The additionality problem of Ocean Alkalinity Enhancement

Lennart T. Bach

Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, TAS, Australia.

Correspondence to: Lennart T. Bach (Lennart.bach@utas.edu.au)

Abstract. Ocean Alkalinity Enhancement (OAE) is an emerging approach for atmospheric carbon dioxide removal (CDR). The net climatic benefit of OAE depends on how much it can increase carbon sequestration relative to a baseline state without OAE. This so-called ‘additionality’ can be calculated as:

Additionality = C_{OAE} - \Delta C_{baseline}

So far, feasibility studies on OAE have mainly focussed on enhancing alkalinity in the oceans (C_{OAE}) but not primarily how such anthropogenic alkalinity would modify the natural alkalinity cycle (\Delta C_{baseline}). Here, I present incubation experiments where materials considered for OAE (sodium hydroxide, steel slag, olivine) are exposed to beach sand to investigate the influence of anthropogenic alkalinity on natural alkalinity sources and sinks. The experiments show that anthropogenic alkalinity can strongly reduce the generation of natural alkalinity, thereby reducing additionality. This is because the anthropogenic alkalinity increases the calcium carbonate saturation state, which reduces the dissolution of calcium carbonate from sand, a natural alkalinity source. I argue that this ‘additionality problem’ of OAE is potentially widespread and applies to many marine systems where OAE implementation is considered – far beyond the beach scenario investigated in this study. However, the problem can potentially be mitigated by dilute dosing of anthropogenic alkalinity into the ocean environment, especially at hotspots of natural alkalinity cycling such as in marine sediments. Understanding a potential slowdown of the natural alkalinity cycle through the introduction of an anthropogenic alkalinity cycle will be crucial for the assessment of OAE.

1. Introduction

Keeping global warming between 1.5 to 2°C requires rapid reduction of greenhouse gas emissions and gigatonne-scale atmospheric carbon dioxide removal (CDR), using a portfolio of terrestrial and marine CDR methods (Nemet et al., 2018). Ocean alkalinity enhancement (OAE) is considered as an important CDR method of the marine portfolio (Hartmann et al., 2013). OAE can be achieved through a variety of geochemical and electrochemical processes (Renforth and Henderson, 2017). All of them enhance surface ocean alkalinity to reduce the hydrogen ion (H^+) concentration in seawater (i.e. increase pH). This reduction in [H^+] causes a shift in the carbonate chemistry equilibrium:
\[
\text{CO}_2 + \text{H}_2\text{O} \leftrightarrow \text{H}^+ + \text{HCO}_3^- \leftrightarrow 2\text{H}^+ + \text{CO}_3^{2-} \quad (1)
\]

from CO\(_2\) on the left towards bicarbonate (HCO\(_3^-\)) and carbonate ion (CO\(_3^{2-}\)) on the right. The associated reduction of the CO\(_2\) partial pressure in seawater (pCO\(_2\)) enables atmospheric CO\(_2\) influx into the oceans (or reduces CO\(_2\) outflux if pCO\(_2\) > atmospheric pCO\(_2\)). This transfer (retention) of atmospheric CO\(_2\) into the ocean leads to an increase of the dissolved inorganic carbon (DIC) concentration in seawater:

\[
\text{DIC} = [\text{CO}_3^{2-}] + [\text{HCO}_3^-] + [\text{CO}_2^-] \quad (2)
\]

Among the widely discussed OAE approaches are coastal enhanced weathering and electrodialytical acid removal (Eisaman et al., 2023). Coastal Enhanced Weathering achieves alkalinity increase via the addition of pulverized alkaline rocks like limestone, olivine, or alkaline industrial products like steel slag to coastal environments (Feng et al., 2017; Harvey, 2008; Meysman and Montserrat, 2017; Renforth, 2019; Schuiling and Krijgsman, 2006). In the case of limestone, alkalinity enhancement and CDR are generated through the dissolution of e.g. CaCO\(_3\):

\[
\text{CaCO}_3 + \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + 2\text{HCO}_3^- \quad (3)
\]

For olivine, alkalinity enhancement and CDR are driven predominantly by the dissolution of Forsterite (Mg\(_2\)SiO\(_4\)):

\[
\text{Mg}_2\text{SiO}_4 + 4\text{CO}_2 + 4\text{H}_2\text{O} \rightarrow 2\text{Mg}^{2+} + 4\text{HCO}_3^- + \text{H}_2\text{SiO}_4 \quad (4)
\]

For steel slags, the predominant source for alkalinity contained within the material are hydroxides such as calcium oxide (CaO) (Shi, 2004). Here, the net reaction of OAE and associated CDR is:

\[
\text{CaO} + 2 \text{CO}_2 + \text{H}_2\text{O} \rightarrow \text{Ca}^{2+} + 2 \text{HCO}_3^- \quad (5)
\]

Electrodialytical OAE is somewhat different from the above approaches since no materials are added to seawater. Instead, water is split into H\(^+\) and a hydroxide ion (OH\(-\)) using electrical energy and electrodialytic membranes (de Lannoy et al., 2018). H\(^+\) is captured as hydrochloric acid whilst OH\(-\) is captured as sodium hydroxide (NaOH). The hydrochloric acid needs to be utilised, neutralized in deep ocean sediments, or stored in save reservoirs outside the ocean (Eisaman et al., 2018; Tyka et al., 2022). NaOH is enriched in the processed seawater, which is released back into the surface convert CO\(_2\) into HCO\(_3^-\) (Eisaman et al., 2018; Tyka et al., 2022):

\[
\text{NaOH} + \text{CO}_2 \rightarrow \text{Na}^+ + \text{HCO}_3^- \quad (6)
\]

A critical side-effect of OAE is the associated increase in CO\(_3^{2-}\) concentrations, which comes through the shift in the marine carbonate equilibrium through H\(^+\) absorption (see above). This increase elevates the saturation state for calcium carbonate (\(\Omega_{\text{CaCO}_3}\)), the metric which determines the solubility of CaCO\(_3\) in seawater. \(\Omega_{\text{CaCO}_3}\) is defined as:

\[
\Omega_{\text{CaCO}_3} = \frac{\text{Ca}^{2+} \cdot \text{CO}_3^{2-}}{\text{H}^+ \cdot \text{HCO}_3^-} = \frac{\text{Ca}^{2+} \cdot \text{CO}_3^{2-}}{\text{H}^+ \cdot \text{HCO}_3^-}
\]
where \([\text{Ca}^{2+}]_{SW}\) and \([\text{CO}_3^{2-}]_{SW}\) are calcium ion (Ca\(^{2+}\)) and \(\text{CO}_3^{2-}\) concentration in seawater and \(K_sp\) is the empirically determined solubility product (Mucci, 1983). \(K_sp\) differs for different crystal forms of CaCO\(_3\). It is higher for Aragonite than for Calcite, meaning Aragonite is more soluble (Mucci, 1983). Aragonite (Ara) and Calcite (Cal) precipitation is thermodynamically favoured when \(\Omega_{\text{Cal}}\) and \(\Omega_{\text{Ara}}\) are ≥1. CaCO\(_3\) precipitation is of high relevance for the assessment of OAE as the drawdown of CO\(_2\) through precipitation reduces alkalinity, shifts the carbonate chemistry equilibrium (eq. 1) towards CO\(_2\) and thus counters the CDR efficiency of OAE (Fuhr et al., 2022; Hartmann et al., 2023; Moras et al., 2022).

Logistical constraints suggest that OAE would at least initially more likely to be conducted in coastal environments (He and Tyka, 2023; Lezaun, 2021; Renforth and Henderson, 2017). Here, alkalinity-enhanced seawater would likely be in contact with marine sediments (Feng et al., 2017; Harvey, 2008; Miesman and Montserrat, 2017). The highly abundant particles in marine sediments can serve as nuclei for CaCO\(_3\) precipitation thereby catalysing alkalinity loss when \(\Omega_{\text{CaCO}_3}\) is ≥1 (Morse et al., 2003; Zhong and Mucci, 1989). This constitutes a problem for OAE because alkalinity-enhanced seawater with its high \(\Omega_{\text{CaCO}_3}\) is then exposed to particles that catalyse precipitation. Indeed, recent studies have demonstrated that this particle-catalysed precipitation can rapidly reduce alkalinity, with the degree and rate of alkalinity reduction depending on the amount of alkalinity added and the particle concentrations (Fuhr et al., 2022; Hartmann et al., 2023; Moras et al., 2022).

