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Abstract. The nitrogen (N) isotope composition (δ15N) of cold-water corals is a promising proxy for 11 
reconstructing past ocean N cycling, as a strong correlation was found between the δ15N of the organic 12 
nitrogen preserved in coral skeletons and the δ15N of particulate organic matter exported from the 13 
surface ocean. However, a large offset of 8-9 ‰ between the δ15N recorded by the coral and that of 14 
exported particulate organic matter remains unexplained. The 8-9 ‰ offset may signal a higher trophic 15 
level of coral dietary sources, an unusually large trophic isotope effect or a biosynthetic δ15N offset 16 
between the coral’s soft tissue and skeletal organic matter, or some combinations of these factors. To 17 
understand the origin of the offset and further validate the proxy, we investigated the trophic ecology of 18 
the asymbiotic scleractinian cold water coral Balanophyllia elegans, both in a laboratory setting and in 19 
its natural habitat. A long-term incubation experiment of B. elegans fed on an isotopically controlled 20 
diet yielded a canonical trophic isotope effect of 3.0 ± 0.1‰ between coral soft tissue and the Artemia 21 
prey. The trophic isotope effect was not detectably influenced by sustained food limitation. A long N 22 
turnover of coral soft tissue, expressed as an e-folding time, of 291 ± 15 days in the well-fed 23 
incubations indicates that coral skeleton d15N is not likely to track subannual (e.g. seasonal) variability 24 
of diet δ15N. Specimens of B. elegans from the subtidal zone near San Juan Channel (WA, USA) 25 
revealed a modest difference between soft tissue and skeletal δ15N of 1.2 ± 0.6 ‰. The δ15N of the coral 26 
soft tissue was 12.0 ± 0.6 ‰, which was ~6 ‰ higher than that of suspended organic material that was 27 
comprised dominantly of phytoplankton – suggesting that phytoplankton is not the primary component 28 
of B. elegans’ diet. An analysis of size-fractionated net tow material suggests that B. elegans fed 29 
predominantly on a size class of zooplankton ≥ 500 µm, implicating a two-level trophic transfer 30 
between phytoplankton material and coral tissue. These results point to a feeding strategy that may 31 
result in an influence of regional food web structure on the cold-water coral δ15N. This factor should be 32 
taken into consideration when applying the proxy to  paleoceanographic studies of ocean N cycling.  33 
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1 Introduction 98 

Interactions between ocean circulation and nutrient cycling modulate the marine biological carbon pump, 99 
the consequent partitioning of CO2 between atmosphere and ocean, and thus influence planetary climate on 100 
centennial to millennial time scales (Sigman and Boyle 2000). The marine nitrogen (N) cycle is highly sensitive 101 
to these interactions, such that knowledge of modern and ancient ocean N cycling can help illuminate drivers of 102 
past climate and contextualize modern global change (e.g., Altabet et al., 1994; Francois et al., 1997; Robinson 103 
and Sigman 2008; Sigman et al., 1999; Kast et al. 2019).  104 

The main tool to investigate the oceanic N cycle history is the nitrogen (N) isotope composition (i.e., the 105 
15N/14N ratio) of particulate organic nitrogen (PON) exported from the euphotic zone and preserved in various 106 
paleo-archives, including bulk sedimentary N in anoxic sediments (reviewed by Robinson et al. 2023). Hereafter, 107 
we express the 15N/14N ratio using delta notation (δ15N). The δ15N-PON recorded in paleo-oceanographic archives 108 
reflects both regional N cycling processes and the balance of global ocean N source and sink terms (Sigman and 109 
Fripiat 2019; Brandes and Devol 2002). In regions of the ocean where nitrate is quantitatively consumed, the 110 
annually integrated δ15N-PON exported from the surface reflects the isotopic composition of thermocline nitrate 111 
(Altabet et al. 1991). The latter is influenced by the circulation history of nitrate (e.g., Marconi et al., 2015), by 112 
regional N2 fixation (e.g., Casciotti et al. 2008; Knapp et al. 2008) and by water column denitrification (e.g., 113 
Pride et al., 1999; De Pol-Holz et al., 2007). In regions with incomplete consumption of surface nitrate, such as 114 
Southern Ocean, the isotopic discrimination imparted during nitrate assimilation is reflected in the δ15N-PON, 115 
which can be used to reconstruct the degree of surface nitrate consumption in the past (e.g., Sigman et al., 1999; 116 
Francois et al. 1997). 117 

