Quantifying the $\delta^{15}N$ trophic offset in a cold-water scleractinian coral

- 2 (CWC): implications for the CWC diet and coral $\delta^{15}N$ as a marine N
- 3 cycle proxy

Josie L. Mottram¹, Anne M. Gothmann², Maria G. Prokopenko³, Austin Cordova³, Veronica Rollinson¹,
 Katie Dobkowski⁴, Julie Granger¹

- 6 ¹Department of Marine Sciences, University of Connecticut, Storrs, CT, 06340, USA
- 7 ²Departments of Physics and Environmental Studies, St. Olaf College, Northfield, MN, 55057, USA
- 8 ³Department of Geology, Pomona College, Claremont, CA, 91711, USA
- 9 ⁴Department of Environmental Studies, Woodbury University, Burbank, CA, 91504, USA
- 10 Correspondence to: Anne M. Gothmann (gothma1@stolaf.edu)

Abstract. The nitrogen (N) isotope composition (δ^{15} N) of cold-water corals is a promising proxy for 11 reconstructing past ocean N cycling, as a strong correlation was found between the δ^{15} N of the organic 12 nitrogen preserved in coral skeletons and the $\delta^{15}N$ of particulate organic matter exported from the 13 surface ocean. However, a large offset of 8-9 % between the $\delta^{15}N$ recorded by the coral and that of 14 15 exported particulate organic matter remains unexplained. The 8-9 ‰ offset may signal a higher trophic 16 level of coral dietary sources, an unusually large trophic isotope effect or a biosynthetic δ^{15} N offset between the coral's soft tissue and skeletal organic matter, or some combinations of these factors. To 17 understand the origin of the offset and further validate the proxy, we investigated the trophic ecology of 18 19 the asymbiotic scleractinian cold water coral *Balanophyllia elegans*, both in a laboratory setting and in 20 its natural habitat. A long-term incubation experiment of B. elegans fed on an isotopically controlled diet vielded a canonical trophic isotope effect of $3.0 \pm 0.1\%$ between coral soft tissue and the Artemia 21 22 prey. The trophic isotope effect was not detectably influenced by sustained food limitation. A long N 23 turnover of coral soft tissue, expressed as an e-folding time, of 291 ± 15 days in the well-fed incubations indicates that coral skeleton δ^{15} N is not likely to track subannual (e.g. seasonal) variability. 24 of diet δ^{15} N. Specimens of *B. elegans* from the subtidal zone near San Juan Channel (WA, USA) 25 revealed a modest difference between soft tissue and skeletal $\delta^{15}N$ of 1.2 ± 0.6 %. The $\delta^{15}N$ of the coral 26 soft tissue was 12.0 ± 0.6 %, which was ~6 % higher than that of suspended organic material that was 27 28 comprised dominantly of phytoplankton – suggesting that phytoplankton is not the primary component of B. elegans' diet. An analysis of size-fractionated net tow material suggests that B. elegans fed 29 30 predominantly on a size class of zooplankton \geq 500 µm, implicating a two-level trophic transfer between phytoplankton material and coral tissue. These results point to a feeding strategy that may 31 result in an influence of regional food web structure on the cold-water coral δ^{15} N. This factor should be 32 33 taken into consideration when applying the proxy to paleoceanographic studies of ocean N cycling.

Formatted	([1]
Deleted:	
Deleted:as the	([3]
Formatted	([2]
Formatted	[4]
Deleted: Zooplankton as the primary diet for cold-war scleractinian corals (CWCs): implications for the CWC cycle proxy and trophic ecology.¶	ter marine N
Formatted: Font color: Text 1	
Formatted	([5]
Deleted: sinking articulate organic matter exported surface ocean. However, a large offset of 8-9 ‰ betwee recorded by the coral and that of exported particulate or, remains unexplained. The 8-9 ‰ offset may signal a hig level of coral dietary sources, potential sensitivity of the food web structure,n unusually large trophic isotope biosynthetic 8 ¹⁵ N offset between the coral's soft tissue a tissues	from the n the $\delta^{15}N$ ganic matter ther trophic proxy to effect or a and skeletal [6]
Formatted	([7]
Deleted: the	
Deleted:	
Deleted: the oral skeleton is not apt	[8]
Deleted: is not able to provide sufficient resolution to	
Deleted:	
Formatted	[9]
Deleted: ity	
Deleted: to record seasonal difference in	
Deleted: shallow	
Deleted: tissue 15 N of 1.2 ± 0.6 %. The δ^{15} N of the tissue was 12.0 ± 0.6 %, which was ~ 6 % higher than th suspended organic material that was comprised dominar phytoplankton – suggesting that phytoplankton the latter	coral soft nat of ntly of r [10]
Formatted: Font: 12 pt, Font color: Auto	
Formatted	[11]
Deleted: portend	
Deleted: sensitivity	
Deleted: dependence	
Deleted: , Thisthe factor shouldneeded to	[13]
Deleted: to on regional food web structure. This depe	ende [14]
Formatted: Font: 12 pt, Font color: Auto	
Formatted	[12]
Deleted: heeded	
Deleted: in	
Formatted: Font: 12 pt. Font color: Auto	

98	1 Introduction		Deleted:
00			Formatted: Font color: Text 1
99	interactions between ocean circulation and nutrient cycling modulate the marine biological carbon pump.		
100	the consequent partitioning of CO ₂ between atmosphere and ocean, and thus influence planetary climate on		Deleted: and
101	centennial to millennial time scales (Sigman and Boyle 2000). The marine nitrogen (N) cycle is highly sensitive		
102	to these interactions, such that knowledge of modern and ancient ocean N cycling can help illuminate drivers of		
103	past climate and contextualize modern global change (e.g., Altabet et al., 1994; Francois et al., 1997; Robinson		
104	and Sigman 2008; Sigman et al., 1999; Kast et al. 2019).		
105	The main tool to investigate the oceanic N cycle history is the nitrogen (N) isotope composition (i.e., the		
106	¹⁵ N/ ¹⁴ N ratio) of particulate organic nitrogen (PON) exported from the euphotic zone and preserved in various		
107	paleo-archives, including bulk sedimentary N in anoxic sediments, (reviewed by Robinson et al. 2023). Hereafter,		Deleted: , organic N in in soft co
108	we express the ${}^{15}N/{}^{14}N$ ratio using delta notation ($\delta^{15}N$). The $\delta^{15}N$ -PON recorded in paleo-oceanographic archives		preserved in foraminiferal tests and
109	reflects both regional N cycling processes and the balance of global ocean N source and sink terms (Sigman and		Deleted: Henceforth, we express notation, where $\delta^{15}N$ (‰ vs. air) = 1]*1000
110	Fripiat 2019; Brandes and Devol 2002), In regions of the ocean where nitrate is quantitatively consumed, the		Deleted: :
111	annually integrated δ^{15} N-PON exported from the surface reflects the isotopic composition of thermocline nitrate		
112	(Altabet et al. 1991). The latter is influenced by the circulation history of nitrate (e.g., Marconi et al., 2015), by		Formatted: Font color: Text 1
113	regional N ₂ fixation (e.g., Casciotti et al. 2008; Knapp et al. 2008) and by water column denitrification (e.g.,		Formatted: No underline, Font
114	Pride et al. 1999: De Pol-Holz et al. 2007). In regions with incomplete consumption of surface nitrate such as		Formatted: Font color: Text 1
115	Southern Ocean the isotonic discrimination imported during nitrate assimilation is reflected in the 8 ¹⁵ N PON	$\langle \rangle$	Formatted: No underline, Font
110		$\langle \rangle \rangle$	Formatted: Font color: Text 1
110	which can be used to reconstruct the degree of surface nitrate consumption in the past (<i>e.g.</i> , Sigman et al., 1999;		Formatted: No underline, Font
117	Francois et al. 1997).		Formatted: Font color: Text 1
118	Accurate interpretation of the N cycle's paleo-history relies on the presumption that the δ^{15} N-PON preserved		(
119	in various palaeoceanographic archives is impervious to organic matter diagenesis. Bulk sedimentary δ^{15} N		
120	measurements are thus generally inadequate in this respect, subject to post-depositional processes (Robinson et		
121	al. 2012) - barring fast-accumulating organic-rich anoxic sediments with negligible contribution from terrestrial		
122	sources (e.g., Altabet et al., 2002; Ganeshram and Pedersen, 1998). To circumvent this limitation, several		
123	"biological" archives of the δ^{15} N-PON have been developed that are deemed resistant to diagenetic alteration.		
124	These include the organic matter in indictor frustules and for miniferent sets ($a = 2$, $a = 1$, 2000; Pohinson		Deleted: starsalated
124	and Sigmon 2009) and the appendic metter in metainessays correls (a.g. Sharwood et al. 2009; Williams and		Deleted. Increatated
125	and Sigman, 2006) and the organic matter in proteinaceous corais (e.g., Sherwood et al. 2009), williams and		
126	Grottoli 2010). Recently, the $\partial^{12}N$ of organic N enclosed within the aragonite mineral lattice of asymbiotic		
127	scleractinian (stony) cold-water corals (CWCs) has been found to reflect the δ^{13} N-PON exported from the surface		

organic N in in soft corals, and organic N material foraminiferal tests and in diatom frustules

enceforth, we express the ${}^{15}N/{}^{14}N$ ratio in delta re $\delta^{15}N$ (‰ $\nu s.$ air) = [[(${}^{15}N/{}^{14}N_{sample})/({}^{15}N/{}^{14}N_{air})] -$

Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1

137	ocean (Wang et al., 2014), offering an exciting new archive of marine N cycling (Wang et al. 2017; Li et al.,
138	2020, Studer et al., 2018; Chen et al. 2023). A robust cold-water coral archive of δ^{15} N-PON can complement the
139	existing suite of nitrogen proxies by reducing the potential biases inevitable for almost any individual proxy,
140	allowing for a broader geographic and temporal reconstruction, and increasing resolution of the proxy record.
141	Foremost, as with foraminifera and diatom shells, organic material trapped within the coral's original aragonite
142	mineral lattice is Jargely protected from diagenetic alteration (Drake et al. 2021), and compromised areas can be
143	avoided by inspecting the skeletons for contamination and recrystallization (e.g., borings) using microscopic
144	techniques (Gothmann et al. 2015). CWCs have a broad geographic distribution, being present in all ocean basins
145	from the surface to 5000 m (Freiwald, 2002). <u>CWCs also offer the potential to generate high-resolution records</u>
146	extending relatively far back in time, and corals have continuous skeletal accretion that records ocean conditions
147	at the time of growth, so the analysis of multiple individuals provides enhanced temporal resolution of long-term
148	records (Robinson et al., 2014; Hines et al. 2015). Unlike sediments containing microfossils (e.g. diatoms and
149	foraminifera) CWC skeletons are not subject to bioturbation and absolute ages of this paleoarchive can be
150	determined with decadal precision on the time scales of glacial-interglacial climate variability through U-Th
151	series dating (Cheng et al., 2000; Goodfriend et al. 1992, Robinson et al., 2014, Li et al., 2020). Remarkably,
152	individual coral samples can archive multiple seawater properties, such that a single CWC specimen can
153	potentially be used to reconstruct deep (e.g., Δ^{14} C, pH, temperature, and circulation proxies such as Ba/Ca
154	and ϵ Nd) and surface ocean conditions (δ^{15} N) at a precisely-known time (U-Th dating), making CWC unique as a
155	paleoceanographic archive (Robinson et al., 2014; Thiagarajan et al., 2014; Rae et al. 2018).
156	Yet an outstanding concern about the fidelity of the δ^{15} N of coral-bound organic N is a reported 8 - 9 ‰
157	offset between coral-bound $\delta^{15}N$ and the corresponding $\delta^{15}N$ -PON exported to regions of coral growth (Wang et
158	al. 2014). The magnitude of this offset substantially exceeds the 3 - 3.5 ‰ expected for a single trophic transfer
159	(Minagawa and Wada 1984), assuming CWC feed predominantly on algal material exported from the surface
160	ocean, Wang et al. (2014) explained the magnitude of the offset by arguing that CWCs feed on the more
161	abundant pool of surface-derived suspended organic material (SPOM), <u>as</u> the $\delta^{15}N$, <u>SPOM at depth</u> is typically
162	<u>~4-5‰</u> higher than that of sinking PON (Altabet 1988, Saino and Hattori, 1987). While CWCs are considered
163	generalists with regard to diet (e.g., Mortensen, 2001; Freiwald, 2002; Carlier et al., 2009; Maier et al. 2023), a
164	number of studies suggest that many species of CWC subsist predominantly on metazoan zooplankton prey (e.g.,
165	Naumann et al. 2011; Kiriakoulakis et al. 2005; Purser et al. 2010; Tsounis et al. 2010). A zooplankton diet
166	should result in an approximate two-level or more trophic transfer between surface PON and coral tissue (e.g.,
1	

-(Formatted: Font color: Text 1	2
-(Formatted: Font color: Text 1	2
-(Deleted: almost	2
(Deleted: each	2
-(Formatted: Font color: Text 1	2
4	Deleted: presumably	2
-(Formatted: Font color: Text 1	2
-(Deleted: .	2
(Deleted: ;	2
-(Deleted: Ccoral skeletons can also be	2
Y	Deleted: ed	2
Y	Deleted: to avoid compromised areas	2
1	Deleted: They	2
(Deleted: time	2
-(Formatted: Font color: Text 1)
-(Formatted: Font color: Text 1)
(Deleted: are	5
1	Deleted: thus)
Y	Deleted: directly dated with radiometric methods;	2
-(Formatted: Font color: Text 1)
Å	Formatted: Font color: Text 1	2
-(Formatted: Font color: Text 1	2
Å	Deleted: Despite its promise,	2
Å	Formatted: Font color: Text 1	2
ķ	Deleted: were	2
Å	Deleted: assuming that	2
Å	Deleted: to	2
Å	Deleted: (Duineveld et al. 2007; <u>2012</u>)	2
Å	Deleted: reconciled this observation	2
Å	Deleted: of which	2
Å	Deleted: exported from the surface	2
1	Deleted:	2
1	Deleted: Duineveld et al. 2004; 2007; <u>2012;</u> Kiriakoulakis et al. 2005,	
-(Deleted: , Dodds et al., 2009; van Oevelen et al. 2009	2
-(Formatted: No underline, Font color: Text 1	2
1	Formatted: Font color: Text 1	5
Y	Formatted: Font color: Text 1	5
-(Deleted: ; Carlier et al. 2009; Dodds et al. 2009;	5
Y	Deleted: van Oevelen et al. 2009;	5

194	Sherwood et al. 2008) closer to the observed 8-9 % offset potentially rendering coral-bound δ^{15} N sensitive to	Deleted: similar	
105	spatial and temporal differences in transic level food web structure. An alternative explanation for the offset is	Deleted: and	
106	spatial and temporal differences in <u>proprie-rever</u> food web structure. An alternative explanation for the offset is	Deleted: lower	
190	that there is a large biosynthetic offset between the o N of the C wC polyp and its skeletal tissue (norm et al.		
197	2011; Muscatine et al. 2005), assuming that CWCs' diet derives directly from sinking algal material from the	Deleted: communic	ated
198	surface ocean. Otherwise, there could be an atypically large N isotope fractionation associated with the trophic-	Deleted: apt	
199	level transfer between the coral diet and its tissue (>3-3.5‰), possibly borne out of intermittent starvation periods	Formatted: Font c	olor:
200	(Doi et al., 2017), which is then passed on to the organic matrix within the coral skeleton. The gap in our	Deleted:	
201	understanding of how corals record the δ^{15} N-PON exported form the surface ocean raises questions regarding the	Deleted:	olori
202	consistency of the offset in space and time and whether it is likely to differ among CWC species or due to intra-	Deleted: fully	JIOI
202	consistency of the oriset in space and time, and whether it is <u>incly</u> to differ allong C we species of due to initia-	Formatted: Font of	olor
203	specific variations in diet.	Deleted:	5101.
204	Due to the challenges of accessing deep_ocean environments, the trophic ecology of cold-water corals is	Deleted:	
205	sparsely documented, yet is fundamental to understanding the role of CWCs in cold_water reef ecosystems and to	Deleted: s	
206	defining their utility as paleoceanographic archives of N cycling. The nature of the δ^{15} N offset between CWC	Deleted:	
207	skeletal material and exported PON must be explained in order to further validate and potentially improve the use	Deleted: ies	
		Formatted: Font c	olor:
208	or <u>o Nor Cwc skeletons</u> as a proxy to reconstruct the history of exported PON and to further understand the	Formatted: Font co	olor:
209	role of CWCs in benthic ecosystems. To this end, we studied Balanophyllia elegans, an asymbiotic scleractinian	Deleted: s	
210	cold-water coral found along the west coast of North America that grows as individual polyps (Fadlallah, 1983).	Deleted:	
211	We investigated the following questions: a) Is there a large offset in $\delta^{15}N$ between coral polyp tissue and coral	Deleted: these	blor:
212	skeletal tissue? b) Is there an unusually large trophic-level offset between coral tissue and coral diet? c) Does B.	Deleted: s	
213	elegans feed predominantly on suspended particulate organic matter (SPOM) in situ2 or d) does B. elegans feed	Deleted:	
014	nredominantly on metazoan zoonlankton regulting in a two level transfer between coral tissue and N of	Deleted: naturally-	
61.5	predominanty on inclazoan zooprankton, resulting in a two-rever dopine transfer between colar tissue and iv of	Deleted: habitats	
215	export? To evaluate question (a), we measured the $\delta^{1/N}$ of tissue-skeleton pairs of coral samples collected in their $\sqrt{2}$	Deleted: under a co	ntrol
216	natural habitat. To evaluate question (b), we cultured <i>B. elegans</i> corals in the laboratory in experiments where	Formatted: Font co	olor:
217	both the isotopic composition of food and the frequency of feeding was controlled _To evaluate questions (c) and	Deleted: to docume turnover,we invest	nt tro igate
218	(d), we also investigated the δ^{15} N of various components of the food web at a field site where <i>B. elegans</i> are	we investigated the so collected from a field	ft vs site
219	found plentifully, Our observations offer novel insights on the growth and trophic ecology of <i>B. elegans</i> ,	Deleted: we investig	gated
220	providing unique new data on the N metabolism of CWC and their feeding ecology. We contextualize our	Deleted: w	Site
221	conclusions to inform the use of CWC archives as a paleo-proxy for marine N cycling and ocean	Deleted: queried	
222	hiogeochemistry	Deleted: the	
522	orogoontemistry.	Formatted: Font: I	Not 1
223		Deleted:	

Deleted: similar	
Deleted: and	
Deleted: lower	

- 7	
4	Deleted: apt
h	Formatted: Font color: Text 1
7,	Deleted:
h	Deleted:
1	Formatted: Font color: Text 1
1	Deleted: fully
1	Formatted: Font color: Text 1
11	Deleted:
$\langle \rangle$	Deleted:
//	Deleted: s
ĥ	Deleted:
2	Deleted: ies
	Formatted: Font color: Text 1
	Formatted: Font color: Text 1
	Deleted: s
1	Deleted:
þ	Formatted: Font color: Text 1
4	Deleted: these
h	Deleted: s
ģ	Deleted: ,
/	Deleted: naturally-
/	Deleted: habitats
/	Deleted: under a controlled diet
	Formatted: Font color: Text 1
	$\label{eq:constraint} \begin{array}{ c c c } \hline \textbf{Deleted:} to document trophic isotope effects and soft tissue N turnover, we investigated the soft vs. skeletal tissue \delta^{15}N of coral we investigated the soft vs. skeletal tissue \delta^{15}N of coral specimens collected from a field site in the Salish Sea, and \\\hline \end{array}$
	Deleted: we investigated the soft v_5 . skeletal tissue $\delta^{15}N$ of coral collected from a field site in the Salish Sea, and
/	(Deleted: w
//	Deleted: queried
U	Deleted: the
	Formatted: Font: Not Italic, Font color: Text 1
	Deleted:
	Formatted: Font color: Text 1

255 2. Methods

- 2.1 Collection of live coral specimens 256
- 257 Individual specimens of the cold-water coral Balanophyllia elegans were collected during four sampling
- 258 campaigns in March and June 2019, and September and November 2020 from the San Juan Channel near the
- University of Washington's Friday Harbor Laboratory off the coast of Washington State in the Salish Sea (48.5° 259
- 260 N, -123.0° W; Figure 1). B. elegans is a solitary, asymbiotic cold-water cup coral native to the Pacific Northwest
- 261 that can be found both in shallow rocky environments and at depths as great as 500 m (Durham and Barnard
- 262 1952). The genus Balanophyllia is cosmopolitan and fossil samples as old as Eocene in age have been used for
- 263 paleoenvironmental study (Muhs et al. 1994; Gothmann et al., 2015; Gagnon et al. 2021). B. elegans's presence
- 264 at near surface depths makes it an easy target for culture experiments, and Balanophyllia sp. can be found co-
- 265 occurring with the similar but more widely applied cold-water coral archive, Desmophyllum dianthus (Margolin

266 et al. 2014). Therefore, we consider the asymbiotic Balanophyllia sp. to be generally representative of other deep 267 cold-water coral species.