Particle-catalysed CaCO\(_3\) precipitation has received significant consideration as a loss term for OAE efficiency (Fuhr et al., 2022; Hartmann et al., 2013, 2023; Moras et al., 2022; Renforth and Henderson, 2017). However, there is another complication associated with OAE near sediments, which has to the best of my knowledge not been considered so far. Sediments can not only provide precipitation nuclei but also constitute natural alkalinity sources, for example via dissolution of CaCO\(_3\) or other carbonates.

Sandy beaches are often rich in biogenic carbonates. They can also be rich in organic matter thereby creating environments of high respiratory CO\(_2\). Accordingly, \(\Omega_{\text{CaCO}_3}\) is low close to the sediments or within pore waters and CaCO\(_3\) dissolution is favoured (Liu et al., 2021; Perkins et al., 2022; Reckhardt et al., 2015). This form of natural alkalinity formation via CaCO\(_3\) dissolution sequesters respired CO\(_2\) which may have otherwise be released into the atmosphere (Aller, 1982; Fakhraee et al., 2023; Krumins et al., 2013; Saderne et al., 2021). OAE within these naturally low \(\Omega_{\text{CaCO}_3}\) environments could have two effects. First, it would have the desired effect of consuming H\(^+\) and increasing CO\(_2\) sequestration via the generation of anthropogenic alkalinity (eqs. 2–4). Second, the consumption of H\(^+\) would increase \(\Omega_{\text{CaCO}_3}\), which could reduce the dissolution of CaCO\(_3\) and thus reduce natural CO\(_2\) sequestration since less natural alkalinity is produced. Due to this second effect, the first (desired) effect of CO\(_2\) sequestration may be significantly reduced. Accordingly, the net gain in CO\(_2\) sequestration would be lower than one would have hoped for.

The concept “additionality” describes the net gain in CO\(_2\) sequestration achieved through the implementation of a CDR method. It can be defined in simple terms as:

\[
\text{Additionality} = C_{\text{OAE}} - C_{\text{baseline}} \tag{8}
\]
where \(\text{COAE} \) is the \(\text{CO}_2 \) sequestration achieved through \(\text{OAE} \), and \(\Delta C_{\text{baseline}} \) is the change in the baseline \(\text{CO}_2 \) sequestration through the implementation of \(\text{OAE} \).

This study aims to reveal and describe how anthropogenic alkalinity affects natural alkalinity release. I present some observational data and three experiments where 3 types of anthropogenic alkalinity sources (\(\text{NaOH} \), steel slag, olivine) are exposed to a natural alkalinity source and sink (beach sand) to investigate their interactions. Afterwards, I examine these interactions (termed “additionality problem”), discuss their relevance, and how it could be mitigated.

2. Methods

2.1. Carbonate chemistry and dissolved silicate transects along Southern Tasmanian beaches

The project was initialised with near-shore alkalinity, \(\text{pH} \), and dissolved silicate (\(\text{DSi} \)) transects from the swash zone to ~200 m offshore on 4 beach locations (Clifton South, Clifton North, Goats, Wedge) near Hobart (Tasmania). Goal of these transects was to determine whether the beaches are detectable alkalinity sinks or sources and to inform the incubation experiments. An overview of the sampled beaches with approximate conditions and exact coordinates is provided in Table S1 and Fig. S1.

Samples for alkalinity and \(\text{DSi} \) were taken by filling 200 mL seawater from 0.2 m depth into a polyethylene (PE) bottle. Samples for \(\text{pH} \) were collected in a 60 mL polystyrene (PS) jars filled and closed at 0.2 m depth. Both the PE bottles and the PS jars were pre-rinsed with sample. The sample closest to shore was taken in the swash zone at the spot where a wave reached highest within ~5 minutes of observation. A ~0.2 m deep hole was dug (Fig. S1) and water was collected from the groundwater with a 60 mL syringe. The second sample was from the upper part of the swash zone where waves pushed water up the beach. Samples further out were taken from within the wave breaking zone to about 50-100 m beyond the wave breaking zone. Samples were taken by walking into the water to the point it became too deep and a surfboard was used as sampling vehicle.

The samples were transported back to the beach where \(\text{pH} \) was measured immediately (i.e. within 15 minutes after sampling) as described in section 2.4. Alkalinity and \(\text{DSi} \) samples were filtered after \(\text{pH} \) measurements with a 0.22 syringe filter (nylon membrane) into a 125 mL PE bottle (alkalinity) or 60 mL PS plastic jar (\(\text{DSi} \)). Both containers, the syringe, and the syringe filter were pre-rinsed with sample.

2.2. Laboratory experiments

2.2.1. Experiment 1: Replicated mineral dissolution assays to monitor interaction between beach sand and weathering minerals

Experiment 1 was designed to investigate the interaction between 4 different beach sands and alkaline minerals during the incubation in seawater. The experiment required 60 HDPE bottles, each with a volume of 125 mL. These 60 bottles were thoroughly cleaned with double-deionised water and dried at 60\(^\circ\)C. Twelve bottles were filled with sand from one of the 4 sampling locations (section 2.3.), respectively (totaling 48 bottles). Another set of 12 bottles were not filled with sand. This yielded 5 sets of 12 bottles (Fig. 1). Of each set, 3 bottles remained
without further addition, 3 received 51.3 µL of 1 molar NaOH, 3 received 0.0065 g of ground steel slag, and 3
received 1 g of ground olivine (Fig. 1; sand, steel slag, and olivine properties were determined as described in
section 2.3.). The 48 bottles that contained sand were filled with 10 g of sand if slag or NaOH was added or 9 g
of sand if olivine was added. This was done so that the weights of added sand plus alkalinity feedstock was always
~10 g.

Once the solid components were added, each bottle was filled with 120 (+/-4) g of seawater (S=35±2, alkalinity
= 2259.7 µmol/kg) collected in July 2022 in the Derwent Estuary near Taroona. Salinity and pH of the seawater
was determined a few minutes before transfer into the incubation bottles with a Metrohm 914 pH/conductivity
meter as described in section 2.4. The transfer of the seawater into the incubation bottles took 30 minutes in total
(please note that in the case of NaOH additions, seawater was added to the bottles before 51.3 µL of 1 molar
NaOH was added). The incubation bottles were immediately mounted on plankton wheel (1.06 m diameter, 2
rounds per minute), which was placed in a temperature-controlled room set to 15°C (Fig. S2). The plankton wheel
kept the various mixtures of sand, alkalinity source, and seawater moving inside the bottles. The experiment
commenced at 16:00 on the 17th of August, 2022.

After ~6.8 days (24th of August), bottles were consecutively removed from the plankton wheel in random order
between 8:00 and 15:30. pH was measured inside the bottle with a pH electrode, directly after a bottle was taken
off the plankton wheel. Afterwards, the alkalinity sample was filtered with a syringe through a 0.2 µm nylon filter
into a dry and clean 125 mL HDPE bottle and stored in the dark at 7°C.

2.2.2. Experiment 2: Alkalinity formation at Omega gradients

Experiment 2 was designed to investigate whether a decline of Ω(CO3) enhances the formation of natural alkalinity
via CaCO3 dissolution and how anthropogenic alkalinity sources (olivine, slag, NaOH) influence this process. The
experiment required 60 HDPE bottles (125 mL) cleaned with acid and double-deionised water (note that acid was
used in Experiment 2 to make sure all remnants from Experiment 1 were washed out of the bottles). All 60
incubation bottles were filled with sand from Clifton Beach (section 2.4.). The treatments were then set up as
follows: Twelve bottles were filled only with 10 g of sand; Twelve with 10 g of sand and 0.006515 (+/-0.00007)
g steel slag; Twelve with 9 g of sand and 1 (+/-0.002) g of olivine; Eight with 10 g of sand at “un-equilibrated”
NaOH addition; Sixteen with 10 g of sand at “equilibrated” NaOH addition (Fig. 1).

