1	Nine years of warming and nitrogen addition in the Tibetan grassland
2	promoted loss of soil organic carbon but did not alter the bulk change
3	of chemical structure
4	Huimin Sun ^{1, 2} , Michael W.I. Schmidt ² , Jintao Li ¹ , Jinquan Li ¹ , Xiang Liu ³ , Nicholas
5	O.E. Ofiti ² , Shurong Zhou ⁴ , Ming Nie ^{1*}
6	1. Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering,
7	National Observations and Research Station for Wetland Ecosystems of the Yangtze Estuary,
8	Institute of Biodiversity Science and Institute of Eco-Chongming, School of Life Sciences, Fudan
9	University, Shanghai, 200433, China.
10	2. Department of Geography, University of Zurich, Zurich, Switzerland.
11	3. State Key Laboratory of Grassland Agro-Ecosystem, Institute of Innovation Ecology, Lanzhou
12	University, 222 Tianshui South Road, Lanzhou 730000, China.
13	4. Key Laboratory of Genetics and Germplasm Innovation of Tropical Special Forest Trees and
14	Ornamental Plants, Ministry of Education, College of Forestry, Hainan University, Haikou 570228,
15	China.
16	Correspondence to: Ming Nie (mnie@fudan.edu.cn)
17	Abstract. Nitrogen (N) and warming effects on ecosystem carbon (C) budgets and
18	stabilization are critical to understand as C sequestration is considered as a mechanism
19	to offset anthropogenic CO ₂ emissions, which is important for accurately predicting
20	ecosystem C sequestration and/or potential C loss, remaining controversial though.
21	Understanding the changes in soil organic carbon (SOC) storage and chemical
22	stabilization dynamics is important for accurately predicting ecosystem C sequestration
·	1

and/or potential C loBss, but the relevant information, especially for the intervention of 23 environmental controls on grassland soil is limited in Tibetan plateau (TP) regions. 24 25 Here we used a 9-year two-way factorial experiment involving warming with open top chambers (+1.80 °C in the daytime and +0.77 °C in the nighttime at the soil surface) 26 and multilevel nitrogen (N) enrichment treatments (0, 5, 10, and 15 g m⁻² year⁻¹) in the 27 28 <u>TP</u><u>Tibetan plateau</u> to investigate the changes in SOC pool size and chemical structure. 9-year warming treatment significantly decreased SOC stock in the Tibetan grassland. 29 We observed decreasing SOC concentrations which may be related to changes in the C 30 degrading enzymes. Surprisingly, the SOC molecular structure remained unchanged in 31 all N enrichment and warmed plots, suggesting that both treatments had affected all 32 forms of SOC, from simple and complex polymeric in a similar way. Our results suggest 33 34 that long-term warming stimulates soil C loss but no preference in SOC loss with different chemical structure. 35

Keywords: global warming, nitrogen deposition, SOC, molecular structure, C
 stabilization

39 **1. Introduction**

Soil organic matter is the largest organic carbon reservoir of near-surface terrestrial 40 ecosystem (Dlamini et al. 2016). Even subtle acceleration in SOC decomposition will 41 result in large CO₂ emissions (Davidson and Janssens 2006). So, knowledge of the 42 factors affecting SOC storage and decomposition is essential for understanding the 43 dynamically changing global C cycle. The influence of global warming on 44 decomposition of soil carbon has been well documented (Poeplau et al. 2017, Guan et 45 al. 2018, Ding et al. 2019b), but there remains considerable uncertainty in the potential 46 47 response of soil C dynamics to the rapid global increase in reactive nitrogen (N, coming largely from agricultural fertilizers and fossil fuel combustion) as well as the combined 48 effects with warming (Liang and Balser 2012, Devaraju et al. 2015, Li et al. 2017). For 49 50 example, soil N availability would strongly affect microbial physiology and Cdegrading enzymes (EnC), which can subsequently alter soil C feedbacks to warming 51 (Mack et al. 2004; Contosta & Cooper 2015). EnC has been shown to play an important 52 53 role in SOM nutrient cycling and catabolism (Chen et al. 2018a), and information on such activity can be used to investigate substrate nutrient demand and response to 54 55 environmental changes (Allison et al. 2010; Wang et al. 2015). The knowledge gap demonstrated a need to focus research on biological and physicochemical controls of 56 57 SOC stabilization and destabilization processes as a basis for understanding causal relationships and key processes that determine pool sizes and turnover rates of 58 59 functional SOC pools (von Lützow and Kögel-Knabner 2009).

60	Soil warming experiments in the field have shown that warming generates a
61	considerable short-term soil C loss (Lu et al. 2013, Romero-Olivares et al. 2017). This
62	loss declines over time (e.g. > 2 years) (Romero-Olivares et al. 2017), although there is
63	evidence that it can continue for longer (e.g. > 20 years) (Melillo et al. 2017). Also,
64	indirect effects of warming on nutrient cycling (Pendall et al. 2004) or plant inputs
65	(Bradford et al. 2016) may have cascading effects on SOC quality and quantity (Lu et
66	al. 2013) and consequently on microbial decomposition of SOC, including recent plant-
67	derived material (Hicks Pries et al. 2017) or older SOC (Vaughn and Torn 2019).
68	Because ecosystems in alpine meadow are normally N limited (Hobbie et al. 2002),
69	increased N released from decomposing SOC could stimulate plant productivity,
70	thereby increasing ecosystem C storage (Moscatelli et al. 2008). However, field
71	evidence suggests that soil microbial activity and biomass may also be N limited in
72	some C-rich ecosystems (Mack et al. 2004, Rinnan et al. 2007). Therefore, increased N
73	released from decomposition of SOC could further fuel microbial activity and decrease
74	soil C storage. Besides, according to the priming effect hypothesis, the increase in N
75	availability and labile C substrates promotes microbial C utilization, thereby increasing
76	the degradation of less decomposable SOC and leading to a negative effect on soil C
77	accumulation over the long term (Riggs and Hobbie 2016). However, it has been proven
78	difficult to quantify bulk SOC stocks changes and organic matter composition directly
79	(Sistla et al. 2013, Van Gestel et al. 2018). As alternatives, molecular-level techniques
80	can detect how temperature affects plant and soil organic matter, microbial growth and

their community composition under climate warming (Feng et al. 2008, Xue et al. 2016,
Pold et al. 2017).

Since the molecular structure of organic material has long been thought to determine 83 long-term decomposition rates in soil humic substances, solid-state CPMAS ¹³C NMR 84 85 spectroscopy and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy has been successfully applied in studies on changes of SOC chemical structure during 86 organic matter decomposition without any physical or chemical destruction (Schmidt 87 et al. 2011). However, because of the large number of variables affecting a spectrum, it 88 is extremely difficult to obtain a complete and fine molecular structure from a single 89 spectrum without additional knowledge obtained by other spectroscopic techniques 90 (Ferrari et al. 2011). So, we employed another complementary molecular-level analysis 91 92 ealled diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, which is a useful method for the characterization of organic matter (Olk et al. 2000) and humie 93 substances (Mao et al. 2008, Francioso et al. 2009), to explore potential shifts in SOC 94 composition in response to warming and N enrichment. The structure of SOC could be 95 very complex but by combining both techniques (DRIFT and solid-state ¹³C NMR and 96 DRIFT) complementary information could be obtained on aromatic and aliphatic 97 components (Ferrari et al. 2011). 98 Despite the importance of the response of SOC stocks to warming and N enrichment 99 in the intact ecosystem, results about the chemical stabilization mechanisms (i.e. 100

101 <u>molecular structure of SOC) in alpine meadows remained controversial.</u>Despite the

102 importance of the response of SOC stocks to warming and N enrichment in the intact

1	
103	ecosystem, this has not been assessed empirically in alpine meadows. This knowledge
104	gap is significant because the Tibetan Plateau (TP) stores a large C pool, with 36.6 Pg
105	C stored in the top 3 m of the soil, accounting for 23.5% of China's total organic soil-
106	stored C and 2.5% of the global pool of soil C, which is of great importance in
107	regulating future global climate change and C emission (Genxu et al. 2002, Ding et al.
108	2019a). At the same time, the TP Tibetan Plateau has experienced climate warming at
109	a rate that is two times faster than that in other regions worldwide and is predicted to
110	lead to great soil C losses via microbial respiration in the future (Biskaborn et al. 2019).
111	In addition, during recent decades, the TP Tibetan Plateau has been subject to high
112	levels of N enrichment driven by agricultural activities (up to ~ 8.0 g m ⁻² y ⁻¹) (Gao et al.
113	2007, Bo et al. 2012, Zhang and Fu 2020) and atmospheric N deposition (1 g N m ⁻² y ⁻¹)
114	¹) (Lü and Tian 2007, Yu et al. 2019) with an annual rate of increase in deposition (0.053
115	g N m ⁻² y ⁻¹) (Liu et al. 2013, Wang et al. 2019b), and this kind of enrichment has been
116	shown to induce soil C loss and affect SOC stabilization in this typical N-constrained
117	ecosystem (Xiao et al. 2021).

Since temperature is one of the main drivers of the vegetation growth and decomposition of organic matter, on-going climate change may alter biophysical processes with consequences for ecosystem functioning, especially in highly sensitive cold regions such as the alpine meadow on the <u>TP Tibetan plateau</u> (Piao et al. 2006, Yang et al. 2008). However, how and to what extent <u>physical chemical</u> stabilization of SOC shifts may occur, and consequently SOC storage and C-climate feedback would respond to warming and N enrichment in an alpine meadow ecosystem, remains largely

125	unknown. Here, we used soils from a 9-year experiment with a two-way factorial design
126	involving soil warming (daytime: 1.80°C; nighttime: 0.77°C) and control plots and N
127	enrichments (0, 5, 10, and 15 g m ⁻² y ⁻¹ ; marked as N0, N1, N2, and N3, respectively)
128	(Liu et al. 2016) on the TP Tibetan Plateau to examine the changes in the stock and
129	molecular structure of SOC.
130	We hypothesized that 9-years N enrichment and warming would affect SOC stock and
131	the chemical structure of the SOC. N enrichment below a certain threshold may favor
132	C sequestration in the alpine grassland ecosystem but warming may result in the C loss.
133	And added N would stimulate hydrolytic enzyme activity while warming would repress
134	enzyme activity. Finally, we hypothesized that variation in enzyme response to N and
135	temperature would emerge as an important explanation for variability in the effect of
136	added N and warming on SOC stock.