Accurate interpretation of the N cycle’s paleo-history relies on the presumption that the δ15N-PON preserved 118 
in various palaeoceanographic archives is impervious to organic matter diagenesis. Bulk sedimentary δ15N 119 
measurements are thus generally inadequate in this respect, subject to post-depositional processes (Robinson et 120 
al. 2012) – barring fast-accumulating organic-rich anoxic sediments with negligible contribution from terrestrial 121 
sources (e.g., Altabet et al., 2002; Ganeshram and Pedersen, 1998). To circumvent this limitation, several 122 
“biological” archives of the δ15N-PON have been developed that are deemed resistant to diagenetic alteration. 123 
These include the organic matter in in diatom frustules and foraminifera tests (e.g., Ren et al., 2009; Robinson 124 
and Sigman, 2008) and the organic matter in proteinaceous corals (e.g., Sherwood et al. 2009; Williams and 125 
Grottoli 2010). Recently, the δ15N of organic N enclosed within the aragonite mineral lattice of asymbiotic 126 
scleractinian (stony) cold-water corals (CWCs) has been found to reflect the δ15N-PON exported from the surface 127 
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ocean (Wang et al., 2014), offering an exciting new archive of marine N cycling (Wang et al. 2017; Li et al., 137 
2020, Studer et al., 2018; Chen et al. 2023). A robust cold-water coral archive of δ15N-PON can complement the 138 
existing suite of nitrogen proxies by reducing the potential biases inevitable for almost any individual proxy, 139 
allowing for a broader geographic and temporal reconstruction, and increasing resolution of the proxy record. 140 
Foremost, as with foraminifera and diatom shells, organic material trapped within the coral’s original aragonite 141 
mineral lattice is largely protected from diagenetic alteration (Drake et al. 2021), and compromised areas can be 142 
avoided by inspecting the skeletons for contamination and recrystallization (e.g., borings) using microscopic 143 
techniques (Gothmann et al. 2015). CWCs have a broad geographic distribution, being present in all ocean basins 144 
from the surface to 5000 m (Freiwald, 2002). CWCs also offer the potential to generate high-resolution records 145 
extending relatively far back in time, and corals have continuous skeletal accretion that records ocean conditions 146 
at the time of growth, so the analysis of multiple individuals provides enhanced temporal resolution of long-term 147 
records (Robinson et al., 2014; Hines et al. 2015). Unlike sediments containing microfossils (e.g. diatoms and 148 
foraminifera) CWC skeletons are not subject to bioturbation and absolute ages of this paleoarchive can be 149 
determined with decadal precision on the time scales of glacial-interglacial climate variability through U-Th 150 
series dating (Cheng et al., 2000; Goodfriend et al. 1992, Robinson et al., 2014, Li et al., 2020). Remarkably, 151 
individual coral samples can archive multiple seawater properties, such that a single CWC specimen can 152 
potentially be used to reconstruct deep (e.g., Δ14C, pH, temperature, and circulation proxies such as Ba/Ca 153 
and eNd) and surface ocean conditions (δ15N) at a precisely-known time (U-Th dating), making CWC unique as a 154 
paleoceanographic archive (Robinson et al., 2014; Thiagarajan et al., 2014; Rae et al. 2018).   155 