For each treatment, a gradient in seawater CO2 concentrations was established from bottle 1 (lowest CO2) to bottle
8-16 (highest CO2). This was achieved with the following approach: A batch of seawater (S=35±0.2, alkalinity =
2266.8 µmol/kg) was collected in November 2022 in the Derwent Estuary near Taroona. About 0.3L of the batch
was bubbled with pure CO2 gas for about 5 minutes to generate highly CO2-enriched seawater. Another ~7L of
the batch was used as source water to fill the incubation bottles. pH and temperature were measured in this batch
prior to filling the incubation bottles. The low CO2 incubation bottles (bottle 1 in the sequence from e.g. 1 to 12,
Fig. 1) were then filled first. Afterwards, about 20 mL of the CO2-enriched water was added to the batch, shaken
thoroughly to mix it and the pH and temperature were measured again. Once a stable pH/temperature reading was
achieved, the next bottles (bottle 2) were filled. This procedure was repeated until all bottles in a treatment were
filled with an increasing CO2 concentration. For the equilibrated and un-equilibrated NaOH treatments, I followed
the same procedure but separate 0.3L and 7L batches were used for the CO2 enrichment that had previously been
amended with NaOH to elevate alkalinity from 2266.8 to 2757.4 µmol/kg prior to filling the incubation bottles. All 60 bottles were filled with 120 +/-4 g of seawater and immediately mounted on the plankton wheel (2nd of December, 2022; 17:00) under the same conditions as in Experiment 1 (i.e. 15°C, 2 rounds per minute, Fig. S2). After ~6.8 days (9th of December), bottles were removed from the plankton wheel between 9:00 and 16:00. pH and alkalinity were sampled as described in section 2.2.1.

2.2.3. Experiment 3: pH dependency of alkalinity formation from slag and olivine

Experiment 3 was designed to investigate whether a lower seawater pH would promote alkalinity formation from steel slag and olivine. The experiment required 12 new HDPE bottles (125 mL) cleaned with double-deionised water and dried thereafter. Six of the 12 bottles were filled with 0.0064 (±0.00007) g steel slag and the other six with 1.0003 (±0.002) g of olivine. Three slag and three olivine bottles were filled with seawater from the same seawater source as used in Experiment 2 (S=35±0.2, alkalinity=2263.2 µmol/kg, pH_T = 7.82). pH and temperature were measured prior to filling the bottles with seawater (section 2.4.). Afterwards, the ~2L seawater batch was amended with about 80 mL of CO2-enriched seawater as explained in section 2.2.2. This enrichment lowered the pH_T (total scale) from 7.82 to 6.846. This low pH_T (high CO2) seawater was used to fill the other 3 slag and olivine incubation bottles. The 12 bottles with 122.8 (±0.15) g of seawater were immediately mounted on the plankton wheel (Fig. S2) after filling (16th of December, 2022; 16:40) under the same conditions as in Experiment 1 and 2 (i.e. 15°C, 2 rounds per minute).

After ~6.8 days (23rd of December), the 12 bottles were randomly removed from the plankton wheel between 9:00 and 11:00. pH and alkalinity were sampled as described in section 2.2.1.

Figure 1. Design of Experiments 1, 2, and 3. Bottles represent treatments with incubation of seawater, sand, and alkalinity sources (color code represents alkalinity source). In Experiment 2, NaOH was used as alkalinity source in two explicit scenarios as described in section 2.2.2.

2.3. Preparation and characterization of weathering minerals and beach sand

In total, 5 sand samples (0.5-1 kg) were collected for Experiments 1 and 2 at Clifton Beach, Tasmania (Fig. S1, Table S1). Sampling permission was granted by the Department of Natural Resources and Environment (Authority No. ES 22314). Wet sand was sampled on the upper end of the swash zone and stored in zip bags at 15°C. Samples
1-4 were used for Experiment 1, ~24 hours after sampling while sample 5 was used for Experiment 2, ~72 hours after sampling.

Olivine rocks were sourced from the Mount Shadwell Quarry in Mortlake (Australia, Table S1). Basic oxygen slag (hereafter just called slag) was sourced from the Liberty Primary Steel – Whyalla Steelworks (Australia, Table S1). Olivine rocks and slag (Fig. S3) were crushed with a hydraulic crusher into smaller pieces of about 10 mm and then milled with a ring mill in a chrome milling pot. Milled slag and olivine were sieved, first with a 250 µm sieve and then with a 150 µm sieve. The fractions retained on the 150 µm sieve were used for experiments.

Wet and dry weight of the sand used for laboratory experiments was determined by weight difference of a wet and a dry sample. The wet sample (~80 g) was put into a clean plastic jar and dried for 24-72 hours. The particle size spectra of the 5 dried sand samples as well as slag and olivine mineral were determined with a Sympatec QICPIC particle imager.

For total particulate carbon (TPC) and particulate organic carbon (POC) analyses, dried sand samples were milled for 12 minutes in a Retsch MM200 ball mill. Between 4-10 mg of each of the pulverized sand samples were weighed into 10 tin cups for TPC or 10 silver cups for POC (2 TPC and POC replicates for each sample). The POC samples were moisturized with 50µL of MilliQ water, placed for 18 hours in a dessicator that contained 36% HCl to remove all carbonates and then dried. TPC and POC samples were analysed for carbon content using a Thermo Finnigan EA 1112 Series Flash Elemental Analyser. Particulate inorganic carbon (PIC) content of the samples was then calculated as the difference between TPC and POC. Percent content of carbonates was estimated by multiplying % PIC content by the molecular weight of CaCO\(_3\) (100 g/mol) and MgCO\(_3\) (84.3 g/mol) for upper and lower estimates.

2.4. Carbonate chemistry, salinity, and dissolved silicate measurements

pH was determined potentiometrically using a Metrohm 914 pH meter following Standard Operation Procedure 6a described in (Dickson et al., 2007) but omitting the test for ideal Nernst behaviour of the electrode (ideal Nernst behaviour was assumed). A new pH electrode (Metrohm Aquatrode Plus) was calibrated on the total pH scale (pHr) with certified reference material (CRM) TRIS buffer (batch #37), provided by Prof. Andrew Dickson’s laboratory. The calibration procedure for the relevant temperature range (~8 – 18°C) followed the exact workflow as described by (Ferderer et al., 2022). Precision of the pH measurement was assumed to be ±0.015 based on experience with the probe.

Alkalinity was determined in an open cell titration following (Dickson et al., 2003). Samples were measured in duplicate with a Metrohm 811 titration unit equipped with a Metrohm Aquatrode Plus. Alkalinity was calculated from titration curves using the Calculate function of PyCO2sys (Humphreys et al., 2020). The difference in alkalinity between duplicate titrations of the sample was on average 1.95 µmol/kg and >75% were within 4 µmol/kg (N=185), which was assumed to be the precision of the measurement (±2 µmol/kg). Accuracy was controlled by correcting alkalinity values with CRM provided by A.G. Dickson’s laboratory. Alkalinity was measured within maximally 20 days after sampling.

Salinity was measured with a Metrohm conductivity probe with a PT1000 temperature sensor connected to a Metrohm 914 conductivity meter. The probe was calibrated with DIC/alkalinity CRM from A.G. Dickson’s laboratory for which a salinity of 33.464 has been reported (CRM batch 200). Conductivity was measured in...
mS/cm² and salinity was subsequently calculated on the practical salinity scale following Lewis and Perkins (1978), following the workflow described by (Moras et al., 2022). A relatively low precision of +/- 0.2 was determined from repeat measurements.

Si concentrations for beach transects were measured 18 hours after sampling following Hansen and Koroleff (1999). No Si measurements were conducted for Experiments 1-3.

2.5. Carbonate chemistry calculations

Carbonate chemistry conditions were calculated with the “carb function” in Seacarb (Gattuso et al., 2021), with pH, alkalinity, salinity, temperature, phosphate and silicate concentrations as input variables, stoichiometric equilibrium constants from Lueker et al. (2000), and default settings for the other equilibrium constants. Si was not measured due to volume limitations so I assumed a values of 50 µmol/kg at the end of the experiments, when either sand, olivine, or slag were incubated. Likewise, phosphate was not measured and I assumed 2 µmol/kg at the end of the experiments when slag was incubated. These Si and phosphate releases were based upon previous trials. Note, however, that concentrations of Si and phosphate within these ranges have negligible impact on calculated carbonate chemistry parameters (e.g. pCO₂ changes by ~1 µatm when Si is assumed to be 0 instead of 50 µmol/kg).

Propagated errors in derived carbonate chemistry parameters (e.g., DIC) were calculated with the “errors” function in Seacarb using measurement precisions described in section 2.4. for pH (±0.015), alkalinity (±2 µmol/kg), and salinity (±0.2), default uncertainties for equilibrium constants and temperature, and when applicable (see above) ±50 µmol/kg for silicate and ±2 µmol/kg for phosphate.

