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Abstract. Nitrogen (N) and warming effects on ecosystem carbon (C) budgets and 17 

stabilization are critical to understand as C sequestration is considered as a mechanism 18 

to offset anthropogenic CO2 emissions, which is important for accurately predicting 19 

ecosystem C sequestration and/or potential C loss, remaining controversial though. 20 

Understanding the changes in soil organic carbon (SOC) storage and chemical 21 

stabilization dynamics is important for accurately predicting ecosystem C sequestration 22 
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and/or potential C loBss, but the relevant information, especially for the intervention of 23 

environmental controls on grassland soil is limited in Tibetan plateau (TP) regions. 24 

Here we used a 9-year two-way factorial experiment involving warming with open top 25 

chambers (+1.80 °C in the daytime and +0.77 °C in the nighttime at the soil surface) 26 

and multilevel nitrogen (N) enrichment treatments (0, 5, 10, and 15 g m-2 year-1) in the 27 

TP Tibetan plateau to investigate the changes in SOC pool size and chemical structure. 28 

9-year warming treatment significantly decreased SOC stock in the Tibetan grassland. 29 

We observed decreasing SOC concentrations which may be related to changes in the C 30 

degrading enzymes. Surprisingly, the SOC molecular structure remained unchanged in 31 

all N enrichment and warmed plots, suggesting that both treatments had affected all 32 

forms of SOC, from simple and complex polymeric in a similar way. Our results suggest 33 

that long-term warming stimulates soil C loss but no preference in SOC loss with 34 

different chemical structure. 35 

Keywords: global warming, nitrogen deposition, SOC, molecular structure, C 36 

stabilization 37 
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1. Introduction 39 

Soil organic matter is the largest organic carbon reservoir of near-surface terrestrial 40 

ecosystem (Dlamini et al. 2016). Even subtle acceleration in SOC decomposition will 41 

result in large CO2 emissions (Davidson and Janssens 2006). So, knowledge of the 42 

factors affecting SOC storage and decomposition is essential for understanding the 43 

dynamically changing global C cycle. The influence of global warming on 44 

decomposition of soil carbon has been well documented (Poeplau et al. 2017, Guan et 45 

al. 2018, Ding et al. 2019b), but there remains considerable uncertainty in the potential 46 

response of soil C dynamics to the rapid global increase in reactive nitrogen (N, coming 47 

largely from agricultural fertilizers and fossil fuel combustion) as well as the combined 48 

effects with warming (Liang and Balser 2012, Devaraju et al. 2015, Li et al. 2017). For 49 

example, soil N availability would strongly affect microbial physiology and C-50 

degrading enzymes (EnC), which can subsequently alter soil C feedbacks to warming 51 

(Mack et al. 2004; Contosta & Cooper 2015). EnC has been shown to play an important 52 

role in SOM nutrient cycling and catabolism (Chen et al. 2018a), and information on 53 

such activity can be used to investigate substrate nutrient demand and response to 54 

environmental changes (Allison et al. 2010; Wang et al. 2015). The knowledge gap 55 

demonstrated a need to focus research on biological and physicochemical controls of 56 

SOC stabilization and destabilization processes as a basis for understanding causal 57 

relationships and key processes that determine pool sizes and turnover rates of 58 

functional SOC pools (von Lützow and Kögel-Knabner 2009). 59 
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Soil warming experiments in the field have shown that warming generates a 60 

considerable short-term soil C loss (Lu et al. 2013, Romero-Olivares et al. 2017). This 61 

loss declines over time (e.g. > 2 years) (Romero-Olivares et al. 2017), although there is 62 

evidence that it can continue for longer (e.g. > 20 years) (Melillo et al. 2017). Also, 63 

indirect effects of warming on nutrient cycling (Pendall et al. 2004) or plant inputs 64 

(Bradford et al. 2016) may have cascading effects on SOC quality and quantity (Lu et 65 

al. 2013) and consequently on microbial decomposition of SOC, including recent plant-66 

derived material (Hicks Pries et al. 2017) or older SOC (Vaughn and Torn 2019). 67 

Because ecosystems in alpine meadow are normally N limited (Hobbie et al. 2002), 68 

increased N released from decomposing SOC could stimulate plant productivity, 69 

thereby increasing ecosystem C storage (Moscatelli et al. 2008). However, field 70 

evidence suggests that soil microbial activity and biomass may also be N limited in 71 

some C-rich ecosystems (Mack et al. 2004, Rinnan et al. 2007). Therefore, increased N 72 

released from decomposition of SOC could further fuel microbial activity and decrease 73 

soil C storage. Besides, according to the priming effect hypothesis, the increase in N 74 

availability and labile C substrates promotes microbial C utilization, thereby increasing 75 

the degradation of less decomposable SOC and leading to a negative effect on soil C 76 

accumulation over the long term (Riggs and Hobbie 2016). However, it has been proven 77 

difficult to quantify bulk SOC stocks changes and organic matter composition directly 78 

(Sistla et al. 2013, Van Gestel et al. 2018). As alternatives, molecular-level techniques 79 

can detect how temperature affects plant and soil organic matter, microbial growth and 80 
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their community composition under climate warming (Feng et al. 2008, Xue et al. 2016, 81 

