AAlkalinity increase weakened along the DIC gradient and AAlkalinity was lower than 450 in the sand-only treatment when the DIC addition was >400 µmol/kg (Fig. 4B). 451 In the slag treatment, Δ Alkalinity was 521 µmol/kg when no DIC was added. Δ Alkalinity increased exponentially 452 along the DIC gradient to 814 μ mol/kg. The increase of Δ Alkalinity was less pronounced than in the sand-only
- treatment. Overall, the slag data showed more scatter relative to the other alkalinity source materials and sand-only treatments (Fig. 4C).
- In the olivine treatment, ΔAlkalinity was 258 µmol/kg when no DIC was added. ΔAlkalinity increased
 exponentially with increasing DIC additions to 453 µmol/kg although much less pronounced than in the sand-only treatment. ΔAlkalinity was lower in the olivine than in the sand-only treatment when DIC additions were
 >350 µmol/kg (Fig. 4C).
- 459

461 Figure 4. Results of Experiment 2. All panels show the change in alkalinity from the beginning to the end of the 462 6.8 days experiment along a gradient of DIC added to the incubation bottles at the start of the incubations. The 463 orange data displayed on all panels show ΔA lkalinity for incubations where only sand was incubated. The other 464 data on each panel show ΔA lkalinity when sand was incubated with an external alkalinity source or addition 465 scenario. (A) Sand and NaOH equilibrated with atmospheric CO2 upon addition; (B) Sand and NaOH which was 466 not equilibrated with atmospheric CO2 upon addition; (C) Sand and slag; (D) Sand and olivine. 467 468 3.4. Experiment 3 469

470 Experiment 3 tested if there is a pH dependency of alkalinity release by olivine and slag (Fig. 5). The two-way 471 ANOVA revealed a significant influence of pH_T on the release of alkalinity from olivine and slag (Fig. 4). Slag 472 released 707 \pm 61 µmol/kg alkalinity when incubated within a pH_T from initially 7.82 to 8.67 at the end of the 6.8 473 days incubation. Within the lower pH_T range from 6.86-8.39, slag released 805 \pm 86 µmol/kg. Olivine released 474 234 \pm 36 µmol/kg within the high pH_T range from 7.82-8.20 and 298 \pm 8 µmol/kg in the low pH_T range from 6.86-475 7.63 (Fig. 5).

- Olivine Slag
- 477

478 Figure 5. Results of Experiment 3. Changes in alkalinity from the beginning to the end of the 6.8 days experiment
479 when olivine or slag were incubated (without sand) under high (initially 7.82) or low pH_T (initially 6.85).
480 ΔAlkalinity was significantly higher under low pH_T.

- 481
- 482 4. Discussion
- 483

```
484
485
```

4.1. Carbonate-derived alkalinity is less efficient for CDR than non-carbonate-derived alkalinity

Section 2.6. introduced equations which show that alkalinity originating from carbonates (Alk_{carbonate}) has considerably less capacity to absorb CO₂ than alkalinity originating from non-carbonate sources such as olivine, slag, or NaOH (Alk_{non-carbonate}). The large influence of this chemical constraint on OAE is exemplified in Fig. 6. Here, the uptake potential for atmospheric CO₂ per mol alkalinity added to the ocean (η_{CO2}) is shown as a function of the carbonate contribution to the alkalinity source. When all Δ Alkalinity delivered via OAE originates from non-carbonate sources (e.g., NaOH, slag, olivine), then η_{CO2} equals 0.86 mol:mol. η_{CO2} declines linearly with an

492 increasing contribution Alk_{carbonate} to Δ Alkalinity to the lowest theoretical value for η_{C} 0.36 mol:mol, which 493 is reached when OAE provides all alkalinity as Alkcarbonate (Fig. 6). 494 The dependency of η_{CO2} on the alkalinity source material (Fig. 6) has important implications for OAE methods 495 that aim to utilise CaCO3 as alkalinity source (Harvey, 2008; Rau and Caldeira, 1999; Renforth et al., 2022; 496 Wallmann et al., 2022). The molar efficiency for atmospheric CO₂ sequestration of OAE is >50% lower when 497 using carbonates (e.g. CaCO₃). Or put differently, OAE approaches utilising CaCO₃ as alkalinity source would 498 have to increase alkalinity by more than twice as much to generate similar CDR compared to methods that use 499 non-carbonates (e.g. NaOH, slag, or olivine). Importantly, while this disadvantage of carbonates sources of 500 alkalinity appears to be substantial, it is not the only important factor determining the potential of such OAE 501 approaches. It is possible that the use of carbonates still holds higher potential, for example because limestone is 502 relatively abundant (Caserini et al., 2022), can dissolve from Renfort et al., 2022), or because it contains h 503 components potentially affecting marine organisms (Bach et al., 2019). Nevertheless, the dependency of η_{col} 504 the alkalinity source (Fig. 6) needs to be considered when assessing the efficiency of different OAE methods, as 505 will become apparent in section 4.2.

506

Figure 6. Changes in η_{CO2} with the fraction alkalinity that originates from carbonates (e.g. CaCO₃ dissolution).
The x-axis ranges from 0, which means all alkalinity originates from non-carbonate sources such as NaOH, slag,
or olivine to 1, which means all alkalinity originates from carbonate sources such as CaCO₃ or MgCO₃.