Figure 1. (a) Map of the San Juan Islands indicating the collection site of B. elegans specimens and hydrographic measurements (created using http://www.geomapapp.org, Ryan et al. 2009). Inset shows where the San Juan Islands are situated within North America. (b) Image of B. elegans from the San Juan Channel near Friday Harbor Labs taken by Rhoda Green.

268

B. elegans specimens were collected at 10 to 20 m depth by divers who gently removed the corals from 269 vertical rock walls using blunt-tipped diving knives. Of the live corals collected, a subset was immediately frozen

- 270 at -18°C for N isotope ratio analyses of soft tissue and organic matter bound in the coral skeleton matrix. Live
- 271 specimens were shipped overnight in small bags of seawater on ice to St. Olaf College (Minnesota, USA). Corals

Formatted: Font color: Text 1 Formatted: Font color: Text 1

(Deleted: depths)
~(Deleted: the)
(Deleted: but)
Y	Formatted: Font color: Text 1)

Formatted: Font: (Default) +Headings (Times New Roman), Font color: Text 1
Formatted: Font: (Default) +Headings (Times New Roman)
Formatted: Line spacing: single
Deleted: ESRI, 2021
Formatted: Font: (Default) +Headings (Times New Roman), Font color: Text 1
Formatted: Font: 11 pt, Not Bold, Font color: Text 1
Formatted: Font: 11 pt, Not Bold, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: (Default) +Headings (Times New Roman)
Deleted: S
Formatted: Indent: First line: 0.25", Line spacing: 1.5 lines

were cleaned by gently scraping the exposed skeleton with dental tools to remove encrusting organisms and

placed in incubation bottles with artificial seawater for recovery prior to feeding experiments (described below)

278 2.2 Live coral maintenance

279 Live B. elegans corals were maintained in artificial seawater medium prepared from nitrate-free Instant 08.0 Ocean® Sea Salt. Salts were dissolved in deionized water to a salinity of 28.0 ± 0.25 – akin to the conditions at 281 the collection site (Murray et al., 2015) – and sparged with air to achieve atmospheric equilibrium. The pH of the 282 seawater was measured with a YSI brand 4130 pH probe and adjusted using dilute (0.1 N) hydrochloric acid or 283 sodium hydroxide to 8.14 ± 0.05 , slightly higher than *in-situ* conditions to promote skeletal growth. Batch 284 seawater was then allotted to 2 L airtight polypropylene bottles to incubate single coral polyps. Bottles were pre-285 cleaned with fragrance-free soap and multiple rinses of deionized water. The salinity, pH, and temperature in the incubation bottles were monitored using YSI brand probes (4310(W) conductivity cell and pH probe, 286 287 respectively) as well as dissolved oxygen concentrations using an optical sensor (FDO 4410; Figure S1); a 288 Multilab 4010-3w was used as the digital meter for the sensors. The bottles containing individual corals were 289 randomly distributed among three recirculating water baths maintained at a constant temperature of 12.5 ± 0.2 °C. 290 akin to the conditions at the collection site (Murray et al., 2015). Small but quasi-systematic differences of \pm 291 0.3°C were observed among the three recirculating tanks (Figure S2). Corals were sustained on a diet of Artemia 292 saling nauplii (described below), fed twice a week to ensure maximum growth (Crook et al., 2013). Seawater in 293 the incubation bottles was replaced twice a week after the corals were fed, based on observations indicating that 294 seawater pH in the bottles decreased slightly but significantly by ~0.03 pH units over three days due to coral 295 respiration (statistical analysis was performed with RStudio: Welch two sample t-test; t(515.07)= 12.8; p-value < 296 0.01; Figure S3). Dissolved oxygen concentrations remained near atmospheric equilibrium at concentration of 7.5 297 \pm 0.3 mg L⁻¹ (Figure S1). Nitrate concentrations in the bottles were also monitored from samples taken during 298 each water change, in the freshly prepared seawater and in spent seawater, revealing low variability in NO3b.99 concentration of 0.7 ± 0.3 µmol L⁻¹ (Figure S4). Nitrate concentrations in the incubations were notably lower than 800 ambient levels at the collection site, where concentration were $\sim 25 \mu mol L^{-1}$, ensuring that the coral's only source 301 of nitrogen was the Artemia diet (Murray et al., 2015).

Deleted:

(Formatted: Font color: Text 1
Ì	Formatted: Font color: Text 1
ľ	Formatted: Font color: Text 1
•(Formatted: Font color: Text 1

304 2.3 Coral culture experiments

805 Experiment to quantify the trophic isotope effect 2.3.1 306 The corals were acclimated to precise incubation conditions for approximately 20 hours before initiating 807 feeding experiments. To assess the δ^{15} N of coral soft tissue compared to that of its food source, four experimental 808 groups of individual *B. elegans* corals were fed respective diets of *Artemia salina* nauplii with different δ^{15} N 309 values, twice per week for 530 days (Spero et al., 1993). Unhatched Artemia salina sourced from specific geographic locations have widely different δ^{15} N values, owing to the different N isotope dynamics of the 810 311 environments from which they were collected, which makes these organisms useful for trophic studies (Spero et 812 al. 1993). Eighteen coral specimens were fed Artemia nauplii hatched from cysts from the Great Salt Lake 813 (Reference Code: GSL) with a δ^{15} N of 17.0 ± 0.3 ‰. Twelve corals were fed hatched nauplii from Lake Ulzhay 314 in Russia (Reference Code: 1816) with a δ^{15} N of 13.8 ± 0.4 %. Twelve corals were fed hatched nauplii from 315 Vinh Chau in Vietnam (Reference Code: 1805) with a δ^{15} N of 9.9 ± 0.3‰. Twelve corals were fed hatched 816 nauplii from Tibet (Reference Code: 1808) with $\delta^{15}N$ of 6.3 \pm 0.2‰. The GSL Artemia was procured from 817 Aquatic Foods California Blackworm Co. (Great Salt Lake), whereas all other Artemia were obtained from the Artemia Reference Center (Ghent, Belgium). The δ^{15} N of the diet for each treatment was calculated as the mean 818 319 value measured from each group of unhatched cysts and hatched nauplii (Table S2 and S3). 320 Fresh batches of nauplii were hatched from Artemia cysts at approximately monthly intervals, filtered into a 321 concentrated suspension, stored frozen at -18°C, and thawed immediately before feeding to the corals. Due to low 322 hatch rates of the Artemia group 1808, corals in that treatment group were fed nauplii harvested from 323 decapsulated Artemia cysts from day 151 (November 19, 2019) to 245 (February 22, 2020). The δ^{15} N of the 324 hatched nauplii ranged from 6.3 ± 0.2 to 17.0 ± 0.3 % (measured by EA-IRMS; Table S2). The δ^{15} N of the 325 nauplii did not change significantly over prolonged storage of several months in the freezer (ANOVA test; F(1) =326 0.07, p-value = 0.80; Figure S5). Artemia nauplii had a statistically indistinguishable molar C:N ratios among 327 regional groups, averaging 6.0 ± 0.6 (ANOVA test; F(3) = 0.31; p-value = 0.82, Table S3), These results show 328 that there was limited variability in the diet of corals due to freezer storage and hatching of multiple individual 329 batches of Artemia (Table S2, S3, Figure S5). 330 Corals were fed their respective nauplii diets by transferring coral individuals from their incubation bottle to 331 a small dish filled with artificial seawater with minimal exposure to air so as not to stress the corals. Each coral

32 was fed 20 μL of thawed nauplii suspension by pipetting the food directly into their oral cavity, making it

possible to visually ensure complete consumption and thus minimize variability in feeding rates. Each coral was

Deleted: Evaluation of the trophic isotope effect and turnover time

Formatted: Font color: Text 1

1	Deleted: We refer to respective experimental groups by a color name (green, yellow, orange and pink).
-(Deleted: assigned to the green group
-(Deleted: The yellow group consisted of t
Y	Deleted: that
Ì	Formatted: Font color: Text 1
Y,	Deleted: in the orange group which was
Ì	Formatted: Font color: Text 1
Y,	Deleted: The pink group consisted of t
Ì	Deleted: that
Ì	Formatted: Font color: Text 1
Ì	Formatted: Font color: Text 1
Y	Formatted: Font color: Text 1

Deleted: 3

7

Formatted: Font color: Text 1

Formatted: Line spacing: 1.5 lines

- returned to its bottle with a fresh allotment of seawater when its mouth had remained closed for several minutes, signifying that it was finished eating (Figure 2).
- After a shift in the δ^{15} N of diet, it is expected that coral tissue δ^{15} N will evolve as a function of time until the
- composition of tissue reaches an equilibrium in line with the new diet. In order to assess the rate (referred to here
- as the isotopic turnover time) at which this evolution occurs, individual corals were sacrificed at discrete intervals
- throughout the experiment. Corals were always sacrificed three days after feeding to ensure that no food
- s51 remained in the oral cavity. The corals were removed from their bottles and rinsed with artificial seawater. The
- 852 coral tissue was then separated from the skeleton using a fine stream of compressed air. The tissue and skeleton
- 853 were frozen at -18°C and stored separately until processed for isotope ratio analyses.

Figure 2. Photo illustration of a coral feeding sequence. Photo 1 shows coral before food is given. Photo 2 shows food being pipetted onto coral mouth. Photos 3 through 6 show the coral feeding as the mouth opens to engulf food and closes when finished, about 15 minutes in total. Corals are ~1 cm in diameter.

354 <u>2.3.2 Experiment to evaluate the effects of starvation conditions</u>

- An additional 522-day feeding experiment was performed to assess the influence of starvation on the δ^{15} N of
- the coral soft tissue. Live corals collected during a sampling campaign at the end of November 2020 and shipped
- by live to St. Olaf College were randomly assigned to two treatment groups (starved and not-starved) Corals in the
- starved, treatment were fed at 25% of our normal feeding frequency, or every two weeks, whereas those in the
- not-starved, treatment were fed twice a week. These feeding regimes were chosen based on the work of Crook et
- al. (2013) and Beauchamp et al. (1989), who assumed feeding every 3 days to represent plentiful food supply and
- 661 feeding every 21 days (close to our starvation condition) to represent minimal maintenance food supply. Both
- groups were fed *Artemia* nauplii with a δ^{15} N of 9.9 ± 0.3 ‰, approximately 3 ‰ lower than the coral tissue of
- average *B. elegans* collected from Friday Harbor, and thus presumably closest in δ^{15} N to what the corals is eating
- in the wild given a canonical trophic isotope effect. Coral incubations and feedings were conducted as described

above. Individuals were sacrificed over the course of the 522-day experiment, and tissue samples were frozen at -

366 18°C until isotope analysis.

Moved (in	nsertion) [2	2]		
Formatte	d: Font color	r: Text 1		
Formatte	d: Font color	r: Text 1		
Formatte	d: Font color	r: Text 1		

Formatted: Font color: Text 1

(Formatted: Font color: Text 1

Moved up [2]: Corals were always sacrificed three days after feeding to ensure that no food remained in the oral cavity. The corals were removed from their bottles and rinsed with artificial seawater. The coral tissue was then separated from the skeleton using a fine stream of compressed air. The tissue and skeleton were frozen at - 18°C and stored separately until processed for isotope ratio analyses.

Moved (insertion) [1]

Deleted: Individual corals were sacrificed at discrete intervals throughout the experiment to monitor N turnover. Corals were always sacrificed three days after feeding to ensure that no food remained in the oral cavity. The corals were removed from their bottles and rinsed with artificial seawater. The coral tissue was then separated from the skeleton using a fine stream of compressed air. The tissue and skeleton were frozen at -18°C and stored separately until processed for isotope ratio analyses.[¶]

Deleted:

.

Deleted: In order to determine the trophic δ^{15} N offset between tissue and prey and to estimate the turnover time of the coral tissue with respect to nitrogen, we fit the data to a least-squares regression corresponding to an isotope mixing model in which describes the time-dependent evolution of tissue δ^{15} N in relation to that of the diet (Eq. 1, after Cerling et al. 2007; Ayliffe et al. 2004)), ¶ $N = + + \epsilon$. Equation]¶

The term $\delta^{15}N_{re0}$ is the value of the coral tissue at the onset of the experiment, $\delta^{15}N_{det}$ is that of the corals' *Artemia* diet, *t* is the number of days since the start of the experiment, ϵ is the difference between the $\delta^{15}N$ of the diet and tissue at equilibrium, and λ is the specific nitrogen incorporation rate (d⁻¹), the inverse of which is the turnover time for N. Values of ϵ and λ were estimated by generating 4 simultaneous equations using the $\delta^{15}N$ of soft tissue and diet for the 4 treatments groups.⁴

Deleted: E

Deleted: ion of

Deleted: "short"

Formatted: Font color: Text 1	
Deleted: , referred to as "long" and "short".	
Deleted: "long"	
Deleted: weeks,	

405 2.4 Coral preparation for isotope ratio analyses

406 Frozen coral tissue samples (and hatched nauplii) were freeze-dried using a Labconco FreeZone 4.5 and then 407 powdered using a mortar and pestle. The samples were sent to the University of Connecticut, Avery Point 408 (Groton, CT, USA) for isotope ratio analyses. 409 Coral skeletons from specimens collected at Friday Harbor were separated from the coral soft tissue and were 410 rinsed and individually and ultrasonicated two times in Milli-Q[™] (MQ) water for 20 minutes each in order to 411 remove any residual seawater. Samples were then individually ultrasonicated in a 1% sodium hypochlorite 412 (bleach) solution for at least two 20-minute intervals with fresh bleach for each new ultrasonication interval until 413 no tissue remained on the skeleton, as assessed visually under a dissection microscope. Individual skeletons were 414 then rinsed and ultrasonicated for 20 minutes in MQ another three times (each time with a new batch of MQ 415 water) in order to remove any bleach residue. Skeleton samples were sent to Pomona College (California, USA) 416 for further processing. 417 It is necessary to isolate organic matter from the coral carbonate matrix in advance of the N isotope 418 measurement methods used here (see Section 2.6 below). Organic material in the skeleton matrix was isolated 419 and oxidized to nitrate following the protocol of Wang et al. (2014), Briefly, bulk samples weighing 50-100 mg 420 were ground into coarse powder, and a fraction between 63 and 200 µm was collected by sieving through two 421 metal sieves. The 10-15 mg of sieved powder was rinsed sequentially with of sodium polyphosphate-sodium 422 bicarbonate buffered dithionite-citrate reagent, then treated with 13.5% sodium hypochlorite overnight on a 423 shaker. Skeletal material was dissolved in 4 N ultrapure hydrochloric acid, then oxidized to nitrate by autoclaving 424 in basic potassium persulfate solution. Standards of glutamine reference material USGS-40 and USGS-41 425 (respective δ^{15} N of 4.52 ‰ vs. air and 47.57 ‰ vs. air) were oxidized in tandem and used to correct for 426 processing blanks. The resulting nitrate samples were sent to the University of Connecticut for nitrate isotope 427 ratio analysis. The long-term averaged reagent blank was 0.4-0.6 µmol L⁻¹, while the typical samples were 10-15 428 μmol L¹ (typical amount of nitrogen in skeleton being 2-5 μmole/g of aragonite). Samples were typically run in 429 duplicates with an average reproducibility of $\sim \pm 0.5$ %. An internal laboratory standard of ground material of the 430 cold-water colonial scleractinian coral Lophelia pertusa had a long-term $\delta^{15}N$ value 9.4 \pm 0.8 % (n=57) 431 2.5 Hydrographic data

To infer the natural food source of the *B. elegans*, we collected samples for analysis of the δ^{15} N of particulate

and dissolved N pools in relation to ambient hydrographic variables (temperature and salinity) near Friday

Formatted: Font color: Text 1

Deleted: separate

Deleted: ,	
Deleted: .	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	

Л	Formatted: Font color: Text 1
λ	Formatted: Font color: Text 1
λ	Deleted:
(Deleted:
1	Formatted: Font color: Text 1
-(Formatted: Font color: Text 1
-(Deleted:
(Deleted: 8.8
\sim	Deleted: 1.2
X	Deleted: 106
X	Formatted: Font color: Text 1
X	Formatted: Font color: Text 1
\langle	Formatted: Font color: Text 1

443	Harbor, WA. Seasonal sampling campaigns were conducted in September and November 2020 and in April,	
444	June, and August 2021 (Table S1). In all but the August 2021 campaign, particulate and dissolved N samples	
445	were collected by divers at <u>unspecified</u> depths between the surface and the depth of coral collection. Samples	Deleted: undefined
446	were stored frozen in 30 mL HDPE bottles. Surface net tows were performed with a mesh size of 120 $\mu\text{m};$	
447	materials were stored and shipped frozen and thawed at a later time to be filtered onto pre-combusted GF/F filters	
448	(0.7µm nominal pore size) that were stored frozen pending isotope analysis. No hydrographic variables were	
449	recorded during the campaigns except in August 2021.	
450	During the August 2021 campaign, depth profiles of temperature and salinity from the surface to 35 m were	
451	characterized with a CastAway®-CTD (conductivity temperature depth) profiler. Water samples were collected	
452	at 5 m intervals between 5 and 30 m using a Van Dorn water sampler. Water was filtered onto pre-combusted	
453	glass fiber filters (GF/F; 0.7µm nominal pore size) into pre-cleaned 30 mL HDPE bottles and stored frozen	
454	pending analyses of nitrate concentrations and nitrate isotope ratios. The corresponding filters were stored frozen	
455	for isotope ratio analysis of suspended particulate organic material (SPOM). Surface (5 m) and deeper (25 m to	
456	the surface) net tows were conducted using plankton nets with respective mesh sizes of 150 µm and 80 µm. Net	
457	tow material was filtered directly onto a pre-combusted GF/F filters and frozen pending analysis. A portion of the	
458	net tow material from the August 2021 campaign was sieved to separate size classes of 80-100 µm, 100-250 µm,	
459	\geq 250 µm, 250-500 µm, and \geq 500 µm. Material from the respective size classes was filtered onto pre-combusted	
460	GF/F filters and frozen until isotope analysis.	
461	2.6 <u>Nitrate concentrations and isotope ratio analyses</u>	
462	Nitrate concentrations of oxidized coral skeletons and in aqueous samples were measured by reduction to	Formatted: Font color: Text 1
463	nitric oxide in hot vanadium III solution followed by chemiluminescence detection of nitric oxide (Braman and	
464	Hendrix, 1989) on a Teledyne chemiluminescence NOx analyzer Model T200 (Thousand Oaks, CA).	
465	The δ^{15} N and δ^{13} C of lyophilized coral tissue samples were analyzed at the University of Connecticut on a	Formatted: Line spacing: 1.5 lines
466	Costech Elemental Analyzer-Isotope Ratio Mass Spectrometer (Delta V) and are expressed in standard delta	
467	notation (e.g. for N, $\delta^{15}N$ (% vs. air) = [[($^{15}N/^{14}N_{sample})/((^{15}N/^{14}N_{air})] - 1]*1000)_{k}$ Approximately 0.75 mg of	Formatted: Font color: Text 1
468	lyophilized sample (35 µg N) was allotted into tin cups and analyzed in tandem with recognized glutamine	
469	reference materials USGS-40 and USGS-41 with respective $\delta^{15}N$ (vs. air) of 4.52 ‰ and 47.57 ‰ and $\delta^{13}C$ of -	
470	26.39 ‰ and 37.63 ‰ (vs. PDB). Replicate analyses of ($n \ge 2$) reference materials yielded an analytical precision	
471	of (±1 SD) of 0.3.% for both δ^{15} N and δ^{13} C.	Deleted: 5