Pold et al. 2017). 82 

Since the molecular structure of organic material has long been thought to determine 83 

long-term decomposition rates in soil humic substances, solid-state CPMAS 13C NMR 84 

spectroscopy and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy 85 

has been successfully applied in studies on changes of SOC chemical structure during 86 

organic matter decomposition without any physical or chemical destruction (Schmidt 87 

et al. 2011). However, because of the large number of variables affecting a spectrum, it 88 

is extremely difficult to obtain a complete and fine molecular structure from a single 89 

spectrum without additional knowledge obtained by other spectroscopic techniques 90 

(Ferrari et al. 2011). So, we employed another complementary molecular-level analysis 91 

called diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, which is a 92 

useful method for the characterization of organic matter (Olk et al. 2000) and humic 93 

substances (Mao et al. 2008, Francioso et al. 2009), to explore potential shifts in SOC 94 

composition in response to warming and N enrichment. The structure of SOC could be 95 

very complex but by combining both techniques (DRIFT and solid-state 13C NMR and 96 

DRIFT) complementary information could be obtained on aromatic and aliphatic 97 

components (Ferrari et al. 2011). 98 

Despite the importance of the response of SOC stocks to warming and N enrichment 99 

in the intact ecosystem, results about the chemical stabilization mechanisms (i.e. 100 

molecular structure of SOC) in alpine meadows remained controversial.Despite the 101 

importance of the response of SOC stocks to warming and N enrichment in the intact 102 
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ecosystem, this has not been assessed empirically in alpine meadows. This knowledge 103 

gap is significant because the Tibetan Plateau (TP) stores a large C pool, with 36.6 Pg 104 

C stored in the top 3 m of the soil, accounting for 23.5% of China’s total organic soil-105 

stored C and 2.5% of the global pool of soil C, which is of great importance in 106 

regulating future global climate change and C emission (Genxu et al. 2002, Ding et al. 107 

2019a). At the same time, the TP Tibetan Plateau has experienced climate warming at 108 

a rate that is two times faster than that in other regions worldwide and is predicted to 109 

lead to great soil C losses via microbial respiration in the future (Biskaborn et al. 2019). 110 

In addition, during recent decades, the TP Tibetan Plateau has been subject to high 111 

levels of N enrichment driven by agricultural activities (up to ~8.0 g m-2 y-1) (Gao et al. 112 

2007, Bo et al. 2012, Zhang and Fu 2020) and atmospheric N deposition (1 g N m-2 y-113 

1) (Lü and Tian 2007, Yu et al. 2019) with an annual rate of increase in deposition (0.053 114 

g N m-2 y-1) (Liu et al. 2013, Wang et al. 2019b), and this kind of enrichment has been 115 

shown to induce soil C loss and affect SOC stabilization in this typical N-constrained 116 

ecosystem (Xiao et al. 2021).  117 

Since temperature is one of the main drivers of the vegetation growth and 118 

decomposition of organic matter, on-going climate change may alter biophysical 119 

processes with consequences for ecosystem functioning, especially in highly sensitive 120 

cold regions such as the alpine meadow on the TP Tibetan plateau (Piao et al. 2006, 121 

Yang et al. 2008). However, how and to what extent physical chemical stabilization of 122 

SOC shifts may occur, and consequently SOC storage and C-climate feedback would 123 

respond to warming and N enrichment in an alpine meadow ecosystem, remains largely 124 
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unknown. Here, we used soils from a 9-year experiment with a two-way factorial design 125 

involving soil warming (daytime: 1.80°C; nighttime: 0.77°C) and control plots and N 126 

enrichments (0, 5, 10, and 15 g m-2 y-1; marked as N0, N1, N2, and N3, respectively) 127 

(Liu et al. 2016) on the TP Tibetan Plateau to examine the changes in the stock and 128 

molecular structure of SOC. 129 

We hypothesized that 9-years N enrichment and warming would affect SOC stock and 130 

the chemical structure of the SOC. N enrichment below a certain threshold may favor 131 

C sequestration in the alpine grassland ecosystem but warming may result in the C loss. 132 

And added N would stimulate hydrolytic enzyme activity while warming would repress 133 

enzyme activity. Finally, we hypothesized that variation in enzyme response to N and 134 

temperature would emerge as an important explanation for variability in the effect of 135 

added N and warming on SOC stock. 136 

 137 

  138 
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2. Materials and methods 139 

2.1 Site description 140 

Plot sampling was conducted in a grassland ecosystem located on the eastern edge 141 

of the Tibetan Plateau, Maqu County, Gansu Province, China (101°53′ E, 35°58′ N, 142 

3500 m above sea level, Figure 1 (NOAA 2015)), in August 2019. The grassland 143 

ecosystem of the TP covers an area of about 1.53 million km2, accounting for nearly 144 

60% of the total area of the TP (Liu et al., 2016). Alpine meadow is the main vegetation 145 

type in this area, Tthe plant community is dominated by perennial herbaceous species 146 

of Poaceae, Ranunculaceae, and Asteraceae.. The area of alpine meadow accounts for 147 

more than 44% of the area of alpine grasslands, and its SOC storage accounts for 56% 148 

of the SOC storage of alpine grasslands on the whole TP TP (Yang et al. 2008). The soil 149 

in the alpine meadow is classified as Mat-Cryic Cambisol (Hou et al. 2019). This region 150 

has a typical plateau continental climate. The mean annual precipitation is 620 mm, and 151 

most falls in the growing season (summer). The mean annual temperature is 1.2°C, with 152 

the lowest monthly mean temperature occurring in January (−10.7°C) and the highest 153 

monthly mean temperature occurring in July (11.7°C). During the past several decades, 154 

the mean annual temperatures in the region have risen at a rate of 0.58°C per decade 155 