511 512

507

513

4.2. The additionality problem of OAE

_	ľ
=	

514 The experiments considered here investigate coastal applications of OAE, for example when ground minerals or 515 NaOH are exposed to beaches or sandy sediments. In the experiments, the treatments where only sand was 516 incubated constitute the baseline system while incubations of sand and an alkalinity source constitute the OAE 517 deployments. Both the baseline system and the OAE deployment were run in parallel under identical conditions. 518 To assess the net CO₂ sequestration (additionality) of OAE, CO₂ sequestration achieved through an OAE 519 deployment must be compared to the baseline state where no such deployment occurred (see eq. 8). As such, 520 additionality can be affected through processes that affect the OAE deployment directly (section 4.2.1.), or 521 through when the OAE deployment alters the baseline state of the system (section 4.2.2.).

- 522
- 523

4.2.1. Change of additionality through interaction of alkalinity sources with sand

524

525 The Δ Alkalinities determined in Experiment 1 were lower in NaOH and slag incubations with sand than in 526 incubations without sand. The reduction in the presence of sand was most likely due secondary precipitation of 527 carbonates, which is promoted when Ω_{CaCO3} is elevated and particle abundance is high (Fuhr et al., 2022; Moras 528 et al., 2022; Zhong and Mucci, 1989). In the case of slag, very small amounts of particles were also present in the 529 incubation without sand but apparently not enough to catalyse a similar degree of secondary precipitation as in 530 the case when 10 g of sand are present.

531 In contrast to the NaOH and slag incubations, the olivine incubations generated more Δ Alkalinity when sand was 532 present, even though the enhancement was small and only in one case statistically significant (i.e. No Sand vs 533 Sand 4; Fig. 3A). This contrasting observation can be explained as follows. First, Δ Alkalinity was generally lower 534 in the olivine incubations than in the NaOH and slag incubations when no sand was present (266 ±14.8 µmol/kg 535 for olivine vs. >420 µmol/kg for NaOH and slag). Moras et al. (2022) have shown that the onset of secondary 536 precipitation depends on Δ Alkalinity and they observed no secondary precipitation over a 40 days experimental 537 incubation when Δ Alkalinity was ~250 µmol/kg. This suggest that the 266 ±14.8 µmol/kg Δ Alkalinity generated 538 by olivine did not elevate Ω_{Ara} to high enough levels to induce noticeable secondary precipitation within 6.8 days. 539 However, the absence of such secondary precipitation cannot explain why Δ Alkalinity increased in the presence 540 of sand. It is possible that the sand itself released alkalinity via carbonate dissolution as a very small increase in 541 Δ Alkalinity was also observed in the sand-only incubations (e.g. 17.4 ±2.6 μ mol/kg in Sand 4; Fig. 3A). However, 542 Ω_{Ara} was higher in the olivine incubations as in the sand-only treatment so that a release of carbonate alkalinity 543 seems unlikely. It is also unlikely that the pH differences between olivine-only and olivine+sand incubations 544 drove this trend. While Experiment 3 underscores that lower pH promotes the release of alkalinity from olivine 545 (Fig. 5), pHT was higher in the olivine+sand treatment where significantly more alkalinity was released (see Sand 546 4 in Fig. 4A). What appears as a plausible explanation is that the sand caused physical destruction of coatings that 547 develop on the olivine particles during dissolution and are known to reduce dissolution rates (Oelkers et al., 2018). 548 Indeed, the dissolution-enhancing role physical abrasion has been hypothesised to increase OAE efficiency when 549 using olivine, although the dataset underpinning this hypothesis has not made it through peer-review (Schuiling 550 and de Boer, 2011).

551 η_{CO2} is reduced when the presence of sand catalyses section y precipitation (Fig. 4C). As a consequence, the amount of DIC that can be sequestered via OAE declines. Among other factors, the degree of alkalinity loss due 552 553 to secondary precipitation depends on the duration carbonate supersaturated water is exposed to the sand. The 554 experiments presented here lasted for 6.8 days and it is likely that secondary precipitation would have proceeded 555 (and η_{CO2} further declined) if the experiments had lasted for longer. Indeed, Moras et al. (2022) observed that 556 secondary precipitation catalysed by particles only slowed down once Ω_{Ara} reached ~2. In the experiments 557 presented here, Ω_{Ara} was generally >5 at the end of the study. Carbonate chemistry calculations with seacarb (data 558 not shown) suggest that a decline until Ω_{Ara} reaches 2 via carbonate precipitation (i.e. alkalinity and DIC decline 559 in a 2:1 molar ratio) would have reduced alkalinity by ~560 µmol/kg for the NaOH and 840 µmol/kg for the slag 560 incubations, respectively. In both cases the alkalinity after the OAE perturbation would be lower than before but 561 atmospheric CO₂ uptake would still occur ($\eta_{CO2} = 0.39$ for NaOH and 0.37 for slag) because the pCO₂ is still slightly lower than before the perturbation (Moras et al., 2022). 562