474	Nitrate N (and O) isotope ratios of aqueous seawater samples and N isotope ratios of the skeleton matrix	
475	samples were analyzed at University of Connecticut using the denitrifier method (Casciotti et al., 2002; McIlvin	
476	and Casciotti, 2011; Sigman et al., 2001). Nitrate sample solutions were injected at target concentrations of 20	
477	nmol for seawater samples and 7 nmol for skeleton matrix samples. N2O was extracted, concentrated and purified	
478	using a custom-modified Thermo Gas Bench II equipped with a GC Pal autosampler and dual cold traps and	1
479	analyzed on a Thermo Delta V Advantage continuous flow isotope ratio mass spectrometer (Casciotti et al., 2002;	
480	McIlvin and Casciotti, 2011). Individual analyses were referenced to injections of N2O from a pure gas cylinder	
481	and standardized through comparison potassium nitrate reference materials International Atomic Energy Agency	A CONTRACTOR OF STREET, STREET
482	nitrate (IAEA-N3) and the isotopic nitrate reference material United States Geological Survey 34 (USGS-34),	A REPORT OF
483	with respective $\delta^{15}N$ vs. air of 4.7 ‰ and -1.8 ‰ vs. air (International Atomic Energy Agency, 1995), and	
484	respective δ ¹⁸ O of 25.61 ‰ and -27.9 ‰ vs. Vienna Standard Mean Ocean Water (VSMOW; Gonfiantini, 1995;	
485	Böhlke et al., 2003), To account for bacterial blanks and source linearity, nitrate concentrations of the standard	
486	material - diluted in N-free seawater for aqueous seawater samples and air-equilibrated milli-Q water for	$\left \right $
487	skeleton matrix samples - were matched to those of samples within batch analyses, and additional bacterial	
488	blanks were also measured (Weigand et al., 2016; Zhou et al., 2022). Replicate measurements ($n \ge 2$) of all	1
489	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O ₄	
489 490	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O ₄	
489 490 491	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O,	
489 490 491 492	 samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ¹⁵N and δ¹⁸O, 2.7. N turnover model, We estimate values of the trophic δ¹⁵N offset for <i>B. elegans</i>, ε, and the rate of isotopic turnover by fitting 	
489 490 491 492 493	 samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ¹⁵N and δ¹⁸O, 2.7. N turnover model, We estimate values of the trophic δ¹⁵N offset for <i>B. elegans</i>, ε, and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the 	
489 490 491 492 493 494	 samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ¹⁵N and δ¹⁸O, 2.7. N turnover model, We estimate values of the trophic δ¹⁵N offset for <i>B. elegans</i>, ε, and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of 	
489 490 491 492 493 494 495	 samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ¹⁵N and δ¹⁸O, 2.7. N turnover model We estimate values of the trophic δ¹⁵N offset for <i>B. elegans</i>, ε, and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling 	
489 490 491 492 493 494 495 496	 samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ¹⁵N and δ¹⁸O, 2.7. N turnover model, We estimate values of the trophic δ¹⁵N offset for <i>B. elegans</i>, ε, and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). 	
489 490 491 492 493 494 495 496 497	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon$. Equation 1	
489 490 491 492 493 494 495 496 497 498	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon$. Equation 1 The term $\delta^{15}N_{t=0}$ is the value of the bulk coral tissue at the onset of the experiment, $\delta^{15}N_{diet}$ is that of the corals'	
489 490 491 492 493 494 495 496 497 498 499	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon$. Equation 1 The term $\delta^{15}N_{t=0}$ is the value of the bulk coral tissue at the onset of the experiment, $\delta^{15}N_{diet}$ is that of the corals' new <i>Artemia</i> diet (i.e. what it is fed during the experiment), <i>t</i> is the number of days since the start of the	
489 490 491 492 493 494 495 496 497 498 499 500	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon$. Equation 1 The term $\delta^{15}N_{t=0}$ is the value of the bulk coral tissue at the onset of the experiment, $\delta^{15}N_{diet}$ is that of the corals' new <i>Artemia</i> diet (i.e. what it is fed during the experiment), <i>t</i> is the number of days since the start of the experiment, ϵ is the difference between the δ^{15} N of the diet and tissue at equilibrium (i.e. once the isotopic	
 489 490 491 492 493 494 495 496 497 498 499 500 501 	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon$. Equation 1 The term $\delta^{15}N_{t=0}$ is the value of the bulk coral tissue at the onset of the experiment, $\delta^{15}N_{diet}$ is that of the corals' new <i>Artemia</i> diet (i.e. what it is fed during the experiment), <i>t</i> is the number of days since the start of the experiment, ϵ is the difference between the δ^{15} N of the diet and tissue at equilibrium (i.e. once the isotopic composition of inputs to the system equals the isotope composition of outputs), and λ describes the specific rate	
 489 490 491 492 493 494 495 496 497 498 499 500 501 502 	samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ^{15} N and δ^{18} O, 2.7. N turnover model We estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic turnover by fitting the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the isotope mixing relationship shown in Equation 1 below. Equation 1 treats the coral tissue as a single reservoir of N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling et al. 2007; Ayliffe et al. 2004). $\delta^{15}N(t) = [\delta^{15}N_{t=0} - \delta^{15}N_{diet} + \epsilon] \cdot e^{-\lambda t} + \delta^{15}N_{diet} + \epsilon \cdotEquation 1$ The term $\delta^{15}N_{t=0}$ is the value of the bulk coral tissue at the onset of the experiment, $\delta^{15}N_{diet}$ is that of the corals' new <i>Artemia</i> diet (i.e. what it is fed during the experiment), <i>t</i> is the number of days since the start of the experiment, ϵ is the difference between the δ^{15} N of the diet and tissue at equilibrium (i.e. once the isotopic composition of inputs to the system equals the isotope composition of outputs), and λ describes the specific rate at which new N is incorporated into the coral tissue (days ⁻¹). We use this model to calculate the e-folding time of	

Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Deleted: es
Deleted: es
Deleted: The denitifier method uses denitrifying bacteria (<i>Regular and a chlororaphis</i> f an <i>aurofasiana</i> ATCC 13

(Pseudomonas chlororaphis f. sp. aureofaciens, ATCC 13985) that lack the terminal nitrous oxide (N₂O) reductase to quantitatively convert nitrate to nitrous oxide which is measured by gaschromatography-isotope ratio mass spectrometry. Cells were cultured in Tryptic Soy Broth (Difco; Hunt Valley, MD, USA) amended with 10 mM nitrate in stoppered glass bottles. Cells in stationary phase were harvested by centrifugation and resuspended in nitrate-free medium and dispensed as 3 mL aliquots into 10 mL glass vials, which were then sparged with dinitrogen (N₂) gas for approximately 6 hours to remove N₂O. Nitrate sample solutions (20 nmoles for seawater samples and 7 nmoles for skeleton matrix samples) were injected into the sparged vials and incubated overnight to allow for complete conversion of nitrate to N₂O gas.

Deleted: 1

Deleted: The product
Formatted: Font color: Text 1
Deleted: 1
Formatted: Underline

Formatted: Indent: First line: 0", Line spacing: 1.5 lines

540	the new diet. Specifically, at the end of the experiment, the coral tissue of the treatment groups reached $\delta^{15}N$	
541	values of 9.4 \pm 0.3‰, 12.6 \pm 0.5‰, 15.9 \pm 0.1‰, and 18.1 \pm 0.1‰ for groups fed the lowest to highest <i>Artemia</i>	
542	δ^{15} N values, respectively. The difference between coral soft tissue and diet δ^{15} N ranged from a minimum of 1.0 ±	1
543	0.1‰ to a maximum of $3.0 \pm 0.3\%$ across the different experimental groups at day 530 (Figure 3).	
544	Despite the fact that coral tissue had not yet reached an equilibrium with the new coral diet at the end of our	
545	experiment, we are able to estimate values of the trophic δ^{15} N offset for <i>B. elegans</i> , ϵ , and the rate of isotopic	
546	turnover by fitting the data from our trophic isotope experiment to the nonlinear least-squares regression model	
547	given Equation 1 in Section 2.7, To more confidently calculate ϵ and λ for each individual experimental group,	
548	we generate 4 equations, (one for each experimental group of the form given in Eq. 1 but with different values of	\mathbb{Z}
549	$\delta^{15}N_{diet}$) and fit them simultaneously using least-squares regression. From this fit, we are able to obtain estimates	
550	for both ϵ and λ in <i>B. elegans</i> . An inherent assumption of this approach is that all experimental groups have the	
551	same e-folding time and the same trophic isotope effect. We note here that we refer to the e-folding time as the	
552	'turnover rate' of N in corals throughout the rest of this text (e.g., Tanaka et al. 2018). Our model fit yielded a	
553	trophic <u>isotope effect</u> , ϵ , of 3.0 % with a standard error of 0.1 % between coral tissue and diet. The turnover rate	
554	of N (i.e. e-folding time, $1/\lambda$) was 291, days with a standard error of 15 days. The four individual model equations	
555	generated by our nonlinear least squares regression are presented as the dashed lines in Figure 3.	
556	3.2 Effect of starvation	
557	At the onset of the starvation trial, the coral tissue had an average $\delta^{15}N$ of 11.5 ± 0.1 %. At the end of the	
558	522-day experiment, the starved group (N=15 coral individuals) had an average $\delta^{15}N$ of 12.4 \pm 0.4 ‰ and the	

frequently fed group (N=15) with a δ^{15} N of 12.7 ± 0.1 ‰ (Figure 4). The starved group was +2.5 ± 0.4 ‰

Deleted: t

Formatted: Space Before: 4 pt	
Formatted: Font color: Text 1	
Deleted: specific	
Formatted: Font color: Text 1	
Deleted: T	
Deleted: assumes	

Formatted: Font: Not Italic, Font color: Text 1

Formatted: Font color: Text 1

Moved up [1]: In order to determine the trophic $\delta^{15}N$ offset between tissue and prey and to estimate the turnover time of the coral tissue with respect to nitrogen, we fit the data to a least-squares regression corresponding to an isotope mixing model in which describes the time-dependent evolution of tissue $\delta^{15}N$ in relation to that of the diet (Eq. 1, after Cerling et al. 2007; Ayliffe et al. 2004)), • $N = + \xi \epsilon_1$

N =: + + ϵ . Equation 1 The term $\delta^{15}N_{\text{trop}}$ is the value of the coral issue at the onset of the experiment, $\delta^{15}N_{\text{trop}}$ is the value of the corals' Artemia diet, t is the number of days since the start of the experiment, ϵ is the difference between the $\delta^{15}N$ of the diet and tissue at equilibrium, and λ is the specific nitrogen incorporation rate (d²), the inverse of which is the turnover time for N. Values of ϵ and λ were estimated by generating 4 simultaneous equations using the $\delta^{15}N$ of soft tissue and diet for the 4 treatments groups.

Deleted: Expecting the difference between coral tissue and prey $\delta^{15}N$ among experimental groups to ultimately converge, corals had evidently not reached isotopic equilibrium relative to prey by the end of the culture experiment. In order to determine the trophic $\delta^{15}N$ offset between tissue and prey and to estimate the turnover time of the coral tissue with respect to nitrogen, we fit the data to a least-squares regression corresponding to an isotope mixing model in which describes the time-dependent evolution of tissue $\delta^{15}N$... [15]

Deleted: The

	Deleted: offset
	Deleted: isotopic
	Deleted: time
	Deleted: ± 15
	Deleted: ($\lambda \pm$ standard error)
	Deleted: also
(Deleted:
	Deleted: S
1	Formatted: Font color: Text 1

difference between skeleton and soft tissue $\delta^{15}N(\Delta\delta^{15}N)$ among coral individuals for which both soft tissue and 621

shows the mean, first and third quartile, maxima, and minima. Individual data points are overlaid on the plot. Colors correspond to respective sampling campaigns,

623 3.4 Regional hydrography and N isotope ratios of nitrate and plankton material

624 Hydrographic profiles recorded at stations near Friday Harbor in August 2021 showed characteristic density

525 structures that were sensitive to tidal phase (Figure 6 a,b; Banas et al. 1999). Profiles collected during flood tide

Formatted: Font color: Text 1

15

campaigns. Errors on skeleton $\delta^{15}N$ are given in the text. Errors on tissue data are based on measurements of replicate samples. (b) Boxplot of the difference between tissue and skeleton of individual

B. elegans corals. The boxplot shows the mean, first and third quartile, maxima, and minima. Individual data points are overlaid on

the plot. Colors correspond to respective sampling campaigns.

campaigns. Values did not differ coherently with depth in August 2021, although any potential depth structurewas obscured by the large variability among sample replicates (Figure 6e).

Figure 7. Boxplots of aqueous and particulate N pools at respective sampling times. (a) The δ^{15} N of nitrate from samples above 30 m collected during respective sampling campaigns. (b) The δ^{15} N of suspended particulate organic matter (SPOM) at sites near Friday Harbor during respective sampling campaigns. (c) The δ^{15} N of net tows ($\geq 120 \,\mu$ m mesh size) conducted during respective sampling campaigns.

 $\frac{150}{100} \text{ The } \delta^{15} \text{N of material collected in net tows (120 } \mu\text{m mesh size) during sampling campaigns in September 2020,}$ and June 2021 ranged between 7.9 to 8.8 % (Figure 7c). Material collected in net tows of 80 } \mu\text{m and 150 } \mu\text{m}

668 mesh size in August 2021 and separated by size class post-collection revealed a coherent δ^{15} N increase with size

class (Figure 7c; Figure 9), The $\ge 80 \ \mu m$ size class had a mean $\delta^{15}N$ of $6.0 \pm 0.3 \ \%$ whereas that $\ge 500 \ \mu m$ had an

 δ^{15} N of 8.0 ± 0.8 ‰, which was significantly greater than the δ^{15} N of the other size classes (ANOVA, p-

671 value <0.05).

672 4. Discussion

- This study of *B. elegans* provides novel constraints on the trophic ecology of scleractinian CWCs. Foremost,
- our observations of *B. elegans* collectively suggest that the relatively large global δ^{15} N offset of 8-9 ‰ between
- 675 CWC skeletal tissue and the δ^{15} N of PON exported from the surface ocean is neither explained by a large
- δ^{5} difference between tissue and skeleton δ^{15} N, nor by an unusually large trophic isotope effect. Further, controlled

Formatted: Font color: Text 1

Formatted: Font color: Text 1 Formatted: Line spacing: 1.5 lines

Formatted: Font color: Text 1

(Formatted: Space Before: 10 pt, Line spacing: 1.5 lines

Formatted: Left, Indent: First line: 0.25", Space Before: 4 pt, After: 4 pt, Line spacing: 1.5 lines

- feeding experiments yielded direct estimates of the trophic isotope effect and the corresponding N turnover <u>rate</u>
- 678 of *B. elegans* soft tissue. Examination of soft tissue $\delta^{15}N$ of wild specimens in relation to regional hydrography
- and food web components near Friday Harbor leads us to conclude that *B. elegans* feeds predominantly metazoan
- zooplankton prey, implicating more than one trophic transfer between <u>exported</u> PON and coral soft tissue. We
- 681 contextualize our findings to existing studies of CWC trophic ecology and discuss the implications of considering
- a two-level trophic transfer for paleo-reconstructions of ocean N cycling using *B. elegans* and CWCs more
- 683 generally.

Figure 8. Rayleigh plot of nitrate δ^{15} N vs. ln of nitrate concentration for samples collected from the surface to 40 m around Friday Harbor. The isotope effect of ~1.5 ± 0.1 % corresponds to the slope of the best fit linear regression line for the August 2021 data, $\delta^{15}N_{N03} = 11.7 - 1.5 \ln [NO_{2}^{-1}]$.

684 4.1 Culture experiments revealed a normal trophic isotope effect

- $\frac{1}{100}$ We <u>investigated</u> whether the large difference in δ^{15} N between PON export from the surface and coral
- β 86 skeleton-bound δ^{15} N (8-9 ‰) observed by Wang et al. (2014) could arise from an unusually large trophic level
- 687 offset specific to CWCs. The long-term feeding experiment of *B. elegans* polyps revealed a 'normal' trophic

Deleted: time	
Deleted: compels	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	

Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Formatted: Font: 11 pt,	Font color: Text 1
Deleted: queried	
Formatted: Font color:	Fext 1
Formatted: Font color:	Fext 1

isotopic offset between coral tissue and diet of $\rho = +3.0 \pm 0.1$ %. This value conforms to the expected range of

691

19

Deleted:

712 nutritional quality of the respective diets among treatments was equivalent, as trophic isotope effects can be 713 sensitive to food type. Diets low in protein can be associated with greater ε values due to internal recycling of 714 nitrogen (Adams and Sterner, 2000; Webb et al., 1998). For instance, locusts fed a low protein diet were enriched 715 5.1 ‰ from their diet, compared to 2.3‰ for those fed a high protein diet (Webb et al., 1998). Conversely, a 716 compilation of studies of various metazoan consumers raised on controlled diets suggests that high protein diets 717 generally result in higher trophic isotope effects (~3.3 ‰) compared to more herbivorous diets (~2.2 ‰), a 718 dynamic ascribed to higher rates of N excretion to assimilation in consumers fed high protein diets (McCutchan 719 Jr et al., 2003). As noted in Table S3 and in Section 2.3.1, our Artemia prey had similar C:N ratios among 720 treatments in line with our model treatment. Finally, our model assumes that N turnover was dominated by 721 metabolic tissue replacement, rather than net growth, consistent with the observation that adult B. elegans growth 722 is slow (Gerrodette 1981). 723 Equation 1 could be invalidated if the corals can access nutritional N sources other than N in Artemia, given 724 that the model assumes that Artemia are the only source of N to corals in our experiment. Biological N₂ fixation 725 and chemoautotrophy have been detected in association with CWC holobionts, providing some N nutrition to the 726 corals (Middelburg et al., 2016). Our trophic isotope effect estimate was in the range expected for a single trophic 727 transfer, arguably suggesting that N₂ fixation, if occurring, was not a substantial contribution to the corals' 728 nutrition; it would otherwise result in a lower value of ε given a δ^{15} N contribution of -1 to 0 % (Carpenter et al. 729 1997) That the trophic isotope effect of the poorly fed corals did not differ from that of corals that were well-fed 730 also argues for no sources of N additional to the Artemia, as starved corals would presumably increase their 731 reliance on said source. In a related vein, N recycling between the B. elegans specimens and potential microbial 732 symbionts (e.g. Middelburg et al. 2016) could also dampen the trophic isotope effect relative to the Artemia prey 733 and yield an over-estimate of soft tissue turnover rate for N. The normal trophic isotope effect indicated here 734 suggests a modest role of N retention and recycling by microbial symbionts, in contrast to tropical symbiotic 735 corals wherein bacterial symbionts promote substantial N retention and recycling, and consequently lower trophic 736 isotope effects (Tanaka et al. 2018). Finally, the validity of our estimates could be sensitive to differences in 737 feeding rates, which can influence the rate of N turnover of tissues (Martínez del Rio and Carleton, 2012; Rangel 738 et al., 2019). Corals were fed at identical times among treatments, at a relatively high feeding rate (Crook et al., 739 2013). However, given the limited number of studies on feeding in B. elegans, it is difficult to compare our 740

feeding strategy and that of this species' natural environment. Overall, we consider that the mixing model

Deleted: To avoid diet quality confounding our estimates, we verified that the.

Deleted: ensuring a similar nutritional value

Deleted:	The end-member mixing represented by
Deleted:	also
Deleted:	given
Deleted:	additional to
Deleted:	the
Deleted:	S
Deleted:	contributed modestly
Deleted:	2016)

Formatted: Not Highlight

Deleted: turnover	
Deleted: evinced	
Deleted: argues for	

Deleted: to encourage growth

described by Equation 1 is appropriate to derive the first-order trophic isotope effect and turnover <u>rate of B</u>. *elegans*.