2.6. Calculations of the CO₂ uptake ratio (ηCO₂) for carbonate and non-carbonate alkalinity sources

The atmospheric CO₂ uptake ratio for OAE (ηCO₂) was defined as the number of moles DIC absorbed per number of moles alkalinity added (Tyka et al., 2022). ηCO₂ was shown to range roughly between 0.75 and 0.9 mol:mol in the surface ocean (Schulz et al., 2023; Tyka et al., 2022). However, this ηCO₂ range only applies for alkalinity source materials that exclusively increase alkalinity without a concomitant increase in DIC when they are added to seawater (Alknon-carbonate). Such sources comprise for example NaOH, slag, and olivine. The estimated range does not apply when all or fractions of the added alkalinity comes from carbonates (Alkcarbonate), since CaCO₃ dissolution contributes 2 moles of alkalinity and 1 mole of (non-atmospheric) DIC when they dissolve.

The dependency of ηCO₂ on the relative contribution of Alkcarbonate and Alknon-carbonate was calculated as:

\[
\eta_{CO₂} = \frac{\text{DIC}_{\text{equilibrated}} \left(\frac{\text{Alkcarbonate}}{2} \right)}{\text{Alknon-carbonate} + \text{Alkcarbonate} - \text{Alkinitial}} \tag{9}
\]

Where DICinitial and Alkinitial are DIC and alkalinity in seawater before alkalinity was increased, assuming a seawater pCO₂ in equilibration with the atmosphere. DICequilibrated is the amount of DIC from the environment (e.g. from the atmosphere) that can be stored in seawater after the increase of Alkcarbonate and Alknon-carbonate, assuming
seawater pCO2 in equilibrium with the atmosphere. \(\eta_{\text{CO2}} \) was first calculated for a theoretical case where Alk\(_{\text{initial}} \) was 2350 \(\mu \)mol/kg and DIC\(_{\text{initial}} \) was calculated for the surface ocean (15°C, S = 35, carbonate chemistry constants as in section 2.5), assuming a pCO2 of 420 \(\mu \)atm. Alk\(_{\text{carbonate}} \) and Alk\(_{\text{non-carbonate}} \) were then varied in a range of scenarios (from 0 to 100% Alk\(_{\text{carbonate}} \)) to increase the sum of them by 1 \(\mu \)mol/kg. \(\eta_{\text{CO2}} \) was calculated for each scenario.

Next, \(\eta_{\text{CO2}} \) was calculated specifically for Experiment 1 as follows: The increase of alkalinity (\(\Delta \text{Alkalinity} \)) was higher in the NaOH and slag treatments when no sand was present compared to incubations with sand (section 3.2). \(\Delta \text{Alkalinity} \) was very likely Alk\(_{\text{non-carbonate}} \) in all incubations while the reduced \(\Delta \text{Alkalinity} \) in the incubations with sand was likely due to secondary precipitation of carbonates (section 4.2.1). Based on these conclusions, \(\eta_{\text{CO2}} \) was estimated as:

\[
\eta_{\text{CO2}} = \frac{\left(\Delta \text{Alkalinity}_\text{no-sand} - \Delta \text{Alkalinity}_\text{sand} \right) \times 0.5 + \text{Alkalinity}_\text{sand} \times 0.86}{\text{Alkalinity}_\text{no-sand}}
\] (10)

where \(\Delta \text{Alkalinity}_\text{no-sand} \) and \(\Delta \text{Alkalinity}_\text{sand} \) are the changes in alkalinity measured in incubations without sand and with sand, respectively; 0.5 is the \(\eta_{\text{CO2}} \) when Alk\(_{\text{non-carbonate}} \) is lost via the precipitation of carbonates where 2 moles of alkalinity and 1 mol of DIC are sequestered; 0.86 is the \(\eta_{\text{CO2}} \) when all \(\Delta \text{Alkalinity} \) is Alk\(_{\text{carbonate}} \) under the conditions set up in the experiments (i.e. 15°C, S=35; see above). Please note that \(\Delta \text{Alkalinity} \) was higher in the olive inclusions when sand was present, which is opposite to the NaOH and slag incubations for reasons discussed in section 4.2.1. Therefore, \(\eta_{\text{CO2}} \) was calculated assuming all \(\Delta \text{Alkalinity} \) was Alk\(_{\text{carbonate}} \) for the olive inclusions (i.e. \(\eta_{\text{CO2}} = 0.86 \)). For the incubations without an added alkalinity source all \(\Delta \text{Alkalinity} \) was assumed to be Alk\(_{\text{carbonate}} \) so that \(\eta_{\text{CO2}} \) was 0.36.

\(\eta_{\text{CO2}} \) was also specifically calculated for Experiment 2. This required knowledge of how much of the measured \(\Delta \text{Alkalinity} \) was contributed by Alk\(_{\text{carbonate}} \) and Alk\(_{\text{non-carbonate}} \). In the treatments where only sand was incubated, alkalinity and DIC increased roughly in a 2:1 molar ratio over the course of the experiment (i.e. \(\Delta \text{Alkalinity}:\Delta \text{DIC} = 2:1 \) mol:mol). Thus, it can be assumed that the vast majority of the measured alkalinity increase is Alk\(_{\text{carbonate}} \).

In contrast, when sand was incubated with alkaline materials, alkalinity and DIC generally increased with a molar ratio that was >2:1 because alkaline materials release alkalinity without a concomitant increase of DIC. Based on these constraints, we can roughly approximate the contribution of Alk\(_{\text{carbonate}} \) and Alk\(_{\text{non-carbonate}} \) to the measured alkalinity increase (\(\Delta \text{Alkalinity} \)) as:

\[
\% \text{Alk}_{\text{carbonate}} = 1:\left(\frac{\Delta \text{Alkalinity}}{\Delta \text{DIC}} \right) / 2 \times 100
\] (11)

Where \%Alk\(_{\text{carbonate}} \) is the percentage contribution of Alk\(_{\text{carbonate}} \) to \(\Delta \text{Alkalinity} \). Based on eq. (11), a \(\Delta \text{Alkalinity}:\Delta \text{DIC} \) of for example 8:1 mol:mol would suggest that 25% of the \(\Delta \text{Alkalinity} \) is Alk\(_{\text{carbonate}} \) and the other 75% Alk\(_{\text{non-carbonate}} \). Alk\(_{\text{carbonate}} \) and Alk\(_{\text{non-carbonate}} \) were calculated with eq. 11 for all incubations in Experiment 2 and this information was then used to calculate \(\eta_{\text{CO2}} \) with eq. (10). Finally, the amount of DIC that can be stored in seawater due to an increase of Alk\(_{\text{carbonate}} \) and Alk\(_{\text{non-carbonate}} \) (DIC\(_{\text{ALK}} \)) was calculated as:
\[\text{DIC}_{\text{obs}} = \eta_{\text{CO}_2} \cdot \Delta \text{Alkalinity} \quad (12) \]

for experiments 1 and 2.

2.7. Statistical analysis

Experiment 1 and 3 were analysed with a two-way analysis of variance (ANOVA) where either “sand” and “alkalinity source material” (Experiment 1) or “carbonate chemistry” and “alkalinity source material” (Experiment 3) were defined as independent variables. The dependent variables were the changes in carbonate chemistry (e.g. \(\Delta \text{Alkalinity} \)) over the course of the incubations. Homogeneity of variance was assessed by visually inspecting if plotted model residuals vs. fitted values is scattering similarly around 0. Normality of the residuals was assessed by inspecting qqplots where theoretical quantiles plotted against standardized residuals should ideally resemble a straight line. Such a straight-line appearance (i.e. ideal normality) was not always given, so some datasets were rank-transformed. However, transformation did not improve normality substantially so that non-transformed data was used for all analyses. Statistical differences between individual treatments were assessed with a Tukey post-hoc. Significant differences were assumed when \(p<0.05 \).

Experiment 2 was analysed by plotting \(\Delta \text{Alkalinity} \) for each alkalinity source material and sand against the increase in DIC that was established via additions of CO\(_2\)-saturated seawater (section 2.2.2). The data was fitted with the polynomial equation \(a \cdot x^2 + b \cdot x + c \), where \(x \) is the amount of DIC added to each treatment and \(a, b, c \) are fit parameters. The curve fitted to the treatments where only sand was added was compared to the curves fitted to the treatments where sand and a certain alkalinity source were added.