- 563
- 564

4.2.2. Reduction of additionality through modification of baseline alkalinity formation

565

566 One interesting observation was made during a sand-only incubation of Experiment 1 (i.e. "No Alk in Fig. 3). 567 For Sand 2, Δ Alkalinity was about 85 µmol/kg higher in one replicate bottle than in the other two. This difference 568 was due to a small arthropod (likely a sand flea) that was unintentionally added to the incubation bottle with the 569 high Δ Alkalinity. The arthropod was still alive at the end of the 6.8 incubation period. During those 6.8 days, the 570 organism respired, thereby reducing Ω_{Ara} , and causing alkalinity release from the sand via CaCO₃ dissolution. 571 This observation pointed out that the baseline system can already release substantial amounts of alkalinity even 572 before OAE is implemented given sufficient respiration. Indeed, the in-situ observations at Clifton South suggest 573 that alkalinity release occurs in the baseline system used here (section 3.1). Furthermore, there is widespread 574 evidence from the literature that beaches release alkalinity via CaCO₃ dissolution (Liu et al., 2021; Perkins et al., 575 2022; Reckhardt et al., 2015). These insights collectively inspired Experiment 2, where a DIC gradient (high to 576 low Ω_{Ara}) was set up to test if natural alkalinity release via CaCO₃ dissolution would be influenced by 577 anthropogenic alkalinity release via OAE.

578 Experiment 2 demonstrated that the release of natural alkalinity can be disturbed by the addition of anthropogenic 579 alkalinity sources (Fig. 7). Fig. 7A illustrates the additionality of alkalinity release, calculated by subtracting 580 Δ Alkalinity from sand-only incubations (represented by the orange lines in Fig. 4 panels A-D) from Δ Alkalinity 581 in sand+alkalinity incubations (represented by the red and blue lines). Fig. 7A reveals that the additionality of 582 Alkalinity declines with increasing amounts of added DIC. The reason for this trend is that the alkalinity sources 583 added to the incubation bottles buffered the DIC-induced pH decline. This buffering elevated Ω_{Ara} during the 584 incubations, resulting in a reduced release of natural alkalinity through CaCO₃ dissolution. Or in simpler terms, 585 by adding a new buffer system via OAE (NaOH, slag, or olivine), a natural buffer system (CaCO3 dissolution) is 586 partially replaced. In cases where olivine or non-equilibrated NaOH was tested, the additionality of AAlkalinity 587 became even negative when DIC additions were >350 and $>400 \mu mol/kg$, respectively (Fig. 7A).

588 Alkalinity release is generally seen as a good indicator for the amount of CO₂ that can be removed per mole alkalinity enhancement (η_{CO2}). However, as discussed in section 4.1., η_{CO2} also critically depends on whether the 589 590 released alkalinity is Alkcarbonate or Alknon-carboate. In Experiment 2, nco2 varies greatly depending on the alkalinity 591 source and the amount of DIC added to the incubation (Fig. 7B). nco2 is low for sand-only incubations because 592 basically all Δ Alkalinity is Alk_{carbonate}, whereas it is substantially higher in treatments with an anthropogenic 593 Alknon-carboante source. For olivine, η_{CO2} was around 0.7 mol:mol up until the highest DIC additions where η_{CO2} 594 declines slightly. This is lower than for slag, where η_{CO2} remains close to the theoretical maximum of 0.86 595 mol:mol. The difference between slag and olivine could be due to faster dissolution of slag, which elevates Ω_{Ara} 596 before substantial CaCO3 dissolution had occurred. In contrast, olivine dissolves more slowly (Fuhr et al., 2022; 597 Montserrat et al., 2017), so that some CaCO₃ dissolution may have occurred before olivine dissolution elevated 598 Ω_{Ara} enough to limit further CaCO₃ dissolution. (Please note, however, that this explanation does not explain why 599 η_{CO2} is also lower than in slag incubations at low DIC additions, where Ω_{Ara} was low enough to limit CaCO₃ 600 dissolution from the start). The reason for the decreasing η_{CO2} in the equilibrated NaOH scenario (Fig. 7B) is an 601 increasing contribution of Alk_{carbonate} to Δ Alkalinity. It is important to note that for the same added DIC, Ω_{Ara} is 602 much lower in the equilibrated NaOH scenario than in unequilibrated NaOH scenario (e.g. 0.28 vs. 2.9 at ~400 603 μ mol/kg added DIC for the equilibrated and unequilibrated NaOH scenarios, respectively). This lower Ω_{Ara} in the 604 equilibrated scenario is due to atmospheric CO₂ in-gassing, which has already reduced Ω_{Ara} in the equilibrated

605 scenario before this seawater starts interacting with beach sediments rich in respiratory CO2. As such, this OAE 606 scenario causes less reduction of natural alkalinity release from sediments via CaCO3 dissolution. 607 Measurements and estimates of Δ Alkalinity and η_{CO2} enabled calculation of how much DIC could be maximally 608 stored by the generated alkalinity (i.e., DICOAE shown in Fig. 7C). DICOAE increases with higher DIC additions 609 due to the release of alkalinity via CaCO3 dissolution. However, the increase is less pronounced as observed for 610 ΔAlkalinity (Fig. 7A) because Alk_{carbonate} from CaCO₃ dissolution is less efficient in sequestering environmental 611 CO2 than Alknon-carbonate from NaOH, slag, or olivine (section 4.1). 612 To calculate the additionality of DICOAE, I subtracted DICOAE of the sand-only incubations (baseline) of DICOAE 613 of the OAE scenarios (Fig. 7D). The additionality of DICOAE is arguably the most important parameter to assess 614 whether an OAE deployment has led to the net sequestration of CO2. In the case of the equilibrated NaOH and 615 slag scenarios, the additionality of DICOAE was constant over the applied gradient, suggesting that the release of 616 Alkcarbonate via CaCO3 dissolution led to similar DICOAE potential in the sand-only scenario and these two OAE 617 scenarios. In contrast, the additionality of DICOAE declined in the olivine scenario because there was relatively 618 more Alk_{carbonate} release in the sand only scenario than in the olivine scenario (Fig. 7D). Importantly, however, the 619 additionality of DICOAE remains positive up until the highest DIC addition, which is in stark contrast to the 620 additionality of Δ Alkalinity (compare Fig 7A and D). This means that the addition of olivine maintained a positive 621 CO₂ sequestration potential even though less alkalinity was generated in the olivine treatment than in the sand-622 only treatment (Fig. 7C). The reason for this counterintuitive observation is simply that the Alknon-carbonate released 623 by olivine has more potential to sequester CO2 than the Alkcarbonate released via CaCO3 dissolution.