(Liu et al. 2016). The plant community is dominated by perennial herbaceous species 156 

of Poaceae, Ranunculaceae, and Asteraceae. 157 

2.2 Experimental design and soil sampling 158 

A field-based warming experiment was established in June 2011 with a split-plot 159 

block design, in which both temperature (open-top chamber, +1.80°C in the daytime 160 



9 

 

and +0.77°C in the nighttime at the soil surface) and nitrogen (0, 5, 10, and 15 g m-2 y-161 

1, corresponding to N0, N1, N2, and N3, respectively) were manipulated, with six 162 

replicates per treatment (Liu et al., 2016). The 48 plots (8 treatments (N0, N1, N2, N3, 163 

WN0, WN1, WN2, WN3) with 6 replicates each treatment) with roughly the same 164 

species diversity and community structure were 5 × 5 m and were separated by 1 m 165 

from adjacent edges. Additional details can be found in our previous studies (Sun et al., 166 

2023). Surface layer (0-10 cm) soils were collected from these 48 plots using a 4-cm-167 

diameter auger in August 2019. Then, the fresh soil samples were transported to the 168 

laboratory on ice. 169 

2.3 Soil analysis 170 

Soil microbial biomass carbon (MBC) was measured according to the chloroform 171 

fumigation extraction method using a TOC analyzer (Multi N/C 3100, Analytik Jena 172 

GmbH, Germany) (Vance et al. 1987). The soil pH was determined in a 1:5 soil: water 173 

suspension with a pH meter (PHS-3D, Rex, Shanghai, China). Bulk density samples 174 

were dried at 105 °C for 48 h and calculated by dividing the oven-dried soil mass by 175 

the steel cylinder volume (100 cm3) because coarse fragments (stones or large roots) 176 

were not obtained in ring samples. For soil organic carbon (SOC) analysis, air-dried 177 

soil was ground and HCl-fumigated (Komada et al. 2008), and then the SOC 178 

concentration was determined with an elemental analyzer (FlashSmart, Thermo Fisher 179 

Scientific, USA). The SOC stocks (0-10 cm) were are calculated by multiplying the 180 

SOC concentration by the bulk density (Walter et al. 2016). At these 48each sites, all 181 
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plants in three plots (50 × 50 cm) were harvested and dried to determine the 182 

aboveground biomass (AGB). 183 

We measured the activity of four extracellular enzymes in the soil at an in situ pH 184 

(Nie et al. 2013). The absorbance of the C degradation enzymes β-D-cellubiosidase 185 

(CB), α-glucosidase (AG), β-glucosidase (BG) and β-xylosidase (XYL) were measured 186 

using a Tecan infinite M200 microplate fluorometer (Grodig, Austria) with 365 nm 187 

excitation and 460 nm emission filters. The activities were expressed in units of nmol 188 

h-1 g-1 dry soil. We combined CB, AG, BG and XYL into a C-degrading enzyme variable 189 

(EnC). 190 

2.4 5 SOC molecular structure examination using NMR spectroscopy 191 

The soil samples used for NMR spectroscopy analysis were pretreated using HF (2%) 192 

to eliminate paramagnetic materials, e.g. ferric ion and manganese ion, that may affect 193 

the NMR signals (Skjemstad et al. 1994, Schmidt et al. 1997, Mathers et al. 2002). The 194 

solid-state NMR spectra (13C-CP-MAS) were recorded on a Bruker AVANCE III 195 

600 MHz instrument (Bruker Instrument Inc., Billerica, MA, USA). The acquisition 196 

conditions were set at frequency of 75.5 MHz, with 20 kHz spectra width, 5 kHz 197 

spinning speed, 2 ms contact time, and 2.5 s recycle time. The regions of 0–210 ppm 198 

spectra were plotted. 199 

We examined seven chemical shift regions to represent the main C functional groups 200 

(Golchin et al. 1997, Sun et al. 2019). We report proportions of each chemical shift area 201 

and calculated 4 ratios indicative for the characteristics of soil organic matter. The alkyl 202 

C, the most persistent fraction of SOC, comes from original plant biopolymers (such as 203 
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cutin, suberin and waxes) or from metabolic products of soil microorganisms (Ussiri 204 

and Johnson 2003). As these materials decompose, the relative abundance of O-alkyl C 205 

in the litter materials decreases, and there is a progressive increase in alkyl C 206 

(Bonanomi et al. 2013). Therefore, the ratio of alkyl C to O-alkyl C (A/O-A = C0–45/C60–207 

90) is an index represents the extent of SOC decomposition, the higher this ratio, the 208 

higher the decomposition degree of SOC (Wang et al. 2015). Aromaticity (C110–165/C0–209 

165), was used to indicate the complexity of molecular structure (Dai et al. 2001). The 210 

ratio of aliphatic C/aromatic C (Alip/Arom), C0–110/C110–165, also indicates the molecular 211 

structure of soil C, with higher Alip/Arom means less aromatic nuclear structure in 212 

humus. The hydrophobic C/hydrophilic C (HB/HI) ratio, (C0–45 + C110–165)/(C45–213 

110 + C165–210), was used to reflect the stability of soil aggregation (Spaccini et al. 2006, 214 