3. Results

3.1. Beach transects

Beach transects consisted of 8-9 sampling points from the just above the swash zone to 150-220 m offshore at four locations (Table S1, Fig. S1). Alkalinity showed distinct patterns across the locations. At Clifton South and Wedge, alkalinity was higher in the swash zone than in the open water. This was particularly pronounced at Clifton South with a value of 2418 µmol/kg relative to open water values of about 2300 µmol/kg (Fig. 2A). At Goats Beach, no such alkalinity gradient was observed across the transect, while alkalinity was lower in the swash zone at Clifton North (Fig. 2A). Wedge differed to the other locations in that alkalinity was generally lower (~2160 compared to ~2300 µmol/kg in open water).

pH\(_T\) was lowest in samples just above the swash zone at all four locations (Fig. 2B). The difference relative to open water was most pronounced at Clifton South with pH\(_T\) of 7.76 just above the swash zone compared to approximately 8.05 in the open water, while least pronounced at Goats. Gradients at Clifton North and Wedge were in between these two extremes. pH\(_T\) at Wedge was on average higher in the open water than at the other locations, i.e. 8.08 compared to 8.05 (Fig. 2B).

Si(OH)\(_4\) concentrations were highest in samples from just above the swash zone at all four locations (Fig. 2C). The most pronounced gradient was observed at Clifton South, with Si(OH)\(_4\) of 8.6 µmol/L just above the swash
zone and ~1.6 µmol/L in open water. The least pronounced gradient was observed at Goats, and intermediate gradients at Clifton North and Wedge (Fig. 2C).

Overall, the data shows consistency across the three parameters measured in that Clifton South showed most pronounced trends, Goats the least pronounced trends, and Clifton North and Wedge being in between (Fig. 2).

Figure 2. Transects of (A) alkalinity, (B) pH_T, and (C) SiOH_4 at four different beach locations in southern Tasmania (see Table S1 and Fig. S1 for locations). The first sampling was at the upper end of the swash zone and then 7-8 more samples were taken until 150-200 m offshore. Lines and shaded areas show averages and uncertainties, respectively.

3.2. Experiment 1

Alkalinity increased over the course of the 6.8 days in all treatments where alkaline materials were added (Fig. 3). Changes in alkalinity (ΔAlkalinity) were between ~610-400 µmol/kg for the slag, ~420-290 µmol/kg for the NaOH, and 280-370 µmol/kg for the olivine treatment. In contrast, ΔAlkalinity changed very little (i.e. ΔAlkalinity ≤6 µmol/kg) when no alkaline materials were added. (Please note that an important outlier was observed in Sand 2 where ΔAlkalinity was 87.3 µmol/kg which will be discussed in section 4.3.). The two-way ANOVA revealed significant effects of (1) the type of sand, (2) the type of alkalinity source, and (3) the interaction of these two on ΔAlkalinity (p<0.05). For the slag and the NaOH treatment, ΔAlkalinity was significantly higher when these were incubated with no sand but only small differences were observed across the four sand samples. In contrast, ΔAlkalinity was slightly lower in the olivine treatment when no sand was present during incubations although the difference was only significant relative to olivine incubated in Sand 4 (Fig. 3A).

Changes in pH_T (ΔpH_T) reflected the patterns described for ΔAlkalinity (Fig. 3B). ΔpH_T was highest in the slag and the NaOH treatment when no sand was added, while this difference between the presence and absence of sand was not observed for olivine. ΔpH_T was slightly negative in treatments where no alkalinity source was added to
the incubated sand samples. The two-way ANOVA revealed significant effects of sand, alkalinity source and their interaction on ΔpH_{T} (p<0.05).

η_{CO2} was prescribed to be 0.36 when sand without an anthropogenic alkalinity source was incubated and 0.86 for olivine incubations (see section 2.6). Calculated η_{CO2} for NaOH and slag treatments were slightly lower due to relatively lower ΔAlkalinity in the presence of sand than without the presence of sand (Fig 3C). This relatively lower ΔAlkalinity was most likely due to some of the ΔAlkalinity was lost due to secondary precipitation of carbonates. Statistics are not provided for η_{CO2} data because assumptions of the ANOVA model were heavily violated.

![Figure 3](https://doi.org/10.5194/bg-2023-122)

Figure 3. Results of Experiment 1. Changes of (A) alkalinity and (B) pH_{T} from the beginning to the end of the 6.8 days experiment. (C) η_{CO2} at the end of the experiment. Boxplots are based on three replicates per treatment. Colours refer to the added alkalinity source (No_Alk means no alkalinity source was added). The alignment on the x-Axis indicates if or which sand sample was present in the incubation bottles ("No Sand" means no Sand was added).

3.3. Experiment 2

The additions of CO_{2}-enriched seawater established a gradient of increasing DIC and accordingly a decline in pH_{T} and Ω_{Ar}. The rationale for this setup was that beach sediments can contain high amounts of respiratory CO_{2} so that anthropogenic alkalinity added to beaches has a high likelihood to be exposed to such high CO_{2} conditions (Liu et al., 2021; Perkins et al., 2022; Reckhardt et al., 2015). Fig. 4 shows ΔAlkalinity along the DIC gradient for different alkalinity source materials (NaOH, slag, olivine) and compares this to ΔAlkalinity along the same DIC gradient where only sand from a beach was present. The “sand only” data is identical in all four plots (orange lines in Fig. 4). It shows that ΔAlkalinity is close to zero in the sand-only incubations when no DIC is added but increases exponentially with increasing DIC additions up to 537 µmol/kg.
OAE via NaOH additions was set up in two different scenarios (Fig. 4A, B). In the first scenario, the carbonate system was equilibrated with atmospheric CO$_2$ after the NaOH deployment and before exposed to the sand (Fig. 4A). This setup leads to a gradient in Ω$_{Ara}$ from 2.1 to 0.2 along the DIC gradient at the beginning of the 6.8 days incubations (highest Ω$_{Ara}$ at the lowest DIC addition). In the second scenario, the carbonate system was not equilibrated, thereby assuming that a NaOH-enriched patch of seawater would be exposed to sand sediments before it had taken up atmospheric CO$_2$ (Fig. 4B). Here, initial Ω$_{Ara}$ ranges from 7.1 to 2.3 along the DIC gradient.

In the equilibrated scenario, ∆Alkalinity was 482 µmol/kg when no DIC was added and increased exponentially to 973 µmol/kg at the highest DIC addition (Fig. 4A). In the unequilibrated scenario, ∆Alkalinity was 344 µmol/kg when no DIC was added and increased to 474 µmol/kg at the highest DIC addition. However, in contrast to the equilibrated treatment, the ∆Alkalinity increase weakened along the DIC gradient and ∆Alkalinity was lower than in the sand-only treatment when the DIC addition was >400 µmol/kg (Fig. 4B).

In the slag treatment, ∆Alkalinity was 521 µmol/kg when no DIC was added. ∆Alkalinity increased exponentially along the DIC gradient to 814 µmol/kg. The increase of ∆Alkalinity was less pronounced than in the sand-only treatment. Overall, the slag data showed more scatter relative to the other alkalinity source materials and sand-only treatments (Fig. 4C).

In the olivine treatment, ∆Alkalinity was 258 µmol/kg when no DIC was added. ∆Alkalinity increased exponentially with increasing DIC additions to 453 µmol/kg although much less pronounced than in the sand-only treatment. ∆Alkalinity was lower in the olivine than in the sand-only treatment when DIC additions were >350 µmol/kg (Fig. 4C).
Figure 4. Results of Experiment 2. All panels show the change in alkalinity from the beginning to the end of the 6.8 days experiment along a gradient of DIC added to the incubation bottles at the start of the incubations. The orange data displayed on all panels show ∆Alkalinity for incubations where only sand was incubated. The other data on each panel show ∆Alkalinity when sand was incubated with an external alkalinity source or addition scenario. (A) Sand and NaOH equilibrated with atmospheric CO$_2$ upon addition; (B) Sand and NaOH which was not equilibrated with atmospheric CO$_2$ upon addition; (C) Sand and slag; (D) Sand and olivine.

3.4. Experiment 3

Experiment 3 tested if there is a pH dependency of alkalinity release by olivine and slag (Fig. 5). The two-way ANOVA revealed a significant influence of pH$_T$ on the release of alkalinity from olivine and slag (Fig. 4). Slag released 707 ±61 µmol/kg alkalinity when incubated within a pH$_T$ range from 7.82 to 8.67 at the end of the 6.8 days incubation. Within the lower pH$_T$ range from 6.86-8.39, slag released 805 ±86 µmol/kg. Olivine released 234 ±36 µmol/kg within the high pH$_T$ range from 7.82-8.20 and 298 ±8 µmol/kg in the low pH$_T$ range from 6.86-7.63 (Fig. 5).