624

626 Figure 7. Various measures of OAE efficiency under increasing additions of DIC (DIC could for example be CO2 627 from the respiration of organic material in sediments). (A) The additionality of Δ Alkalinity. (B) η_{CO2} at the end 628 of the experiment. (C) DICOAE, i.e., how much seawater CO2 could have potentially been absorbed with the 629 amount of Δ Alkalinity provided by the various alkalinity sources. (D) The additionality of DIC_{OAE}. Please note 630 that panels (B-D) only show data for the equilibrated NaOH scenario. I omitted the unequilibrated scenario for 631 logical reasons, i.e., because the core assumption in this scenario (no CO₂ equilibration with the atmosphere after 632 OAE) is at odds with the necessary assumption of CO₂ equilibration to calculate η_{CO2} (see eq. 10). 633 634 Relevance of the additionality problem of OAE and possible solutions 4.2.3. 635 636 Modifications of additionality can occur when OAE triggers subsequent alkalinity loss through biotic and abiotic 637 carbonate precipitation (section 4.2.1.). This feedback has been widely discussed and is already a predominant 638 topic in OAE research (Bach et al., 2019; Fuhr et al., 2022; Hartmann et al., 2013, 2023; Moras et al., 2022). Not 639 yet discussed is the modification of additionality that may occur when anthropogenic alkalinity sources (via OAE) 640 modify the release of natural alkalinity (section 4.2.2.). Thus, I will focus on the relevance of this second pathway 641 of additionality modification in the following. 642 The experiments conducted here tested mineral dissolution feedbacks with beach sand and in a setting that 643 assumes constant mixing, comparable to a high energy wave impact zone. This setting was chosen based on the 644 widely discussed OAE implementation strategy adding olivine powder to beaches. The results suggest that the

645 "additionality problem" needs to be considered for this specific OAE approach. However, the wave impact zone 646 comprises a tiny fraction of the coastal ocean and the question is to what extent the additionality problem also 647 applies to the vast shelf, bank, embayment and reef areas where OAE could also be implemented (Feng et al., 648 2017; Meysman and Montserrat, 2017; Mongin et al., 2021). The coastal ocean is a net sink of ~ 36 Tmol/year 649 alkalinity via CaCO3 burial (Middelburg et al., 2020), but considerable amounts of alkalinity are also generated 650 in the various coastal sediments via CaCO3 dissolution (one estimate suggests ~13 Tmol/year; (Krumins et al., 651 2013)). The dissolution depends on the solubility of CaCO₃ present in the sediments and pore water Ω 652 (Middelburg et al., 2020). Conditions for dissolution are generally favourable in coastal ocean sediments because 653 soluble forms of CaCO₃ occur more frequently and relatively high supply of organic matter lowers Ω_{CaCO3} 654 (Krumins et al., 2013; Lunstrum and Berelson, 2022; Morse et al., 1985). Thus, the introduction of an 655 anthropogenic buffer via OAE (which increases Ω_{CaCO3}) is likely to cause a reduction of alkalinity release from 656 the seafloor.

Indeed, more soluble forms of CaCO₃ were show to protect less soluble forms of CaCO₃ from 657 658 dissolution at the seafloor (Sulpis et al., 2022). Furthermore, an experiment exposed a coral reef to moderate levels 659 of increased alkalinity (Δ Alkalinity = ~50 μ mol/kg) and found a net increase of reef calcification, with some 660 evidence suggesting that the measured effect was due to reduced reef dissolution (Albright et al., 2016). 661 Anthropogenic alkalinity sources (e.g. NaOH, slag, olivine) introduced via OAE can be considered to have a 662 similar effect and reduce natural alkalinity release via CaCO3 dissolution. It is worth noting that the negative effect 663 of anthropogenic alkalinity on natural alkalinity release may also occur in the open surface ocean. Here, part of 664 the alkalinity bound in particulate form via biotic calcification re-dissolves, for example in corrosive 665 microenvironments such as zooplankton or marine snow (Milliman et al., 1999; Subhas et al., 2022; Sulpis et al., 666 2021). If anthropogenic alkalinity introduced via OAE reduces this natural dissolution of CaCO₃ in the surface 667 ocean, then less alkalinity would remain in the surface ocean and the additionality of OAE would be reduced 668 (Bach et al., 2019). Thus, the "additionality problem" of OAE could be widespread and not restricted to the 669 specific environment studied experimentally in this paper.