Wang et al. 2010). The higher values of HB/HI ratio indicated that SOC was more 215 

hydrophobic (Cao et al., 2016), which, in turn, implied that SOC was more stable 216 

(Spaccini et al., 2006, Wu et al., 2014). 217 

 218 

2.54 Bulk soil organic matter composition using DRIFT spectroscopy 219 

However, bBecause of the large number of variables affecting a spectrum, it is 220 

extremely difficult to obtain a complete and fine molecular structure from a single 221 

spectrum without additional knowledge obtained by other spectroscopic techniques 222 

(Ferrari et al. 2011). So, we employed another complementary molecular-level analysis 223 

called diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, which is a 224 

useful method for the characterization of organic matter (Olk et al. 2000) and humic 225 
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substances (Mao et al. 2008, Francioso et al. 2009), to explore potential shifts in SOC 226 

composition in response to warming and N enrichment. To characterize warming/N-227 

induced changes in SOC composition, 6 mg of ground soil sample was examined by 228 

diffuse reflectance infrared Fourier transform spectroscopy (DRIFT). Mid-infrared 229 

spectra were recorded using a Bruker TENSOR 27 spectrometer (Billerica, 230 

Massachusetts, USA) from 4000 to 400 cm-1−1 (average of 16 scans per sample at 4 cm-231 

1−1 resolution). Infrared absorption bands were represented by functional groups. 232 

Infrared absorption bands were represented by functional groups as follows: aliphatic 233 

C–H (2900 cm-1), aromatic esters, carbonyl/carboxyl C– –O (1735–1720 cm-1), 234 

aromatic C– –C (1660–1600 cm-1, 1430–1380 cm-1), lignin-like residues (1515–1500 235 

cm-1), phenolic/cellulose (1260–1210 cm-1), and aromatic C–H (880, 805, 745 cm-1) 236 

carbon (Niemeyer et al. 1992; Leifeld, 2006; Chatterjee et al. 2012). A summary of the 237 

absorption bands associated with different compound classes can be found in Figure S2. 238 

Additional details can be found in our previous studies (Ofiti et al. 2021). 239 

2.5 SOC molecular structure examination using NMR spectroscopy 240 

The soil samples used for NMR spectroscopy analysis were pretreated using HF (2%) 241 

to eliminate paramagnetic materials, e.g. ferric ion and manganese ion, that may affect 242 

the NMR signals (Skjemstad et al. 1994, Schmidt et al. 1997, Mathers et al. 2002). The 243 

solid-state NMR spectra (13C-CP-MAS) were recorded on a Bruker AVANCE III 244 

600 MHz instrument (Bruker Instrument Inc., Billerica, MA, USA). The acquisition 245 

conditions were set at frequency of 75.5 MHz, with 20 kHz spectra width, 5 kHz 246 
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spinning speed, 2 ms contact time, and 2.5 s recycle time. The regions of 0–210 ppm 247 

spectra were plotted. 248 

We examined seven chemical shift regions to represent the main C functional groups 249 

(Golchin et al. 1997, Sun et al. 2019). We report proportions of each chemical shift area 250 

and calculated 4 ratios indicative for the characteristics of soil organic matter. The alkyl 251 

C, the most persistent fraction of SOC, comes from original plant biopolymers (such as 252 

cutin, suberin and waxes) or from metabolic products of soil microorganisms (Ussiri 253 

and Johnson 2003). As these materials decompose, the relative abundance of O-alkyl C 254 

in the litter materials decreases, and there is a progressive increase in alkyl C 255 

(Bonanomi et al. 2013). Therefore, the ratio of alkyl C to O-alkyl C (A/O-A = C0–45/C60–256 

90) is an index represents the extent of SOC decomposition, the higher this ratio, the 257 

higher the decomposition degree of SOC (Wang et al. 2015). Aromaticity (C110–165/C0–258 

165), was used to indicate the complexity of molecular structure (Dai et al. 2001). The 259 

ratio of aliphatic C/aromatic C (Alip/Arom), C0–110/C110–165, also indicates the molecular 260 

structure of soil C, with higher Alip/Arom means less aromatic nuclear structure in 261 

humus. The hydrophobic C/hydrophilic C (HB/HI) ratio, (C0–45 + C110–165)/(C45–262 

110 + C165–210), was used to reflect the stability of soil aggregation (Spaccini et al. 2006, 263 

Wang et al. 2010). 264 

2.6 Regulating factors of SOC indicated by structural equation model 265 

To access the direct and indirect effects of external factors on SOC stock, structural 266 

equation modeling (SEM) was performed using the R package ‘plspm’ and 267 

‘piecewiseSEM’ (Li et al. 2020). For this purpose, firstly, all data were tested for 268 
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normality using the Kolmogorov–Smirnov test, and the non‐normal variables were log‐269 

transformed. Secondly, we established a prior model based on prior knowledge of 270 

effects and relationships among the driving factors. Finally, we selected the best model 271 

based on overall goodness of fits, including the chi‐square (χ2) statistic, degrees of 272 

freedom (df), whole‐model P value, goodness of fit index, and the root‐mean‐square 273 

error of approximation (Schermelleh-Engel et al. 2003). 274 

2.67 Statistical analysis 275 

All data are presented as the mean values of six field replicates. Any significant 276 

differences in soil physicochemical properties among the different N enrichment levels 277 

and warming treatments were identified by using two-way ANOVA followed by 278 

Tukey’s HSD post hoc test, with differences considered to be statistically significant at 279 