758 Changes in metabolism due to underfeeding or prolonged fasting have the potential to increase trophic-level 759 isotope offsets due to increased protein metabolism (Adams and Sterner, 2000). For instance, extensive amino 760 acid recycling in overwintered adult insect larvae was cited to explain trophic isotope effects upward of 10‰ 761 (Scrimgeour et al., 1995). A meta-analysis on the effects of starvation on consumer $\delta^{15}N$ revealed that starvation generally led to increased organism δ^{15} N by an average of 0.5 ‰, up to 4.3 ‰ (Doi et al., 2017). This dynamic 762 was documented for the tropical symbiotic coral Stylophora phistillata, where heterotrophically starved corals 763 764 were enriched in δ^{15} N by ~0.5 ‰ compared to frequently fed corals (Reynaud et al., 2009). The trophic isotope 765 offset of B. elegans soft tissue relative to its diet, ε , was not discernibly influenced by near starvation; that of 766 corals fed once every other week was similar to that of corals fed twice a week - in spite of visible signs of stress 767 among the former, including relatively more sluggish feeding (Figure S7) and thinner soft tissue (data not 768 shown). Deep sea coral reefs are often highly productive environments with high levels of biodiversity, 769 commensurate with a relatively high food supply (Duineveld et al., 2007; 2004; Genin et al., 1986; Roberts et al., 770 2006; Soetaert et al., 2016; Thiem et al., 2006; Cathalot et al. 2015). Nevertheless, periodicity and spatial 771 heterogeneity in the food supply of CWC reefs implicate periods of lower food density (e.g., Duineveld et al. 772 2007). High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of 773 surface organic matter to the seabed, creating 'feast' conditions, interspersed with 'famine' periods during the 774 non-productive season (Maier et al. 2023). Regardless, our trials suggest that starvation, if pertinent to CWC 775 communities, does not result in greater-than-expected trophic isotope offsets, at least for B. elegans. 776 4.2 Turnover rate for B. elegans 777 We report the first estimate of the nitrogen turnover for a non-symbiotic cold-water coral of 291 ± 15 days 778 for *B. elegans* soft tissue. This value falls within the range of existing estimates for tropical symbiotic corals. Pulse-chase experiments with ¹⁵N-nitrate conducted with fragments of the tropical symbiotic coral Porites 779 780 cylindrica yielded a N turnover time of 370 days, and of 210 days for the tropical symbiotic coral Acropora 781 pulcra (Tanaka et al. 2006; 2018). These relatively long turnover times are attributed to the recycling and 782 retention of N within the coral-symbiont system in nutrient-deplete ecosystems. In comparison, the corresponding

recention of N whilm the correspondence of the constraint of the correspondence of the constraint of the correspondence of the cor

184 limited (Tanaka et al., 2006). Tanaka et al. (2018) inferred that the N turnover in *P. cylindrica* would be

substantially faster than 370 days without symbionts, on the order of 56 days based on estimates of polyp-specific

Deleted: time

Deleted: time

21

 Deleted: of

 Formatted: Font: Italic

 Formatted: Font color: Text 1

792 N uptake rates. Nevertheless, the N turnover estimated for the tropical symbiotic coral Porites lutea was notably 793 shorter that A. pulcra and P. cylindrica, on the order of 87 days (Rangel et al., 2019), implicating different N 794 nutritional strategies among symbiotic coral groups and/or ecosystems. The N turnover for B. elegans estimated 795 here is of the same order as but still longer than that for tropical symbiotic corals suggesting that cold-water 796 species have lower metabolic and growth rates compared to tropical symbiotic species, although efficient N 797 recycling has also been documented previously in cold-water corals (Middelburg et al. 2016). The slower 798 turnover of CWCs relative to their symbiotic tropical counterparts may reflect the lower temperatures of the 799 former's habitats (Miller, 1995; Thomas and Crowther 2015). 800 Constraints on N turnover also allow for calibration of the temporal resolution that is achievable with the 801 CWCs δ^{15} N proxy for marine N cycling. Corals are constantly accreting skeleton, such that coral proxies have the 802 potential to provide annual resolution (e.g., Adkins et al. 2004). In theory, a rapid N turnover in CWC could 803 record seasonal changes in regional N dynamics. A turnover time of 291 ± 15 days for N in *B. elegans* soft tissue, 804 however, signifies that the δ^{15} N of coral skeleton is unlikely to provide a faithful record of seasonal differences in 805 the δ^{15} N of the coral diet. Moreover, the turnover of the pool of N that sources the skeletal tissue may be different 806 from that of bulk tissue, and thus decoupled from the soft tissue turnover rate. We suggest that CWCs can likely 807 record changes in their diet on annual or longer timescales, compatible with the ability to date CWC with 808 subdecadal resolution (Adkins et al. 2004). 809 4.3 Soft tissue vs. skeleton $\delta^{15}N$ 810 A large biosynthetic δ^{15} N offset between the coral soft tissue and its skeleton could conceivably account for a

811 large $\delta^{15}N$ offset between coral skeleton-bound organic matter and N of export that is not explained by single 812 trophic level enrichment of ~3 %. However, the mean difference between soft tissue and skeleton-bound $\delta^{15}N$ 813 among B. elegans specimens collected at Friday Harbor was relatively modest, on the order of +1.2 ‰, ranging 814 between +0.5 and +2.2 %. The observed range was dictated primarily by the variability in the δ^{15} N of the coral 815 soft tissue, as skeleton-associated δ^{15} N values were relatively invariant among specimens sampled from different 816 locations and field seasons - likely due to the fact that the amount of skeleton analyzed represented multiple 817 years of growth. The amount of skeleton-bound organic N is small relative to aragonite mass (2-5, µmol N per g 818 of skeleton in our samples), such that homogenization of 50-100 mg aragonite fragments may alias seasonally-819 driven variability in skeletal δ^{15} N. Soft tissue values in spring were ~1.5 ‰ higher than in summer and fall, such 820 that they appeared to record seasonal changes in diet (Figure 5a). In this regard, the asymptotic nature of the two 821 end-member isotope mixing model (Eq. 1) renders B. elegans's soft tissue sensitive to seasonal changes in prey

Deleted:

Formatted: Font: Italic, Font color: Text 1 Formatted: Font color: Text 1

Deleted: time

Deleted: as

Deleted: and/or metabolisms

Formatted: Font color: Text 1

-(Deleted: ,
-(Deleted: worth
-(Formatted: Font color: Text 1
•(Formatted: Font color: Text 1

Formatted: Font color: Text 1

828 δ^{15} N, but not likely to reach isotopic equilibrium on seasonal timescales - given an N turnover of ~291 days, as discussed above. Seasonal variations in the δ^{15} N of the food source of *B. elegans* near Friday Harbor could arise 829 from corresponding differences in the δ^{15} N of nitrate entrained to the surface driven by seasonal hydrographic 830 831 variability around San Juan archipelago, in the extent of surface nitrate consumption, in food web structure, or 832 from some combination of these. The data density among all but the August 2021 sampling campaign is too 833 sparse to be conclusive in this regard. Otherwise, the observed differences in soft tissue δ^{15} N may result from 834 spatial heterogeneity in food source $\delta^{15}N$ among the different collection sites visited for respective campaigns at 835 Friday Harbor.

836 As documented here for *B. elegans*, the δ^{15} N difference between coral tissue and skeleton appears to be 837 modest among various scleractinian coral species. Specimens of the symbiotic tropical coral Porites lutea showed 838 a δ^{15} N offset of +1.1 ‰ between skeleton and soft tissue, whereas the symbiotic tropical coral *Favia stelligera* 839 revealed an insignificant offset of -0.1 ‰ (Erler et al., 2015). Similarly, no offset was observed for proteinaceous 840 cold-water corals of the genus Lepidisis collected off Tasmania (Sherwood et al., 2009), whereas an offset of -1.9 841 ± 0.8 ‰, was reported for cold-water proteinaceous corals of the genus *Primnoa* from the Gulf of Alaska, 842 Isadella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre 843 (McMahon et al., 2018). Conversely, a study of numerous species of both symbiotic and non-symbiotic corals 844 reported a +4 ‰ offset between the skeletal organic matrix and soft tissue among the non-symbiotic corals 845 specifically, but no difference among the symbiotic corals (Muscatine et al., 2005), suggesting that biosynthetic 846 offsets may occur for certain CWC species or conditions. 847 4.4 Implications for components of CWC diet, 848 Cold water corals are considered opportunistic feeders, ingesting whatever is available in the water column 849 (Mortensen, 2001; Freiwald, 2002; Duineveld et al. 2004; 2007; Kiriakoulakis et al. 2005; Carlier et al. 2009;

- Dodds et al. 2009; yan Oevelen et al. 2009). They are reported to feed on zooplankton (Kiriakoulakis et al., 2005;
- 851 Naumann et al., 2011), including microzooplankton (Houlbrèque et al. 2004), on phytoplankton and
- phytodetritus, including the bacterial fraction of phytodetritus (Maier et al., 2020; Houlbrèque et al. 2004),
- dissolved organic matter (Mueller et al., 2014; Ferrier 1991, Al-Moghrabi et al. 1993; Hoegh-Guldberg &
- 854 Williamson 1999; Houlbrèque et al. 2004; Grover et al. 2008), and the CWC holobiont has been observed to
- display biological N₂ fixation and chemoautotrophy (Middelburg et al. 2016). While it is clear that corals may be
- able to consume a variety of components within the food web, the soft tissue δ^{15} N of *B. elegans* specimens
- **857** <u>collected at Friday Harbor averaged 12.0 ‰, signifying that they fed on material with a δ^{15} N of approximately</u>

Formatted: Font color: Text 1

Deleted: C
Deleted: s
Formatted: Font color: Text 1
Formatted: Indent: First line: 0", Line spacing: 1.5 line:
Deleted: 2012;
Deleted: V
Formatted: Not Highlight
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Moved (insertion) [3]

862	9.0 % – accounting for a normal trophic offset relative to their diet (3 %) confirmed by our culture experiment
863	results, Here, we seek to determine the primary nutrition source for <i>B. elegans</i> at Friday Harbor by comparing the
864	δ^{15} N of these corals' expected diet with measured δ^{15} N of different food web components including SPOM and
865	net tow material
866	We first explore whether the SPOM fraction of the food web was the dominant component of <i>B. elegans</i> ' diet
867	at Friday Harbor. SPOM is operationally defined as the particulate material retained onto glass fiber filters (GF/F,
868	0.7µm nominal pore size) from filtered aqueous samples. At the ocean surface, including at the stations near
869	Friday Harbor, SPOM is generally dominated by phytoplankton material. At the ocean subsurface, <u>below the</u>
870	euphotic zone, SPOM derives from organic material exiting the ocean surface, but is considered a distinct pool
871	from the ballasted sinking PON collected in sediment traps. The δ^{15} N of SPOM typically increases, with depth,
872	with the steepest gradient across the 100-300 m depth interval, reaching upwards of ~4-5 ‰ in the ocean
873	subsurface, which are higher values than the corresponding sinking particles at abyssal depths due to recycling
874	and remineralization (Altabet, 1988; Casciotti et al., 2008; Saino and Hattori, 1987). Wang et al. (2014) reasoned
875	that because the δ^{15} N of SPOM is approximately one trophic level lower that of the N preserved in skeletons of
876	the deep-dwelling (deeper than ~ 500 m) CWC Desmophyllum dianthus, and because suspended particles are the
877	most abundant form of small particles in the deep ocean, <u>cold-water corals</u> must feed predominantly on SPOM.
878	However, SPOM collected in the upper 30 meters near Friday Harbor was 5.7 ± 1.7 %, which is ~ 6 % lower
879	than B. elegans soft tissue, a difference greater than expected for a single trophic level. Thus, the SPOM at Friday
880	Harbor was evidently not the predominant food source for <i>B. elegans</i> growing in this depth interval.
881	Additionally, it has been suggested that CWCs can assimilate dissolved organic nitrogen (DON) (Gori et al., 🔨
882	2014). We do not have δ^{15} N DON measurements from our field study. However, we do not expect the potential
883	assimilation of DON to explain the elevated $\delta^{15}N$ of organic tissue that was observed. There are two components
884	of marine DON, refractory and labile (Bronk et al. 2002), which have different $\delta^{15}N$ (Knapp et al. 2018). At
885	Friday Harbor, we don't know the partitioning of the δ^{15} N between these pools, but even if we did, the labile
886	fraction (which would presumably be the pool available to corals) is expected to converge on the $\delta^{15}N$ value of
887	SPOM (Bronk et al., 2002, Sigman and Fripiat 2019 their Fig. 4; Knapp et al., 2018, Zhang et al., 2020), given
888	that the most recently produced DON is generally most labile. As a result, consumption of DON would not
889	explain the high δ^{15} N of coral organic tissue.
890	Justead, we suggest that the relatively high δ^{15} N of $\sim 12 \infty$ of <i>B. elegans</i> soft tissue at Friday Harbor results
891	from these corals deriving nutrition predominantly from larger metazoan zooplankton. Indeed, this is supported
892	by a comparison of the δ^{15} N coral tissue and the δ^{15} N of the largest size class of net tow material ($\geq 500 \ \mu m$) of
1	

Deleted: incubation

Deleted:

1	Moved up [3]: soft tissue δ^{15} N of <i>B. elegans</i> specimens collected at Friday Harbor averaged 12.0 %, signifying that they fed on material with a δ^{15} N of approximately 9.0 % – accounting for a normal trophic offset relative to their diet (3 %).
1	Deleted: There is a lack of consensus, however, regarding which components of the food web dominate their diets. The
	Formatted: Font color: Text 1
	Deleted: defined as
λ	Deleted:
Å	Deleted:
1	Deleted: in the ocean subsurface
	Deleted: can be
	Deleted: heavier
	Formatted: Font color: Text 1
Y	Formatted: Font color: Text 1
4	Deleted:
	Formatted: Font color: Text 1
-1	Deleted: D. dianthus
	Formatted: Font color: Text 1
(Deleted: X ‰ (JOSIE, CAN YOU PLEASE, PROVIDE THE ACTUAL VALUE HERE
N	Deleted:), WHICH IS
Ù	Formatted: Not Highlight
()	Deleted: T
Ì	Formatted: Font color: Text 1
Y	Formatted [16]
ļ	Formatted: Font: 11 pt, Font color: Text 1
h	Deleted: A more parsimonious explanation to account for the
1)	Formatted: Font color: Text 1
(),	Formatted: Font color: Text 1
//	Formatted: Font color: Text 1
V,	Formatted: Line spacing: 1.5 lines
4	Deleted: is that they derived
Ą	Formatted: Font color: Text 1
1	Deleted: A direct positive relationship between
A	Deleted:
1	Deleted: of material collected in net tows and particle size [17]
{	Formatted: Font color: Text 1

921	8.0 ± 0.8 %, This is the only component of the organic matter nitrogen budget that is offset from the coral tissue
922	by ~ 3.5 ‰, consistent with one trophic level transfer. Additionally, the net tow material had a molar C:N ratio of
923	4.4 ± 0.6 , compared to 6.5 ± 2.2 for the SPOM (Figure S8), suggesting a <u>dietary preference for metazoan</u>
924	zooplankton would provide higher protein content and nutritional density for these corals (Adams and Sterner,
925	2000).
926	Despite evidence for zooplankton as the main dietary source for <i>B. elegans</i> at Friday Harbor, we
927	acknowledge that this feeding strategy may not apply for corals of other species living in habitats that are

928 hundreds to thousands of meters deep. As pointed out in a recent review (Maier et al. 2023), the presence of 929 CWC reefs in the food-limited deep ocean appears paradoxical, and it is not likely that the food available to 930 corals at Friday Harbor looks identical to food available to corals living at >1000 m water depth. Indeed, Maier et 931 al. 2023 suggest that the biodiversity and productivity of CWC reefs in the deep sea are supported by a number of 932 processes such as CWC's ability to consume a range of dietary components (DOM, bacterioplankton, inorganic 933 resources such and inorganic C and ammonium), efficient resource recycling, and their ability to align their 934 feeding strategies and growth with fluctuations in food availability. While we cannot speculate about the flux of 935 DOM to corals living at >1000m depth, the δ^{15} N of deep DOM has a uniform value of ~5 ‰ which cannot 936 explain the high δ^{15} N of CWCs (see Sigman and Fripiat, 2019), 937 Maier et al. (2023) and references therein highlight that most deep CWC reefs occur in regions with higher-938 than-average annual primary productivity, indicating that these CWC reefs are sustained by inputs of high energy 939 to the system, where there is also evidence for the presence of vertically migrating zooplankton. The vertically 940 migrating zooplankton have been found near both relatively shallow (<200 m, Duineveld et al. 2007, Garcia-941 Herrera et al., 2022) and deep (~1000 m, e.g. Carlier et al. 2009) CWC reefs. Moreover, there are a number of 942 other independent studies that reveal a single trophic level offset between the $\delta^{15}N$ of zooplankton prey and the 943 δ^{15} N soft tissue of asymbiotic scleractinian corals at specific sites (Duineveld et al., 2004, Sherwood et al. 2005; 944 2008; 2009; Carlier et al., 2009; Hill et al., 2014; Maier et al., 2020). Given the 'normal' trophic level offset 945 reported for CWCs in our laboratory culture experiment, these published observations underscore that 946 zooplankton could be a dominant dietary component of corals other than B. elegans as well. Additional evidence 947 from lipid biomarkers corroborates the assertion that deep-dwelling CWC species such Lophelia pertusa 948 (recently re-classified as *Desmophyllum pertusum*) and *Madrepora oculata* feed predominantly on metazoan

- 249 zooplankton (Dodds et al., 2009; Kiriakoulakis et al., 2005; Naumann et al. 2015). Some deep-dwelling CWCs
- 950 (Desmophylum pertusum, Madrepora oculata, Dendrophyllia cornigera) exhibit prey preference for larger

Deleted: X ‰ (JOSIE, CAN YOU PLEASE, PROVIDE THE ACTUAL VALUE HERE as well)

Deleted: clearly shows an offset consistent with one trophic transfer, whose $\delta^{15}N$ was(~3.5 ‰)lower than coral soft tissue – approximating a single trophic transfer.
Deleted: OM
Deleted: At Friday Harbor
Formatted: Font color: Text 1
Deleted: support
Deleted: in the former
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Deleted: in
Deleted: ,
Formatted: Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font color: Text 1

Deleted: activity

Formatted: Font: (Default) +Body (Times New Roman)
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman), 11 pt
Formatted: Font: (Default) +Body (Times New Roman)
Deleted: Nevertheless,

Formatted: Font: Italic

Deleted: s

965	zooplankton (Da Ros et al. 2022), suggesting that zooplankton prey are an essential component of their diet.
966	Indeed, an exclusive diet of phytodetritus (Maier et al. 2019) and the exclusion of zooplankton from diet
967	(Naumann et al. 2011) led to decreases in coral metabolism. More fundamentally, the shared traits of tentacles
968	and nematocysts are evidence of a predatory life strategy, indicating that zooplankton are an important food
969	source for corals (Lewis and Price, 1975; Sebens et al., 1996). The coral morphology of B. elegans and that of
970	other cold water scleractinian corals is consistent with an adaptation for the capture of prey of a commensurate
971	size (Fautin, 2009). Correspondingly, <i>D. dianthus</i> is considered to be a generalized zooplankton predator that can
972	prey on medium to large copepods and euphasiids (Höfer et al., 2018). In contrast, gorgonian corals do not
973	capture naturally occurring zooplankton and have a correspondingly low density of nematocysts (Lasker 1981).
974	In summary, while our data cannot directly indicate that all CWCs, including the deep-dwelling ones, derive their
975	primary nutrition from zooplankton, the results of our trophic experiment and field study (when evaluated in the
976	context of the published literature) suggest that it may be important to consider metazooplankton as a significant
977	component of CWC diet, and that CWC δ ¹⁵ N is likely to be sensitive to food web dynamics. We discuss the
978	implications of these suggestions further in the sections below.
979	4.5 Does coral-bound 815N reflect surface ocean processes at Friday Harbor?
980	The effectiveness of coral skeleton-bound δ^{15} N as an archive to reconstruct past ocean N cycling depends on
981	its ability to record, the δ^{15} N of the surface PON export. In turn, the δ^{15} N imparted to the phytoplankton
982	component of surface particles, from which PON export derives, is highly dependent on surface ocean dynamics
983	that influence the degree of nitrate consumption and associated isotope fractionation. Here, we describe local
984	marine N cycling dynamics in order to evaluate whether coral-bound δ^{15} N recorded in the <i>B. elegans</i> , specimens
985	reflects local surface ocean processes.
986	Given complete assimilation of inorganic N pools, the δ^{15} N of phytoplankton material - the dominant
987	component of SPOM at the surface ocean - converges on the $\delta^{15}N$ of the N sources, new nitrate and recycled N
988	sources (Treibergs et al., 2014; Fawcett et al. 2011). At steady state, the δ^{15} N of the sinking PON flux reflects the
989	isotope signature of the nitrate upwelled to the surface (Altabet, 1988). Alternatively, given partial nitrate
990	consumption in the context of a finite pool (Rayleigh dynamic), such as in high-nutrient low-chlorophyll regions
001	
771	and in upwelling systems, the SPOM δ^{13} N is fractionated relative to the nitrate δ^{13} N as function of the

- assimilation isotope effect and the extent of nitrate consumption (Sigman et al., 1999). The δ^{15} N of the sinking
- flux then reflects both the δ^{15} N of nitrate upwelled to the surface and the degree of nitrate consumption (Altabet