670 To manage the additionality problem, it is important to monitor the natural alkalinity release in a designated OAE 671 deployment site before OAE is implemented. Natural alkalinity release occurs in all coastal habitats (Aller, 1982; 672 Krumins et al., 2013; Liu et al., 2021; Perkins et al., 2022) and recent evidence suggests that even small CaCO3 673 content in sediments is sufficient to yield high alkalinity release rates (Lunstrum and Berelson, 2022). As such, 674 dissolution is not restricted to CaCO3 rich sediments and avoiding these may therefore not mitigate the 675 additionality problem. More crucial than the CaCO₃ content appears to be the supply of organic matter to the 676 seafloor, which enhances alkalinity release through the supply of respiratory CO₂ (Aller, 1982; Krumins et al., 677 2013; Liu et al., 2021; Lunstrum and Berelson, 2022; Perkins et al., 2022). Therefore, it may be useful to avoid 678 OAE near sediments exposed to high organic matter load to reduce the interference of anthropogenic alkalinity 679 with natural alkalinity release.

680 Another mitigation pathway for the additionality problem is dilution. When anthropogenic alkalinity is diluted 681 quickly then there is less chance for the new buffer system to generate oversaturated Ω in seawater, sediment pore 682 waters, or other microenvironments. The experiments presented here do not allow for such dilution as they are 683 performed in enclosed volumes. They can therefore be considered a more extreme case, which do not correctly 684 represent the vastness of the ocean and its volume. Indeed, previous experiments investigating the risk of alkalinity

loss after OAE due to secondary precipitation found that dilution effectively mitigates the secondary precipitation
problem (Moras et al., 2022). It is very likely that dilution is similarly effective to mitigate the additionality
problem.

688 Finally, the data presented here clearly shows that the additionality problem scales with the degree of CaCO₃ 689 oversaturation introduced through the anthropogenic alkalinity source. This is most obvious when comparing the 690 equilibrated with the unequilibrated NaOH OAE scenario. The increase of Ω_{CaCO3} is much more pronounced in 691 the unequilibrated scenario because atmospheric CO₂ has not yet entered the seawater and brought down Ω_{CaCO3} 692 to levels it was before the OAE perturbation. As such, the additionality problem will be much more pronounced 693 when an alkalinity source interacts with naturally alkalinity releasing sediments before the OAE-perturbed 694 seawater has been equilibrated with atmospheric CO2. Nevertheless, a close look at Fig. 3A (equilibrated NaOH) 695 shows that even the relatively small increase of Ω_{CaCO3} that coincides with OAE fully equilibrated with atmospheric CO2, can reduce natural alkalinity release. Thus, atmospheric CO2 equilibration following OAE 696 697 mitigates the additionality problem but cannot fully avoid it.

698 699

5. Conclusion and outlook

700

701 The additionality problem described herein could influence the effectiveness of OAE. It suggests that interference 702 of anthropogenic alkalinity with the natural alkalinity cycle must be assessed as a factor that can modify the OAE 703 efficiency. The arguments provided in the discussion suggest that the additionality problem is potentially 704 widespread, even though the dataset presented here only considers OAE near or on wave-exposed beaches. Future 705 research should aim to confirm or dismiss these arguments and to better understand the extent of the problem.

The additionality problem adds a layer of complexity to monitoring, reporting, and verification of CO₂ removal with OAE. Strictly speaking, it is not sufficient to monitor the generation (e.g., via NaOH, slag, or olivine dissolution) and potential loss (e.g., via biotic and abiotic precipitation) of anthropogenic alkalinity after its generation. It also needs to be assessed to what extent anthropogenic alkalinity alters the baseline removal or delivery of natural alkalinity. It will be crucial to understand whether the anthropogenic acceleration of the alkalinity cycle in the oceans via OAE could slow down the natural alkalinity cycle.

712

713 Competing interests

714 The author declares no competing interests.

715

716 Acknowledgements

717 I thank Jiaying Guo and Bec Lenc for providing particle size spectra, the Mortlake Council for providing olivine
r18 samples, Bradley Mansell from Liberty Primary Steel for providing steel slag aggregates, and the Central Science
r19 Laboratory at the University of Tasmania for particulate carbon analyses. This research was funded through a
r20 Future Fellowship Award by the Australian Research Council (FT200100846) and by the Carbon-to-Sea
r11 Initiative, a non-profit dedicated to evaluate Ocean Alkalinity Enhancement.

723 Data availability statement

- 724 All data and evaluation scripts (for R) generated herein are available for download at zenodo.org under the
- 725 doi:10.5281/zenodo.8191516.
- 726
- 727