P < 0.05. The statistical analysis was conducted using SPSS 13.0 and R version 3.5.1 280 

(R Foundation for Statistical Computing, Vienna, Austria, 2013). To access the direct 281 

and indirect effects of external factors on SOC stock, structural equation modeling 282 

(SEM) was performed using the R package ‘plspm’ and ‘piecewiseSEM’ (Li et al. 2020). 283 

For this purpose, firstly, all data were tested for normality using the Kolmogorov–284 

Smirnov test, and the non‐normal variables were log‐transformed. Secondly, we 285 

established a prior model based on prior knowledge of effects and relationships among 286 

the driving factors. Finally, we selected the best model based on overall goodness of 287 

fits, including the chi‐square (χ2) statistic, degrees of freedom (df), whole‐model P 288 

value, goodness of fit index, and the root‐mean‐square error of approximation 289 

(Schermelleh-Engel et al. 2003). 290 



15 

 

 291 

  292 



16 

 

3. Results 293 

3.1 Bulk soil properties 294 

N enrichment and warming have significant interaction on pH, AGB, EnC, C/N and 295 

SOC stock (P < 0.05, Figure 2). Soil bulk density, SOC concentration, SOC stock, AGB,  296 

and EnC and SOC stock increased significantly under N enrichment but the increment 297 

decreased with rising N addition concentration (P < 0.05, Figure 2b, 2c, 2f). decreased 298 

with N enrichment level as well as warming treatment (P < 0.05, Figure 2, Table S1, 299 

Figure S1). Warming exacerbates soil acidification and decreased the AGB, EnC, MBC 300 

and the SOC stock significantly.Effects of N enrichment and warming treatment on soil 301 

properties were shown in the Figure 2 and Table S1. Warming aggravated N-induced 302 

soil acidification and microbial biomass C loss (P < 0.05, Figure 2a, 2e, 2f). Soil bulk 303 

density, SOC concentration, SOC stock, AGB and EnC increased significantly under N 304 

enrichment but decreased with N enrichment level as well as warming treatment (P < 305 

0.05, Figure 2, Table S1, Figure S1). Both N enrichment and warming significantly 306 

decreased C/N ratio (P < 0.05, Figure 2d). Except for MBC, the NW interactions 307 

significantly altered soil physicochemical properties (Figure 2, Table S1). 308 

3.2 SOC speciation as seen by DRIFT and NMR spectroscopy 309 

Changes in SOC molecular composition became apparent in diffuse reflectance 310 

infrared Fourier transform (DRIFT) and nuclear magnetic resonance (NMR) spectra 311 

(Figure 3, 4 and Figure S2, S3). In all N enrichment and warming treatments, there was 312 

a statistically non-significant change in the SOC composition and molecular structure 313 

observed by both DRIFT and NMR spectra. The relative abundance of 314 
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carbonyl/carboxyl C=O, and C=C aromatics compounds as well as lignin-like residues 315 

decreased slightly after N enrichment, not significantly though. The relative abundance 316 

of the phenolic/cellulose remained stable in all individual and interaction treatments 317 

decreased (non-significant) after N enrichment, however, kept steady in warming plots 318 

(Figure 3 and S2). 319 

The results of 13C NMR spectroscopy indicated the relative abundance of different C 320 

components (Table 1, Figure 4 and S3), showing that the proportion of the seven C 321 

functional groups did not change in soils under N enrichment and warming treatments. 322 

The relative proportions of the seven C functional groups were similarstable in the 8 323 

treatments in the following abundance order: O-alkyl C (mean 33%), followed by alkyl 324 

C (mean 22%), aromatic C (mean 12%), N-alkyl C (11%), carbonyl C and di-O-alkyl 325 

C (mean 8%), and finally phenolic C (mean 3%) (Table 1, Figure S3). The four indexes 326 

which can represent the extent of SOC decomposition observed by NMR spectra also 327 

showed no significant difference under all the N-enrichment and warming treatments 328 

(Figure 4), suggesting that SOC showed a similar degradation state at all N level 329 

enrichments and warming treatments as well as the interaction effects. 330 

3.3 Factors driving the SOC stocks 331 

We then developed a structural equation model (SEM) to assess the direct and 332 

indirect effects of soil variables on the SOC stocks (Figure 5). The SEM results revealed 333 

strong connections among global change, biotic, and edaphic factors (Figure 5), 334 

demonstrating a need to consider their interactions when predicting SOC stock and its 335 

response to individual and interactive effects of N enrichment and warmingN 336 
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enrichment and warming. Overall, the SEM explained 44%,  and 55% and 21% of the 337 

variance in SOC stock driven by N enrichment and , warming treatment and the 338 

interaction effects, respectively. In both N and warming patterns, C-degrading enzymes 339 

showed an important indirect factor in regulating SOC stock. N enrichment had a 340 

positive effect on SOC stock by enhancing enzyme activities. In contrast, warming had 341 

a negative effect on SOC stock by inhibiting microbial enzymes. Besides, warming had 342 

a strong negative direct effect on SOC stock (Figure 5b). However, no significant direct 343 

or indirect pathways for the interaction effects of N and warming on SOC stock were 344 

observed (Figure 5C). 345 

346 
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4. Discussion 347 

4.1. Effects of warming and N enrichment on soil C pool size  348 

It is suggested that small N inputs can decrease CO2 emissions by changing the 349 

interaction between plants and soil microbes in N-limited ecosystems, for example, by 350 

increasing plant productivity and root biomass and then organic C inputs to the soil by 351 

promoting N availability and thus retard litter and SOC decomposition (Franklin et al. 352 