Yet an outstanding concern about the fidelity of the δ15N of coral-bound organic N is a reported 8 - 9 ‰ 156 
offset between coral-bound δ15N and the corresponding δ15N-PON exported to regions of coral growth (Wang et 157 
al. 2014). The magnitude of this offset substantially exceeds the 3 - 3.5 ‰ expected for a single trophic transfer 158 
(Minagawa and Wada 1984), assuming CWC feed predominantly on algal material exported from the surface 159 
ocean. Wang et al. (2014) explained the magnitude of the offset  by arguing that CWCs feed on the more 160 
abundant pool of surface-derived suspended organic material (SPOM), as the δ15N SPOM at depth is typically 161 
~4-5‰ higher than that of sinking PON (Altabet 1988, Saino and Hattori, 1987). While CWCs are considered 162 
generalists with regard to diet (e.g., Mortensen, 2001; Freiwald, 2002; Carlier et al., 2009; Maier et al. 2023), a 163 
number of studies suggest that many species of CWC subsist predominantly on metazoan zooplankton prey (e.g., 164 
Naumann et al. 2011; Kiriakoulakis et al. 2005; Purser et al. 2010; Tsounis et al. 2010). A zooplankton diet 165 
should result in an approximate two-level or more trophic transfer between surface PON and coral tissue (e.g., 166 
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Sherwood et al. 2008), closer to the observed 8-9 ‰ offset, potentially rendering coral-bound δ15N sensitive to 194 
spatial and temporal differences in trophic-level food web structure. An alternative explanation for the offset is 195 
that there is a large biosynthetic offset between the δ15N of the CWC polyp and its skeletal tissue (Horn et al. 196 
2011; Muscatine et al. 2005), assuming that CWCs’ diet derives directly from sinking algal material from the 197 
surface ocean. Otherwise, there could be an atypically large N isotope fractionation associated with the trophic-198 
level transfer between the coral diet and its tissue (>3-3.5‰), possibly borne out of intermittent starvation periods 199 
(Doi et al., 2017), which is then passed on to the organic matrix within the coral skeleton. The gap in our 200 
understanding of how corals record the δ15N-PON exported form the surface ocean raises questions regarding the 201 
consistency of the offset in space and time, and whether it is likely to differ among CWC species or due to intra-202 
specific variations in diet. 203 

Due to the challenges of accessing deep-ocean environments, the trophic ecology of cold-water corals is 204 
sparsely documented, yet is fundamental to understanding the role of CWCs in cold-water reef ecosystems and to 205 
defining their utility as paleoceanographic archives of N cycling.  The nature of the δ15N offset between CWC 206 
skeletal material and exported PON must be explained in order to further validate and potentially improve the use 207 
of  d15N of CWC skeletons as a proxy to reconstruct the history of exported PON and to further understand the 208 
role of CWCs in benthic ecosystems. To this end, we studied Balanophyllia elegans, an asymbiotic scleractinian 209 
cold-water coral found along the west coast of North America that grows as individual polyps (Fadlallah, 1983). 210 
We investigated the following questions: a) Is there a large offset in δ15N between coral polyp tissue and coral 211 
skeletal tissue? b) Is there an unusually large trophic-level offset between coral tissue and coral diet? c) Does B. 212 
elegans feed predominantly on suspended particulate organic matter (SPOM) in situ? or d) does B. elegans feed 213 
predominantly on metazoan zooplankton, resulting in a two-level trophic transfer between coral tissue and N of 214 
export? To evaluate question (a), we measured the δ15N of tissue-skeleton pairs of coral samples collected in their 215 
natural habitat. To evaluate question (b), we cultured B. elegans corals in the laboratory in experiments where 216 
both the isotopic composition of food and the frequency of feeding was controlled. To evaluate questions (c) and 217 
(d), we also investigated the δ15N of various components of the food web at a field site where B. elegans are 218 
found plentifully. Our observations offer novel insights on the growth and trophic ecology of B. elegans, 219 
providing unique new data on the N metabolism of CWC and their feeding ecology. We contextualize our 220 
conclusions to inform the use of CWC archives as a paleo-proxy for marine N cycling and ocean 221 
biogeochemistry. 222 
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2. Methods 255 

2.1 Collection of live coral specimens 256 

Individual specimens of the cold-water coral Balanophyllia elegans were collected during four sampling 257 
campaigns in March and June 2019, and September and November 2020 from the San Juan Channel near the 258 
University of Washington’s Friday Harbor Laboratory off the coast of Washington State in the Salish Sea (48.5º 259 
N, -123.0º W; Figure 1). B. elegans is a solitary, asymbiotic cold-water cup coral native to the Pacific Northwest 260 
that can be found both in shallow rocky environments and at depths as great as 500 m (Durham and Barnard 261 
1952). The genus Balanophyllia is cosmopolitan and fossil samples as old as Eocene in age have been used for 262 
paleoenvironmental study (Muhs et al. 1994; Gothmann et al., 2015; Gagnon et al. 2021). B. elegans’s presence 263 
at near surface depths makes it an easy target for culture experiments, and Balanophyllia sp. can be found co-264 
occurring with the similar but more widely applied cold-water coral archive, Desmophyllum dianthus (Margolin 265 
et al. 2014). Therefore, we consider the asymbiotic Balanophyllia sp. to be generally representative of other deep 266 
cold-water coral species. 267 