Figure 5. Results of Experiment 3. Changes in alkalinity from the beginning to the end of the 6.8 days experiment when olivine or slag were incubated (without sand) under high (initially 7.82) or low pH$_T$ (initially 6.85). ∆Alkalinity was significantly higher under low pH$_T$.

4. Discussion

4.1. Carbonate-derived alkalinity is less efficient for CDR than non-carbonate-derived alkalinity

Section 2.6. introduced equations which show that alkalinity originating from carbonates (Alk$_{carbonate}$) has considerably less capacity to absorb CO$_2$ than alkalinity originating from non-carbonate sources such as olivine, slag, or NaOH (Alk$_{non-carbonate}$). The large influence of this chemical constraint on OAE is exemplified in Fig. 6. Here, the uptake potential for atmospheric CO$_2$ per mol alkalinity added to the ocean (η$_{CO2}$) is shown as a function of the carbonate contribution to the alkalinity source. When all ∆Alkalinity delivered via OAE originates from non-carbonate sources (e.g., NaOH, slag, olivine), then η$_{CO2}$ equals 0.86 mol/mol. η$_{CO2}$ declines linearly with an
increasing contribution $\text{Alk}_{\text{carbonate}}$ to $\Delta \text{Alkalinity}$ to the lowest theoretical value for η_{CO_2} of 0.36 mol:mol, which is reached when OAE provides all alkalinity as $\text{Alk}_{\text{carbonate}}$ (Fig. 6).

The dependency of η_{CO_2} on the alkalinity source material (Fig. 6) has important implications for OAE methods that aim to utilise CaCO_3 as alkalinity source (Harvey, 2008; Rau and Caldeira, 1999; Renforth et al., 2022; Wallmann et al., 2022). The molar efficiency for atmospheric CO$_2$ sequestration of OAE is $>50\%$ lower when using carbonates (e.g. CaCO_3). Or put differently, OAE approaches utilising CaCO_3 as alkalinity source would have to increase alkalinity by more than twice as much to generate similar CDR compared to methods that use non-carbonates (e.g. NaOH, slag, or olivine). Importantly, while this disadvantage of carbonates sources of alkalinity appears to be substantial, it is not the only important factor determining the potential of such OAE approaches. It is possible that the use of carbonates still holds higher potential, for example because limestone is relatively abundant (Caserini et al., 2022), can dissolve fast (Renfort et al., 2022), or because it contains less components potentially affecting marine organisms (Bach et al., 2019). Nevertheless, the dependency of η_{CO_2} on the alkalinity source (Fig. 6) needs to be considered when assessing the efficiency of different OAE methods, as will become apparent in section 4.2.

Figure 6. Changes in η_{CO_2} with the fraction alkalinity that originates from carbonates (e.g. CaCO_3 dissolution).

The x-axis ranges from 0, which means all alkalinity originates from non-carbonate sources such as NaOH, slag, or olivine to 1, which means all alkalinity originates from carbonate sources such as CaCO_3 or MgCO_3.

4.2. The additionality problem of OAE

The experiments considered here investigate coastal applications of OAE, for example when ground minerals or NaOH are exposed to beaches or sandy sediments. In the experiments, the treatments where only sand was incubated constitute the baseline system while incubations of sand and an alkalinity source constitute the OAE deployments. Both the baseline system and the OAE deployment were run in parallel under identical conditions. To assess the net CO$_2$ sequestration (additionality) of OAE, CO$_2$ sequestration achieved through an OAE deployment must be compared to the baseline state where no such deployment occurred (see eq. 8). As such, additionality can be affected through processes that affect the OAE deployment directly (section 4.2.1.), or through when the OAE deployment alters the baseline state of the system (section 4.2.2.).

4.2.1. Change of additionality through interaction of alkalinity sources with sand
The ΔAlkalinites determined in Experiment 1 were lower in NaOH and slag incubations with sand than in incubations without sand. The reduction in the presence of sand was most likely due secondary precipitation of carbonates, which is promoted when Ω_{CaCO3} is elevated and particle abundance is high (Fuhr et al., 2022; Moras et al., 2022; Zhong and Mucci, 1989). In the case of slag, very small amounts of particles were also present in the incubation without sand but apparently not enough to catalyse a similar degree of secondary precipitation as in the case when 10 g of sand are present.

In contrast to the NaOH and slag incubations, the olivine incubations generated more ΔAlkalinity when sand was present, even though the enhancement was small and only in one case statistically significant (i.e. No Sand vs Sand 4; Fig. 3A). This contrasting observation can be explained as follows. First, ΔAlkalinity was generally lower in the olivine incubations than in the NaOH and slag incubations when no sand was present (266 ±14.8 μmol/kg for olivine vs. >420 μmol/kg for NaOH and slag). Moras et al. (2022) have shown that the onset of secondary precipitation depends on ΔAlkalinity and they observed no secondary precipitation over a 40 days experimental incubation when ΔAlkalinity was ~250 μmol/kg. This suggest that the 266 ±14.8 μmol/kg ΔAlkalinity generated by olivine did not elevate Ω_{CaCO3} to high enough levels to induce noticeable secondary precipitation within 6.8 days.

However, the absence of such secondary precipitation cannot explain why ΔAlkalinity increased in the presence of sand. It is possible that the sand itself released alkalinities via carbonate dissolution as a very small increase in ΔAlkalinity was also observed in the sand-only incubations (e.g. 17.4 ±2.6 μmol/kg in Sand 4; Fig. 3A). However, Ω_{CaCO3} was higher in the olivine incubations as in the sand-only treatment so that a release of carbonate alkalinity seems unlikely. It is also unlikely that the pH differences between olivine-only and olivine+sand incubations drove this trend. While Experiment 3 underscores that lower pH promotes the release of alkalinities from olivine (Fig. 5), pHT was higher in the olivine+sand treatment where significantly more alkalinity was released (see Sand 4 in Fig. 4A). What appears as a plausible explanation is that the sand caused physical destruction of coatings that develop on the olivine particles during dissolution and are known to reduce dissolution rates (Oelkers et al., 2018).

Indeed, the dissolution-enhancing role physical abrasion has been hypothesised to increase OAE efficiency when using olivine, although the dataset underpinning this hypothesis has not made it through peer-review (Schuiling and de Boer, 2011).

η_{CO2} is reduced when the presence of sand catalyses secondary precipitation (Fig. 4C). As a consequence, the amount of DIC that can be sequestered via OAE declines. Among other factors, the degree of alkalinity loss due to secondary precipitation depends on the duration carbonate supersaturated water is exposed to the sand. The experiments presented here lasted for 6.8 days and it is likely that secondary precipitation would have proceeded (and η_{CO2} further declined) if the experiments had lasted for longer. Indeed, Moras et al. (2022) observed that secondary precipitation catalysed by particles only slowed down once Ω_{CaCO3} reached ~5. In the experiments presented here, Ω_{CaCO3} was generally >5 at the end of the study. Carbonate chemistry calculations with seacarb (data not shown) suggest that a decline until Ω_{CaCO3} reaches 2 via carbonate precipitation (i.e. alkalinity and DIC decline in a 2:1 molar ratio) would have reduced alkalinity by ~560 μmol/kg for the NaOH and 840 μmol/kg for the slag incubations, respectively. In both cases the alkalinity after the OAE perturbation would be lower than before but atmospheric CO2 uptake would still occur (η_{CO2} = 0.39 for NaOH and 0.37 for slag) because the pCO2 is still slightly lower than before the perturbation (Moras et al., 2022).

4.2.2. Reduction of additionality through modification of baseline alkalinity formation
One interesting observation was made during a sand-only incubation of Experiment 1 (i.e. “No_Alk in Fig. 3). For Sand 2, ΔAlkalinity was about 85 µmol/kg higher in one replicate bottle than in the other two. This difference was due to a small arthropod (likely a sand flea) that was unintentionally added to the incubation bottle with the high ΔAlkalinity. The arthropod was still alive at the end of the 6.8 incubation period. During those 6.8 days, the organism respired, thereby reducing ΩAra, and causing alkalinity release from the sand via CaCO₃ dissolution. This observation pointed out that the baseline system can already release substantial amounts of alkalinity even before OAE is implemented given sufficient respiration. Indeed, the in-situ observations at Clifton South suggest that alkalinity release occurs in the baseline system used there (section 3.1). Furthermore, there is widespread evidence from the literature that beaches alkalinity release via CaCO₃ dissolution (Liu et al., 2021; Perkins et al., 2022; Reckhardt et al., 2015). These insights collectively inspired Experiment 2, where a DIC gradient (high to low ΩAra) was set up to test if natural alkalinity release via CaCO₃ dissolution would be influenced by anthropogenic alkalinity release via OAE.