2003, Mo et al. 2008, Zhou et al. 2014). However, in an alpine grassland, Jiang et al. 353 

2012 found that both plant growth and microbial activity were generally N-limited, but 354 

the ability of plants to capture soil inorganic N was much stronger than that of soil 355 

microorganisms. When N was added, increased N availability resulted in increased 356 

plant growth, microbial activity and plant biomass (Micks et al. 2004). Therefore, the 357 

decomposition of litter and SOM is enhanced by increasing the quantity of litter input 358 

or by elevating microbial activity, and consequently, soil functions would shift from C 359 

sequestration to C loss. The increased N has consequently reduced the soil pH by 0.26 360 

globally in only one decade, which may significantly influence the microbial 361 

community composition and activity and then SOC sequestration capacity (Geisseler 362 

and Scow 2014, Tian and Niu 2015, Raza et al. 2021). This speculation is consistent 363 

with our results that N input below the critical levela threshold level (for example, 10 g 364 

m-2 in this study) may be beneficial for C sequestration in alpine meadows of the TP 365 

and can partly explain the patterns of SOC pool size under various N enrichment levels 366 

in this study. Specifically, the SOC stock increased following N enrichment, but as the 367 

N addition concentration increased, this growth progressively diminished, eventually 368 
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even disappearing. Our results revealed that alpine grassland ecosystems on the TP may 369 

become a potential C source under future scenarios of increasing N enrichment. 370 

 371 

In our study presented here, the 9 years of warming resulted in a very significant 372 

SOC loss of 14 to – 28 % (Figure 2 and S1). The TP Tibetan plateau stored large 373 

amounts of SOC because of the permafrost soil, where limited C decomposition has led 374 

to the accumulation of large SOC stocks (Hengl et al. 2014, Schuur et al. 2015). 375 

Previous studies showed that the vulnerability of soils with large C stocks derives from 376 

the high temperature sensitivity of C decomposition and biogeochemical restrictions on 377 

the processes driving soil C inputs (Davidson and Janssens 2006; García-Palacios et al. 378 

2021). Contrast with that, in soils with low initial C stocks, small losses coming from 379 

accelerated decomposition induced by rising temperature may be offset by concurrent 380 

increases in plant growth and soil C stabilization (Day et al. 2008, Macias-Fauria et al. 381 

2012, Crowther et al. 2015). However, in areas with larger SOC stocks, accelerated 382 

decomposition exceeds the potential C accumulation of plant growth, contributing to a 383 

significant C loss to the atmosphere (Luo et al. 2019). 384 

4.2. Effects of N enrichment and warming on SOC chemical compositions 385 

SOC chemical composition not only is controlled by the chemistry of the plant 386 

materials input to the soil, but also by the microbial processing and degradation of SOC 387 

(Baldock et al. 1992). Although N addition can stimulate plant growth and increase 388 

litter fall, it can also accelerate or slow down microbial processing of plant residues, 389 

thus altering the chemical composition of SOC (Wang et al. 2019a). Surprisingly we 390 
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observed that the SOC molecular structure remained unchanged in all N enrichment 391 

and warmed plots (Figure 3, 4).  392 

As the predominant chemical component of SOC across all treatments in our study, 393 

O-alkyl C is mainly composed of carbohydrates, peptides and other labile organic 394 

components derived from the fresh material, which could be preferentially degraded 395 

compared with more resistant components such as alkyl C (Simpson and Simpson, 2012, 396 

He et al. 2018). So, we hypothesized that this result could indicate that N and warming 397 

may have the same impact on the input of fresh plants on the TPTibetan plateau. Unlike 398 

O-alkyl C, lipids represent the main source of alkyl C (aliphatic chains), which is 399 

derived from original plant biopolymers. Lignin and tannin represent the main source 400 

of aromatic C, together with phenolic C, mainly originating from lignin and amino acids 401 

of peptides (Baldock et al 1992). All these components are more resistant to microbial 402 

decomposition than labile O-alkyl C (Simpson and Simpson, 2012). Our results 403 

suggested that the proportions of the stable SOC chemical structures remained the same 404 

between the different N enrichment concentrations and warming treatments, indicating 405 

the synchronous degradation of SOC. The alkyl/O-alkyl ratio and aromaticity, normally 406 

regarded as the indicator of the relative stage of SOC degradation and has been widely 407 

used as an indicator to reflect the complexity of SOC chemical structure (Baldock et al. 408 

1992), exhibited no significant difference among N enrichment or warming 409 

treatmentsno change after 9-year N enrichment and warming, suggesting that all N 410 

levels and warming treatments exerted similar effects on the degradation of SOC and 411 

aromatic and complex molecular structure (Zhang et al. 2013). 412 
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Infrared spectroscopy of SOC showed a statistically non-significant change in the 413 

treated plots and the control plots, which were consistent with a previous study that 414 

showed the 4.5 years of +4 °C whole-soil warming did not change the relative 415 

abundance of carbonyl/carboxyl C=O, and C=C aromatics compounds in the surface 416 

soils (above 20 cm) from a forest (Ofiti et al. 2021). Collectively, the above results 417 

suggested that molecular structure of surface SOC may not be as sensitive to long-term 418 

warming as we thought before (Atanassova and Doerr 2011, Chen et al. 2018a). Surface 419 