139 2. Materials and methods

140 **2.1 Site description**

Plot sampling was conducted in a grassland ecosystem located on the eastern edge 141 of the Tibetan Plateau, Magu County, Gansu Province, China (101°53' E, 35°58' N, 142 3500 m above sea level, Figure 1 (NOAA 2015)), in August 2019. The grassland 143 ecosystem of the TP covers an area of about 1.53 million km², accounting for nearly 144 145 60% of the total area of the TP (Liu et al., 2016). Alpine meadow is the main vegetation type in this area, <u>Tthe plant community is dominated by perennial herbaceous species</u> 146 of Poaceae, Ranunculaceae, and Asteraceae. The area of alpine meadow accounts for 147 more than 44% of the area of alpine grasslands, and its SOC storage accounts for 56% 148 of the SOC storage of alpine grasslands on the whole TP TP (Yang et al. 2008). The soil 149 in the alpine meadow is classified as Mat-Cryic Cambisol (Hou et al. 2019). This region 150 has a typical plateau continental climate. The mean annual precipitation is 620 mm, and 151 most falls in the growing season (summer). The mean annual temperature is 1.2°C, with 152 153 the lowest monthly mean temperature occurring in January (-10.7°C) and the highest monthly mean temperature occurring in July (11.7°C). During the past several decades, 154 the mean annual temperatures in the region have risen at a rate of 0.58°C per decade 155 (Liu et al. 2016). The plant community is dominated by perennial herbaceous species 156 157 of Poaceae, Ranunculaceae, and Asteraceae.

158 **2.2 Experimental design and soil sampling**

159 A field-based warming experiment was established in June 2011 with a split-plot 160 block design, in which both temperature (open-top chamber, +1.80°C in the daytime

and +0.77°C in the nighttime at the soil surface) and nitrogen (0, 5, 10, and 15 g m⁻² y⁻¹ 161 ¹, corresponding to N0, N1, N2, and N3, respectively) were manipulated, with six 162 163 replicates per treatment (Liu et al., 2016). The 48 plots (8 treatments (N0, N1, N2, N3, WN0, WN1, WN2, WN3) with 6 replicates each treatment) with roughly the same 164 165 species diversity and community structure were 5 \times 5 m and were separated by 1 m from adjacent edges. Additional details can be found in our previous studies (Sun et al., 166 2023). Surface layer (0-10 cm) soils were collected from these 48 plots using a 4-cm-167 diameter auger in August 2019. Then, the fresh soil samples were transported to the 168 169 laboratory on ice.

170 **2.3 Soil analysis**

Soil microbial biomass carbon (MBC) was measured according to the chloroform 171 172 fumigation extraction method using a TOC analyzer (Multi N/C 3100, Analytik Jena GmbH, Germany) (Vance et al. 1987). The soil pH was determined in a 1:5 soil: water 173 suspension with a pH meter (PHS-3D, Rex, Shanghai, China). Bulk density samples 174 175 were dried at 105 °C for 48 h and calculated by dividing the oven-dried soil mass by the steel cylinder volume (100 cm³) because coarse fragments (stones or large roots) 176 177 were not obtained in ring samples. For soil organic carbon (SOC) analysis, air-dried soil was ground and HCl-fumigated (Komada et al. 2008), and then the SOC 178 concentration was determined with an elemental analyzer (FlashSmart, Thermo Fisher 179 Scientific, USA). The SOC stocks (0-10 cm) were are calculated by multiplying the 180 SOC concentration by the bulk density (Walter et al. 2016). At these 48each sites, all 181

plants in three plots (50 \times 50 cm) were harvested and dried to determine the aboveground biomass (AGB).

We measured the activity of four extracellular enzymes in the soil at an in situ pH (Nie et al. 2013). The absorbance of the C degradation enzymes β-D-cellubiosidase (CB), α-glucosidase (AG), β-glucosidase (BG) and β-xylosidase (XYL) were measured using a Tecan infinite M200 microplate fluorometer (Grodig, Austria) with 365 nm excitation and 460 nm emission filters. The activities were expressed in units of nmol h⁻¹ g⁻¹ dry soil. We combined CB, AG, BG and XYL into a C-degrading enzyme variable

190 (EnC).

191 <u>2.4 5-SOC molecular structure examination using NMR spectroscopy</u>

- 192 The soil samples used for NMR spectroscopy analysis were pretreated using HF (2%)
- 193 to eliminate paramagnetic materials, e.g. ferric ion and manganese ion, that may affect
- the NMR signals (Skjemstad et al. 1994, Schmidt et al. 1997, Mathers et al. 2002). The
- 195 solid-state NMR spectra (¹³C-CP-MAS) were recorded on a Bruker AVANCE III
- 196 <u>600 MHz instrument (Bruker Instrument Inc., Billerica, MA, USA). The acquisition</u>
- 197 conditions were set at frequency of 75.5 MHz, with 20 kHz spectra width, 5 kHz
- spinning speed, 2 ms contact time, and 2.5 s recycle time. The regions of 0–210 ppm
 spectra were plotted.
- 200 We examined seven chemical shift regions to represent the main C functional groups
- 201 (Golchin et al. 1997, Sun et al. 2019). We report proportions of each chemical shift area
- 202 and calculated 4 ratios indicative for the characteristics of soil organic matter. The alkyl
- 203 <u>C, the most persistent fraction of SOC, comes from original plant biopolymers (such as</u>

204	cutin, suberin and waxes) or from metabolic products of soil microorganisms (Ussiri
205	and Johnson 2003). As these materials decompose, the relative abundance of O-alkyl C
206	in the litter materials decreases, and there is a progressive increase in alkyl C
207	(Bonanomi et al. 2013). Therefore, the ratio of alkyl C to O-alkyl C (A/O-A = C_{0-45}/C_{60-1}
208	90) is an index represents the extent of SOC decomposition, the higher this ratio, the
209	higher the decomposition degree of SOC (Wang et al. 2015). Aromaticity ($C_{110-165}/C_{0-100}$
210	165), was used to indicate the complexity of molecular structure (Dai et al. 2001). The
211	ratio of aliphatic C/aromatic C (Alip/Arom), C ₀₋₁₁₀ /C ₁₁₀₋₁₆₅ , also indicates the molecular
212	structure of soil C, with higher Alip/Arom means less aromatic nuclear structure in
213	humus. The hydrophobic C/hydrophilic C (HB/HI) ratio, $(C_{0-45} + C_{110-165})/(C_{45-10})$
214	$110 + C_{165-210}$, was used to reflect the stability of soil aggregation (Spaccini et al. 2006,
215	Wang et al. 2010). The higher values of HB/HI ratio indicated that SOC was more
216	hydrophobic (Cao et al., 2016), which, in turn, implied that SOC was more stable
217	(Spaccini et al., 2006, Wu et al., 2014).

219 2.54 Bulk soil organic matter composition using DRIFT spectroscopy

220 <u>However, b</u><u>B</u>ecause of the large number of variables affecting a spectrum, it is

221 extremely difficult to obtain a complete and fine molecular structure from a single

- 222 spectrum without additional knowledge obtained by other spectroscopic techniques
- 223 (Ferrari et al. 2011). So, we employed another complementary molecular-level analysis
- 224 <u>called diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, which is a</u>
- 225 <u>useful method for the characterization of organic matter (Olk et al. 2000) and humic</u>

226	substances (Mao et al. 2008, Francioso et al. 2009), to explore potential shifts in SOC
227	composition in response to warming and N enrichment. To characterize warming/N-
228	induced changes in SOC composition, 6 mg of ground soil sample was examined by
229	diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Mid-infrared
230	spectra were recorded using a Bruker TENSOR 27 spectrometer (Billerica,
231	Massachusetts, USA) from 4000 to 400 cm $^{-1-1}$ (average of 16 scans per sample at 4 cm ⁻¹
232	1-1 resolution). Infrared absorption bands were represented by functional groups.
233	Infrared absorption bands were represented by functional groups as follows: aliphatic
234	<u>C-H (2900 cm⁻¹), aromatic esters, carbonyl/carboxyl CO (1735-1720 cm⁻¹),</u>
235	aromatic CC (1660-1600 cm ⁻¹ , 1430-1380 cm ⁻¹), lignin-like residues (1515-1500
236	cm ⁻¹), phenolic/cellulose (1260-1210 cm ⁻¹), and aromatic C-H (880, 805, 745 cm ⁻¹)
237	carbon (Niemeyer et al. 1992; Leifeld, 2006; Chatterjee et al. 2012). A summary of the
238	absorption bands associated with different compound classes can be found in Figure S2.
239	Additional details can be found in our previous studies (Ofiti et al. 2021).
240	2.5 SOC molecular structure examination using NMR spectroscopy
241	The soil samples used for NMR spectroscopy analysis were pretreated using HF (2%)
242	to eliminate paramagnetic materials, e.g. ferric ion and manganese ion, that may affect
243	the NMR signals (Skjemstad et al. 1994, Schmidt et al. 1997, Mathers et al. 2002). The
244	solid-state NMR spectra (¹³ C-CP-MAS) were recorded on a Bruker AVANCE III
245	600 MHz instrument (Bruker Instrument Inc., Billerica, MA, USA). The acquisition
246	conditions were set at frequency of 75.5 MHz, with 20 kHz spectra width, 5 kHz

247 spinning speed, 2 ms contact time, and 2.5 s recycle time. The regions of 0-210 ppm
248 spectra were plotted.

249	We examined seven chemical shift regions to represent the main C functional groups
250	(Golehin et al. 1997, Sun et al. 2019). We report proportions of each chemical shift area
251	and calculated 4 ratios indicative for the characteristics of soil organic matter. The alkyl
252	C, the most persistent fraction of SOC, comes from original plant biopolymers (such as
253	eutin, suberin and waxes) or from metabolic products of soil microorganisms (Ussiri
254	and Johnson 2003). As these materials decompose, the relative abundance of O-alkyl C
255	in the litter materials decreases, and there is a progressive increase in alkyl C
256	(Bonanomi et al. 2013). Therefore, the ratio of alkyl C to O-alkyl C (A/O-A = C_{0-45}/C_{60}
257	90) is an index represents the extent of SOC decomposition, the higher this ratio, the
258	higher the decomposition degree of SOC (Wang et al. 2015). Aromaticity (C ₁₁₀₋₁₆₅ /C ₀₋
259	165), was used to indicate the complexity of molecular structure (Dai et al. 2001). The
260	ratio of aliphatic C/aromatic C (Alip/Arom), C0-110/C110-165, also indicates the molecular
261	structure of soil C, with higher Alip/Arom means less aromatic nuclear structure in
262	humus. The hydrophobic C/hydrophilic C (HB/HI) ratio, (C ₀₋₄₅ +C ₁₁₀₋₁₆₅)/(C ₄₅ -
263	$_{110}$ + $C_{165-210}$), was used to reflect the stability of soil aggregation (Spaceini et al. 2006,
264	Wang et al. 2010).

265 **2.6 Regulating factors of SOC indicated by structural equation model**

266 To access the direct and indirect effects of external factors on SOC stock, structural 267 equation modeling (SEM) was performed using the R package 'plspm' and 268 'piecewiseSEM' (Li et al. 2020). For this purpose, firstly, all data were tested for 269 normality using the Kolmogorov–Smirnov test, and the non-normal variables were log-270 transformed. Secondly, we established a prior model based on prior knowledge of 271 effects and relationships among the driving factors. Finally, we selected the best model 272 based on overall goodness of fits, including the chi-square (χ^2) statistic, degrees of 273 freedom (df), whole model *P* value, goodness of fit index, and the root-mean-square 274 error of approximation (Schermellch-Engel et al. 2003).