728 References

- 729 Albright, R., Caldeira, L., Hosfelt, J., Kwiatkowski, L., Maclaren, J. K., Mason, B. M., Nebuchina, Y.,
- 730 Ninokawa, A., Pongratz, J., Ricke, K. L., Rivlin, T., Schneider, K., Sesboüé, M., Shamberger, K., Silverman, J.,
- 731 Wolfe, K., Zhu, K. and Caldeira, K.: Reversal of ocean acidification enhances net coral reef calcification,
- 732 Nature, 531(7594), 362–365, doi:10.1038/nature17155, 2016.
- 733 Aller, R. C.: Carbonate Dissolution in Nearshore Terrigenous Muds: The Role of Physical and Biological
- 734 Reworking, J. Geol., 90(1), 79–95, doi:10.1086/628652, 1982.
- 735 Bach, L. T., Gill, S. J., Rickaby, R. E. M., Gore, S. and Renforth, P.: CO2 Removal With Enhanced Weathering
- 736 and Ocean Alkalinity Enhancement: Potential Risks and Co-benefits for Marine Pelagic Ecosystems, Front.
- 737 Clim., 1(October), 1–21, doi:10.3389/fclim.2019.00007, 2019.
- 738 Caserini, S., Storni, N. and Grosso, M.: The Availability of Limestone and Other Raw Materials for Ocean
- 739 Alkalinity Enhancement, Global Biogeochem. Cycles, 36(5), doi:10.1029/2021GB007246, 2022.
- 740 Dickson, A. G., Afghan, J. D. and Anderson, G. C.: Reference materials for oceanic CO2 analysis: a method for
- 741 the certification of total alkalinity, Mar. Chem., 80(2–3), 185–197, doi:10.1016/S0304-4203(02)00133-0, 2003.
- 742 Dickson, A. G., Sabine, C. L. and Christian, J. R.: Guide to Best Practices for Ocean CO2 Measurements,
- 743 PICES Spec., PICES, Sidney., 2007.
- 744 Eisaman, M. D., Rivest, J. L. B., Karnitz, S. D., Lannoy, C. De, Jose, A., Devaul, R. W. and Hannun, K.:
- 745 International Journal of Greenhouse Gas Control Indirect ocean capture of atmospheric CO 2 : Part II .
- 746 Understanding the cost of negative emissions, Int. J. Greenh. Gas Control, 70(May 2017), 254–261,
- 747 doi:10.1016/j.ijggc.2018.02.020, 2018.
- 748 Eisaman, M. D., Geilert, S., Renforth, P., Bastianini, L., Campbell, J., Dale, A. W., Foteinis, S., Grasse, P.,
- 749 Hawrot, O., Löscher, C. R., Rau, G. H. and Rønning, J.: Chapter 3: Assessing the technical aspects of OAE
- approaches, in Guide for best practices in Ocean Alkalinity Enhancement., 2023.
- 751 Fakhraee, M., Planavsky, N. J. and Reinhard, C. T.: Ocean alkalinity enhancement through restoration of blue
- 752 carbon ecosystems, Nat. Sustain., doi:10.1038/s41893-023-01128-2, 2023.
- 753 Feng, E. Y., Koeve, W., Keller, D. P. and Oschlies, A.: Model-Based Assessment of the CO2 Sequestration
- 754 Potential of Coastal Ocean Alkalinization, Earth's Futur., 5, 1252–1266, doi:10.1002/eft2.273, 2017.
- 755 Ferderer, A., Chase, Z., Kennedy, F., Schulz, K. G. and Bach, L. T.: Assessing the influence of ocean alkalinity
- rts6 enhancement on a coastal phytoplankton community, Biogeosciences, 19(23), 5375–5399, doi:10.5194/bg-19-
- **757** 5375-2022, 2022.
- 758 Fuhr, M., Geilert, S., Schmidt, M., Liebetrau, V., Vogt, C., Ledwig, B. and Wallmann, K.: Kinetics of Olivine
- 759 Weathering in Seawater: An Experimental Study, Front. Clim., 4(March), 1–20,
- 760 doi:10.3389/fclim.2022.831587, 2022.
- 761 Gattuso, J.-P., Epitalon, J.-M., Lavigne, H. and Orr, J.: Seacarb: seawater carbonate chemistry with R. R
- 762 package version 3.0, [online] Available from: http://cran.r-project.org/package=seacarb, 2021.
- 763 Hansen, H. P. and Koroleff, F.: Determination of nutrients, in Methods of Seawater Analysis, edited by K.