Deleted: possible

Deleted: primary

Deleted: ies may differ among asymbiotic coral species and that CWCs may obtain nutrients from a wide range of sources when necessary. For instance, N and C isotope ratios among gorgonian soft coral species collected off the coast of Newfoundland suggest that some feed predominantly on fresh phytodetritus, while others rely on microplankton and thus display higher trophic levels (Sherwood et al., 2008). Additionally, some asymbiotic corals may produce mucus nets to capture suspended particles, whereby corals disperse mucus filaments with their mouth and tentacles and the particles entrapped by the mucus are then drawn back into the mouth for feeding (Lewis and Price, 1975). We observed mucus production by B. elegans only when polyps were out of water - a behavior ascribed to the mitigation of dessication (Brown and Bythell, 2005);. measurementsthe potential assimilation of wasmarine , (Bronk et al. 2002) (Knapp et al. 2018),,,generally The assertion that metazoan zooplankton are the dominant dietary component of scleractinian CWCs - despite their ability to be omnivorous - is indeed supported by a number of independent studies. The single trophic level between the $\delta^{15}N$ of zooplankton prey and the soft tissue of many asymbiotic corals has generally been interpreted to indicate that zooplankton are the dominant component of their diet (Duineveld et al., 2004, Sherwood et al. 2005; 2008; 2009; Carlier et al., 2009; Hill et al., 2014; Maier et al., 2020). Additional evidence from lipid biomarkers corroborates the assertion that deep-dwelling CWC species such Lophelia pertusa and Madrepora oculata feed predominantly on metazoan zooplankton (Dodds et al., 2009; Kiriakoulakis et al., 2005; Naumann et al. 2015). Deep-dwelling CWCs (Desmophylum pertusum, Madrepora oculata, Dendrophyllia cornigera) also exhibit prey preference for larger zooplankton (Da Ros et al. 2022), suggesting that zooplankton prey are an essential component of their diet. Indeed, an exclusive diet of phytodetritus did not satisfy the fatty acid requirements of Lophelia pertusa, requiring supplementation with metazoan zooplankton to achieve maximum growth (Maier et al., 2019). Similarly, zooplankton exclusion from the diet of the solitary CWC D. dianthus resulted in a decrease in coral respiration (Naumann et al. 2011). More fundamentally, the shared traits of tentacles and nematocysts are evidence of a predatory life strategy, indicating that zooplankton are an important food source for corals (Lewis and Price, 1975; Sebens et al., 1996). The coral morphology of B. elegans and that of other cold water scleractinian corals is consistent with an adaptation for the capture of prey of a commensurate size (Fautin, 2009). Correspondingly, D. dianthus is considered to be a generalized zooplankton predator that can prey on medium to large copepods and euphasiids (Höfe ... [18])

Formatted: Font color: Text 1

Deleted: faithfulness
Deleted: its
Deleted: to
Formatted: No underline, Font color: Text 1
Formatted: Font: Italic, No underline, Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Deleted: HNLC

1115	and Francois 1004; Francois et al. 1007). In this spatian, we discuss whether aprol bound $\delta^{15}N$ reflects the $\delta^{15}N$ of		Deleted
1110	and François 1994, François et al. 1997). In this section, we discuss whether colar-bound of N tenecis the of N of		Deleted.
1110	nitrate entrained to the surface.		
1117	Nitrate assimilation at Friday Harbor appeared to be incomplete, potentially implicating the fractionation of		Deleted:
1118	N isotopes between nitrate and biomass. Although depleted nitrate concentrations are generally expected at		Deleted:
1119	coastal sites during the summer in density stratified water column due to phytoplankton assimilation, nitrate		Formatte
1120	concentrations at Friday Harbor in August of 2021_were upwards of 15 μM at the surface and 20 μM at 30 m		
1121	depth. Indeed, nitrate in the San Juan Channel is replete year-round, even at the surface, due to vigorous mixing		
1122	within the channel (Mackas and Harrison, 1997; Murray et al., 2015).		
1123	The region experiences tidal mixing, designating it as a well-mixed estuary with minimal density		Deleted:
1124	stratification (Banas et al., 1999; Mackas and Harrison, 1997). The tidal influence is clearly identified from the		Deleted:
1125	diurnal patterns of vertical hydrographic structure variability with the salinity/temperature gradients changing		Formatte
1126	with the tidal phase (Figure 6a and b). The tidal pumping drives vertical mixing between high nutrient deep water		Deleted:
1127	from the Juan de Fuca Strait and fresher surface water from the Strait of Georgia (Banas et al., 1999; Lewis,		(Lewis, 19
1128	1978; Murray et al., 2015; Mackas and Harrison, 1997), Nutrient concentrations in the surface Georgia Strait, vary		a mix of
1129	seasonally and are depleted during the summer at the stratified, fresher surface (Del Bel Belluz et al., 2021;		Deleted:
1130	Mackas and Harrison, 1997). Our temperature-salinity plot in August 2021 reflects end-member mixing between	1	Deleted:
1131	more saline/colder water from the Juan de Fuca Strait with fresher/warmer surface water from the Georgia Strait		Deleted:
1132	(Figure S9: Banas et al., 1999). The influence of Georgia Strait surface water is recognized by the salinity	////	Deleted:
1133	minima originating from the outflow of the Fraser River (Figures S10: Mackas and Harrison, 1997). The nitrate		Deleted:
1134	profiles in August 2021, though collected with a lower vertical resolution, do show diurnal variability in vertical		Deleted:
1135	gradients similar to salinity/temperature consistent with the tidal mixing effect (Figure 6c)		Deleted:
1155	gradients similar to saminty temperature, consistent what the road mixing effect (Figure 60)	$ \setminus $	Deleted:
1136	The $\delta^{13}N$ of nitrate measured at stations near Friday Harbor <u>also</u> corroborate the mixing of nitrate-rich deeper	7	Formatte
1137	water with nitrate-deplete surface water from Georgia Strait. The apparent isotope effect for nitrate assimilation		
1138	in August 2021 was ~1.5 ‰, markedly lower than the canonical value of 5 ‰ associated with nitrate assimilation		
1139	by surface ocean phytoplankton communities (DiFiore et al., 2006; Sigman et al., 1999; Altabet and François,		
1140	1994). A low apparent isotope effect is consistent with <u>two</u> end-member mixing of lower $\delta^{15}N$, nitrate-rich water		Formatte
1141	with highly fractionated (high δ^{15} N), low-nitrate water (Sigman et al., 1999). Highly fractionated nitrate, in turn,		Formatte
1142	likely originated from nutrient-depleted Georgia Strait surface waters entrained into the Channel Islands. The		Formatte
1143	linear relationship between salinity and nitrate concentration in August 2021 further substantiates physical	1	Formatte
1144	mixing as the dominant control on nitrate concentrations and isotone ratios in San Juan Channel (Figure S10)	$\langle \rangle$	Formatte
	and the second of the market control of market control and isotope ratios in our stand challen (115410 010),		Dalahadi

Deleted: was ostensibly	
Deleted: low surface	
Formatted: Font color: Text 1	

Deleted: Juan de Fuca Strait as
Deleted: vertical density
Formatted: Font color: Text 1
Deleted: gradients
Deleted: Nutrients are supplied to the broader region by upwelling (Lewis, 1978; Murray et al., 2015; Mackas and Harrison, 1997).
Deleted: The water in the San Juanthis region Channel comprises a mix of
Deleted: .
Deleted: , in turn,
Deleted: The
Deleted: s
Deleted: (Figure 6a,b)
Deleted: corroborate
Deleted: of
Formatted: Font color: Text 1
Deleted: and
Deleted: and
Formatted: Font color: Text 1

(Formatted: Font color: Text 1
(Formatted: Font color: Text 1
(Formatted: Font color: Text 1
\geq	Deleted: (assimilated)
Y,	Formatted: Font color: Text 1
)(Formatted: Font color: Text 1
(Deleted: corroborates

1 66 Mackas and Harrison, 1997). Moreover, the δ^{15} N of nitrate was relatively uniform with depth, indicating effective

167 vertical mixing of the Georgia Strait and Juan de Fuca Strait water masses. The relatively slight decrease in

1168 nitrate δ^{15} N with depth suggests a secondary influence of local nitrate assimilation on its concentration and 1169 isotope ratios.

The corresponding δ^{15} N of SPOM at Friday Harbor covered a broad range, from 4.2 ‰ to 8.7 ‰ in August 1170 1171 2021. The depth distribution of SPOM did not mirror the corresponding nitrate δ^{15} N profile, as could otherwise be expected. At the stratified near-surface (5 m) at station 1, the δ^{15} N of SPOM averaged 4.2 % compared to 7.4 1172 1173 ‰ for nitrate. In the context of Rayleigh fractionation, this result suggests that particulate material at the surface consisted primarily of the instantaneous product of nitrate assimilation (Mariotti et al., 1981). The lower δ^{15} N 1174 1175 SPOM values could also reflect some degree of reliance on regenerated N species, which would result in $\delta^{15}N$ of 1176 SPOM lower than that of incident nitrate (Fawcett et al., 2011; Lourey et al., 2003; Treibergs et al., 2014). Deeper in the water column, the $\delta^{15}N$ of SPOM converged on the $\delta^{15}N$ of incident nitrate, between 6 and 7‰, 1177 1178 suggesting that SPOM derived from the complete consumption of an incident nitrate pool (even though nitrate 1179 was present at these depths). Phytoplankton at these depths may thus have originated from surface water 1180 entrained from the Strait of Georgia - where nitrate was completely utilized. The above dynamics complicate 1181 validation of the offset between $\delta^{15}N$ of exported PON and coral-bound $\delta^{15}N$. Yet we find little evidence for nitrate fractionation from partial assimilation on δ^{15} N of phytoplankton SPOM, which suggests that the δ^{15} N 1182 1183 imparted on local *B. elegans* skeletons should reflect the δ^{15} N of nitrate entrained to the surface. The ~ 7‰ 1184 difference between coral skeleton $\beta_{1.5}^{1.5}$ (~13.5%) and the entrained nitrate (~6.5%) is similar to the empirical 1185 range of 7 - 9% reported for other CWC species, (e.g. D. petusa, Kiriakoulakis et al., 2005) and D. dianthus, (Wang et al. 2014) and suggests that *B. elegans* provides a record of the thermocline nitrate δ^{15} N and surface 1186 1187 nutrient dynamics at Friday Harbor.

1188 5. Conclusions and implications for paleo-reconstruction from coral δ¹⁵N

1189 We conclude that the solitary scleractinian cold water coral *B. elegans* in Friday Harbor, WA predominantly

- 190 derives nutrition from metazoan zooplankton prey. While our study was limited to a shallow field site, our
- 191 isotope feeding experiment, evaluated alongside previously published studies, points to the possibility that
- 192 deeper-dwelling CWCs could also rely on zooplankton prey as a fundamental component of their diet, SPOM
- 193 may contribute to these CWCs' diet, but it cannot be presumed to exclusively account for the large offset
- 1 | 94 between $\delta^{15}N$ of PON export and coral skeleton $\delta^{15}N$ documented by Wang et al. (2014). The $\delta^{15}N$ of skeletal

Formatted: Line spacing: 1.5 lines

	Deleted: result suggestsingthat particulate material at the surface consisted primarily of the instantaneous product of nitrate assimilation (Mariotti et al., 1981). The lower $\delta^{15}N$ SPOM values could also reflect some degree of reliance on regenerated N species, whosehich would result in $\delta^{15}N$ isf SPOM generally [11]
1	Formatted: Font color: Text 1
	Deleted: Thehe above dynamics complicate validation of the offset between 8 ¹⁵ N nitrate ([20])
	Formatted
	Deleted: Nevertheless, the offset between nitrate $\delta^{15}N$ and coral skeleton $\delta^{15}N$ was on the order of ~6.5 %,imilar to the empirical range of 7 - 9% observed ([22])
	Deleted: Lophelia p.;
	Deleted: (
	Formatted: Font color: Text 1
	Formatted ([23])
	Deleted: , suggesting that the δ^{15} N imparted on local <i>B. elegans</i> skeletons reflects the δ^{15} N of nitrate entrained to the surface,
	Deleted: . The $1.5 - 2 \%$ difference between the 7‰ offset reported here and that by Wang et al. (8-9‰) might stem from either natural variability between CWC species or the effect of coral habitat depth on the magnitude of the offset. Most of the specimens used in Wang et al. calibration study were collected between -500 and 1500 m depth and these authors found a small, 1-2‰, increase in the offset magnitude with the depth of coral growth. relatively unaltered by surface nitrate fractionation from partial assim(721)
Å	Deleted: may be able to
4	Deleted: urface nutrient dynamics ocean processes
1	Deleted: .
4	Formatted
/	Deleted: in Friday Harbor, WA
//	Deleted: shallower-dwelling organisms
//	Formatted: Font color: Text 1
Ą	Formatted: Font color: Text 1
4	Deleted: a review of related
Ą	Formatted: Font color: Text 1
Ŋ	Deleted: studies corroborates that while
A	Deleted: may
Å	Deleted: be able to feed on a variety of substrates, other s
-1	Deleted: , even at abyssal depths
	Formatted: Font color: Text 1
Y	Formatted: Font color: Text 1
Y	Formatted: Font color: Text 1
4	Deleted: intrinsically xclusively account for the large of [28]

1291	material recovered from coral archives is thus likely to be sensitive to local food web dynamics; for a given $\delta^{15}N$		Deleted: food vailability. In fact, Wang et al. (2014) did report a "natural variability" of 1-1.5% within a single specimen that might
1292	of sinking PON exiting the surface ocean, the δ^{15} N recorded by CWC may differ among individuals of the same		have resulted from some variability of the local food web on a short time scale of few years. Additionally, s
1293	species feeding on different zooplankton prey, depending on availability. In fact, Wang et al. (2014) did report a		Deleted: In this regard, the depth at which corals reside may be an
1294	"natural variability" of 1-1.5% within a single specimen that might have resulted from some variability of the	/	an increase in the degree of carnivory of zooplankton with depth
1295	local food web on a short time scale of few years. Some studies have, documented an increase in the degree of		(Dodds et al., 2009; Vinogradov, 1962) For instance, Hannides et al. (2013) recorded a 3.5 ‰ increase in zooplankton δ ¹⁵ N from 150
1296	carnivory of zooplankton with depth (Dodds et al., 2009; Vinogradov, 1962). For instance, Hannides et al. (2013)	/	m to 1000 m in the Subtropical North Pacific, with the steepest rate of increase from 100 – 300 m. Koppelmann et al. (2009) reported a similar pattern of reconjustican $\frac{815}{2}$
1297	recorded a 3.5 ‰ increase in zooplankton $\delta^{15}N$ from 150 m to 1000 m in the Subtropical North Pacific, with the		Deleted: studies
1298	steepest rate of increase from 100 - 300 m. Koppelmann et al. (2009) reported a similar pattern of	$ /\lambda $	Deleted: suggestould explain that
1299	zooplankton δ^{15} N through the water column. These findings could explain previous reports of small but	1	Formatted: Font color: Text 1
1300	resolvable (1-2 $\%$) depth-dependencies of coral δ^{15} N (Wang et al. 2014) if corals feed predominantly on		Formatted: Font color: Text 1
1301	zooplankton with depth-dependent degree of carnivory of zooplankton and increasing with depth δ^{15} N. The δ^{15} N	\sum	Deleted: y
1302	recorded in CWC skeletons <u>also tends</u> to differ among species by 1-2‰ as respective species occupy different	X	feedingpredominantly on zooplankton with depth-dependent degree of carnivory of zooplankton and increasing with depth $\delta^{15}N$.
1303	nutritional niches (Teece et al., 2011). The relationship between CWC species represented in fossil archives to	\mathbb{N}	Formatted: Font color: Text 1
1304	the depth structure of their zooplankton prey warrants further investigation.		Formatted: Font color: Text 1
1305	Consideration of the possible dependence of coral-bound $\delta^{15}N$ on food web dynamics informs the questions	À	Deleted: We note that t
1306	that can be competently addressed by this proxy. Although we do not have direct estimates of the δ^{15} N range that		Deleted: sensitivityossible dependence of the [33]
1807	can be expected from local food web variability, the scatter around the global compilation of Wang et al. (2014)		Deleted: to
1308	for coral-bound δ^{15} N of <i>D</i> dianthus relative to the δ^{15} N of PON suggests that this range is modest, on the order of		and the relationship of CWC species represented in fossil archives to the denth structure of zoonlankton prev warrants further
1809	$\sim 1-2$ % Given this range, we suggest that the coral-bound δ^{15} N proxy will be most useful for reconstructing		investigation It hough we do not have direct estimates of the $\delta^{15}N$
1210	larger environmental 8 ¹⁵ N signals and where chosen correl complex belong to the same gracies and are collected at		scatter around the global compilation of Wang et al. (2014) for scatter around $\mathbb{R}^{1/N}$ of D , digathug relative to the $\mathbb{R}^{1/N}$ of BON
1211	anger environmental o iv signals and where enough the demonstrated by Wong et al. (2017). Studen et al. (2018) and		suggests that this range is modest, on the order of $\sim 1-2$ %. Given this range, we graged that the agent haund $\mathbb{R}^{15}N$ means is most waful
1011	comparable depuis as has already been successfully demonstrated by wang et al. (2017), studer et al. (2018) and		in systemsill be most useful for reconstructing larger ([34]
1812	Chen et al. (2023). If used in this way, the broad geographic and temporal coverage afforded by CWCs, the		Deleted: come from
1313	opportunity to measure multiple proxies from individual specimens and the imperviousness of coral-bound $\delta^{15}N$		Deleted: correspond
1314	to diagenetic alteration render it a valuable paleo-proxy for reconstructing marine N cycling.		Pormatted ([35]
1315	·		Deleted: ;
1816	Data Availability Data presented in this paper is available at https://www.bco-dmo.org/project/893811		Formatted ([36]
1817		\mathbb{N}	Formatted: Font color: Text 1
1818	Author Contribution JG, AG, and MP conceptualized the research presented in this paper. JM and AG designed		Formatted: Font color: Text 1
1319	and carried out culture experiments. MP and AC prepared coral samples for analysis. JM and VR analyzed		Formatted: Indent: First line: 0", Line spacing: 1.5 lines
1820	samples. JM, AG, JG and KD collected water samples, SPOM, and net tows. KD collected live corals for culture	_//	Deletea: 1 ([37]

1321 experiments and field studies. JM and JG prepared the manuscript with contributions from all co-authors.

1000 m in the Subtropical North Pacific, with the steepest rate ncrease from 100 - 300 m. Koppelmann et al. (2009) reported a ilar pattern of zooplankton δ^{15} N (... [30] eted: studies eted: suggest...ould explain that ... [31] matted: Font color: Text 1 matted: Font color: Text 1 eted: y eted: could also vary with depth ... if they are ing...predominantly on zooplankton with depth-dependent ree of carnivory of zooplankton and increasing with depth $\delta^{15}N$ ng et al. 2014). ...he δ^{15} N recorded in CWC skeletons is [32] matted: Font color: Text 1 matted: Font color: Text 1 eted: We note that t eted: sensitivity ... ossible dependence of the (... [33]) eted: to eted: adroitly ... ompetently addressed with ... y thise ... proxy. , the relationship of CWC species represented in fossil archives to lepth structure of zooplankton prey warrants further stigation. ... lthough we do not have direct estimates of the $\delta^{15}N$ ge that can be expected from local food web variability, the ter around the global compilation of Wang et al. (2014) for ll-bound $\delta^{15}N$ of *D. dianthus* relative to the $\delta^{15}N$ of PON gests that this range is modest, on the order of ~1-2 ‰. Given range, we suggest that the coral-bound $\delta^{15}N$ proxy is most useful stems...ill be most useful for reconstructing larger (... [34]) eted: come from eted: correspond matted (... [35] eted: (e.g., eted: ; matted (... [36]) matted: Font color: Text 1 matted: Font color: Text 1 matted: Indent: First line: 0", Line spacing: 1.5 lines eted: (... [37]) Formatted: Font color: Text 1 Formatted: Font color: Text 1

. ..