SOC is dominated by recent (less transformed) plant-litter inputs, which is less 420 

degraded and transformed than subsoil SOC (Ofiti et al. 2021). The lack of change in 421 

plant- and microorganism-derived organic matter in the surface soil may be due to slight 422 

drying and warming near the surface (Soong et al. 2021) which could have inhibited or 423 

resulted in relatively less surface inputs. We noticed that warming significantly reduced 424 

aboveground biomassAGB under N1 and N2 enrichments in this study (Figure 2). 425 

Compared with labile SOC, stable SOC can be more vulnerable to priming once 426 

microbes are provided with exogenous C substrates. This high vulnerability of stable 427 

SOC to priming warrants more attention in future studies on SOC cycling and global 428 

change (Zhang et al. 2022). Overall, stable functional SOC molecular structure 429 

indicated that soil warming and N enrichment had similarly affected easily 430 

decomposable and stabilized SOC of this C-rich grassland soil despite the C loss.the 431 

stabilized functional SOC molecular structure suggests that soil warming and N 432 

enrichment had similarly affected the labile and stabilized SOC of this C-rich grassland 433 

soil at the level of chemical stability of organic C molecules, along with the C loss. 434 
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4.3 Regulating factors of SOC stock 435 

Our interpretation that prolonged warming could reduce SOC storage is further 436 

supported by the simultaneous reduction of different C pool sizes characterized with 437 

various chemical structural complexity with long-term warming. Many previous studies 438 

have shown that microorganisms preferentially use the labile C pool for community 439 

utilization and turnover after short-term warming (Melillo et al. 2002, Kirschbaum 440 

2004). However, after the initial microbial assimilation of readily accessible SOC with 441 

warming, soil microorganisms can acclimate to C starvation through utilization of 442 

chemical less available C with continued warming (Chen et al. 2020). This 443 

transformation in microbial preference of C substrates can be facilitated by changes in 444 

C-degrading enzyme activities (Crowther and Bradford 2013). 445 

O 446 

Our results indicated that C-degrading enzymes could play a key role in regulating 447 

soil C storage (Figure 5a, 5b), which is in line with previous explanations for continued 448 

soil C loss with long-term warming, such as shifts in microbial community and 449 

physiology (Melillo et al. 2017, Metcalfe 2017), changes in microbial carbon use 450 

efficiency (Tucker et al. 2013), and increased microbial accessibility to litter and SOC 451 

(Doetterl et al. 2015, Bailey et al. 2019), which are all closely related to changes in 452 

microbial C-degrading enzyme activities. For example, warming decreased the 453 

abundance of lignin-derived compounds but increased ligninase activity in a mixed 454 

temperate forest (Feng et al. 2008). Although only cellulase activity was measured in 455 

our study, a previous meta-analysis study has shown significantly increasing ligninase 456 
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activity after warming, enhancing the evidence of microbial response to recalcitrant C 457 

pools and the evidence of simultaneous loss of different C fractions after long-term 458 

warming (Chen et al. 2018b). Microbial utilization of recalcitrant C pools could 459 

substantially accelerate overall soil C loss. This is  because depolymerization of these 460 

recalcitrant macromolecules increases microbial accessibility to litter and SOC that was 461 

previously protected by recalcitrant C pools before (Schmidt et al. 2011, Lehmann and 462 

Kleber 2015, Paustian et al. 2016).  463 

While N fertilization exerts both direct and indirect impacts on SOC, its influence on 464 

carbonates is direct, leading to continuous losses. This not only serves as a source of 465 

atmospheric CO2 (Kim et al., 2020; Raza et al., 2020; Zamanian et al., 2018) but also 466 

degrades soil structure and affects physical, chemical, and biological properties (Meng 467 

and Li, 2019). Under acidic conditions, this process induces fundamental changes in 468 

microbial community composition and enzyme activity critical for SOC stability 469 

(Rowley et al., 2020). In ecosystems characterized by N limitation, such as permafrost 470 

and peatland regions, N enrichment enhances N availability, accelerating the 471 

decomposition of labile organic C, especially in these otherwise C-rich ecosystems. 472 

This, in turn, results in decreased soil C availability (Craine et al., 2007; Janssens et al., 473 

2010; Song et al., 2017). A previous study at our research site revealed a significant 474 

reduction in the soil labile C pool within the particulate organic C fraction with 475 

increasing N enrichment, signifying a decline in soil C availability (Chen et al., 2019). 476 

Our findings demonstrate that N enrichment significantly stimulates extracellular 477 

enzyme (EnC) activities and enhances microbial demand for C (Figure 2), aligning with 478 
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prior research indicating that added N stimulates the activity of soil cellulose-degrading 479 

enzymes (e.g., cellobiosidase (CB) and β-glucosidase (BG)) (Carreiro et al., 2000; 480 

Saiya-Cork et al., 2002; Chen et al., 2017). This stimulation may be attributed to the 481 

increase in C-acquiring enzymes resulting from heightened microbial demand for C, 482 

especially in N-limited ecosystems (Keeler et al., 2009). Previous studies suggest that 483 