Experiment 2 demonstrated that the release of natural alkalinity can be disturbed by the addition of anthropogenic alkalinity sources (Fig. 7). Fig. 7A illustrates the additionality of alkalinity release, calculated by subtracting ΔAlkalinity from sand-only incubations (represented by the orange lines in Fig. 4 panels A-D) from ΔAlkalinity in sand+alkalinity incubations (represented by the red and blue lines). Fig. 7A reveals that the additionality of ΔAlkalinity declines with increasing amounts of added DIC. The reason for this trend is that the alkalinity sources added to the incubation bottles buffered the DIC-induced pH decline. This buffering elevated ΩAra during the incubations, resulting in a reduced release of natural alkalinity through CaCO₃ dissolution. Or in simpler terms, by adding a new buffer system via OAE (NaOH, slag, or olivine), a natural buffer system (CaCO₃ dissolution) is partially replaced. In cases where olivine or non-equilibrated NaOH was tested, the additionality of ΔAlkalinity became even negative when DIC additions were >350 and >400 µmol/kg, respectively (Fig. 7A).

Alkalinity release is generally seen as a good indicator for the amount of CO₂ that can be removed per mole alkalinity enhancement (ηCO₂). However, as discussed in section 4.1., ηCO₂ also critically depends on whether the released alkalinity is Alk_{carbonate} or Alk_{non-carbonate}. In Experiment 2, ηCO₂ varies greatly depending on the alkalinity source and the amount of DIC added to the incubation (Fig. 7B). ηCO₂ is low for sand-only incubations because basically all ΔAlkalinity is Alk_{carbonate}, whereas it is substantially higher in treatments with an anthropogenic Alk_{non-carbonate} source. For olivine, ηCO₂ was around 0.7 mol:mol up until the highest DIC additions where ηCO₂ declines slightly. This is lower than for slag, where ηCO₂ remains close to the theoretical maximum of 0.86 mol:mol. The difference between slag and olivine could be due to faster dissolution of slag, which elevates ΩAra before substantial CaCO₃ dissolution had occurred. In contrast, olivine dissolves more slowly (Fuhr et al., 2022; Montserrat et al., 2017), so that some CaCO₃ dissolution may have occurred before olivine dissolution elevated ΩAra enough to limit further CaCO₃ dissolution. (Please note, however, that this explanation does not explain why ηCO₂ is also lower than in slag incubations at low DIC additions, where ΩAra was low enough to limit CaCO₃ dissolution from the start). The reason for the decreasing ηCO₂ in the equilibrated NaOH scenario (Fig. 7B) is an increasing contribution of Alk_{carbonate} to ΔAlkalinity. It is important to note that for the same added DIC, ΩAra is much lower in the equilibrated NaOH scenario than in unequilibrated NaOH scenario (e.g. 0.28 vs. 2.9 at ~400 µmol/kg added DIC for the equilibrated and unequilibrated NaOH scenarios, respectively). This lower ΩAra in the equilibrated scenario is due to atmospheric CO₂ in-gassing, which has already reduced ΩAra in the equilibrated...
scenario before this seawater starts interacting with beach sediments rich in respiratory CO$_2$. As such, this OAE scenario causes less reduction of natural alkalinity release from sediments via CaCO$_3$ dissolution.

Measurements and estimates of ΔAlkalinity and η_{CO_2} enabled calculation of how much DIC could be maximally stored by the generated alkalinity (i.e., DIC_{OAE} shown in Fig. 7C). DIC_{OAE} increases with higher DIC additions due to the release of alkalinity via CaCO$_3$ dissolution. However, the increase is less pronounced as observed for ΔAlkalinity (Fig. 7A) because Alk$_{\text{carbonate}}$ from CaCO$_3$ dissolution is less efficient in sequestering environmental CO$_2$ than Alk$_{\text{non-carbonate}}$ from NaOH, slag, or olivine (section 4.1).

To calculate the additionality of DIC_{OAE}, I subtracted DIC_{OAE} of the sand-only incubations (baseline) of DIC_{OAE} of the OAE scenarios (Fig. 7D). The additionality of DIC_{OAE} is arguably the most important parameter to assess whether an OAE deployment has led to the net sequestration of CO$_2$. In the case of the equilibrated NaOH and slag scenarios, the additionality of DIC_{OAE} was constant over the applied gradient, suggesting that the release of Alk$_{\text{carbonate}}$ via CaCO$_3$ dissolution led to similar DIC_{OAE} potential in the sand-only scenario and these two OAE scenarios. In contrast, the additionality of DIC_{OAE} declined in the olivine scenario because there was relatively more Alk$_{\text{carbonate}}$ release in the sand only scenario than in the olivine scenario (Fig. 7D). Importantly, however, the additionality of DIC_{OAE} remains positive up until the highest DIC addition, which is in stark contrast to the additionality of ΔAlkalinity (compare Fig 7A and D). This means that the addition of olivine maintained a positive CO$_2$ sequestration potential even though less alkalinity was generated in the olivine treatment than in the sand-only treatment (Fig. 7C). The reason for this counterintuitive observation is simply that the Alk$_{\text{non-carbonate}}$ released by olivine has more potential to sequester CO$_2$ than the Alk$_{\text{carbonate}}$ released via CaCO$_3$ dissolution.
Figure 7. Various measures of OAE efficiency under increasing additions of DIC (DIC could for example be CO\textsubscript{2} from the respiration of organic material in sediments). (A) The additionality of ΔAlkalinity. (B) \(\eta_{\text{CO}_2} \) at the end of the experiment. (C) DIC\textsubscript{OAE}, i.e., how much seawater CO\textsubscript{2} could have potentially been absorbed with the amount of ΔAlkalinity provided by the various alkalinity sources. (D) The additionality of DIC\textsubscript{OAE}. Please note that panels (B-D) only show data for the equilibrated NaOH scenario. I omitted the unequilibrated scenario for logical reasons, i.e., because the core assumption in this scenario (no CO\textsubscript{2} equilibration with the atmosphere after OAE) is at odds with the necessary assumption of CO\textsubscript{2} equilibration to calculate \(\eta_{\text{CO}_2} \) (see eq. 10).

4.2.3. Relevance of the additionality problem of OAE and possible solutions

Modifications of additionality can occur when OAE triggers subsequent alkalinity loss through biotic and abiotic carbonate precipitation (section 4.2.1.). This feedback has been widely discussed and is already a predominant topic in OAE research (Bach et al., 2019; Fuhr et al., 2022; Hartmann et al., 2013, 2023; Moras et al., 2022). Not yet discussed is the modification of additionality that may occur when anthropogenic alkalinity sources (via OAE) modify the release of natural alkalinity (section 4.2.2.). Thus, I will focus on the relevance of this second pathway of additionality modification in the following.

The experiments conducted here tested mineral dissolution feedbacks with beach sand and in a setting that assumes constant mixing, comparable to a high energy wave impact zone. This setting was chosen based on the widely discussed OAE implementation strategy adding olivine powder to beaches. The results suggest that the
“additionality problem” needs to be considered for this specific OAE approach. However, the wave impact zone comprises a tiny fraction of the coastal ocean and the question is to what extent the additionality problem also applies to the vast shelf, bank, embayment and reef areas where OAE could also be implemented (Feng et al., 2017; Meysman and Montserrat, 2017; Mongin et al., 2021). The coastal ocean is a net sink of ~ 36 Tmol/year alkalinity via CaCO₃ burial (Middelburg et al., 2020), but considerable amounts of alkalinity are also generated in the various coastal sediments via CaCO₃ dissolution (one estimate suggests ~13 Tmol/year; Krumins et al., 2013)). The dissolution depends on the solubility of CaCO₃ present in the sediments and pore water Ω (Middelburg et al., 2020). Conditions for dissolution are generally favourable in coastal ocean sediments because soluble forms of CaCO₃ occur more frequently and relatively high supply of organic matter lowers ΩCaCO₃ (Krumins et al., 2013; Lunstrum and Berelson, 2022; Morse et al., 1985). Thus, the introduction of an anthropogenic buffer via OAE (which increases ΩCaCO₃) is likely to cause a reduction of alkalinity release from the seafloor.