- 764 Grasshoff, K. Kremling, and M. Ehrhardt, pp. 159–226, Wiley-VCH, Weinheim., 1999.
- 765 Hartmann, J., West, a J., Renforth, P., Köhler, P., Rocha, C. L. D. La, Wolf-gladrow, D. a, Dürr, H. H. and
- 766 Scheffran, J.: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon
- 767 dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys., 51(2012), 113–149,
- 768 doi:10.1002/rog.20004.1.Institute, 2013.
- 769 Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marín-Samper, L., Arístegui, J., Renforth, P., Taucher, J. and
- 770 Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches consequences for
- 771 durability of CO2storage, Biogeosciences, 20(4), 781–802, doi:10.5194/bg-20-781-2023, 2023.
- 772 Harvey, L. D. D.: Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder
- 773 to upwelling regions, J. Geophys. Res. Ocean., 113(4), 1–21, doi:10.1029/2007JC004373, 2008.
- 774 He, J. and Tyka, M. D.: Limits and CO2 equilibration of near-coast alkalinity enhancement, Biogeosciences, 20,
- 775 27–43, doi:10.5194/bg-20-27-2023, 2023.
- 776 Humphreys, M. P., Gregor, L., Pierrot, D., van Heuven, S. M. A. C., Lewis, E. R. and Wallace, D. W. R.:
- 777 PyCO2SYS: marine carbonate system calculations in Python, , doi:10.5281/zenodo.3744275, 2020.
- 778 Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P. and Regnier, P.: Dissolved inorganic carbon and
- alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and
- 780 sensitivity to global change, Biogeosciences, 10(1), 371–398, doi:10.5194/bg-10-371-2013, 2013.
- 781 de Lannoy, C. F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W., Hannun, K. and Rivest, J. L. B.:
- 782 Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology, Int. J. Greenh.
- 783 Gas Control, 70(May 2017), 243–253, doi:10.1016/j.ijggc.2017.10.007, 2018.
- 784 Lezaun, J.: Hugging the Shore: Tackling Marine Carbon Dioxide Removal as a Local Governance Problem,
- 785 Front. Clim., 3(August), 1–6, doi:10.3389/fclim.2021.684063, 2021.
- 786 Liu, Y., Jiao, J. J., Liang, W., Santos, I. R., Kuang, X. and Robinson, C. E.: Inorganic carbon and alkalinity
- 787 biogeochemistry and fluxes in an intertidal beach aquifer: Implications for ocean acidification, J. Hydrol.,
- 788 595(January), 126036, doi:10.1016/j.jhydrol.2021.126036, 2021.
- 789 Lueker, T. J., Dickson, A. G. and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon,
- 790 alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and
- 791 seawater at equilibrium, Mar. Chem., 70, 105–119, doi:10.1016/S0304-4203(00)00022-0, 2000.
- 792 Lunstrum, A. and Berelson, W.: CaCO3 dissolution in carbonate-poor shelf sands increases with ocean
- acidification and porewater residence time, Geochim. Cosmochim. Acta, 329, 168-184,
- 794 doi:10.1016/j.gca.2022.04.031, 2022.
- 795 Meysman, F. J. R. and Montserrat, F.: Negative CO2 emissions via enhanced silicate weathering in coastal
- 796 environments, Biol. Lett., 13(4), 20160905, doi:10.1098/rsbl.2016.0905, 2017.
- 797 Middelburg, J. J., Soetaert, K. and Hagens, M.: Ocean Alkalinity, Buffering and Biogeochemical Processes,
- 798 Rev. Geophys., 58(3), doi:10.1029/2019RG000681, 2020.
- 799 Milliman, J. D., Troy, P. J., Balch, W. M., Adams, a. K., Li, Y.-H. and Mackenzie, F. T.: Biologically mediated
- 800 dissolution of calcium carbonate above the chemical lysocline?, Deep Sea Res. Part I Oceanogr. Res. Pap.,
- **801** 46(10), 1653–1669, doi:10.1016/S0967-0637(99)00034-5, 1999.
- 802 Mongin, M., Baird, M. E., Lenton, A., Neill, C. and Akl, J.: Reversing ocean acidification along the Great
- 803 Barrier Reef using alkalinity injection, Environ. Res. Lett., 16(6), doi:10.1088/1748-9326/ac002d, 2021.

- 804 Montserrat, F., Renforth, P., Hartmann, J., Leermakers, M., Knops, P. and Meysman, F. J. R.: Olivine
- 805 Dissolution in Seawater: Implications for CO2 Sequestration through Enhanced Weathering in Coastal
- 806 Environments, Environ. Sci. Technol., 51(7), 3960–3972, doi:10.1021/acs.est.6b05942, 2017.
- 807 Moras, C. A., Bach, L. T., Cyronak, T., Joannes-Boyau, R. and Schulz, K. G.: Ocean alkalinity enhancement -
- 808 avoiding runaway CaCO3 precipitation during quick and hydrated lime dissolution, Biogeosciences, 19(15),
- 809 3537–3557, doi:10.5194/bg-19-3537-2022, 2022.
- 810 Morse, J. W., Zullig, J. J., Bernstein, L. D., Millero, F. J., Milne, P., Mucci, A. and Choppin, G. R.: Chemistry
- of calcium carbonate-rich shallow water sediments in the Bahamas., Am. J. Sci., 285(2), 147-185,
- **812** doi:10.2475/ajs.285.2.147, 1985.
- 813 Morse, J. W., Gledhill, D. K. and Millero, F. J.: CaCO3 precipitation kinetics in waters from the great Bahama
- 814 bank: Implications for the relationship between bank hydrochemistry and whitings, Geochim. Cosmochim.
- 815 Acta, 67(15), 2819–2826, doi:10.1016/S0016-7037(03)00103-0, 2003.
- 816 Mucci, A.: The solubility of calcite and aragonite in seawater at various salinities, temperatures, and one
- 817 atmosphere total pressure, Am. J. Sci., 283(7), 780–799, 1983.
- 818 Nemet, G. F., Callaghan, M. W., Creutzig, F., Fuss, S., Hartmann, J., Hilaire, J., Lamb, W. F., Minx, J. C.,
- Rogers, S. and Smith, P.: Negative emissions Part 3: Innovation and upscaling, Environ. Res. Lett., 13,
 06300, 2018.
- 821 Oelkers, E. H., Declercq, J., Saldi, G. D., Gislason, S. R. and Schott, J.: Olivine dissolution rates: A critical
- 822 review, Chem. Geol., 500(October), 1–19, doi:10.1016/j.chemgeo.2018.10.008, 2018.
- 823 Perkins, A. K., Santos, I. R., Rose, A. L., Schulz, K. G., Grossart, H. P., Eyre, B. D., Kelaher, B. P. and Oakes,
- 824 J. M.: Production of dissolved carbon and alkalinity during macroalgal wrack degradation on beaches: a
- 825 mesocosm experiment with implications for blue carbon, Biogeochemistry, 160(2), 159–175,
- **826** doi:10.1007/s10533-022-00946-4, 2022.
- 827 Rau, G. H. and Caldeira, K.: Enhanced carbonate dissolution: A means of sequestering waste CO2 as ocean
- 828 bicarbonate, Energy Convers. Manag., 40(17), 1803–1813, doi:10.1016/S0196-8904(99)00071-0, 1999.
- 829 Reckhardt, A., Beck, M., Seidel, M., Riedel, T., Wehrmann, A., Bartholomä, A., Schnetger, B., Dittmar, T. and
- 830 Brumsack, H. J.: Carbon, nutrient and trace metal cycling in sandy sediments: Acomparison of high-energy
- 831 beaches and backbarrier tidal flats, Estuar. Coast. Shelf Sci., 159, 1–14, doi:10.1016/j.ecss.2015.03.025, 2015.
- **832** Renforth, P.: The negative emission potential of alkaline materials, Nat. Commun., 10, doi:10.1038/s41467-
- **833** 019-09475-5, 2019.
- 834 Renforth, P. and Henderson, G.: Assessing ocean alkalinity for carbon sequestration, Rev. Geophys., 55(3),
- **835** 636–674, doi:10.1002/2016RG000533, 2017.
- 836 Renforth, P., Baltruschat, S., Peterson, K., Mihailova, B. D. and Hartmann, J.: Using ikaite and other hydrated
- 837 carbonate minerals to increase ocean alkalinity for carbon dioxide removal and environmental remediation,
- 838 Joule, 6(12), 2674–2679, doi:10.1016/j.joule.2022.11.001, 2022.
- 839 Saderne, V., Fusi, M., Thomson, T., Dunne, A., Mahmud, F., Roth, F., Carvalho, S. and Duarte, C. M.: Total
- 840 alkalinity production in a mangrove ecosystem reveals an overlooked Blue Carbon component, Limnol.
- 841 Oceanogr. Lett., 6(2), 61–67, doi:10.1002/lol2.10170, 2021.
- 842 Schuiling, R. D. and de Boer, P. L.: Rolling stones; fast weathering of olivine in shallow seas for cost-effective
- 843 CO2 capture and mitigation of global warming and ocean acidification, Earth Syst. Dyn. Discuss., 2, 551–568,