N enrichment could induce C limitation by reducing plant allocation to fine root 484 

production, leading to lower C input into the soil (Treseder, 2008). Thus, we propose 485 

that factors beyond the thermal environment, such as N enrichment, can modulate soil 486 

enzymes and alter substrate availability. Moreover, these processes can mediate the 487 

strength of the soil C-climate feedback. Although N enrichment may increase soil C 488 

sinks, this increase may be counteracted by warming. In summary, our results suggest 489 

that warming and N enrichment have antagonistic interaction effects on SOC stock, 490 

with differential effects on the contribution of alpine meadows to the soil C pool, which 491 

may explain the result that the NW interaction did not show significant direct or indirect 492 

effects on SOC storage in the SEM results. All these results underscore the importance 493 

of considering soil C availability and enzymatic activity responses, which collectively 494 

determine the response of the C balance to multiple environmental changes, for a more 495 

comprehensive understanding of C storage dynamics. 496 

 497 

  498 
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5. Conclusion 499 

Based on a 9-year warming (+1.80 °C in the daytime and +0.77 °C in the nighttime 500 

at the soil surface) and different level N enrichment experiment (0, 5, 10, and 15 g m−2 501 

year−1), we examined the responses of SOC stocks and their molecular components in 502 

a Tibetan alpine meadow ecosystem. In summary, our results show little effects of soil 503 

warming and N enrichment on the chemical composition of bulk soil despite ongoing 504 

C loss in the warmed plots of the study site (Figure 2). The SOC molecular structure 505 

suggested that the easily decomposable and stabilized SOC are synchronouslysimilarly 506 

affected after 9-year warming and N treatments despite the large changes in SOC stocks. 507 

Given the long residence time of some SOC (Schmidt et al., 2011), the similar loss of 508 

all measurable chemical forms of SOC under global change treatments could have 509 

important climate consequences. Permafrost soils contain half of global SOC stocks 510 

(Ding et al. 2016, Hugelius et al. 2020). While we found little effects of soil warming 511 

on SOC chemistry and molecular structure of bulk soil, consistent and long lasting 512 

changes could appear with prolonged soil warming and decreasing SOC stocks in the 513 

following years. In this process, the importance of enzyme activity must be emphasized, 514 

which has been found to be an important indirect factor in regulating changes in SOC 515 

stocks. 516 

  517 
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Figure and table legends  948 

Figure 1. Elevation mapLocation of the studied sites (a, the pentagram refers to the 949 

sampling point)., photo of the alpine meadow (b) and the  diagram of the warming 950 

treatment (open-top chamber) (c). 951 

Figure 2. N and warming-induced changes in the soil properties (mean ± SE, n = 6). 952 

Control (white bar) and warmed plots (black bar) at four different levels of simulated 953 

N deposition. N0, N1, N2, and N3 indicate N-enrichments of 0, 5, 10, and 15 g N m−2 954 

year−1, respectively. Parameters are: Soil pH (a); AGB, aboveground biomass (b); EnC, 955 

C-degrading enzymes (c); C/N, ratio of soil C concentration to N concentration (d); 956 

MBC, microbial biomass carbo (e); SOC, soil organic carbon stock (f). 957 

 958 

Figure 33. N and warming-induced changes in the relative abundance of different 959 

functional groups identifiable by diffuse reflectance infrared Fourier transform (DRIFT) 960 

spectroscopy in warmed and control plots (mean ± SE, n = 6). The spectral regions were 961 

assigned to aromatic carbonyl/carboxyl C=O groups, aromatic C=C groups, lignin-like 962 

residues, and cellulose/phenolic. No significant differences were found.  963 

Figure 44. Four different SOC chemical structural complexity indexes (mean ± SE, n 964 

= 6) from solid-state 13C CPMASNMR spectra of soil samples from different treatments. 965 

A/O-A=Alkyl C/O-alkyl C; HB/HI = hydrophobic C/hydrophilic C; Alip/Arom = 966 

aliphatic C/aromatic C. No significant differences were found. 967 

Figure 55. The factors regulating the SOC stock under (a) N enrichment, and (b) 968 

warming treatment and (c)interactive effects of N and warming. In the structural 969 
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equation model (SEM) analysis, black arrows represent significant positive pathways, 970 

gray arrows represent significant negative pathways, and gray dashed arrows indicate 971 

nonsignificant pathways. Values next to the arrows represent standardized effect sizes 972 

with statistical significance (*P < 0.05; **P < 0.01; ***P < 0.001). The thickness of 973 

the arrow represents the standardized effect sizes. C-degrading enzyme indicate sum of 974 

β-D-cellubiosidase (CB), α-glucosidase (AG), β-glucosidase (BG) and β-xylosidase 975 

(XYL). Goodness‐of‐fit statistics for the model are shown as follows: (a), χ2 = 4.53, P 976 

= 0.53, GFI =0.99, RMSEA < 0.001; (b), χ2 = 4.47, P = 0.486, GFI = 0.99, RMSEA < 977 

0.001. 978 

Table 1. Relative intensities (mean ± SE, n = 6) of different carbon chemical shifts from 979 

solid-state 13C CPMAS NMR spectra of soil samples from N and warming treatments. 980 

No significant differences were found. 981 

  982 
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Figure 1 983 

984 

 985 

Note: the map (a) was cited from the Wikimedia Commons website (Tibet and 986 

surrounding areas above 1600m, created using the Generic Mapping Tools) 987 
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