1434		
1435	Competing Interests: The authors declare that they have no conflict of interest.	
1436		
1437	Acknowledgements	
1438 1439 1440 1441 1442 1443 1444 1445 1446	We are grateful to Friday Harbor Labs for their assistance with coral collections and field sampling, especially Pema Kitaeff and Megan Dethier. We acknowledge the valued assistance of the Artemia Reference Center (specifically Gilbert Van Stappen and Christ Mahieu). Coral culture experiments would not have been sustained without the help of St. Olaf undergraduate students Rachel Raser, Joash Daniel, Qintiantian Nong, YiWynn Chan, Mansha Haque, <u>Natasia Preys</u> and Miranda Lenz. We are also indebted to Dr. C. Tobias and P. Ruffino for access to and assistance with the Elemental Analyzer Isotope Ratio Mass Spectrometer. This projected was funded by an NSF RUI award to A.G. (OCE-1949984), M.G.P (OCE-1949132) and J.G. (OCE-1949119). References	 Deleted: u Formatted: Font color: Text 1
1447	Adams, T.S., Sterner, R.W. 2000. The effect of dietary nitrogen content on trophic level ¹⁵ N enrichment. Limnol.	 Formattadi Font color: Tavt 1
1 10	Occariog1. +3, 001-007. https://doi.org/10.4313/10.2000.43.3.0001	Formatted: Font color: Text 1
1449 1450	Adkins, J.F., Henderson, G.M., Wang, SL., O'Shea, S., Mokadem, F. 2004. Growth rates of the deep-sea Scleractinia <i>Desmophyllum cristagalli</i> and <i>Enallopsammia rostrata</i> . Earth and Planetary Science Letters	
1451	227, 481-490. https://doi.org/10.1016/j.epsl.2004.08.022	 Formatted: Font color: Text 1
1452	Al-Moghrabi, S., Allemand, D. & Jaubert, J. 1993. Valine uptake by the scleractinian coral Galaxea fascicularis:	 Formatted: Font color: Text 1
1453 1454	characterization and effect of light and nutritional status. <i>J Comp Physiol B</i> 163, 355–362. https://doi.org/10.1007/BF00265638	Deleted: Alldredge, A.L., King, J.M., 1977. Distribution, abundance, and substrate preferences of demersal reef zooplankton at Lizard Island Lagoon, Great Barrier Reef. Mar.
1455	Altabet, M.A., 1988. Variations in nitrogen isotopic composition between sinking and suspended particles:	Biol. 41, 317–333. https://doi.org/10.100//BF00389098
1456 1457	implications for nitrogen cycling and particle transformation in the open ocean. Deep Sea Res. Part Oceanogr. Res. Pap. 35, 535–554. https://doi.org/10.1016/0198-0149(88)90130-6	Formatted: Font color: Text 1
1458 1459	Altabet, M.A., Deuser, W.G., Honjo, S., Stienen, C., 1991. Seasonal and depth-related changes in the source of sinking particles in the North Atlantic. Nature 354, 136–139. https://doi.org/10.1038/354136a0	
1460 1461	Altabet, M.A., Francois, R., 1994. Sedimentary nitrogen isotopic ratio as a recorder for surface ocean nitrate utilization. Glob. Biogeochem. Cycles 8, 103–116. <u>https://doi.org/10.1029/93GB03396</u>	 Formatted: Font color: Text 1
1462	Altabet M. Higginson M. & Murray, D. 2002. The effect of millennial-scale changes in Arabian Sea	 Formatted: Font color: Text 1
1463	denitrification on atmospheric CO ₂ . Nature 415, 159–162. <u>https://doi.org/10.1038/415159a</u>	 Formatted: Font color: Text 1
1464	Avliffe, L.K., Cerling, T.E., Robinson, T., West, A.G., Sponheimer, M., Passev, B.H., Hammer, J., Roeder, B.,	 Formatted: Font color: Text 1
1465 1466	Dearing, M.D., Ehleringer, J.R., 2004. Turnover of carbon isotopes in tail hair and breath CO2 of horses fed an isotopically varied diet. Oecologia 139, 11–22. https://doi.org/10.1007/s00442-003-1479-x	
1467 1468	Banas, N., Bricker, J., Carter, G., Gerdes, F., Martin, W., Nelson, E., Ross, T., Scansen, B., Simons, R., Wells, M., 1999. Flow, Stratification, and mixing in San Juan Channel.	
1469	Beauchamp, K.A., 1989. Aspects of gametogenesis, development and planulation in laboratory populations of	 Formatted: Font: 11 pt, Font color: Text 1
1470 1471	solitary corals and corallimorpharian sea anemones (Ph.D.). University of California, Santa Cruz, United States California,	Formatted: Normal, Indent: Left: 0", Hanging: 0.5", Space Before: 0 pt, After: 0 pt

States -- California.

30

Formatted: Font color: Text 1

1477 1478 1479	Böhlke, J.K., Mroczkowski, S.J., Coplen, T.B., 2003. Oxygen isotopes in nitrate: new reference materials for 180:170:160 measurements and observations on nitrate-water equilibration. Rapid Commun. Mass Spectrom. RCM 17, 1835–1846. <u>https://doi.org/10.1002/rcm.1123</u>	Form
1480 1481 1482	Braman, R.S., Hendrix, S.A., 1989. Nanogram nitrite and nitrate determination in environmental and biological materials by vanadium(III) reduction with chemiluminescence detection. Anal. Chem. 61, 2715–2718. https://doi.org/10.1021/ac00199a007	Form
1483 1484	Brandes, J.A., Devol, A.H., 2002. A global marine-fixed nitrogen isotopic budget: Implications for Holocene nitrogen cycling. Glob. Biogeochem. Cycles 16, 67-1-67–14. https://doi.org/10.1029/2001GB001856	Form
1485	Bronk, D. A. 2002. Dynamics of DON. Biogeochem. Mar. Dissolved Org. Matter 153–249.	Form
1486 1487 1488 1489	Brown, B. E., & Bythell, J. C. 2005. Perspectives on mucus secretion in reef corals. <i>Marine Ecology Progress Series</i> , 296, 291–309. http://www.jstor.org/stable/24868640Cairns, S.D., 2007. Deep-water corals: an overview with special reference to diversity and distribution of deep-water scleractinian corals. Bull. Mar. Sci. 81, 311–322.	Form Text Form Form
1490 1491 1492	Carlier, A., Guilloux, E.L., Olu, K., Sarrazin, J., Mastrototaro, F., Taviani, M., Clavier, J., 2009. Trophic relationships in a deep Mediterranean cold-water coral bank (Santa Maria di Leuca, Ionian Sea). Mar. Ecol. Prog. Ser. 397, 125–137. <u>https://doi.org/10.3354/meps08361</u> .	Form
1493 1494	Carpenter, E. J., Harvey, H. R., Fry, B. & Capone, D. G. 1997. Biogeochemical tracers of the marine cyanobacterium Trichodesmium. Deep-Sea Res. I 44, 27–38. <u>doi.org/10.1016/S0967-0637(96)00091-X</u>	Form
1495 1496 1497	Casciotti, K.L., Sigman, D.M., Hastings, M.G., Böhlke, J.K., Hilkert, A., 2002. Measurement of the oxygen isotopic composition of nitrate in seawater and freshwater using the denitrifier method. Anal. Chem. 74, 4905–4912. https://doi.org/10.1021/ac020113w	Form
1498 1499 1500	Casciotti, K.L., Trull, T.W., Glover, D.M., Davies, D., 2008. Constraints on nitrogen cycling at the subtropical North Pacific Station ALOHA from isotopic measurements of nitrate and particulate nitrogen. Deep Sea Res. Part II Top. Stud. Oceanogr. 55, 1661–1672. <u>https://doi.org/10.1016/j.dsr2.2008.04.017</u>	Form
1501 1502 1503	Cathalot C, Van Oevelen D, Cox TJS, Kutti T., Lavaleye M., Duineveld G., Meysman F. J. R. 2015. Cold-water coral reefs and adjacent sponge grounds: hotspots of benthic respiration and organic carbon cycling in the deep sea. <i>Front Mar Sci</i> 2. <u>https://www.frontiersin.org/articles/10.3389/fmars.2015.00037</u>	Form
1504 1505 1506	Cerling, T.E., Ayliffe, L.K., Dearing, M.D., Ehleringer, J.R., Passey, B.H., Podlesak, D.W., Torregrossa, A-M., West, A.G. 2007. Determining biological tissue turnover using stable isotopes: the reaction progress variable. Ecophysiology 151, 175-189. https://doi.org/10.1007/s00442-006-0571-4	Form
1507 1508	Chen, WH., Ren, H., Chiang, J.C.H. <i>et al.</i> Increased tropical South Pacific western boundary current transport over the past century. <i>Nat. Geosci.</i> 16 , 590–596 (2023). https://doi.org/10.1038/s41561-023-01212-4	
1509 1510	Cheng, H., Adkins, J., Edwards, R.L., Boyle, E.A., 2000. U-Th dating of deep-sea corals. Geochim. Cosmochim. Acta 64, 2401–2416. https://doi.org/10.1016/S0016-7037(99)00422-6	De
1511 1512 1513	Crook, E.D., Cooper, H., Potts, D.C., Lambert, T., Paytan, A., 2013. Impacts of food availability and pCO2 on planulation, juvenile survival, and calcification of the azooxanthellate scleractinian coral Balanophyllia elegans. Biogeosciences 10, 7599–7608. https://doi.org/10.5194/bg-10-7599-2013	wa eff httj Co
1514 1515	Da Ros, Z., Dell'Anno, A., Fanelli, E., Angeletti, L., Taviani, M., Danovaro, R., 2022. Food preferences of Mediterranean cold-water corals in captivity. Front. Mar. Sci. 9.	Form
	31	

Formatted: Font color: Text 1 Formatted: Font color: Text 1

(Formatted: No unde	erline, Font color: Text 1			
(Formatted: Font: 13	1 pt, Font color: Text 1			
~(Formatted: No underline, Font color: Text 1				
(Formatted: Default Text 1	Paragraph Font, Font: 11 pt, Font color:			
X	Formatted: Font co	lor: Text 1			
) (Formatted: Normal,	, Space Before: 0 pt, After: 0 pt			

Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	
Formatted: Font color: Text 1	

-(Formatted: Font color: Text 1
-(Formatted: Font color: Text 1
-(Formatted: Font color: Text 1
-(Formatted: Font color: Text 1

Deleted: Cohen, A.L., Gaetani, G.A., Lundälv, B.H., George, R.Y., 2006. Compositional variabil water scleraetinian. <i>Lophelia pertusa</i> : New insigh effects: "Geochem. Geophys. Geosystems 7: https://doi.org/10.1029/2006GC001354 Cerbera, G., Lo Iacono, C., Simarro, G. <i>et al.</i> 202 feedbacks influencing cold-water coral growth an reef formation. <i>Sci. Rev</i> 12, 20389.	T., Corliss, ity in a cold- ts into "vital 2. Local scale d subsequent
reef formation. Sci Rep 12, 20389.	a subsequent
https://doi.org/10.1038/s41598_022_24711_7¶	

Formatted: Font color: Text 1

1525 1526 1527	Del Bel Belluz, J., Peña, M.A., Jackson, J.M., Nemcek, N., 2021. Phytoplankton composition and environmental drivers in the Northern Strait of Georgia (Salish Sea), British Columbia, Canada. Estuaries Coasts 44, 1419–1439. <u>https://doi.org/10.1007/s12237-020-00858-2</u>	Formatted: Font color: Text 1
1528 1529 1530	De Pol-Holz R, Robinson RS, Hebbeln D, Sigman DM, Ulloa O. 2009. Controls on sedimentary nitrogen isotopes along the Chile margin. <i>Deep Res Part II Top Stud Oceanogr</i> 56(16). doi:10.1016/j.dsr2.2008.09.014	Formatted: Font color: Text 1
1531 1532 1533	DiFiore, P.J., Sigman, D.M., Trull, T.W., Lourey, M.J., Karsh, K., Cane, G., Ho, R., 2006. Nitrogen isotope constraints on subantarctic biogeochemistry. J. Geophys. Res. Oceans 111. https://doi.org/10.1029/2005JC003216	
1534 1535 1536	Dodds, L.A., Black, K.D., Orr, H., Roberts, J.M., 2009. Lipid biomarkers reveal geographical differences in food supply to the cold-water coral <i>Lophelia pertusa</i> (Scleractinia). Mar. Ecol. Prog. Ser. 397, 113–124. https://doi.org/10.3354/meps08143	
1537 1538 1539	Doi, H., Akamatsu, F., González, A.L., 2017. Starvation effects on nitrogen and carbon stable isotopes of animals: an insight from meta-analysis of fasting experiments. R. Soc. Open Sci. 4, 170633. https://doi.org/10.1098/rsos.170633	
1540 1541	Drake, J.L., Guillermic, M., Eagle, R.A., Jacobs, D.K., 2021. Fossil corals with various degrees of preservation can retain information about biomineralization-related organic material. Front. Earth Sci. 9.	
1542 1543	Druffel, E.R.M., 1997. Geochemistry of corals: Proxies of past ocean chemistry, ocean circulation, and climate. Proc. Natl. Acad. Sci. 94, 8354–8361. <u>https://doi.org/10.1073/pnas.94.16.8354</u>	Formatted: Font color: Text 1
1544 1545 1546	Duineveld, G.C.A., Lavaleye, M.S.S., Berghuis, E.M., 2004. Particle flux and food supply to a seamount cold- water coral community (Galicia Bank, NW Spain). Mar. Ecol. Prog. Ser. 277, 13–23. https://doi.org/10.3354/mens277013	Formatted: Font color: Text 1
1547 1548 1549	Duineveld, G., Lavaleye, M., Bergman, M., Stigter, H., Mienis, F., 2007. Trophic structure of a cold-water coral mound community (Rockall Bank, NE Atlantic) in relation to the near-bottom particle supply and current regime. Bull. Mar. Sci. 81, 449–467.	Formatted: Font color: Text 1
1550 1551	Durham, J. W., and Barnard, J.L., 1952. Stony corals of the Eastern Pacific collected by the Velero III and Velero IV. Al1an Hancock Pacific Expeditions 16, 1-110,	Formatted: Font: 11 pt, Font color: Text 1
1552 1553 1554	Erler, D.V., Wang, X.T., Sigman, D.M., Scheffers, S.R., Shepherd, B.O., 2015. Controls on the nitrogen isotopic composition of shallow water corals across a tropical reef flat transect. Coral Reefs 34, 329–338. https://doi.org/10.1007/s00338-014-1215-5	Deleted: Duineveld GCA, Jeffreys RM, Lavaleye MSS, Davies AJ, Bergman MJN, Watmough T, Witbaard R. 2012. Spatial and tidal variation in food supply to shallow cold water coral reefs of the Mingulay Reef complex (Outer Hebrides, Scotland). Mar Ecol
1555	Esri. "Ocean" [basemap]. Scale Not Given. " Ocean Basemap ". February 11, 2021.	Prog Ser 444:97-115. https://doi.org/10.3354/meps09430
1557	111 078800%2C5 00 (December 2022)	Formatted: Font color: Text 1
1558 1559	 Fadlallah, Y.H., 1983. Population Dynamics and Life History of a Solitary Coral, <i>Balanophyllia elegans</i>, from Central California. Oecologia 58, 200–207. 	Formatted: Font color: Text 1
1560 1561	Fautin, D.G., 2009. Structural diversity, systematics, and evolution of cnidae. Toxicon, Cnidarian Toxins and Venoms 54, 1054–1064. https://doi.org/10.1016/j.toxicon.2009.02.024	
Ĩ		

1567	Fawcett, S.E., Lomas, M.W., Casey, J.R., Ward, B.B., Sigman, D.M., 2011. Assimilation of upwelled nitrate by	Formatted: Font color: Text 1
1568	small eukaryotes in the Sargasso Sea. Nat. Geosci. 4, 717–722. https://doi.org/10.1038/ngeo1265	Formatted: Font color: Text 1
1569	Ferrier, M.D. 1991, Net uptake of dissolved free amino acids by four scleractinian corals, <i>Coral Reefs</i> 10 , 183–	Formatted: Font color: Text 1
1570	187. https://doi.org/10.1007/BF00336772	Formatted: Font color: Text 1
1571	François R. Altabet M.A. Vu EF. Sigman D.M. Bacon M.P. Frank M. Bohrmann G. Bareille G.	Formatted: Font color: Text 1
1572	Labevrie, L.D., 1997. Contribution of Southern Ocean surface-water stratification to low atmospheric	Formatted: Font color: Text 1
1573	CO2 concentrations during the last glacial period. Nature 389, 929–935. https://doi.org/10.1038/40073	Formatted: Font: 11 pt, Font color: Text 1
1574	Freiwald, A. 2002. Reef-Forming Cold-Water Corals. In: Wefer, G., Billett, D., Hebbeln, D., Jørgensen, B.B.,	Formatted: Normal, Indent: Left: 0", Hanging: 0.5", Space Before: 0 pt, After: 0 pt
1575	bitus://doi.org/10.107/078.2.562.051726.23	Deleted: 1
1070	nups.//doi.org/10.100////0-3-002-0312/-0_23	Formatted: Font color: Text 1
1577	Gagnon, A.C., Gothmann, A.M., Branson, O., Rae, J.W.B., Stewart, J.A., 2021. Controls on boron isotopes in a	Formatted: Font: 11 pt, Font color: Text 1
1579	<u>cold-water coral and the cost of resilience to ocean acidification. Earth and Planetary Science Letters</u>	Formatted: Font color: Text 1
1580	Ganeshram, R. S., and Pedersen, T. F. 1998, Glacial-interglacial variability in upwelling and bioproductivity off	Formatted: Font: (Default) Times New Roman, Font color: Text 1
1581 1582	NW Mexico: Implications for Quaternary paleoclimate, <i>Paleoceanography</i> , 13(6), 634–645, doi:10.1029/98PA02508	Formatted: Font: (Default) Times New Roman, No underline, Font color: Text 1
1583	Garcia-Herrera, N., Cornils, A., Laudien, J., Niehoff, B., Höfer, J., Försterra, G., González, H.E., Richter, C.,	Formatted: Font: (Default) Times New Roman, 11 pt, Font color: Text 1
1584 1585	zooplankton in a deep Chilean Patagonian Fjord. PeerJ 10, e12823. https://doi.org/10.7717/peerj.12823	Formatted: Font: (Default) Times New Roman, No underline, Font color: Text 1
1586 1587	Genin, A., Dayton, P.K., Lonsdale, P.F., Spiess, F.N., 1986. Corals on seamount peaks provide evidence of current acceleration over deep-sea topography. Nature 322, 59–61. https://doi.org/10.1038/322059a0	Formatted: Font: (Default) Times New Roman, 11 pt, Font color: Text 1
1588	Gerrodette, T. 1981. Equatorial Submergence in a Solitary Coral, Balanophyllia elegans, and the Critical Life	Formatted: Bibliography, Space Before: 0.6 line, After: 0.6 line
1589	Stage Excluding the Species from Shallow Water in the South. Mar. Ecol. Prog. Series 1, 227-235.	Formatted: Font: 11 pt, Font color: Text 1
1990	http://www.jstor.org/stable/2481294/	Deleted: 1
1591 1592	Gonfiantini, R., W. Stichler, and K. Rosanski 1995, Standards and Intercomparison. Materials Distributed by the IAEA for Stable Isotope Measurements, Int. At. Energy Agency, Vienna.	Formatted: Font: (Default) Times New Roman, Font color: Text 1
1503	Goodfriend G.A. Hare D.E. Druffel E.P.M. 1002 Aspartic soid recemization and protein diagenesis in corals	Formatted [38]
1594	over the last 350 years. Geochim. Cosmochim. Acta 56, 3847–3850. https://doi.org/10.1016/0016-	Formatted: Font color: Text 1
1595	7037(92)90176-J	Formatted: Font: 11 pt, Font color: Text 1
1596		Formatted [39]
1597	Gori, A., R. Grover, C. Orejas, S. Sikorski, and C. Ferrier-Pagès. 2014. Uptake of dissolved free amino acids by	Formatted: Font: 11 pt, No underline, Font color: Text 1
1598	four cold-water coral species from the Mediterranean Sea. Deep Sea Res. Part II Top. Stud. Oceanogr.	Formatted [40]
1099	29: 42–30. doi:10.1010/j.dsf2.2013.00.00/	Formatted: Space Before: 0 pt, After: 0 pt
1600	Gothmann AM, Stolarski J, Adkins JF, et al. Fossil corals as an archive of secular variations in seawater	Deleted: 1
1601	chemistry since the Mesozoic. <i>Geochim Cosmochim Acta</i> . 2015;160:188-208.	Formatted ([41])
1002	doi:https://doi.org/10.1010/j.gca.2015.05.018	Formatted: Font color: Text 1
1603	Grover, R. Maguer, J-F, Allemand, D., Ferrier-Pagès, C. 2008. Uptake of dissolved free amino acids by the	Deleted: Renaud
1604	scleractinian coral <i>Stylophora pistillata. J Exp Biol</i> 211 (6): 860–865. doi:	Formatted: Font: 11 pt, Font color: Text 1
1003	nups://doi.org/10.1242/jeb.01280/	Formatted: Font color: Text 1
	33	