275 **2.67 Statistical analysis**

All data are presented as the mean values of six field replicates. Any significant 276 277 differences in soil physicochemical properties among the different N enrichment levels and warming treatments were identified by using two-way ANOVA followed by 278 Tukey's HSD post hoc test, with differences considered to be statistically significant at 279 280 P < 0.05. The statistical analysis was conducted using SPSS 13.0 and R version 3.5.1 (R Foundation for Statistical Computing, Vienna, Austria, 2013). To access the direct 281 and indirect effects of external factors on SOC stock, structural equation modeling 282 283 (SEM) was performed using the R package 'plspm' and 'piecewiseSEM' (Li et al. 2020). For this purpose, firstly, all data were tested for normality using the Kolmogorov-284 Smirnov test, and the non-normal variables were log-transformed. Secondly, we 285 established a prior model based on prior knowledge of effects and relationships among 286 the driving factors. Finally, we selected the best model based on overall goodness of 287 fits, including the chi-square (γ^2) statistic, degrees of freedom (df), whole-model P 288 value, goodness of fit index, and the root-mean-square error of approximation 289 (Schermelleh-Engel et al. 2003). 290

293 **3. Results**

294 **3.1 Bulk soil properties**

295	N enrichment and warming have significant interaction on pH, AGB, EnC, C/N and
296	SOC stock (P < 0.05, Figure 2). Soil bulk density, SOC concentration, SOC stock, AGB,
297	and EnC and SOC stock increased significantly under N enrichment but the increment
298	decreased with rising N addition concentration ($P < 0.05$, Figure 2b, 2c, 2f). decreased
299	with N enrichment level as well as warming treatment ($P < 0.05$, Figure 2, Table S1,
300	Figure S1). Warming exacerbates soil acidification and decreased the AGB, EnC, MBC
301	and the SOC stock significantly. Effects of N enrichment and warming treatment on soil
302	properties were shown in the Figure 2 and Table S1. Warming aggravated N-induced
303	soil acidification and microbial biomass C loss ($P < 0.05$, Figure 2a, 2e, 2f). Soil bulk
304	density, SOC concentration, SOC stock, AGB and EnC increased significantly under N
305	enrichment but decreased with N enrichment level as well as warming treatment (P <
306	0.05, Figure 2, Table S1, Figure S1). Both N enrichment and warming significantly
307	decreased C/N ratio (P < 0.05, Figure 2d). Except for MBC, the NW interactions
308	significantly altered soil physicochemical properties (Figure 2, Table S1).

309 **3.2 SOC speciation as seen by DRIFT and NMR spectroscopy**

Changes in SOC molecular composition became apparent in diffuse reflectance infrared Fourier transform (DRIFT) and nuclear magnetic resonance (NMR) spectra (Figure 3, 4 and Figure S2, S3). In all N enrichment and warming treatments, there was a statistically non-significant change in the SOC composition and molecular structure observed by both DRIFT and NMR spectra. The relative abundance of carbonyl/carboxyl C=O, and C=C aromatics compounds as well as lignin-like residues
decreased slightly after N enrichment, not significantly though. The relative abundance
of the phenolic/cellulose remained stable in all individual and interaction treatments
decreased (non-significant) after N enrichment, however, kept steady in warming plots
(Figure 3 and S2).

The results of ¹³C NMR spectroscopy indicated the relative abundance of different C 320 components (Table 1, Figure 4 and S3), showing that the proportion of the seven C 321 322 functional groups did not change in soils under N enrichment and warming treatments. 323 The relative proportions of the seven C functional groups were similarstable in the 8 treatments in the following abundance order: O-alkyl C (mean 33%), followed by alkyl 324 C (mean 22%), aromatic C (mean 12%), N-alkyl C (11%), carbonyl C and di-O-alkyl 325 326 C (mean 8%), and finally phenolic C (mean 3%) (Table 1, Figure S3). The four indexes which can represent the extent of SOC decomposition observed by NMR spectra also 327 328 showed no significant difference under all the N-enrichment and warming treatments 329 (Figure 4), suggesting that SOC showed a similar degradation state at all N level 330 enrichments and warming treatments as well as the interaction effects.

331 **3.3 Factors driving the SOC stocks**

We then developed a structural equation model (SEM) to assess the direct and indirect effects of soil variables on the SOC stocks (Figure 5). The SEM results revealed strong connections among global change, biotic, and edaphic factors (Figure 5), demonstrating a need to consider their interactions when predicting SOC stock and its response to individual and interactive effects of N enrichment and warmingN

enrichment and warming. Overall, the SEM explained 44%, ______and 55% and 21% of the 337 variance in SOC stock driven by N enrichment-and, warming treatment and the 338 interaction effects, respectively. In both <u>N and warming patterns</u>, C-degrading enzymes 339 showed an important indirect factor in regulating SOC stock. N enrichment had a 340 positive effect on SOC stock by enhancing enzyme activities. In contrast, warming had 341 a negative effect on SOC stock by inhibiting microbial enzymes. Besides, warming had 342 a strong negative direct effect on SOC stock (Figure 5b). However, no significant direct 343 or indirect pathways for the interaction effects of N and warming on SOC stock were 344 observed (Figure 5C). 345

347 4. Discussion

348 4.1. Effects of warming and N enrichment on soil C pool size_

It is suggested that small N inputs can decrease CO₂ emissions by changing the 349 interaction between plants and soil microbes in N-limited ecosystems, for example, by 350 351 increasing plant productivity and root biomass and then organic C inputs to the soil by promoting N availability and thus retard litter and SOC decomposition (Franklin et al. 352 2003, Mo et al. 2008, Zhou et al. 2014). However, in an alpine grassland, Jiang et al. 353 354 <u>2012</u> found that both plant growth and microbial activity were generally N-limited, but 355 the ability of plants to capture soil inorganic N was much stronger than that of soil microorganisms. When N was added, increased N availability resulted in increased 356 plant growth, microbial activity and plant biomass (Micks et al. 2004). Therefore, the 357 358 decomposition of litter and SOM is enhanced by increasing the quantity of litter input or by elevating microbial activity, and consequently, soil functions would shift from C 359 sequestration to C loss. The increased N has consequently reduced the soil pH by 0.26 360 361 globally in only one decade, which may significantly influence the microbial community composition and activity and then SOC sequestration capacity (Geisseler 362 and Scow 2014, Tian and Niu 2015, Raza et al. 2021). This speculation is consistent 363 with our results that N input below the critical level a threshold level (for example, 10 g 364 m^{-2} in this study) may be beneficial for C sequestration in alpine meadows of the TP 365 and can partly explain the patterns of SOC pool size under various N enrichment levels 366 in this study. Specifically, the SOC stock increased following N enrichment, but as the 367 N addition concentration increased, this growth progressively diminished, eventually 368

369 even disappearing. Our results revealed that alpine grassland ecosystems on the TP may
 370 become a potential C source under future scenarios of increasing N enrichment.
 371

372	In our study presented here, the 9 years of warming resulted in a very significant
373	SOC loss of 14 to— 28 % (Figure 2 and S1). The TP Tibetan plateau stored large
374	amounts of SOC because of the permafrost soil, where limited C decomposition has led
375	to the accumulation of large SOC stocks (Hengl et al. 2014, Schuur et al. 2015).
376	Previous studies showed that the vulnerability of soils with large C stocks derives from
377	the high temperature sensitivity of C decomposition and biogeochemical restrictions on
378	the processes driving soil C inputs (Davidson and Janssens 2006; García-Palacios et al.
379	2021). Contrast with that, in soils with low initial C stocks, small losses coming from
380	accelerated decomposition induced by rising temperature may be offset by concurrent
381	increases in plant growth and soil C stabilization (Day et al. 2008, Macias-Fauria et al.
382	2012, Crowther et al. 2015). However, in areas with larger SOC stocks, accelerated
383	decomposition exceeds the potential C accumulation of plant growth, contributing to a
384	significant C loss to the atmosphere (Luo et al. 2019).
•	

385 4.2. Effects of N enrichment and warming on SOC chemical compositions

386 SOC chemical composition not only is controlled by the chemistry of the plant 387 materials input to the soil, but also by the microbial processing and degradation of SOC 388 (Baldock et al. 1992). Although N addition can stimulate plant growth and increase 389 litter fall, it can also accelerate or slow down microbial processing of plant residues, 390 thus altering the chemical composition of SOC (Wang et al. 2019a). Surprisingly we observed that the SOC molecular structure remained unchanged in all N enrichmentand warmed plots (Figure 3, 4).

393 As the predominant chemical component of SOC across all treatments in our study, O-alkyl C is mainly composed of carbohydrates, peptides and other labile organic 394 395 components derived from the fresh material, which could be preferentially degraded compared with more resistant components such as alkyl C (Simpson and Simpson, 2012, 396 He et al. 2018). So, we hypothesized that this result could indicate that N and warming 397 may have the same impact on the input of fresh plants on the **<u>TPTibetan plateau</u>**. Unlike 398 399 O-alkyl C, lipids represent the main source of alkyl C (aliphatic chains), which is derived from original plant biopolymers. Lignin and tannin represent the main source 400 of aromatic C, together with phenolic C, mainly originating from lignin and amino acids 401 402 of peptides (Baldock et al 1992). All these components are more resistant to microbial decomposition than labile O-alkyl C (Simpson and Simpson, 2012). Our results 403 suggested that the proportions of the stable SOC chemical structures remained the same 404 405 between the different N enrichment concentrations and warming treatments, indicating the synchronous degradation of SOC. The alkyl/O-alkyl ratio and aromaticity, normally 406 regarded as the indicator of the relative stage of SOC degradation and has been widely 407 used as an indicator to reflect the complexity of SOC chemical structure (Baldock et al. 408 1992), exhibited no significant difference among N enrichment or warming 409 treatmentsno change after 9-year N enrichment and warming, suggesting that all N 410 411 levels and warming treatments exerted similar effects on the degradation of SOC and aromatic and complex molecular structure (Zhang et al. 2013). 412

413	Infrared spectroscopy of SOC showed a statistically non-significant change in the
414	treated plots and the control plots, which were consistent with a previous study that
415	showed the 4.5 years of +4 °C whole-soil warming did not change the relative
416	abundance of carbonyl/carboxyl C=O, and C=C aromatics compounds in the surface
417	soils (above 20 cm) from a forest (Ofiti et al. 2021). Collectively, the above results
418	suggested that molecular structure of surface SOC may not be as sensitive to long-term
419	warming as we thought before (Atanassova and Doerr 2011, Chen et al. 2018a). Surface
420	SOC is dominated by recent (less transformed) plant-litter inputs, which is less
421	degraded and transformed than subsoil SOC (Ofiti et al. 2021). The lack of change in
422	plant- and microorganism-derived organic matter in the surface soil may be due to slight
423	drying and warming near the surface (Soong et al. 2021) which could have inhibited or
424	resulted in relatively less surface inputs. We noticed that warming significantly reduced
425	aboveground biomassAGB under N1 and N2 enrichments in this study (Figure 2).
426	Compared with labile SOC, stable SOC can be more vulnerable to priming once
427	microbes are provided with exogenous C substrates. This high vulnerability of stable
428	SOC to priming warrants more attention in future studies on SOC cycling and global
429	change (Zhang et al. 2022). Overall, stable functional SOC molecular structure
430	indicated that soil warming and N enrichment had similarly affected easily
431	decomposable and stabilized SOC of this C-rich grassland soil despite the C loss.the
432	stabilized functional SOC molecular structure suggests that soil warming and N
433	enrichment had similarly affected the labile and stabilized SOC of this C-rich grassland
434	soil at the level of chemical stability of organic C molecules, along with the C loss.