- **844** doi:10.5194/esdd-2-551-2011, 2011.
- 845 Schuiling, R. D. and Krijgsman, P.: Enhanced weathering: An effective and cheap tool to sequester CO2, Clim.
- 846 Change, 74(1–3), 349–354, doi:10.1007/s10584-005-3485-y, 2006.
- 847 Schulz, K. G., Bach, L. T. and Dickson, A. G.: Seawater carbonate system considerations for ocean alkalinity
- 848 enhancement research, Guid. best Pract. Ocean Alkalinity Enhanc., 2023.
- 849 Shi, C.: Steel Slag-Its Production, Processing, Characteristics, and Cementitious Properties, J. Mater. Civ.
- 850 Eng., 16(3), 230–236, doi:10.1061/(asce)0899-1561(2004)16:3(230), 2004.
- 851 Subhas, A. V., Dong, S., Naviaux, J. D., Rollins, N. E., Ziveri, P., Gray, W., Rae, J. W. B., Liu, X., Byrne, R.
- 852 H., Chen, S., Moore, C., Martell-Bonet, L., Steiner, Z., Antler, G., Hu, H., Lunstrum, A., Hou, Y., Kemnitz, N.,
- 853 Stutsman, J., Pallacks, S., Dugenne, M., Quay, P. D., Berelson, W. M. and Adkins, J. F.: Shallow Calcium
- 854 Carbonate Cycling in the North Pacific Ocean, Global Biogeochem. Cycles, 36(5), 1–22,
- 855 doi:10.1029/2022GB007388, 2022.
- 856 Sulpis, O., Jeansson, E., Dinauer, A., Lauvset, S. K. and Middelburg, J. J.: Calcium carbonate dissolution
- 857 patterns in the ocean, Nat. Geosci., 14(6), 423–428, doi:10.1038/s41561-021-00743-y, 2021.
- 858 Sulpis, O., Agrawal, P., Wolthers, M., Munhoven, G., Walker, M. and Middelburg, J. J.: Aragonite dissolution
- 859 protects calcite at the seafloor, Nat. Commun., 13(1), 1–8, doi:10.1038/s41467-022-28711-z, 2022.
- 860 Tyka, M. D., Van Arsdale, C. and Platt, J. C.: CO2capture by pumping surface acidity to the deep ocean, Energy
- 861 Environ. Sci., 15(2), 786–798, doi:10.1039/d1ee01532j, 2022.
- 862 Wallmann, K., Diesing, M., Scholz, F., Rehder, G., Dale, A. W., Fuhr, M. and Suess, E.: Erosion of carbonate-
- 863 bearing sedimentary rocks may close the alkalinity budget of the Baltic Sea and support atmospheric CO2
- 864 uptake in coastal seas, Front. Mar. Sci., 9(September), 1–15, doi:10.3389/fmars.2022.968069, 2022.
- 865 Zhong, S. and Mucci, A.: Calcite and aragonite precipitation from seawater solutions of various salinities:
- 866 Precipitation rates and overgrowth compositions, Chem. Geol., 78, 283–299, doi:10.1016/0009-2541(89)90064-
- 867 8, 1989.
- 868