Indeed, more soluble forms of CaCO₃ were shown to protect less soluble forms of CaCO₃ from dissolution at the seafloor (Sulpis et al., 2022). Furthermore, an experiment exposed a coral reef to moderate levels of increased alkalinity (∆Alkalinity = ~50 μmol/kg) and found a net increase of reef calcification, with some evidence suggesting that the measured effect was due to reduced reef dissolution (Albright et al., 2016). Anthropogenic alkalinity sources (e.g. NaOH, slag, olivine) introduced via OAE can be considered to have a similar effect and reduce natural alkalinity release via CaCO₃ dissolution. It is worth noting that the negative effect of anthropogenic alkalinity on natural alkalinity release may also occur in the open surface ocean. Here, part of the alkalinity bound in particulate form via biotic calcification re-dissolves, for example in corrosive microenvironments such as zooplankton or marine snow (Milliman et al., 1999; Subhas et al., 2022; Sulpis et al., 2021). If anthropogenic alkalinity introduced via OAE reduces this natural dissolution of CaCO₃ in the surface ocean, then less alkalinity would remain in the surface ocean and the additivity of OAE would be reduced (Bach et al., 2019). Thus, the “additionality problem” of OAE could be widespread and not restricted to the specific environment studied experimentally in this paper.

To manage the additionality problem, it is important to monitor the natural alkalinity release in a designated OAE deployment site before OAE is implemented. Natural alkalinity release occurs in all coastal habitats (Aller, 1982; Krumins et al., 2013; Liu et al., 2021; Perkins et al., 2022) and recent evidence suggests that even small CaCO₃ content in sediments is sufficient to yield high alkalinity release rates (Lunstrum and Berelson, 2022). As such, dissolution is not restricted to CaCO₃ rich sediments and avoiding these may therefore not mitigate the additionality problem. More crucial than the CaCO₃ content appears to be the supply of organic matter to the seafloor, which enhances alkalinity release through the supply of respiratory CO₂ (Aller, 1982; Krumins et al., 2013; Liu et al., 2021; Lunstrum and Berelson, 2022; Perkins et al., 2022). Therefore, it may be useful to avoid OAE near sediments exposed to high organic matter load to reduce the interference of anthropogenic alkalinity with natural alkalinity release.

Another mitigation pathway for the additionality problem is dilution. When anthropogenic alkalinity is diluted quickly then there is less chance for the new buffer system to generate oversaturated Ω in seawater, sediment pore waters, or other microenvironments. The experiments presented here do not allow for such dilution as they are performed in enclosed volumes. They can therefore be considered a more extreme case, which do not correctly represent the vastness of the ocean and its volume. Indeed, previous experiments investigating the risk of alkalinity...
loss after OAE due to secondary precipitation found that dilution effectively mitigates the secondary precipitation problem (Moras et al., 2022). It is very likely that dilution is similarly effective to mitigate the additionality problem.

Finally, the data presented here clearly shows that the additionality problem scales with the degree of CaCO_3 oversaturation introduced through the anthropogenic alkalinity source. This is most obvious when comparing the equilibrated with the unequilibrated NaOH OAE scenario. The increase of Ω_{CaCO_3} is much more pronounced in the unequilibrated scenario because atmospheric CO_2 has not yet entered the seawater and brought down Ω_{CaCO_3} to levels it was before the OAE perturbation. As such, the additionality problem will be much more pronounced when an alkalinity source interacts with naturally alkalinity releasing sediments before the OAE-perturbed seawater has been equilibrated with atmospheric CO_2. Nevertheless, a close look at Fig. 3A (equilibrated NaOH) shows that even the relatively small increase of Ω_{CaCO_3} that coincides with OAE fully equilibrated with atmospheric CO_2, can reduce natural alkalinity release. Thus, atmospheric CO_2 equilibration following OAE mitigates the additionality problem but cannot fully avoid it.

5. Conclusion and outlook

The additionality problem described herein could influence the effectiveness of OAE. It suggests that interference of anthropogenic alkalinity with the natural alkalinity cycle must be assessed as a factor that can modify the OAE efficiency. The arguments provided in the discussion suggest that the additionality problem is potentially widespread, even though the dataset presented here only considers OAE near or on wave-exposed beaches. Future research should aim to confirm or dismiss these arguments and to better understand the extent of the problem.

The additionality problem adds a layer of complexity to monitoring, reporting, and verification of CO_2 removal with OAE. Strictly speaking, it is not sufficient to monitor the generation (e.g., via NaOH, slag, or olivine dissolution) and potential loss (e.g., via biotic and abiotic precipitation) of anthropogenic alkalinity after its generation. It also needs to be assessed to what extent anthropogenic alkalinity alters the baseline removal or delivery of natural alkalinity. It will be crucial to understand whether the anthropogenic acceleration of the alkalinity cycle in the oceans via OAE could slow down the natural alkalinity cycle.

Competing interests

The author declares no competing interests.

Acknowledgements

I thank Jiaying Guo and Bec Lenc for providing particle size spectra, the Mortlake Council for providing olivine samples, Bradley Mansell from Liberty Primary Steel for providing steel slag aggregates, and the Central Science Laboratory at the University of Tasmania for particulate carbon analyses. This research was funded through a Future Fellowship Award by the Australian Research Council (FT200100846) and by the Carbon-to-Sea Initiative, a non-profit dedicated to evaluate Ocean Alkalinity Enhancement.

Data availability statement
All data and evaluation scripts (for R) generated herein are available for download at zenodo.org under the doi:10.5281/zenodo.8191516.

References

Hansen, H. P. and Koroleff, F.: Determination of nutrients, in Methods of Seawater Analysis, edited by K.

Hartmann, J., West, a J., Renforth, P., Köhler, P., Rocha, C. L. D. La, Wolf-gladrow, D. a, Dürr, H. H. and
Scheffran, J.: Enhanced chemical weathering as a geoengineering strategy to reduce atmospheric carbon
dioxide, supply nutrients, and mitigate ocean acidification, Rev. Geophys., 51(2012), 113–149,

Hartmann, J., Suitner, N., Lim, C., Schneider, J., Marin-Samper, L., Aristegui, J., Renforth, P., Taucher, J. and
Riebesell, U.: Stability of alkalinity in ocean alkalinity enhancement (OAE) approaches - consequences for

Harvey, L. D. D.: Mitigating the atmospheric CO2 increase and ocean acidification by adding limestone powder

He, J. and Tyka, M. D.: Limits and CO2 equili
bration of near-coast alkalinity enhancement, Biogeosciences, 20,

Krumins, V., Gehlen, M., Arndt, S., Van Cappellen, P. and Regnier, P.: Dissolved inorganic carbon and
alkalinity fluxes from coastal marine sediments: Model estimates for different shelf environments and

de Lannoy, C. F., Eisaman, M. D., Jose, A., Karnitz, S. D., DeVaul, R. W., Hannun, K. and Rivest, J. L. B.:
Indirect ocean capture of atmospheric CO2: Part I. Prototype of a negative emissions technology, Int. J. Greenh.

Lezaun, J.: Hugging the Shore: Tackling Marine Carbon Dioxide Removal as a Local Governance Problem,

biogeochemistry and fluxes in an intertidal beach aquifer: Implications for ocean acidification, J. Hydrol.,

Lueker, T. J., Dickson, A. G. and Keeling, C. D.: Ocean pCO2 calculated from dissolved inorganic carbon,
alkalinity, and equations for K1 and K2: Validation based on laboratory measurements of CO2 in gas and

Lunstrum, A. and Berelson, W.: CaCO3 dissolution in carbonate-poor shelf sands increases with ocean

Meysman, F. J. R. and Montserrat, F.: Negative CO2 emissions via enhanced silicate weathering in coastal

Middelburg, J. J., Soetaert, K. and Hagens, M.: Ocean Alkalinity, Buffering and Biogeochemical Processes,

Milliman, J. D., Troy, P. J., Balch, W. M., Adams, a. K., Li, Y.-H. and Mackenzie, F. T.: Biologically mediated

Mongin, M., Baird, M. E., Lenton, A., Neill, C. and Akl, J.: Reversing ocean acidification along the Great