435 **4.3 Regulating factors of SOC stock**

Our interpretation that prolonged warming could reduce SOC storage is further 436 supported by the simultaneous reduction of different C pool sizes characterized with 437 various chemical structural complexity with long-term warming. Many previous studies 438 have shown that microorganisms preferentially use the labile C pool for community 439 utilization and turnover after short-term warming (Melillo et al. 2002, Kirschbaum 440 2004). However, after the initial microbial assimilation of readily accessible SOC with 441 warming, soil microorganisms can acclimate to C starvation through utilization of 442 chemical less available C with continued warming (Chen et al. 2020). This 443 transformation in microbial preference of C substrates can be facilitated by changes in 444 445 C-degrading enzyme activities (Crowther and Bradford 2013).

446

<u>O</u>

447 Our results indicated that C-degrading enzymes could play a key role in regulating soil C storage (Figure 5a, 5b), which is in line with previous explanations for continued 448 449 soil C loss with long-term warming, such as shifts in microbial community and physiology (Melillo et al. 2017, Metcalfe 2017), changes in microbial carbon use 450 451 efficiency (Tucker et al. 2013), and increased microbial accessibility to litter and SOC 452 (Doetterl et al. 2015, Bailey et al. 2019), which are all closely related to changes in microbial C-degrading enzyme activities. For example, warming decreased the 453 abundance of lignin-derived compounds but increased ligninase activity in a mixed 454 temperate forest (Feng et al. 2008). Although only cellulase activity was measured in 455 our study, a previous meta-analysis study has shown significantly increasing ligninase 456

activity after warming, enhancing the evidence of microbial response to recalcitrant C
pools and the evidence of simultaneous loss of different C fractions after long-term
warming (Chen et al. 2018b). Microbial utilization of recalcitrant C pools could
substantially accelerate overall soil C loss. This is _-because depolymerization of these
recalcitrant macromolecules increases microbial accessibility to litter and SOC that was
previously protected by recalcitrant C pools before (Schmidt et al. 2011, Lehmann and
Kleber 2015, Paustian et al. 2016)._

While N fertilization exerts both direct and indirect impacts on SOC, its influence on 464 465 carbonates is direct, leading to continuous losses. This not only serves as a source of atmospheric CO₂ (Kim et al., 2020; Raza et al., 2020; Zamanian et al., 2018) but also 466 degrades soil structure and affects physical, chemical, and biological properties (Meng 467 and Li, 2019). Under acidic conditions, this process induces fundamental changes in 468 microbial community composition and enzyme activity critical for SOC stability 469 (Rowley et al., 2020). In ecosystems characterized by N limitation, such as permafrost 470 471 and peatland regions, N enrichment enhances N availability, accelerating the decomposition of labile organic C, especially in these otherwise C-rich ecosystems. 472 473 This, in turn, results in decreased soil C availability (Craine et al., 2007; Janssens et al., 474 2010; Song et al., 2017). A previous study at our research site revealed a significant reduction in the soil labile C pool within the particulate organic C fraction with 475 476 increasing N enrichment, signifying a decline in soil C availability (Chen et al., 2019). 477 Our findings demonstrate that N enrichment significantly stimulates extracellular enzyme (EnC) activities and enhances microbial demand for C (Figure 2), aligning with 478

479	prior research indicating that added N stimulates the activity of soil cellulose-degrading
480	enzymes (e.g., cellobiosidase (CB) and β-glucosidase (BG)) (Carreiro et al., 2000;
481	Saiya-Cork et al., 2002; Chen et al., 2017). This stimulation may be attributed to the
482	increase in C-acquiring enzymes resulting from heightened microbial demand for C,
483	especially in N-limited ecosystems (Keeler et al., 2009). Previous studies suggest that
484	N enrichment could induce C limitation by reducing plant allocation to fine root
485	production, leading to lower C input into the soil (Treseder, 2008). Thus, we propose
486	that factors beyond the thermal environment, such as N enrichment, can modulate soil
487	enzymes and alter substrate availability. Moreover, these processes can mediate the
488	strength of the soil C-climate feedback. Although N enrichment may increase soil C
489	sinks, this increase may be counteracted by warming. In summary, our results suggest
490	that warming and N enrichment have antagonistic interaction effects on SOC stock,
491	with differential effects on the contribution of alpine meadows to the soil C pool, which
492	may explain the result that the NW interaction did not show significant direct or indirect
493	effects on SOC storage in the SEM results. All these results underscore the importance
494	of considering soil C availability and enzymatic activity responses, which collectively
495	determine the response of the C balance to multiple environmental changes, for a more
496	comprehensive understanding of C storage dynamics.
497	

498 ------

499 **5. Conclusion**

Based on a 9-year warming (+1.80 °C in the daytime and +0.77 °C in the nighttime 500 at the soil surface) and different level N enrichment experiment (0, 5, 10, and 15 g m^{-2} 501 year⁻¹), we examined the responses of SOC stocks and their molecular components in 502 503 a Tibetan alpine meadow ecosystem. In summary, our results show little effects of soil warming and N enrichment on the chemical composition of bulk soil despite ongoing 504 C loss in the warmed plots of the study site (Figure 2). The SOC molecular structure 505 suggested that the easily decomposable and stabilized SOC are synchronously similarly 506 507 affected after 9-year warming and N treatments despite the large changes in SOC stocks. Given the long residence time of some SOC (Schmidt et al., 2011), the similar loss of 508 all measurable chemical forms of SOC under global change treatments could have 509 important climate consequences. Permafrost soils contain half of global SOC stocks 510 (Ding et al. 2016, Hugelius et al. 2020). While we found little effects of soil warming 511 on SOC chemistry and molecular structure of bulk soil, consistent and long lasting 512 513 changes could appear with prolonged soil warming and decreasing SOC stocks in the following years. In this process, the importance of enzyme activity must be emphasized, 514 which has been found to be an important indirect factor in regulating changes in SOC 515 516 stocks.

518 Data availability

519 The data that support the findings of this study and those not presented within the article

and its Supplementary Information file are available from https://doi.org/
10.5281/zenodo.8289311.

522 Author contributions

523 M.N. developed the original ideas presented in the manuscript; H.S. performed the

overall analysis with the assistance from Jintao Li. and Jinquan Li, N. O.; X.L. and S.Z.

organized the field experiment; H.S., M.S. and M.N. wrote the first draft, and all authors

526 jointly revised the manuscript.

527 **Competing interests**

528 The contact author has declared that none of the authors has any competing interests.

529 Acknowledgements

This work was supported by the National Natural Science Foundation of China 530 (91951112 and 32101377), the Program of Shanghai Academic/Technology Research 531 532 Leader (21XD1420700), the 'Shuguang Program' supported by Shanghai Education Development Foundation and Shanghai Municipal Education Commission (21SG02), 533 the Shanghai Pilot Program for Basic Research—Fudan University 21TQ1400100 534 (21TQ004), the Science and Technology Department of Shanghai (21DZ1201902), the 535 Shanghai Pujiang Program (2020PJD003), and the Swiss National Science Foundtion 536 SNF-project 172744 (DEEP C) awarded to M.W.I.S. and N.O.E.O.. 537

538

539 References

540	Allison, S. D., Wallenstein, M. D., Bradford, M. A: Soil-carbon response to warming dependent on
541	microbial physiology. Nat. Geosci. 3, 336-340, https://doi.org/10.1038/ngeo846, 2010.
542	Atanassova, I., and S. Doerr: Changes in soil organic compound composition associated with heat-
543	induced increases in soil water repellency, Eur. J. Soil Sci., 62, 516-532,
544	https://doi.org/10.1111/j.1365-2389.2011.01350.x, 2011.
545	Bailey, V. L., C. H. Pries, and K. Lajtha: What do we know about soil carbon destabilization? ENVIRON.
546	RES. LETT., 14, https://doi.org/10.1088/1748-9326/ab2c11, 2019.
547	Baldock, J., J. Oades, A. Waters, X. Peng, A. Vassallo, and M. Wilson: Aspects of the chemical structure
548	of soil organic materials as revealed by solid-state13C NMR spectroscopy. Biogeochemistry 16,
549	1-42, https://doi.org/10.1007/BF00024251, 1992.
550	Biskaborn, B. K., S. L. Smith, J. Noetzli, H. Matthes, G. Vieira, D. A. Streletskiy, P. Schoeneich, V. E.
551	Romanovsky, A. G. Lewkowicz, A. Abramov, M. Allard, J. Boike, W. L. Cable, H. H.
552	Christiansen, R. Delaloye, B. Diekmann, D. Drozdov, B. Etzelmüller, G. Grosse, M. Guglielmin,
553	T. Ingeman-Nielsen, K. Isaksen, M. Ishikawa, M. Johansson, H. Johannsson, A. Joo, D. Kaverin,
554	A. Kholodov, P. Konstantinov, T. Kröger, C. Lambiel, JP. Lanckman, D. Luo, G. Malkova, I.
555	Meiklejohn, N. Moskalenko, M. Oliva, M. Phillips, M. Ramos, A. B. K. Sannel, D. Sergeev, C.
556	Seybold, P. Skryabin, A. Vasiliev, Q. Wu, K. Yoshikawa, M. Zheleznyak, and H. Lantuit:
557	Permafrost is warming at a global scale. Nat. Commun., 10, 264,
558	https://doi.org/10.1038/s41467-018-08240-4, 2019.
559	Bonanomi, G., G. Incerti, F. Giannino, A. Mingo, V. Lanzotti, and S. Mazzoleni: Litter quality assessed

560 by solid state 13C NMR spectroscopy predicts decay rate better than C/N and Lignin/N ratios.