1610	Hannides, Cecelia C. S., Popp, Brian N., Choy, C. Anela, Drazen, Jeffrey C. 2013. Midwater zooplankton and
1611	suspended particle dynamics in the North Pacific Subtropical Gyre: A stable isotope perspective,
1612	<i>Limnology and Oceanography</i> , 58, doi: 10.4319/lo.2013.58.6.1931.
1613	Hill, T.M., Myrvold, C.R., Spero, H.J., Guilderson, T.P. 2014. Evidence for benthic and pelagic food web
1614	coupling and carbon export from California margin bamboo coral archives. <i>Biogeosciences</i> 11, 3845–
1615	3854. https://doi.org/10.5194/bg-11-3845-2014.
1616	Hines, S.K.V., Southon, J.R., Adkins, J.F. 2015. A high-resolution record of Southern Ocean intermediate water
1617	radiocarbon over the past 30,000 years. <i>Earth and Planetary Science Letters</i> 432, 46-58.
1618	https://doi.org/10.1016/j.epsl.2015.09.038.
1619	Hoegh-Guldberg, O., Williamson, J. Availability of two forms of dissolved nitrogen to the coral Pocillopora
1620	damicornis and its symbiotic zooxanthellae. <i>Marine Biology</i> 133 , 561–570 (1999).
1621	https://doi.org/10.1007/s002270050496
1622	Höfer, J., González, H.E., Laudien, J., Schmidt, G.M., Häussermann, V., Richter, C., 2018. All you can eat: the
1623	functional response of the cold-water coral <i>Desmophyllum dianthus</i> feeding on krill and copepods. PeerJ
1624	6, e5872. https://doi.org/10.7717/peerj.5872
1625	Horn, M.G., Robinson, R.S., Rynearson, T.A., Sigman, D.M., 2011. Nitrogen isotopic relationship between
1626	diatom-bound and bulk organic matter of cultured polar diatoms. Paleoceanography 26.
1627	https://doi.org/10.1029/2010PA002080.
1628	Kast, E.R., Stolper, D.A., Auderset, A., Higgins, J.A., Ren, H., Wang, X.T., Martínez-García, A., Haug, G.H.,
1629	Sigman, D.M., 2019. Nitrogen isotope evidence for expanded ocean suboxia in the early Cenozoic.
1630	Science 364, 386–389. https://doi.org/10.1126/science.aau5784
1631	Kiriakoulakis, K., Fisher, E., Wolff, G.A., Freiwald, A., Grehan, A., Roberts, J.M., 2005. Lipids and nitrogen
1632	isotopes of two deep-water corals from the North-East Atlantic: initial results and implications for their
1633	nutrition, in: Freiwald, A., Roberts, J.M. (Eds.), Cold-Water Corals and Ecosystems, Erlangen Earth
1634	Conference Series. Springer, Berlin, Heidelberg, pp. 715–729. https://doi.org/10.1007/3-540-27673-4_37.
1635	Knapp, A. N., K. L. Casciotti, and M. G. Prokopenko. 2018. Dissolved Organic Nitrogen Production and
1636	Consumption in Eastern Tropical South Pacific Surface Waters. Glob. Biogeochem. Cycles 32 : 769–783.
1637	doi:10.1029/2017GB005875
1638	Knapp AN, DiFiore PJ, Deutsch C, Sigman DM, Lipschultz F. 2008. Nitrate isotopic composition between
1639	Bermuda and Puerto Rico: Implications for N ₂₄ fixation in the Atlantic Ocean. <i>Global Biogeochem Cycles</i>
1640	22(3). doi:10.1029/2007GB003107
1641 1642	Koppelmann, R., Böttger-Schnack, R., Möbius, J., Weikert, H., 2009. Trophic relationships of zooplankton in the eastern Mediterranean based on stable isotope measurements. Journal of Plankton Research 31, 669-686.
1643	Lasker, H.R., 1981. A comparison of the particulate feeding abilities of three species of Gorgonian soft coral.
1644	Mar. Ecol. Prog. Ser. 5, 61–67.
1645	Lewis, A.G., 1978. Concentrations of nutrients and chlorophyll on a cross-channel transect in Juan de Fuca Strait,
1646	British Columbia. J. Fish. Res. Board Can. 35, 305–314. https://doi.org/10.1139/f78-055

Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: 11 pt, Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1
Formatted: Font: 11 pt, Font color: Text 1
Formatted: No underline, Font color: Text 1
Formatted: Font color: Text 1

	Formatted:	Font: 11	. pt, Font	color:	Text 1
(Formatted:	Font col	or: Text	1	

Deleted: Houlbrèque F, Tambutté E, Allemand D, Ferrier-Pagès C. 2004. Interactions between zooplankton feeding, photosynthesis and skeletal growth in the scleractinian coral Stylophora pistillata. J Exp Biol. 4 Apr;207(Pt 9):1461-9. doi: 10.1242/jeb.00911. PMID: 15037640.⁶

Formatted: Font color: Text 1

Formatted: No underline, Font color: Text 1

Formatted: Font: 11 pt, Font color: Text 1

Formatted: No underline, Font color: Text 1

Formatted: Font: 11 pt, Font color: Text 1

Formatted: Bibliography, Space Before: 0.6 line, After: 0.6 line

Deleted:

Deleted: <inf>2</inf>

Formatted: Font color: Text 1

Deleted:

34

Deleted: Kuanui P., Chavanich S., Viyakam V., Omori M, Fujita T., Lin C. 2020. Effect of light intensity on survival and photosynthetic efficiency of cultured corals of different ages. *Estuar Coast Shelf Sci.* 235:106515. doi:https://doi.org/10.1016/j.esss.2019.106515 Kuntson, D.W., Buddemeier, R.W., Smith, S.V., 1972. Coral chronometers: Seasonal growth bands in reof corals. Science 177, 270–272. https://doi.org/10.1126/science.177.4045.270 Larsson Al, Lundilly T., van Oevelen D. 2013. Skeletal growth, respiration rate and fatty acid composition in the cold-water coral *Lophelia pertusa* under varying food conditions. Mar Ecol Prog Ser 483:169–184. https://doi.org/10.3354/meps10284 §

Formatted: Font color: Text 1

1667	Lewis, J.B., Price, W.S., 1975. Feeding mechanisms and feeding strategies of Atlantic reef corals. J. Zool. 176,		
1668	527–544. https://doi.org/10.1111/j.1469-7998.1975.tb03219.x		Formatted: Hyperlink, Font color: Text 1
1669	Li, T., Robinson, L.F., Chen, T., Wang, X.T., Burke, A., Rae, J.W.B., Pegrum-Haram, A., Knowles, T.D.J., Li, 🔸		Field Code Changed
1670 1671	<u>G., Chen, J., Ng, H.C., Prokopenko, M., Rowland, G.H., Samperiz, A., Stewart, J.A., Southon, J.,</u> Spooner, P.T., 2020, Rapid shifts in circulation and biogeochemistry of the Southern Ocean during		Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1672	deglacial carbon cycle events. Science Advances 6, eabb3807	Ì	Formatted: Indent: Left: 0", Hanging: 0.5"
1673	· · · · · · · · · · · · · · · · · · ·	<1	Formatted: Font: +Body (Times New Roman), Font color: Text 1
1674	Lourey, M.J., Trull, T.W., Sigman, D.M., 2003. Sensitivity of δ 15N of nitrate, surface suspended and deep	N	Formatted: Normal, Space Before: 0 pt, After: 0 pt
1675 1676	sinking particulate nitrogen to seasonal nitrate depletion in the Southern Ocean. Glob. Biogeochem. Cycles 17. https://doi.org/10.1029/2002GB001973		Formatted: Font color: Text 1
1677 1678 1679	Mackas, D.L., Harrison, P.J., 1997. Nitrogenous nutrient sources and sinks in the Juan de Fuca Strait/Strait of Georgia/Puget Sound estuarine system: Assessing the potential for eutrophication. Estuar. Coast. Shelf Sci. 44, 1–21. https://doi.org/10.1006/ecss.1996.0110		
1680 1681	Maier, S.R., Bannister, R.J., van Oevelen, D., Kutti, T., 2020. Seasonal controls on the diet, metabolic activity, tissue reserves and growth of the cold-water coral <i>Lophelia pertusa</i> . Coral Reefs 39, 173–187.		
1682	https://doi.org/10.1007/s00338-019-01886-6		Formatted: Font: 11 pt, Font color: Text 1
1683	Maier S.R. Kutti T. Bannister R.I. van Breugel P. van Riiswiik P. van Oevelen D. 2019 Survival under		Formatted: Font color: Text 1
1684 1685	conditions of variable food availability: Resource utilization and storage in the cold-water coral <i>Lophelia pertusa</i> . Limnol. Oceanogr. 64, 1651–1671. https://doi.org/10.1002/lno.11142		Deleted: Maier C, Hegeman J, Weinbauer MG, Gattuso J P. Calcification of the cold water coral <i>Lophclia pertusa</i> , under ambient and reduced pH. <i>Biogeosciences</i> . 2009;6(8):1671-1680.
1686	Maier, S.R., Brooke, S., De Clippele, L.H., de Froe, E., van der Kaaden, AS., Kutti, T., Mienis, F., van Oevelen,	N N	doi:10.5194/6g 6-16/1-2009
1687	D., 2023. On the paradox of thriving cold-water coral reefs in the food-limited deep sea. Biological	M_{i}	
1688	<u>Reviews 98, 1768–1795. https://doi.org/10.1111/brv.12976</u>	\mathcal{N}	Formatted: Font: 11 pt, Font color: Text 1
1689	Marconi D, Weigand AM, Rafter PA, Matthew R. McIlvin MR, Matthew Forbes, M Casciotti, KL Sigman, DM.	N/J	Formatted: No underline
1690	2015. Nitrate isotope distributions on the US GEOTRACES North Atlantic cross-basin section: Signals of	11	Formatted: Font: 11 pt, Font color: Text 1
1691	polar nitrate sources and low latitude nitrogen cycling. Mar Chem. 177:143-156.	1	Formatted: Font: 11 pt, Font color: Text 1
1692	do1:https://do1.org/10.1016/j.marchem.2015.06.007	1	Formatted: Font color: Text 1
1602	Margalin A. D. J. E. Dahingan, A. Durka, D. G. Wallar, K. M. Saanlan, M. J. Daharta, M. E. Aura, and T. van, 🗸		Formathad Fort color Tort 1
1694	de Flierdt 2014. Temporal and spatial distributions of cold-water corals in the Drake Passage: Insights	\leq	
1695	from the last 35,000 years. Deep Sea Res. Part II Top. Stud. Oceanogr. 99: 237–248.		rormatted
1696	doi:10.1016/j.dsr2.2013.06.008		Formatted: Font color: Text 1
1697 1698 1699	Mariotti, A., Germon, J.C., Hubert, P., Kaiser, P., Letolle, R., Tardieux, A., Tardieux, P., 1981. Experimental determination of nitrogen kinetic isotope fractionation: Some principles; illustration for the denitrification and nitrification processes. Plant Soil 62, 413–430. https://doi.org/10.1007/BF02374138		
1700 1701	Martínez del Rio, C., Carleton, S.A., 2012. How fast and how faithful: the dynamics of isotopic incorporation into animal tissues. J. Mammal. 93, 353–359. https://doi.org/10.1644/11-MAMM-S-165.1		
1702 1703 1704	McCutchan Jr, J.H., Lewis Jr, W.M., Kendall, C., McGrath, C.C., 2003. Variation in trophic shift for stable isotope ratios of carbon, nitrogen, and sulfur. Oikos 102, 378–390. https://doi.org/10.1034/j.1600- 0706.2003.12098.x		

1709 1710	McIlvin, M.R., Casciotti, K.L., 2011. Technical Updates to the Bacterial Method for Nitrate Isotopic Analyses. Anal. Chem. 83, 1850–1856. https://doi.org/10.1021/ac1028984	
1711 1712 1713 1714	McMahon, K.W., Williams, B., Guilderson, T.P., Glynn, D.S., McCarthy, M.D., 2018. Calibrating amino acid δ13C and δ15N offsets between polyp and protein skeleton to develop proteinaceous deep-sea corals as paleoceanographic archives. Geochim. Cosmochim. Acta 220, 261–275. https://doi.org/10.1016/j.gca.2017.09.048	Formatted: Font: 11 pt, Font color: Text 1
1715 1716 1717	Middelburg, J., Mueller, C., Veuger, B. Larsson, A. I., Form, A., van Oevelen, D 2016 Discovery of symbiotic nitrogen fixation and chemoautotrophy in cold-water corals. <i>Sci Rep</i> 5, 17962 (2016). https://doi.org/10.1038/srep17962	Formatted: Font color: Text 1
1718 1719	Miller, M., 1995. Growth of a temperate coral: effects of temperature, light, depth, and heterotrophy. Mar. Ecol. Prog. Ser. 122, 217–225. https://doi.org/10.3354/meps122217	
1720 1721 1722	Minagawa, M., Wada, E., 1984. Stepwise enrichment of 15N along food chains: Further evidence and the relation between δ15N and animal age. Geochim. Cosmochim. Acta 48, 1135–1140. https://doi.org/10.1016/0016-7037(84)90204-7	
1723 1724	Mortensen P.B., (2001) Aquarium observations on the deep-water coral <i>Lophelia pertusa</i> (L., 1758) (scleractinia) and selected associated invertebrates, Ophelia, 54:2, 83-104, DOI: 10.1080/00785236.2001.10409457	Deleted: Mortensen, P.B., Rapp, H.T., Båmstedt, U., 1998. Oxygen and carbon isotope ratios related to growth line patterns in skeletons of <i>Lonhelia pertusa</i> (L) (Anthorea, Seleractinia):
1725 1726	Muhs, D.R., Kennedy, G.L., Rockwell, T.K., 1994. Uranium-Series Ages of Marine Terrace Corals from the Pacific Coast of North America and Implications for Last-Interglacial Sea Level History. Quaternary	Implications for determination of linear extension rate. Sarsia 83, 433 446. https://doi.org/10.1080/00364827.1998.10413702*
1/27	Research 42, 72–87. https://doi.org/10.1006/qres.1994.1055	Formatted: Font: (Default) +Body (Times New Roman), 11
1728	Mueller, C.E., Larsson, A.I., Veuger, B., Middelburg, J.J., van Oevelen, D., 2014. Opportunistic feeding on	pt, Font color: Text 1
1729	various organic food sources by the cold-water coral <i>Lophelia pertusa</i> . Biogeosciences 11, 123–133.	Formatted: Font color: Text 1
1/50	https://doi.org/10.5194/0g-11-125-2014	Formatted: Font color: Text 1
1731 1732 1733	Murray, J.W., Roberts, E., Howard, E., O'Donnell, M., Bantam, C., Carrington, E., Foy, M., Paul, B., Fay, A., 2015. An inland sea high nitrate-low chlorophyll (HNLC) region with naturally high pCO2. Limnol. Oceanogr. 60, 957–966. https://doi.org/10.1002/lno.10062	Formatted: Font color: Text 1
1734 1735 1736	Muscatine, L., Goiran, C., Land, L., Jaubert, J., Cuif, JP., Allemand, D., 2005. Stable isotopes (δ13C and δ15N) of organic matrix from coral skeleton. Proc. Natl. Acad. Sci. 102, 1525–1530. https://doi.org/10.1073/pnas.0408921102	
1737	Naumann, M.S., Orejas, C., Wild, C., Ferrier-Pagès, C., 2011. First evidence for zooplankton feeding sustaining	Formatted: Font: 11 pt, Font color: Text 1
1738	key physiological processes in a scleractinian cold-water coral. J. Exp. Biol. 214, 3570–3576.	Formatted: Font color: Text 1
1/39	https://doi.org/10.1242/jeb.061390	Deleted: Orejas C, Ferrier-Pagès C, Reynaud S, Tsounis G,
1740 1741 1742	Naumann, M.S., Tolosa, I., Taviani, M., Grover, R., Ferrier-Pagès, C., 2015. Trophic ecology of two cold-water coral species from the Mediterranean Sea revealed by lipid biomarkers and compound-specific isotope analyses. Coral Reefs 34, 1165–1175. https://doi.org/10.1007/s00338-015-1325-8	Atlemand D, Gili JM. 2011. Experimental comparison of skeletal growth rates in the cold water coral <i>Madrepora oculata</i> Linnaeus, 1758 and three tropical soleractinian corals. <i>J Exp Mar Bio Ecol</i> . 2011;405(1):1.5. doi:https://doi.org/10.1016/j.jembe.2011.05.008] Oraige C. Farrier Davie C. Paranado S. Goria And othera. 2011
1743 1744 1745	Pride C, Thunell R, Sigman D, Keigwin L, Altabet M, Tappa E. 1999. Nitrogen isotopic variations in the Gulf of California since the Last Deglaciation: Response to global climate change. <i>Paleoceanography</i> 14(3). doi:10.1029/1999PA900004	Crept Cr. renter rages C, Reynland S, Golf A and Ontells. 2011. Long-term growth rates of four Mediterranean cold water corral species maintained in aquaria. Mar Ecol Prog Ser 429:57 65. https://doi.org/10.3354/meps09104 Osinga, R., Schutter, M., Grifficen, B. <i>et al.</i> 2011. The Biology and Economics of Coral Growth. <i>Mar Biotechnol</i> 13 , 658 671 (2011). https://doi.org/10.1007/s10126 011 9382 79
		Formatted: Font color: Text 1
	36	

1763 1764 1765	Purser A, Larsson AI, Thomsen L, van Oevelen D. 2010. The influence of flow velocity and food concentration on <i>Lophelia pertusa</i> (Scleractinia) zooplankton capture rates. <i>J Exp Mar Bio Ecol.</i> 395(1):55-62. doi:https://doi.org/10.1016/j.jembe.2010.08.013	
1766 1767	Rae, J.W.B. 2018. Boron Isotopes in Foraminifera: Systematics, Biomineralisation, and CO ₂ Reconstruction. In: Marschall, H., Foster, G. (eds) Boron Isotopes. Advances in Isotope Geochemistry. Springer, Cham.	Formatted: Font: (Default) +Body (Times New Roman), Font color: Text 1
1768	https://doi.org/10.1007/978-3-319-64666-4_5	Formatted: Normal, Indent: Left: 0", Hanging: 0.5", Space Before: 0 pt, After: 0 pt
1769	Rangel, M.S., Erler, D., Tagliafico, A., Cowden, K., Scheffers, S., Christidis, L., 2019. Quantifying the transfer	Deleted: 1
1770	of prey 615N signatures into coral holobiont nitrogen pools. Mar. Ecol. Prog. Ser. 610, 33–49. https://doi.org/10.3354/meps12847	Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1772 1773	Ren, H., Sigman, D.M., Meckler, A.N., Plessen, B., Robinson, R.S., Rosenthal, Y., Haug, G.H., 2009. Foraminiferal Isotope Evidence of Reduced Nitrogen Fixation in the Ice Age Atlantic Ocean. Science	Formatted: Font: +Body (Times New Roman), Font color: Text 1
1774	323, 244–248. https://doi.org/10.1126/science.1165787	Formatted: Font color: Text 1
1775	Paynoud S. Martinez D. Houlbraque F. Billy, J. Allemand D. Farriar Dagàs C. 2000 Effect of light and	Deleted: 1
1776	feeding on the nitrogen isotonic composition of a zooxantheliate coral: role of nitrogen recycling. Mar	Formatted: Hyperlink, Font color: Text 1
1777	Ecol. Prog. Ser. 392, 103–110. https://doi.org/10.3354/meps08195	Formatted: Font color: Text 1
1778	Package IM, Wheeler, A. L. Freinveld, A. 2006, Packa of the deep. The biology and geology of cold water paral	Field Code Changed
1779	ecosystems Science 312 543–547 https://doi.org/10.1126/science.1119861	Deleted: Ren,
1780 1781	Robinson, R.S., Kienast, M., Albuquerque, A.L., Altabet, M., Contreras, S., Holz, R.D.P., Dubois, N., Francois, R., Galbraith, E., Hsu, TC., Ivanochko, T., Jaccard, S., Kao, SJ., Kiefer, T., Kienast, S., Lehmann, M., Motiner, P.M., Christian, M. William, T. Oward, T.M. Parkuska, E. Schwitter, A. S.	Deleted: H., Chen, YC., Wang, X.T., Wong, G.T.F., Cohen, A.L., DeCarlo, T.M., Weigand, M.A., Mii, HS., Sigman, D.M., 2017. 21st-century rise in anthropogenic nitrogen deposition on a remote coral reef. Science 356, 749–752.
1783	Schneider P. Schneider-Mor A. Shicemitsu M. Sinclair, D. Somes, C. Studer, A. Thunell, P. Vang	Formatted: Font: 11 pt, Font color: Text 1
1784	JY., 2012. A review of nitrogen isotopic alteration in marine sediments. Paleoceanography 27.	Formatted: Font: 11 pt, Font color: Text 1
1785	https://doi.org/10.1029/2012PA002321	Formatted: Font: Font color: Text 1
1786	Robinson J.F. Adkins J.F. Frank N. Gagnon, A.C. Prouty, N.G. Roark, R. van de Elierdt, T. 2014. The	Formatted: Font: 11 pt, Font color: Text 1
1787 1788	geochemistry of deep-sea coral skeletons: A review of vital effects and applications for palaeoceanography. <i>Deep Sea Res Part II Top Stud Oceanogr.</i> 99:184-198.	Formatted: Font color: Text 1
1/89	doi:https://doi.org/10.1016/j.dsr2.2013.06.005	Formatted: Hyperlink, Font color: Text 1
1790	Robinson RS, Sigman DM. 2008. Nitrogen isotopic evidence for a poleward decrease in surface nitrate within the	Field Code Changed
1791	ice age Antarctic. <i>Quat Sci Rev.</i> 27(9-10). doi:10.1016/j.quascirev.2008.02.005	Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1793	fossil-bound nitrogen isotopes in diatoms, foraminifera, and corals. Annu. Rev. Mar. Sci. 15, null.	Formatted: Font color: Text 1
1794	https://doi.org/10.1146/annurev-marine-032122-104001	Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1/95	Ryan, W. B. F., S.M. Carbotte, J. Coplan, S. O'Hara, A. Melkonian, R. Arko, R.A. Weissel, V. Ferrini, A.	Formatted: Font color: Text 1
1797	(GMRT) synthesis data set, <i>Geochem. Geophys. Geosyst.</i> , 10, Q03014, doi:10.1029/2008GC002332	Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1798 1799	Saino, T., Hattori, A., 1987. Geographical variation of the water column distribution of suspended particulate organic nitrogen and its 15N natural abundance in the Pacific and its marginal seas. Deep Sea Res. A 34,	Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1
1800	807-827. https://doi.org/10.1016/0198-0149(87)90038-0	Formatted: Font: (Default) +Body (Times New Roman), 11 pt. Font color: Text 1

erlink, Font color: Text 1 nged nt: (Default) +Body (Times New Roman), 11 ext 1 t color: Text 1 t: (Default) +Body (Times New Roman), 11 ext 1 t color: Text 1 t: (Default) +Body (Times New Roman), 11 ext 1 t: (Default) +Body (Times New Roman), 11 ext 1

Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1

Formatted: Font color: Text 1

	 Scrimgeour, C.M., Gordon, S.C., Handley, L.L., Woodford, J.A.T., 1995. Trophic levels and anomalous δ15N of insects on raspberry (Rubus Idaeus L.). Isotopes Environ. Health Stud. 31, 107–115. https://doi.org/10.1080/10256019508036256 	1808 1809 1810
	Sebens, K.P., Vandersall, K.S., Savina, L.A., Graham, K.R., 1996. Zooplankton capture by two scleractinian corals, Madracis mirabilis andMontastrea cavernosa, in a field enclosure. Mar. Biol. 127, 303–317. https://doi.org/10.1007/BF00942116	1811 1812 1813
	 Sherwood, O.A., Heikoop, J.M., Scott, D.B., Risk, M.J., Guilderson, T.P., McKinney, R.A., 2005. Stable isotopic composition of deep-sea gorgonian corals <i>Primnoa</i> spp.: a new archive of surface processes. Mar. Ecol. Prog. Ser. 301, 135–148. https://doi.org/10.3354/meps301135 	1814 1815 1816
	 Sherwood, O.A., Jamieson, R.E., Edinger, E.N., Wareham, V.E., 2008. Stable C and N isotopic composition of cold-water corals from the Newfoundland and Labrador continental slope: Examination of trophic, depth and spatial effects. Deep Sea Res. Part Oceanogr. Res. Pap. 55, 1392–1402. https://doi.org/10.1016/j.dsr.2008.05.013 	1817 1818 1819 1820
Formatte	Sherwood, O.A., Thresher, R.E., Fallon, S.J., Davies, D.M., Trull, T.W., 2009. Multi-century time-series of ¹⁵ N and ¹⁴ C in bamboo corals from deep Tasmanian seamounts: evidence for stable oceanographic conditions. Mar. Ecol. Prog. Ser. 397, 209–218. https://doi.org/10.3354/meps08166	1821 1822 1823
Formatte	Sigman, D.M., Altabet, M.A., McCorkle, D.C., Francois, R., Fischer, G., 1999. The δ^{15} N of nitrate in the	1824
Deleter	Southern Ocean: Consumption of nitrate in surface waters. Glob. Biogeochem. Cycles 13, 1149–1166. https://doi.org/10.1029/1999GB900038	1825 1826
seleractii 748. http	Sigman, D., Boyle, E. Glacial/interglacial variations in atmospheric carbon dioxide. 2000. <i>Nature</i> 407 , 859–869 (2000). https://doi.org/10.1038/35038000	1827 1828
Formatte	Sigman D.M. Casaiatti K.L. Andraani M. Barfard C. Galantar M. Bählka I.K. 2001. A Baatarial method	1820
Formatte	for the nitrogen isotopic analysis of nitrate in seawater and freshwater. Anal. Chem. 73, 4145–4153.	1830
Formatte	https://doi.org/10.1021/ac010088e	1831
Formatte	Sigman, D.M., Fripiat, F., 2019. Nitrogen Isotopes in the Ocean, in: Cochran, J.K., Bokuniewicz, H.J., Yager,	1832
Formatte	P.L. (Eds.), Encyclopedia of Ocean Sciences (Third Edition). Academic Press, Oxford, pp. 263-278.	1833
Formatte	https://doi.org/10.1016/B978-0-12-409548-9.11605-7	1834
	Soetaert, K., Mohn, C., Rengstorf, A., Grehan, A., van Oevelen, D., 2016. Ecosystem engineering creates a direct nutritional link between 600-m deep cold-water coral mounds and surface productivity. Sci. Rep. 6, 35057. https://doi.org/10.1038/srep35057	1835 1836 1837
Formatte	Spero, H.J., Andreasen, D.J., Sorgeloos, P., 1993. Carbon and nitrogen isotopic composition of different strains of <i>Artemia</i> sp. Int. J. Salt Lake Res. 2, 133. https://doi.org/10.1007/BF02905905	1838 1839
Field Cod	Studer, A.S., Sigman, D.M., Martinez-Garcia, A., Thole, L.M., Michel, E., Jaccard, S.L., Lippolds, J.A., Mazaud,	1840
Formatte	A., Wang, X.C.T., Robinson, L.F., Adkins, J.F., Haug, G.H., 2018. Increased nutrient supply to the	1841
Formatte	Southern Ocean during the Holocene and its implications for the pre-industrial atmospheric CO2 rise. Nat Geosci 11, 756-761	1842 1843
Deleted:	Tanaka, Y., Miyajima, T., Koike, I., Hayashibara, T., Ogawa, H., 2006. Translocation and conservation of organic nitrogen within the coral-zooxanthella symbiotic system of Acropora pulchra, as demonstrated	1844 1845

: Font: 11 pt, Font color: Text 1

: Font color: Text 1 : Schutter, M., Crocker, J., Paijmans, A., Janse, M., - Verreth, J.A.J., Wijffels, R.H. 2010. The effect of flow regimes on the growth and metabolic rates of the ian coral *Gaucea fascicularis - Coral Reefs* 29, 737-w/doi.org/10.1007/s00338 010 0617-2 : Font color: Text 1 : Font: 11 pt, Font color: Text 1 : Font color: Text 1 : Font: 11 pt, Font color: Text 1 : Font color: Text 1

: Font: 11 pt, Font color: Text 1

: Font color: Text 1

Hyperlink, Font color: Text 1

Changed

I: Font: (Default) +Body (Times New Roman), 11 or: Text 1

I: Indent: Left: 0", Hanging: 0.5"

1852 1853	by dual isotope-labeling techniques. J. Exp. Mar. Biol. Ecol. 336, 110–119. https://doi.org/10.1016/j.jembe.2006.04.011		
1854 1855 1856	Tanaka, Y., Suzuki, A., Sakai, K., 2018. The stoichiometry of coral-dinoflagellate symbiosis: carbon and nitrogen cycles are balanced in the recycling and double translocation system. ISME J. 12, 860–868. https://doi.org/10.1038/s41396-017-0019-3		
1857 1858 1859	Teece, M.A., Estes, B., Gelsleichter, E., Lirman, D., 2011. Heterotrophic and autotrophic assimilation of fatty acids by two scleractinian corals, Montastraea faveolata and Porites astreoides. Limnol. Oceanogr. 56, 1285–1296. https://doi.org/10.4319/lo.2011.56.4.1285.	~	Formatted: Font: 11 pt, Font color: Text 1
1860 1861 1862	Thiagarajan N., Subhas A. V., Southon J. R., Eiler J. M. andAdkins J. F. 2014. Abrupt pre-Bolling-Allerod warming and circulation changes in the deep ocean. Nature 511, 75–78. https://doi.org/10.1038/nature13472		Formatted: Font color: Text 1
1863 1864	Thiem, Ø., Ravagnan, E., Fosså, J.H., Berntsen, J., 2006. Food supply mechanisms for cold-water corals along a continental shelf edge. J. Mar. Syst. 60, 207–219. https://doi.org/10.1016/j.jmarsys.2005.12.004		
1865 1866	Thomas, S.M., Crowther, T.W., 2015. Predicting rates of isotopic turnover across the animal kingdom: a synthesis of existing data. J. Anim. Ecol. 84, 861–870. https://doi.org/10.1111/1365-2656.12326		
1867 1868 1869	Treibergs, L.A., Fawcett, S.E., Lomas, M.W., Sigman, D.M., 2014. Nitrogen isotopic response of prokaryotic and eukaryotic phytoplankton to nitrate availability in Sargasso Sea surface waters. Limnol. Oceanogr. 59, 972–985. https://doi.org/10.4319/lo.2014.59.3.0972		Formatted: No underline, Font color: Text 1
1870	Toounis G. Oraios C. Pauroud S. IM.G. Allamond D. Farriar Pagès C. 2010. Pray conture rates in four		Formatted: No underline, Font color: Text 1
1871	Mediterranean cold water corals . Mar Ecol Prog Ser. 398:149-155. https://doi.org/10.3354/meps08312	(Formatted: Font color: Text 1
1872 1873 1874	van Oevelen, P., Duineveld, G., Lavaleye, M., Mienis, Furu, Soetaert, Karline, H., Carlo H. R., 2009. The cold- water coral community as hotspot of carbon cycling on continental margins: A food-web analysis from Rockall Bank (northeast Atlantic). <i>Limpology and Oceanography</i> , 54, doi: 10.4319/lo.2009.54.6.1829		Deleted:
1075	Vinconsday M. E. Easting of the door see zoonlandsten 1062. Rann By Row Core Down Int. Euro May 152		Formatted: Font color: Text 1, Strikethrough
1875	114–120.	(Formatted: Font color: Text 1
1877 1878 1879 1880	Wang, X.T., Prokopenko, M.G., Sigman, D.M., Adkins, J.F., Robinson, L.F., Ren, H., Oleynik, S., Williams, B., Haug, G.H., 2014. Isotopic composition of carbonate-bound organic nitrogen in deep-sea scleractinian corals: A new window into past biogeochemical change. Earth Planet. Sci. Lett. 400, 243–250. https://doi.org/10.1016/j.epsl.2014.05.048		
1881 1882 1883 1884	Wang, X.T., Sigman, D.M., Prokopenko, M.G., Adkins, J.F., Robinson, L.F., Hines, S.K., Chai, J., Studer, A.S., Martínez-García, A., Chen, T., Haug, G.H., 2017. Deep-sea coral evidence for lower Southern Ocean surface nitrate concentrations during the last ice age. Proc. Natl. Acad. Sci. 114, 3352–3357. https://doi.org/10.1073/pnas.1615718114		
1885 1886	Webb, S., Hedges, R., Simpson, S., 1998. Diet quality influences the δ ¹³ C and δ ¹⁵ N of locusts and their biochemical components. J. Exp. Biol. 201, 2903–2911. https://doi.org/10.1242/jeb.201.20.2903		
1887 1888 1889	Weigand, M.A., Foriel, J., Barnett, B., Oleynik, S., Sigman, D.M., 2016. Updates to instrumentation and protocols for isotopic analysis of nitrate by the denitrifier method. Rapid Commun. Mass Spectrom. 30, 1365–1383. https://doi.org/10.1002/rcm.7570		Formatted: Font: 11 pt, Font color: Text 1
I			Formatted: Font color: Text 1
	20		

1891	Williams, B., and Grottoli, A. G. 2010. Recent shoaling of the nutricline and thermocline in the western tropical	
1892	Pacific, Geophys. Res. Lett., 37, L22601, doi:10.1029/2010GL044867,	

- 1893 1894 1895 Zhang, R., X. T. Wang, H. Ren, J. Huang, M. Chen, and D. M. Sigman. 2020. Dissolved Organic Nitrogen Cycling in the South China Sea From an Isotopic Perspective. Glob. Biogeochem. Cycles 34: e2020GB006551. doi:10.1029/2020GB006551
- 1896 1897 1898
- Zhou, M., Granger, J., Chang, B.X., 2022. Influence of sample volume on nitrate N and O isotope ratio analyses with the denitrifier method. Rapid Commun. Mass Spectrom. 36, e9224.
- https://doi.org/10.1002/rcm.9224

Formatted: Font: (Default) +Body (Times New Roman), 11 pt, Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Formatted: Font color: Text 1

Deleted: Wishner, K.F., Meise Munns, C.J., 1984. In situ grazing rates of deep-sea benthie boundary layer zooplankton. Mar. Biol. 84, 65–74. https://doi.org/10.1007/BF00394528

Formatted: Font color: Text 1

Page 1: [1] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font: 16 pt, Font col	lor: Text 1		
Page 1: [1] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font: 16 pt, Font col	lor: Text 1		
Page 1: [2] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font color: Text 1			
Page 1: [2] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font color: Text 1			
Page 1: [3] Deleted	Anne M Gothmann	12/6/23 7:59:00 AM	
			•
x			
Page 1: [3] Deleted	Anne M Gothmann	12/6/23 7:59:00 AM	
			4
x			
Page 1: [4] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font: 16 pt, Font col	lor: Text I		
Page 1: [4] Formatted	Anne M Gothmann	12/6/23 7:59:00 AM	
Font: 16 pt, Font col	lor: Text I		
Page 1: [5] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font: 12 pt			
Page 1: [5] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font: 12 pt			
Page 1: [6] Deleted	Masha Prokopenko	11/20/23 1:50:00 PM	
*			
Page 1: [6] Deleted	Masha Prokopenko	11/20/23 1:50:00 PM	
*			
Page 1: [6] Deleted	Masha Prokopenko	11/20/23 1:50:00 PM	
x			
Page 1: [7] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font: 12 pt, Font col	lor: Auto		
Page 1: [7] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font: 12 pt, Font col	lor: Auto		
Page 1: [8] Deleted	Anne M Gothmann	12/6/23 8:09:00 AM	
Page 1: [8] Deleted	Anne M Gothmann	12/6/23 8:09:00 AM	
		, , ,	
X			

I

Т

T

T

Т

I

I.

I.

I

Page 1: [9] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt, Font cold	or: Auto	
Page 1: [9] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt, Font colo	or: Auto	
Page 1: [10] Deleted	Anne M Gothmann	12/6/23 8:10:00 AM
*		
Page 1: [10] Deleted	Anne M Gothmann	12/6/23 8:10:00 AM
X		
Page 1: [11] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt		
Page 1: [11] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt		
Page 1: [12] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt, Font cold	or: Auto	
Page 1: [12] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font: 12 pt, Font cold	or: Auto	
Page 1: [13] Deleted	Anne M Gothmann	12/6/23 8:11:00 AM
X		
Page 1: [13] Deleted	Anne M Gothmann	12/6/23 8:11:00 AM
¥		
Page 1: [13] Deleted	Anne M Gothmann	12/6/23 8:11:00 AM
X		
Page 1: [14] Deleted	Masha Prokopenko	11/20/23 2:39:00 PM
*		
Page 13: [15] Deleted	Anne M Gothmann	10/17/23 7:54:00 AM
▼		
<u>▲</u>		
Page 24: [16] Formatted	Anne M Gothmann	11/14/23 3:51:00 PM
Indent: First line: 0.2	25", Space After: 0 j Don't adjust space h	pt, Line spacing: 1.5 lines, Don't adjust space between
Page 24: [17] Deloted	Anno M Cothmann	11/14/22 2:44:00 PM
Page 24: [17] Deleted	Anne M Gotimann	11/14/25 5:44:00 PM
×		
Page 26: [18] Deleted	Anne M Gothmann	11/14/23 3:49:00 PM
▼		
4.1		
Page 28: [19] Deleted	Anne M Gothmann	10/25/23 10:58:00 AM
X		

Page 28: [19] Deleted Anne M Gothmann

I.

I.

Т

Т

1

10/25/23 10:58:00 AM

			4
X			
A			
Page 28: [19] Deleted	Anne M Gothmann	10/25/23 10:58:00 AM	
X			•
A			
Page 28: [19] Deleted	Anne M Gothmann	10/25/23 10:58:00 AM	
x			4
A			
Page 28: [19] Deleted	Anne M Gothmann	10/25/23 10:58:00 AM	
×			4
Page 28: [20] Deleted	Masha Prokononko	10/21/22 11:28:00 PM	
Page 20. [20] Deleted		10/51/25 11.56.00 FM	
X			
A			
Page 28: [20] Deleted	Masha Prokopenko	10/31/23 11:38:00 PM	
X			4
A			
Page 28: [21] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font color: Text 1			
Page 28: [21] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font color: Text 1			
Page 28: [21] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font color: Text 1			
Done 20: [21] Formetted	Anna M Cathmann	11/14/22 2.22.00 DM	
Fort color: Toxt 1	Anne M Gothmann	11/14/23 3:33:00 PM	
Page 28: [22] Deleted	Masha Prokopenko	10/31/23 11:32:00 PM	
X			•
A			
Page 28: [22] Deleted	Masha Prokopenko	10/31/23 11:32:00 PM	
x			•
<u>ــــــــــــــــــــــــــــــــــــ</u>			
Page 28: [23] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font: Italic, Font cold	or: Text 1		
Page 28: [23] Formatted	Anne M Gothmann	11/14/23 3·33·00 PM	
Font Italic Font cold	or: Text 1	11, 17, 25 5.55.00 FM	
Page 28: [24] Deleted	Anne M Gothmann	11/14/23 8:20:00 PM	
X			•
<u> </u>			
Page 28: [25] Deleted	Masha Prokopenko	11/24/23 6:40:00 AM	
▼			

L

I.

Т

Т

L

Т

A			
Page 28: [25] Deleted	Masha Prokopenko	11/24/23 6:40:00 AM	
v			4
A			
Page 28: [26] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font color: Text 1			
Page 28: [26] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM	
Font color: Text 1			
Page 28: [27] Deleted	Anne M Gothmann	11/14/23 8:18:00 PM	
x			4
A			
Page 28: [28] Deleted	Masha Prokopenko	11/1/23 12:18:00 AM	
X			4
A			
Page 28: [28] Deleted	Masha Prokopenko	11/1/23 12:18:00 AM	
*			•
A			
Page 28: [28] Deleted	Masha Prokopenko	11/1/23 12:18:00 AM	
X			•
A			
Page 29: [29] Deleted	Masha Prokopenko	11/25/23 1:13:00 PM	
X			
	M	44 /25 /22 4.42.00 PM	
Page 29: [29] Deleted	Masna Prokopenko	11/25/23 1:13:00 PM	
X			
Page 20: [30] Deleted	Anno M Cothmann	10/16/22 12:21:00 PM	
Page 25: [50] Deleted	Anne M Gounnann	10/10/23 12:21:00 PM	
Page 29: [30] Deleted	Anne M Gothmann	10/16/23 12:21:00 PM	
-			
Page 29: [30] Deleted	Anne M Gothmann	10/16/23 12:21:00 PM	
A			
Page 29: [31] Deleted	Masha Prokopenko	11/1/23 12:23:00 AM	
X	•		4
A			
Page 29: [31] Deleted	Masha Prokopenko	11/1/23 12:23:00 AM	
x	-		4

I

I.

A			
Page 29: [32] Deleted	Masha Prokopenko	11/1/23 12:26:00 AM	
X			4
A			
Page 29: [32] Deleted	Masha Prokopenko	11/1/23 12:26:00 AM	
	•		
Page 29: [32] Deleted	Masha Prokopenko	11/1/23 12:26:00 AM	
-			
Page 20, [22] Deleted	Macha Brokononko	11/1/22 12:26:00 AM	
Page 25. [52] Deleted		11/1/23 12.20.00 AM	
X			
Page 29: [32] Deleted	Masna Prokopenko	11/1/23 12:26:00 AM	
X			
A			
Page 29: [33] Deleted	Anne M Gothmann	10/17/23 8:34:00 AM	
X			•
			
Page 29: [33] Deleted	Anne M Gothmann	10/17/23 8:34:00 AM	
X			4
A			
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
X			۹
A			
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
X			
A			
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
X			<
A			
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
Page 20: [24] Dalatad	Anno M Cothmony	10/15/22 0.0F-00 AM	
rage 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM	
X			-

Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM
x		
A		
Page 29: [34] Deleted	Anne M Gothmann	10/15/23 9:05:00 AM
x		
A		
Page 29: [35] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font color: Text 1		
Page 29: [35] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font color: Text 1		
Page 29: [36] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font color: Text 1		
Page 29: [36] Formatted	Anne M Gothmann	11/14/23 3:33:00 PM
Font color: Text 1		
Page 29: [37] Deleted	Masha Prokopenko	11/1/23 12:29:00 AM
Page 33: [38] Formatted	Anne M Gothmann	12/20/23 7:44:00 AM
Font: (Default) Time	s New Roman, No und	derline, Font color: Text 1
Page 33: [39] Formatted	Anne M Gothmann	12/20/23 7:44:00 AM
Font: +Body (Times	New Roman), 11 pt, N	No underline, Font color: Text 1
Page 33: [40] Formatted	Anne M Gothmann	12/20/23 7:44:00 AM
Font: (Default) +Hea	dings (Times New Ro	man), 11 pt, No underline, Font color: Text 1
Page 33: [41] Formatted	Anne M Gothmann	12/20/23 7:44:00 AM
Font: (Default) +Hea	dings (Times New Ro	man), Font color: Text 1
A		