- 561 Soil Biol. Biochem., 56, 40-48, https://doi.org/10.1016/j.soilbio.2012.03.003, 2013.
- 562 Bradford, M. A., W. R. Wieder, G. B. Bonan, N. Fierer, P. A. Raymond, and T. W. Crowther: Managing
- uncertainty in soil carbon feedbacks to climate change. Nat. Clim. Change, 6, 751-758,
 https://doi.org/10.1038/nclimate3071, 2016.
- 565 <u>Cao, Z. Y., Wang, Y. Li, J. Zhang, J. J and He, N. P: Soil organic carbon contents, aggregate stability, and</u>
 566 <u>humic acid composition in different alpine grasslands in Qinghai-Tibet Plateau. J. MT. SCI., 13,</u>
 567 2015-2027, https://doi.org/10.1007/s11629-015-3744-y, 2016.
- 568 <u>Carreiro, M., Sinsabaugh, R., Repert, D. & Parkhurst, D. Microbial enzyme shifts explain litter decay</u>
 569 <u>responses to simulated nitrogen deposition. Ecology 81, 2359-2365,</u>
 570 <u>https://doi.org/10.1890/0012-9658, 2000.</u>
- 571 <u>Chatterjee, S., Santos, F., Abiven, S., Itin, B., Stark, R.E., Bird, J.A: Elucidating the chemical structure</u>
 572 <u>of pyrogenic organic matter by combining magnetic resonance, mid-infrared spectroscopy and</u>
 573 mass spectrometry. ORG. GEOCHEM., 51, 35–44,
- 574 <u>https://doi.org/10.1016/j.orggeochem.2012.07.006, 2012.</u>
- 575
- 576 Chen, H., Z. Yang, R. K. Chu, N. Tolic, L. Liang, D. E. Graham, S. D. Wullschleger, and B. Gu: Molecular
 577 insights into Arctic soil organic matter degradation under warming. ENVIRON. SCI.
- 578 TECHNOL., 52, 4555-4564, https://doi.org/10.1021/acs.est.7b05469, 2018a.
- 579 Chen, J., L. Elsgaard, K. J. van Groenigen, J. E. Olesen, Z. Liang, Y. Jiang, P. E. Laerke, Y. Zhang, Y.
- 580 Luo, B. A. Hungate, R. L. Sinsabaugh, and U. Jorgensen: Soil carbon loss with warming: New
- 581 evidence from carbon-degrading enzymes. Global Change Biol., 26, 1944-1952,
- 582 https://doi.org/10.1111/gcb.14986, 2020.

583	Chen, J., Y. Luo, P. García-Palacios, J. Cao, M. Dacal, X. Zhou, J. Li, J. Xia, S. Niu, H. Yang, S.					
584	Shelton, W. Guo, and K. J. van Groenigen: Differential responses of carbon-degrading					
585	enzyme activities to warming: Implications for soil respiration. Global Change Biol., 24,					
586	4816-4826, https://doi.org/10.1111/gcb.14394, 2018b					
587	Chen, J., Luo, Y., Li, J., Zhou, X., Cao, J., Wang, RW., Wang, Y., Shelton, S., Jin, Z., Walker, L.M.,					
588	Feng, Z., Niu, S., Feng, W., Jian, S. and Zhou, L: Costimulation of soil glycosidase activity and					
589	soil respiration by nitrogen addition. Glob. Change Biol. 23, 1328-1337,					
590	https://doi.org/10.1111/gcb.13402, 2017.					
591	Contosta, A. R., Frey, S. D., Cooper, A. B: Soil microbial communities vary as much over time as with					
592	chronic warming and nitrogen additions. Soil Biol. Biochem. 88, 19-24,					
593	https://doi.org/10.1016/j.soilbio.2015.04.013, 2015.					
594	Craine, J., Morrow, C. & Fierer, N: Microbial nitrogen limitation increase decomposition. Ecology 88,					
595	2105-2113, https://doi.org/10.1890/06-1847.1, 2007. Chen, Y., Liu, X., Hou, Y., Zhou, S., Zhu, B:					
596	Particulate organic carbon is more vulnerable to nitrogen addition than mineral-associated organic					
597	carbon in soil of an alpine meadow. Plant Soil, 458, 1-11, https://doi.org/10.1007/s11104-019-					
598	<u>04279-4, 2019.</u>					
599						
600	Crowther, T. W., and M. A. Bradford: Thermal acclimation in widespread heterotrophic soil microbes.					

601 Ecol. Lett., 16, 469-477, https://doi.org/10.1111/ele.12069, 2013.

602 Crowther, T. W., S. M. Thomas, D. S. Maynard, P. Baldrian, K. Covey, S. D. Frey, L. T. van Diepen, and

603 M. A. Bradford: Biotic interactions mediate soil microbial feedbacks to climate change. P. Nalt.

- 604 Acad. Sci. USA, 112:7033-7038, https://doi.org/10.1073/pnas.1502956112, 2015.
- 605 Dai, K. O. H., C. E. Johnson, and C. T. Driscoll: Organic matter chemistry and dynamics in clear-cut and
- 606 unmanaged ecosystems. Biogeochemistry, 54, 51-83, hardwood forest https://doi.org/10.1023/A:1010697518227, 2001. 607
- 608 Davidson, E. A., and I. A. Janssens: Temperature sensitivity of soil carbon decomposition and feedbacks to climate change. Nature, 440, 165-173, https://doi.org/10.1038/nature04514, 2006.
- 610 Day, T. A., C. T. Ruhland, and F. S. Xiong: Warming increases aboveground plant biomass and C stocks
- 611 in vascular-plant-dominated Antarctic tundra. Global Change Biol., 14, 1827-1843,

612 https://doi.org/10.1111/j.1365-2486.2008.01623.x, 2008.

- 613 Devaraju, N., G. Bala, K. Caldeira, and R. Nemani: A model based investigation of the relative importance of CO₂-fertilization, climate warming, nitrogen deposition and land use change on 614 615 the global terrestrial carbon uptake in the historical period. Clim. Dynam., 47, 173-190,
- https://doi.org/10.1007/s00382-015-2830-8, 2015. 616
- Ding J., Li F, Yang G., Chen L., Zhang B., Liu L, Fang K, Qin S., Chen Y., Peng Y., Ji C., He H., Smith 617 618 P and Yang Y: The permafrost carbon inventory on the Tibetan Plateau: A new evaluation using deep sediment cores, Global Change Biol., 22, 2688 2701, https://doi.org/10.1111/gcb.13257, 619 620 2016.
- 621 Ding, J., T. Wang, S. Piao, P. Smith, G. Zhang, Z. Yan, S. Ren, D. Liu, S. Wang, S. Chen, F. Dai, J. He, 622 Y. Li, Y. Liu, J. Mao, A. Arain, H. Tian, X. Shi, Y. Yang, N. Zeng, and L. Zhao: The paleoclimatic 623 footprint in the soil carbon stock of the Tibetan permafrost region. Nat. Commun., 10, 4195,
- 624 https://doi.org/10.1038/s41467-019-12214-5, 2019a.
- 625 Ding, X., S. Chen, B. Zhang, C. Liang, H. He, and W. R. Horwath: Warming increases microbial residue

contribution to soil organic carbon in an alpine meadow. Soil Biol. Biochem., 135, 13-19,

- 627 https://doi.org/10.1016/j.soilbio.2019.04.004, 2019b.
- Dlamini, P., P. Chivenge, and V. Chaplot: Overgrazing decreases soil organic carbon stocks the most
 under dry climates and low soil pH: A meta-analysis shows. Agr. Ecosyst. Environ., 221, 258-
- 630 269, https://doi.org/10.1016/j.agee.2016.01.026, 2016.
- 631 Doetterl, S., A. Stevens, J. Six, R. Merckx, K. Van Oost, M. Casanova Pinto, A. Casanova-Katny, C.
- Muñoz, M. Boudin, and E. Zagal Venegas: Soil carbon storage controlled by interactions
 between geochemistry and climate. Nat. Geosci., 8, 780-783, https://doi.org/10.1038/ngeo2516,
- 634 2015.
- Feng, X., A. J. Simpson, K. P. Wilson, D. Dudley Williams, and M. J. Simpson: Increased cuticular
 carbon sequestration and lignin oxidation in response to soil warming. Nat. Geosci., 1, 836-839,
 https://doi.org/10.1038/ngeo361, 2008.
- 638 Ferrari, E., O. Francioso, S. Nardi, M. Saladini, N. D. Ferro, and F. Morari: DRIFT and HR MAS NMR
- 639 characterization of humic substances from a soil treated with different organic and mineral
- 640 fertilizers. J. Mol. Struct., 998, 216-224, https://doi.org/10.1016/j.molstruc.2011.05.035, 2011.
- 641 Francioso, O., D. Montecchio, P. Gioacchini, L. Cavani, C. Ciavatta, O. Trubetskoj, and O. Trubetskaya:
- 642 Structural differences of Chernozem soil humic acids SEC–PAGE fractions revealed by thermal 643 (TG–DTA) and spectroscopic (DRIFT) analyses. Geoderma, 152, 264-268,
- 644 https://doi.org/10.1016/j.geoderma.2009.06.011, 2009.
- 645 Franklin, O., P. Högberg, A. Ekblad, and G. I. Ågren: Pine forest floor carbon accumulation in response
- 646 to N and PK additions: bomb 14C modelling and respiration studies. Ecosystems, 6, 644-658,
- 647 https://doi.org/10.1007/s10021-002-0149-x, 2003.

648	Gao, Y., P. Luo, N. Wu, S. Yi, and H. Chen: Biomass and nitrogen responses to grazing intensity in an
649	alpine meadow on the eastern Tibetan Plateau. Pol. J. Ecol., 55 (3), 469-479,
650	https://doi.org/10.1007/BF02557215, 2007.
651	García-Palacios, P., T. W. Crowther, M. Dacal, I. P. Hartley, S. Reinsch, R. Rinnan, J. Rousk, J. van den
652	Hoogen, JS. Ye, and M. A. Bradford: Evidence for large microbial-mediated losses of soil
653	carbon under anthropogenic warming. Nat Rev Earth Environ., 2, 507–517,
654	https://doi.org/10.1038/s43017-021-00178-4, 2021.
655	
656	Geisseler, D., and K. Scow: Long-term effects of mineral fertilizers on soil microorganisms – A review.
657	Soil Biol. Biochem., 75, 54-63, https://doi.org/10.1016/j.soilbio.2014.03.023, 2014.
658	Genxu, W., Q. Ju, C. Guodong, and L. Yuanmin: Soil organic carbon pool of grassland soils on the
659	Qinghai-Tibetan Plateau and its global implication. Sci. Total Environ., 291, 207-217,
660	https://doi.org/10.1016/S0048-9697(01)01100-7, 2002.
661	Golchin, A., P. Clarke, J. A. Baldock, T. Higashi, J. O. Skjemstad, and J. M. Oades: The effects of
662	vegetation and burning on the chemical composition of soil organic matter in a volcanic ash soil
663	as shown by 13C NMR spectroscopy. I. Whole soil and humic acid fraction. Geoderma, 76,
664	155-174, https://doi.org/10.1016/S0016-7061(96)00104-8, 1997.
665	Guan, S., N. An, N. Zong, Y. He, P. Shi, J. Zhang, and N. He: Climate warming impacts on soil organic
666	carbon fractions and aggregate stability in a Tibetan alpine meadow. Soil Biol. Biochem., 116,
667	224-236, https://doi.org/10.1016/j.soilbio.2017.10.011, 2018.
668	He, Y., X. He, M. Xu, W. Zhang, X. Yang, and S. Huang: Long-term fertilization increases soil organic
669	carbon and alters its chemical composition in three wheat-maize cropping sites across central

- 670 and south China. Soil and Tillage Research 177, 79-87,
 671 https://doi.org/10.1016/j.still.2017.11.018, 2018.
- Hengl, T., J. M. de Jesus, R. A. MacMillan, N. H. Batjes, G. B. Heuvelink, E. Ribeiro, A. Samuel-Rosa,
- B. Kempen, J. G. Leenaars, and M. G. Walsh: SoilGrids1km—global soil information based on
 automated mapping. PLoS ONE, 9, e105992, https://doi.org/10.1371/journal.pone.0105992,
- 675 2014.
- Hicks Pries, C. E., C. Castanha, R. C. Porras, and M. S. Torn: The whole-soil carbon flux in response to
 warming. Science, 355, 1420, https://doi.org/10.1126/science.aal1319, 2017.
- Hobbie, S. E., T. A. Miley, and M. S. Weiss: Carbon and nitrogen cycling in soils from acidic and
 nonacidic tundra with different glacial histories in Northern Alaska. Ecosystems, 5, 0761-0774,
 https://doi.org/10.1007/s10021-002-0185-6, 2002.
- Hou, Y., Y. Chen, X. Chen, K. He, and B. Zhu: Changes in soil organic matter stability with depth in two
 alpine ecosystems on the Tibetan Plateau. Geoderma, 351, 153-162,

683 https://doi.org/10.1016/j.geoderma.2019.05.034, 2019.

- Huang, Z., Z. Xu, C. Chen, and S. Boyd: Changes in soil carbon during the establishment of a hardwood
 plantation in subtropical Australia. Forest Ecol. Manag., 254, 46-55,
 https://doi.org/10.1016/j.foreco.2007.07.021, 2008.
- Hugelius, G., J. Loisel, S. Chadburn, R. B. Jackson, M. Jones, G. MacDonald, M. Marushchak, D.
 Olefeldt, M. Packalen, M. B. Siewert, C. Treat, M. Turetsky, C. Voigt, and Z. Yu: Large stocks
 of peatland carbon and nitrogen are vulnerable to permafrost thaw. P. Nalt. Acad. Sci. USA,
 117:20438-20446, https://doi.org/10.1073/pnas.1916387117, 2020.Janssens, I. A., Dieleman,
 W., Luyssaert, S., Subke, J. A., Reichstein, M., Ceulemans, R., Ciais, P., Dolman, A. J., Grace, J.,

692	Matteucci, G., Papale, D., Piao, S. L., Schulze, E. D., Tang, J., Law, B. E: Reduction of forest soil
693	respiration in response to nitrogen deposition. Nat. Geosci. 3, 315-322,
694	https://doi.org/10.1038/ngeo844, 2010.
695	
696	Jiang, C., Yu, G., Li, Y., Cao, G., Yang, Z., Sheng, W., Yu, W.,: Nutrient resorption of coexistence species
697	in alpine meadow of the Qinghai-Tibetan Plateau explains plant adaptation to nutrient-poor
698	environment. Ecol. Eng., 44, 1-9, https://doi.org/10.1016/j.ecoleng.2012.04.006, 2012.
699	Keeler, B.L., Hobbie, S.E. & Kellogg, L.E.J.E: Effects of long-term nitrogen addition on microbial
700	enzyme activity in eight forested and grassland sites: implications for litter and soil organic matter
701	decomposition. Ecosystems 12, 1-15, https://doi.org/10.1007/s10021-008-9199-z, 2009.
702	Kim, JH., Jobbágy, EG., Richter, DD., Trumbore, SE., Jackson, RB: Agricultural acceleration of soil
703	carbonate weathering. Glob. Change Biol. 26(10): 5988-6002, https://doi.org/10.1111/gcb.15207,
704	<u>2020.</u>
705	
706	Kirschbaum, M. U.: Soil respiration under prolonged soil warming: are rate reductions caused by
707	acclimation or substrate loss? Global Change Biol., 10, 1870-1877,
708	https://doi.org/10.1111/j.1365-2486.2004.00852.x, 2004.
709	Komada, T., M. R. Anderson, and C. L. Dorfmeier: Carbonate removal from coastal sediments for the
710	determination of organic carbon and its isotopic signatures, $\delta^{13}C$ and $\Delta^{14}C$: comparison of
711	fumigation and direct acidification by hydrochloric acid. Limnol. Oceanogr-Meth., 6, 254-262,
712	https://doi.org/10.4319/lom.2008.6.254, 2008.
713	Lehmann, J., and M. Kleber: The contentious nature of soil organic matter. Nature, 528, 60-68,

714	https://doi.org/10.1038/nature16069, 2015.
715	Leifeld, J: Application of diffuse reflectance FT-IR spectroscopy and partial leastsquares regression to
716	predict NMR properties of soil organic matter. Eur. J. Soil Sci., 57, 846-857,
717	https://doi.org/10.1111/j.1365-2389.2005.00776.x, 2006.
718	Li, B., He, Y., Wang, Z., Luo, P., Hong, Q. Decomposition process and scientific management of yak
719	dung on alpine meadow in the eastern Qinghai-Tibetan Plateau. Pratacultural Sci. 29 (8), 1302-
720	1306, 2012 (in Chinese abstract).
721	Li, J., M. Nie, E. Pendall, P. B. Reich, J. Pei, N. J. Noh, T. Zhu, B. Li, and C. Fang: Biogeographic
722	variation in temperature sensitivity of decomposition in forest soils. Global Change Biol., 26,
723	1873-1885, https://doi.org/10.1111/gcb.14838, 2020.
724	Li, Q., Y. Tian, X. Zhang, X. Xu, H. Wang, and Y. Kuzyakov: Labile carbon and nitrogen additions affect
725	soil organic matter decomposition more strongly than temperature. Appl. Soil Ecol., 114, 152-
726	160, https://doi.org/10.1016/j.apsoil.2017.01.009, 2017.
727	Liang, C., and T. C. Balser: Warming and nitrogen deposition lessen microbial residue contribution to
728	soil carbon pool. Nat. Commun., 3, 1222, https://doi.org/10.1016/j.apsoil.2017.01.009, 2012.
729	Liu, X., S. Lyu, S. Zhou, and C. J. Bradshaw: Warming and fertilization alter the dilution effect of host
730	diversity on disease severity. Ecology, 97, 1680-1689, https://doi.org/10.1890/15-1784.1, 2016.
731	Liu, X., Y. Zhang, W. Han, A. Tang, J. Shen, Z. Cui, P. Vitousek, J. W. Erisman, K. Goulding, P. Christie,
732	A. Fangmeier, and F. Zhang: Enhanced nitrogen deposition over China. Nature, 494, 459-462,
733	https://doi.org/10.1038/nature11917, 2013.
734	Lü, C. & Tian, H.: Spatial and temporal patterns of nitrogen deposition in China: Synthesis of
735	observational data. J. Geophys. Res., 112, D22S05, https://doi.org/10.1029/2006JD007990,
	36

755

2007.

Lu, M., X. Zhou, Q. Yang, H. Li, Y. Luo, C. Fang, J. Chen, X. Yang, and B. Li: Responses of ecosystem
carbon cycle to experimental warming: a meta-analysis. Ecology, 94, 726-738,
https://doi.org/10.1890/12-0279.1, 2013.
Luo, R., J. Fan, W. Wang, J. Luo, Y. Kuzyakov, J.-S. He, H. Chu, and W. Ding: Nitrogen and phosphorus

741 <u>enrichment accelerates soil organic carbon loss in alpine grassland on the Qinghai-Tibetan</u>
742 <u>Plateau. Sci. Total Environ., 650: 303-312, https://doi.org/10.1016/j.scitotenv.2018.09.038,</u>
743 <u>2019.</u>

- Macias-Fauria, M., B. C. Forbes, P. Zetterberg, and T. Kumpula: Eurasian Arctic greening reveals
 teleconnections and the potential for structurally novel ecosystems. Nat. Clim. Change, 2, 613618, https://doi.org/10.1038/nclimate1558, 2012.
- 747 Mack, M., E. Schuur, M. Bret-Harte, G. Shaver, and F. J. N. Chapin: Ecosystem carbon storage in arctic
- tundra reduced by long-term nutrient fertilization. Nature, 431, 440-443,
 https://doi.org/10.1038/nature02887, 2004.
- 750 Mao, J., J. Yao, L. Wang, and W. Liu: Easily prepared high-quantum-yield CdS quantum dots in water
- vising hyperbranched polyethylenimine as modifier. J. Colloid Interf. Sci., 319, 353-356,
 https://doi.org/10.1016/j.jcis.2007.10.027, 2008.
- Mathers, N. J., Z. Xu, S. J. Berners-Price, M. S. Perera, and P. G. Saffigna: Hydrofluoric acid pre treatment for improving ¹³C CPMAS NMR spectral quality of forest soils in south-east
- 756 Melillo, J. M., S. D. Frey, K. M. Deangelis, W. J. Werner, M. J. Bernard, F. P. Bowles, G. Pold, M. A.
- 757 Knorr, and A. S. Grandy: Long-term pattern and magnitude of soil carbon feedback to the

Queensland, Australia. Soil Res., 40, 665-674, https://doi.org/10.1071/SR01073, 2002.

- 758 climate system in a warming world. Science, 358, 101-105,
 759 https://doi.org/10.1126/science.aan2874, 2017.
- 760 Melillo, J. M., P. Steudler, J. D. Aber, K. Newkirk, H. Lux, F. Bowles, C. Catricala, A. Magill, T. Ahrens,
- and S. Morrisseau: Soil warming and carbon-cycle feedbacks to the climate system. Science,
 298, 2173-2176, https://doi.org/10.1126/science.1074153, 2002.
- Meng, J., Li, X.-A: Effects of carbonate on the structure and properties of loess and the corresponding
 mechanism: an experimental study of the Malan loess, Xi'an area, China. Bull. Eng. Geol.
 Environ. 78 (7), 4965–4976, https://doi.org/10.1007/s10064-018-01457-z, 2019.
- 766
- 767 Metcalfe, D. B.: Microbial change in warming soils. Science, 358, 41-42,
 768 https://doi.org/10.1126/science.aap7325, 2017.
- Micks, P., Aber, J. D., Boone, R. D., Davidson, E. A.: Short-term soil respiration and nitrogen
 immobilization response to nitrogen applications in control and nitrogen-enriched temperate
- 771 forests. For. Ecol. Manage. 196, 57–70, https://doi.org/10.1016/j.foreco.2004.03.012, 2004.
- 772 Mo, J., W. Zhang, W. Zhu, P. Gundersen, Y. Fang, D. Li, and H. Wang: Nitrogen addition reduces soil
- respiration in a mature tropical forest in southern China. Global Change Biol., 14, 403-412,

774 https://doi.org/10.1111/j.1365-2486.2007.01503.x, 2008.

- 775 Moscatelli, M. C., A. Lagomarsino, P. De Angelis, and S. Grego: Short-and medium-term contrasting
- effects of nitrogen fertilization on C and N cycling in a poplar plantation soil. Forest Ecol.
- 777 Manag., 255, 447-454, https://doi.org/10.1016/j.foreco.2007.09.012, 2008.
- 778 Nie, M., E. Pendall, C. Bell, C. K. Gasch, S. Raut, S. Tamang, and M. D. Wallenstein: Positive climate
- feedbacks of soil microbial communities in a semi-arid grassland. Ecol. Lett., 16, 234-241,

780	https://doi.org/10.1111/ele.12034, 2013.							
781	Niemeyer, J., Chen, Y., Bollag, JM: Characterization of humic acids, composts, and peat by diffuse							
782	reflectance Fourier-transform infrared spectroscopy. Soil Sci. Soc. Am., 56, 135-140,							
783	https://doi.org/10.2136/sssaj1992.03615995005600010021x, 1992.							
784	Ofiti, N. O. E., C. U. Zosso, J. L. Soong, E. F. Solly, M. S. Torn, G. L. B. Wiesenberg, and M. W. I.							
785	Schmidt: Warming promotes loss of subsoil carbon through accelerated degradation of plant-							
786	derived organic matter. Soil Biol. Biochem., 156, 108185,							
787	https://doi.org/10.1016/j.soilbio.2021.108185, 2021.							
788	Olk, D. C., G. Brunetti, and N. Senesi: Decrease in Humification of Organic Matter with Intensified							
789	Lowland Rice Cropping A Wet Chemical and Spectroscopic Investigation. Soil Sci. Soc. Am.							
790	J., 64, 1337-1347, https://doi.org/10.2136/sssaj2000.6441337x, 2000.							
791	Paustian, K., J. Lehmann, S. Ogle, D. Reay, G. P. Robertson, and P. Smith: Climate-smart soils. Nature,							
792	532, 49-57, https://doi.org/10.1038/nature17174, 2016.							
793	Pendall, E., S. Bridgham, P. J. Hanson, B. Hungate, D. W. Kicklighter, D. W. Johnson, B. E. Law, Y. Q.							
794	Luo, J. P. Megonigal, M. Olsrud, M. G. Ryan, and S. Q. Wan: Below-ground process responses							
795	to elevated CO2 and temperature: a discussion of observations, measurement methods, and							
796	models. New Phytol., 162, 311-322, https://doi.org/10.1111/j.1469-8137.2004.01053.x, 2004.							
797	Piao, S., J. Fang, and J. He: Variations in vegetation net primary production in the Qinghai-Xizang							
798	Plateau, China, from 1982 to 1999. Climatic Change, 74, 253-267,							
799	https://doi.org/10.1007/s10584-005-6339-8, 2006.							
800	Poeplau, C., T. Kätterer, N. I. W. Leblans, and B. D. Sigurdsson: Sensitivity of soil carbon fractions and							

801 their specific stabilization mechanisms to extreme soil warming in a subarctic grassland. Global

- 802 Change Biol., 23, 1316-1327, https://doi.org/10.1111/gcb.13491, 2017.
- 803 Pold, G., A. S. Grandy, J. M. Melillo, and K. M. DeAngelis: Changes in substrate availability drive
- 804 carbon cycle response to chronic warming. Soil Biol. Biochem., 110, 68-78,
 805 https://doi.org/10.1016/j.soilbio.2017.03.002, 2017.
- <u>Raza, S., Miao, N.a., Wang, P., Ju, X., Chen, Z., Zhou, J., Kuzyakov, Y: Dramatic loss of inorganic carbon</u>
 <u>by nitrogen-induced soil acidification in Chinese croplands. Glob. Change Biol.</u> 26 (6), 3738–
 3751, https://doi.org/10.1111/gcb.15101, 2020.
- Raza, S., K. Zamanian, S. Ullah, Y. Kuzyakov, I. Virto, and J. Zhou: Inorganic carbon losses by soil
 acidification jeopardize global efforts on carbon sequestration and climate change mitigation. J.
 Clean. Prod., 315, 128036, https://doi.org/10.1016/j.jclepro.2021.128036, 2021.
- 812
- 813 Riggs, C. E., and S. E. Hobbie: Mechanisms driving the soil organic matter decomposition response to
- 814 nitrogen enrichment in grassland soils. Soil Biol. Biochem., 99, 54-65,
 815 https://doi.org/10.1016/j.soilbio.2016.04.023, 2016.
- 816 Rinnan, R., A. Michelsen, E. BÅÅTh, and S. Jonasson: Fifteen years of climate change manipulations
- 817 alter soil microbial communities in a subarctic heath ecosystem. Global Change Biol., 13, 28-

818 39, https://doi.org/10.1111/j.1365-2486.2006.01263.x, 2007.

- 819 Romero-Olivares, A. L., S. D. Allison, and K. K. Treseder: Soil microbes and their response to
- 820 experimental warming over time: A meta-analysis of field studies. Soil Biol. Biochem., 107, 32-
- 821 40, https://doi.org/10.1016/j.soilbio.2016.12.026, 2017.
- Rowley, M.C., Grand, S., Adatte, T., Verrecchia, E.P: A cascading influence of calcium carbonate on the
 biogeochemistry and pedogenic trajectories of subalpine soils, Switzerland. Geoderma 361,

824	114065, https://doi.org/10.1016/j.geoderma.2019.114065, 2020.
825	Saiya-Cork, K., Sinsabaugh, R. & Zak, D: The effects of long term nitrogen deposition on extracellular
826	enzyme activity in an Acer saccharum forest soil. Soil Biol. Biochem. 34, 1309-1315,
827	https://doi.org/10.1016/S0038-0717(02)00074-3, 2002.
828	
829	Schermelleh-Engel, K., H. Moosbrugger, and H. Müller: Evaluating the fit of structural equation models:
830	Tests of significance and descriptive goodness-of-fit measures. Methods of psychological
831	research online, 8, 23-74, 2003.
832	Schmidt, M., H. Knicker, P. G. Hatcher, and I. Kogel-Knabner: Improvement of ¹³ C and ¹⁵ N CPMAS
833	NMR spectra of bulk soils, particle size fractions and organic material by treatment with 10%
834	hydrofluoric acid. Eur. J. Soil Sci., 48, 319-328, https://doi.org/10.1111/j.1365-
835	2389.1997.tb00552.x, 1997.
836	Schmidt, M. W., M. S. Torn, S. Abiven, T. Dittmar, G. Guggenberger, I. A. Janssens, M. Kleber, I. Kögel-
837	Knabner, J. Lehmann, and D. A. Manning: Persistence of soil organic matter as an ecosystem
838	property. Nature, 478, 49-56, https://doi.org/10.1038/nature10386, 2011.
839	Schuur, E. A., A. D. McGuire, C. Schädel, G. Grosse, J. W. Harden, D. J. Hayes, G. Hugelius, C. D.
840	Koven, P. Kuhry, and D. M. Lawrence: Climate change and the permafrost carbon feedback.
841	Nature, 520, 171-179, https://doi.org/10.1038/nature14338, 2015.
842	Simpson, M. J., Simpson, A. J.: The chemical ecology of soil organic matter molecular constituents. J.
843	Chem. Ecol., 38, 768-784, https://doi.org/10.1007/s10886-012-0122-x, 2012.
844	Sistla, S. A., J. C. Moore, R. T. Simpson, L. Gough, G. R. Shaver, and J. P. Schimel: Long-term warming
845	restructures Arctic tundra without changing net soil carbon storage. Nature, 497, 615-618,

https://doi.org/10.1038/nature12129, 2013.

- Skjemstad, J., P. Clarke, J. Taylor, J. Oades, and R. Newman: The removal of magnetic materials from
 surface soils-a solid state ¹³C CP/MAS NMR study. Soil Res., 32, 1215-1229,
 https://doi.org/10.1071/SR9941215, 1994.
- 850 <u>Song, Y., Song, C., Meng, H., Swarzenski, CM., Wang, X., Tan, W: Nitrogen additions affect litter quality</u>
 851 <u>and soil biochemical properties in a peatland of Northeast China. Ecol. Eng. 100, 175-185,</u>
 852 <u>https://doi.org/10.1016/j.ecoleng.2016.12.025, 2017.</u>
- 853
- 854 Soong, J. L., C. Castanha, C. E. Hicks Pries, N. Ofiti, R. C. Porras, W. J. Riley, M. W. Schmidt, and M.
- 855 S. Torn: Five years of whole-soil warming led to loss of subsoil carbon stocks and increased
 856 CO2 efflux. Sci. Adv., 7, eabd1343, https://doi.org/10.1126/sciadv.abd1343, 2021.
- 857 Spaccini, R., J. Mbagwu, P. Conte, and A. Piccolo: Changes of humic substances characteristics from
- 858 forested to cultivated soils in Ethiopia. Geoderma, 132, 9-19, 859 https://doi.org/10.1016/j.geoderma.2005.04.015, 2006.
- 860 Sun, H., J. Jiang, L. Cui, W. Feng, Y. Wang, and J. Zhang: Soil organic carbon stabilization mechanisms
- 861 in a subtropical mangrove and salt marsh ecosystems. Sci. Total Environ., 673, 502-510,
 862 https://doi.org/10.1016/j.scitotenv.2019.04.122, 2019.
- Sun, H., Chen, H., Li, J., Zhang, Y., Liu, X., Li, J., Nie, M.: Nitrogen enrichment enhances thermal
 acclimation of soil microbial respiration. Biogeochemistry, 162(3), 343-357,
 https://doi.org/10.1007/s10533-023-01014-1, 2023.
- 866 Tian, D., and S. Niu: A global analysis of soil acidification caused by nitrogen addition. Environ. Res.
- 867 Lett., 10, 024019, https://doi.org/10.1088/1748-9326/10/2/024019, 2015.

868	Treseder, K. K: Nitrogen additions and microbial biomass: a meta-analysis of ecosystem studies. Ecol.
869	Lett. 11, 1111-1120, https://doi.org/10.1111/j.1461-0248.2008.01230.x, 2008.
870	Tucker, C. L., J. Bell, E. Pendall, and K. Ogle: Does declining carbon-use efficiency explain thermal
871	acclimation of soil respiration with warming? Global Change Biol., 19, 252-263,
872	https://doi.org/10.1111/gcb.12036, 2013.
873	
874	Ussiri, D. A., and C. E. Johnson: Characterization of organic matter in a northern hardwood forest soil
875	by 13C NMR spectroscopy and chemical methods. Geoderma, 111, 123-149,
876	https://doi.org/10.1016/S0016-7061(02)00257-4, 2003.
877	Van Gestel, N., Z. Shi, K. J. Van Groenigen, C. W. Osenberg, L. C. Andresen, J. S. Dukes, M. J. Hovenden,
878	Y. Luo, A. Michelsen, and E. Pendall: Predicting soil carbon loss with warming. Nature, 554,
879	E4-E5, https://doi.org/10.1038/nature20150, 2018.
880	Vance, E. D., P. C. Brookes, and D. S. Jenkinson: An extraction method for measuring soil microbial
881	biomass C. Soil Biol. Biochem., 19, 703-707, https://doi.org/10.1016/0038-0717(87)90052-6,
882	1987.
883	Vaughn, L. J., and M. S. Torn: ¹⁴ C evidence that millennial and fast-cycling soil carbon are equally
884	sensitive to warming. Nat. Clim. Change, 9, 467-471, https://doi.org/10.1038/s41558-019-
885	0468-у, 2019.
886	von Lützow, M., and I. Kögel-Knabner: Temperature sensitivity of soil organic matter decomposition-
887	what do we know? Biol. Fert. Soils, 46, 1-15, https://doi.org/10.1007/s00374-009-0413-8, 2009.
888	Walter, K., Don, A., Tiemeyer, B. and Freibauer, A.: Determining Soil Bulk Density for Carbon Stock
889	Calculations: A Systematic Method Comparison. Soil Sci. Soc. Am. J., 80, 579-591,

https://doi.org/10.2136/sssaj2015.11.0407, 2016.

- 891 Wang, C., N. He, J. Zhang, Y. Lv, and L. Wang: Long-term grazing exclusion improves the composition
- and stability of soil organic matter in Inner Mongolian grasslands. PLoS ONE, 10, e0128837,
- 893 https://doi.org/10.1371/journal.pone.0128837, 2015.
- 894 Wang, H., S.-R. Liu, J.-M. Mo, J.-X. Wang, F. Makeschin, and M. Wolff: Soil organic carbon stock and
- chemical composition in four plantations of indigenous tree species in subtropical China. Ecol.
 Res., 25, 1071-1079, https://doi.org/10.1007/s11284-010-0730-2, 2010.
- 897 Wang, J.-J., R. D. Bowden, K. Lajtha, S. E. Washko, S. J. Wurzbacher, and M. J. Simpson: Long-term
- nitrogen addition suppresses microbial degradation, enhances soil carbon storage, and alters the
 molecular composition of soil organic matter. Biogeochemistry, 142, 299-313,
 https://doi.org/10.1007/s10533-018-00535-4, 2019a.
- 901 Wang, J., B. Song, F. Ma, D. Tian, Y. Li, T. Yan, Q. Quan, F. Zhang, Z. Li, B. Wang, Q. Gao, W. Chen,
- and S. Niu: Nitrogen addition reduces soil respiration but increases the relative contribution of
 heterotrophic component in an alpine meadow. Funct. Ecol., 33, 2239-2253,
 https://doi.org/10.1111/1365-2435.13433, 2019b.
- 905 <u>Wu, J., Lin, H, Meng, C, Jiang, P, and Fu, W: Effects of intercropping grasses on soil organic carbon and</u>
 906 <u>microbial community functional diversity under Chinese hickory (Carya cathayensis Sarg.)</u>
 907 stands. SOIL RES., 52(6), 575-583, https://10.1071/SR14021, 2014.
- Xiao, J., S. Dong, Z. Zhao, Y. Han, S. Li, H. Shen, and C. Ding: Stabilization of soil organic carbon in
 the alpine meadow is dependent on the nitrogen deposition level on the Qinghai-Tibetan Plateau.
 Ecol. Eng., 170, 106348, https://doi.org/10.1016/j.ecoleng.2021.106348, 2021.
- 911 Xue, K., M. M Yuan, Z. J Shi, Y. Qin, Y. Deng, L. Cheng, L. Wu, Z. He, J. D. Van Nostrand, and R.

912	Bracho: Tundra soil carbon is vulnerable to rapid microbial decomposition under climate
913	warming. Nat. Clim. Change, 6, 595-600, https://doi.org/10.1038/nclimate2940, 2016.
914	Yang, Y., J. Fang, Y. Tang, C. Ji, C. Zheng, J. He, and B. Zhu: Storage, patterns and controls of soil
915	organic carbon in the Tibetan grasslands. Global Change Biol., 14, 1592-1599,
916	https://doi.org/10.1111/j.1365-2486.2008.01591.x, 2008.
917	Yu, G., Y. Jia, N. He, J. Zhu, Z. Chen, Q. Wang, S. Piao, X. Liu, H. He, X. Guo, Z. Wen, P. Li, G. Ding,
918	and K. Goulding: Stabilization of atmospheric nitrogen deposition in China over the past decade.
919	Nat. Geosci., 12, 424-429, https://doi.org/10.1038/s41561-019-0352-4, 2019.
920	Zamanian, K., Zarebanadkouki, M., Kuzyakov, Y: Nitrogen fertilization raises CO ₂ efflux from inorganic
921	carbon: a global assessment. Glob. Change Biol. 24 (7), 2810-2817,
922	https://doi.org/10.1111/gcb.14148, 2018.
923	
924	Zak, D. R., Z. B. Freedman, R. A. Upchurch, M. Steffens, and I. Kögel-Knabner: Anthropogenic N
925	deposition increases soil organic matter accumulation without altering its biochemical
926	composition. Global Change Biol., 23, 933-944, https://doi.org/10.1111/gcb.13480, 2017.
927	Zhang, H. R., and G. Fu: Responses of plant, soil bacterial and fungal communities to grazing vary with
928	pasture seasons and grassland types, northern Tibet. Land Degrad. Dev., 32: 1821-1832,
929	https://doi.org/10.1002/ldr.3835, 2020.
930	Zhang, J., S. Dou, and X. Song: Effect of long-term combined nitrogen and phosphorus fertilizer
931	application on ¹³ C CPMAS NMR spectra of humin in a Typic Hapludoll of northeast China. Eur.
932	J. Soil Sci., 60, 966-973, https://doi.org/10.1111/j.1365-2389.2009.01191.x, 2009.
933	Zhang, Q., J. Feng, J. Li, CY. Huang, Y. Shen, W. Cheng, and B. Zhu: A distinct sensitivity to priming

- 934 effect between labile and stable soil organic carbon. New Phytol., 237(1), 88-99,
 935 https://doi.org/10.1111/nph.18458, 2022.
- 936 Zhang, T., Y. Li, S. X. Chang, P. Jiang, G. Zhou, J. Liu, and L. Lin: Converting paddy fields to Lei
- 937 bamboo (Phyllostachys praecox) stands affected soil nutrient concentrations, labile organic
- 938 carbon pools, and organic carbon chemical compositions. Plant Soil 367, 249-261,
 939 https://doi.org/10.1007/s11104-012-1551-6, 2013.
- 940 Zhou, L., X. Zhou, B. Zhang, M. Lu, Y. Luo, L. Liu, and B. Li: Different responses of soil respiration
- 941 and its components to nitrogen addition among biomes: a meta-analysis. Global Change Biol.,
- 942 20, 2332-2343, https://doi.org/10.1111/gcb.12490, 2014.
- Zhou, P., G. Pan, R. Spaccini, and A. Piccolo: Molecular changes in particulate organic matter (POM) in
 a typical Chinese paddy soil under different long-term fertilizer treatments. Eur. J. Soil Sci., 61,
 231-242, https://doi.org/10.1111/j.1365-2389.2009.01223.x, 2010.
- 946
- 947

948 Figure and table legends

Figure 1. <u>Elevation mapLocation</u> of the studied sites (a, the pentagram refers to the
sampling point), photo of the alpine meadow (b) and the -diagram of the warming
treatment (open-top chamber) (c).

- 952 Figure 2. N and warming-induced changes in the soil properties (mean \pm SE, n = 6).
- 953 Control (white bar) and warmed plots (black bar) at four different levels of simulated
- 954 N deposition. N0, N1, N2, and N3 indicate N-enrichments of 0, 5, 10, and 15 g N m^{-2}
- 955 year⁻¹, respectively. Parameters are: Soil pH (a); AGB, aboveground biomass (b); EnC,
- 956 C-degrading enzymes (c); C/N, ratio of soil C concentration to N concentration (d);
- 957 MBC, microbial biomass carbo (e); SOC, soil organic carbon stock (f).
- 958

Figure 33. N and warming-induced changes in the relative abundance of different functional groups identifiable by diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy in warmed and control plots (mean \pm SE, n = 6). The spectral regions were assigned to aromatic carbonyl/carboxyl C=O groups, aromatic C=C groups, lignin-like

963 residues, and cellulose/phenolic. No significant differences were found.

Figure 44. Four different SOC chemical structural complexity indexes (mean \pm SE, n

965 = 6) from solid-state ¹³C CPMASNMR spectra of soil samples from different treatments.

966 A/O-A=Alkyl C/O-alkyl C; HB/HI = hydrophobic C/hydrophilic C; Alip/Arom =

967 aliphatic C/aromatic C. No significant differences were found.

Figure 55. The factors regulating the SOC stock under (a) N enrichment, and (b) warming treatment and (c)interactive effects of N and warming. In the structural

970	equation model (SEM) analysis, black arrows represent significant positive pathways,
971	gray arrows represent significant negative pathways, and gray dashed arrows indicate
972	nonsignificant pathways. Values next to the arrows represent standardized effect sizes
973	with statistical significance (* $P < 0.05$; ** $P < 0.01$; *** $P < 0.001$). The thickness of
974	the arrow represents the standardized effect sizes. C-degrading enzyme indicate sum of
975	β -D-cellubiosidase (CB), α -glucosidase (AG), β -glucosidase (BG) and β -xylosidase
976	(XYL). Goodness-of-fit statistics for the model are shown as follows: (a), $\chi^2 = 4.53$, P
977	= 0.53, GFI =0.99, RMSEA < 0.001; (b), χ^2 = 4.47, <i>P</i> = 0.486, GFI = 0.99, RMSEA <
978	0.001.
979	Table 1. Relative intensities (mean \pm SE, n = 6) of different carbon chemical shifts from

979 **Table 1.** Relative intensities (mean \pm SE, n = 6) of different carbon chemical shifts from 980 solid-state ¹³C CPMAS NMR spectra of soil samples from N and warming treatments. 981 No significant differences were found.

993 Figure 3Figure 3

Table 1

	Chomical shifts		Treatment			
	Chemical sums		NO	N1	N2	N3
	Alkyl C (0-45 ppm)	С	22.64±0.15	23.22±0.17	22.55±0.2	22.85±0.32
		W	22.68 ± 0.24	22.75 ± 0.51	22.07 ± 0.26	22.29±0.29
	N-alkyl C (45-60 ppm)	С	10.91 ± 0.09	11.08 ± 0.11	$10.82 {\pm} 0.08$	10.92 ± 0.1
		W	10.73 ± 0.06	10.6 ± 0.24	$10.54 {\pm} 0.08$	10.67 ± 0.16
	O-alkyl C (60-90 ppm)	С	33.5 ± 0.35	33.62 ± 0.53	33.67 ± 0.54	33.83 ± 0.47
		W	33.8±0.3	33.65±0.23	33.88±0.45	33.36±0.31
¹³ C NMR	di-O-alkyl C (90-110 ppm)	С	8.74 ± 0.09	8.65 ± 0.09	8.9±0.13	8.82 ± 0.12
(%)		W	$8.88 {\pm} 0.09$	9.02±0.11	8.88 ± 0.1	9.02±0.26
	Aromatic C (110-145 ppm)	С	12.25 ± 0.33	11.62 ± 0.26	12.05 ± 0.3	11.45 ± 0.28
		W	11.86 ± 0.36	12.1±0.45	12.03±0.3 12.34±0.38	12.44 ± 0.21
	Phenolic C (145-165 ppm)	С	3.47 ± 0.1	3.44 ± 0.11	$3.47 {\pm} 0.08$	3.64 ± 0.05
		W	3.46 ± 0.06	3.32 ± 0.05	3.56 ± 0.07	3.54±0.09
	Carbonyl C (165-210 ppm)	С	8.49 ± 0.1	8.37±0.17	8.54 ± 0.18	8.49±0.3
		W	8.61 ± 0.16	8.57±0.24	8.73 ± 0.14	8.68±0.19