B. elegans specimens were collected at 10 to 20 m depth by divers who gently removed the corals from 268 
vertical rock walls using blunt-tipped diving knives. Of the live corals collected, a subset was immediately frozen 269 
at -18ºC for N isotope ratio analyses of soft tissue and organic matter bound in the coral skeleton matrix. Live 270 
specimens were shipped overnight in small bags of seawater on ice to St. Olaf College (Minnesota, USA). Corals 271 

Figure 1. (a) Map of the San Juan Islands indicating the collection site of B. elegans specimens and 
hydrographic measurements (created using http://www.geomapapp.org, Ryan et al. 2009). Inset shows 
where the San Juan Islands are situated within North America. (b) Image of B. elegans from the San 
Juan Channel near Friday Harbor Labs taken by Rhoda Green.  
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were cleaned by gently scraping the exposed skeleton with dental tools to remove encrusting organisms and 276 
placed in incubation bottles with artificial seawater for recovery prior to feeding experiments (described below). 277 

2.2  Live coral maintenance 278 

Live B. elegans corals were maintained in artificial seawater medium prepared from nitrate-free Instant 279 
Ocean® Sea Salt. Salts were dissolved in deionized water to a salinity of 28.0 ± 0.25 – akin to the conditions at 280 
the collection site (Murray et al., 2015) – and sparged with air to achieve atmospheric equilibrium. The pH of the 281 
seawater was measured with a YSI brand 4130 pH probe and adjusted using dilute (0.1 N) hydrochloric acid or 282 
sodium hydroxide to 8.14 ± 0.05, slightly higher than in-situ conditions to promote skeletal growth. Batch 283 
seawater was then allotted to 2 L airtight polypropylene bottles to incubate single coral polyps. Bottles were pre-284 
cleaned with fragrance-free soap and multiple rinses of deionized water. The salinity, pH, and temperature in the 285 
incubation bottles were monitored using YSI brand probes (4310(W) conductivity cell and pH probe, 286 
respectively) as well as dissolved oxygen concentrations using an optical sensor (FDO 4410; Figure S1); a 287 
Multilab 4010-3w was used as the digital meter for the sensors. The bottles containing individual corals were 288 
randomly distributed among three recirculating water baths maintained at a constant temperature of 12.5 ± 0.2 ºC, 289 
akin to the conditions at the collection site (Murray et al., 2015). Small but quasi-systematic differences of ± 290 
0.3˚C were observed among the three recirculating tanks (Figure S2). Corals were sustained on a diet of Artemia 291 
salina nauplii (described below), fed twice a week to ensure maximum growth (Crook et al., 2013). Seawater in 292 
the incubation bottles was replaced twice a week after the corals were fed, based on observations indicating that 293 
seawater pH in the bottles decreased slightly but significantly by ~0.03 pH units over three days due to coral 294 
respiration (statistical analysis was performed with RStudio; Welch two sample t-test; t(515.07)= 12.8; p-value < 295 
0.01; Figure S3). Dissolved oxygen concentrations remained near atmospheric equilibrium at concentration of 7.5 296 
± 0.3 mg L-1 (Figure S1). Nitrate concentrations in the bottles were also monitored from samples taken during 297 
each water change, in the freshly prepared seawater and in spent seawater, revealing low variability in NO3

- 298 
concentration of 0.7 ± 0.3 µmol L-1 (Figure S4). Nitrate concentrations in the incubations were notably lower than 299 
ambient levels at the collection site, where concentration were ~25 µmol L-1, ensuring that the coral’s only source 300 
of nitrogen was the Artemia diet (Murray et al., 2015). 301 
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2.3 Coral culture experiments 304 

2.3.1 Experiment to quantify the trophic isotope effect 305 

The corals were acclimated to precise incubation conditions for approximately 20 hours before initiating 306 
feeding experiments. To assess the δ15N of coral soft tissue compared to that of its food source, four experimental 307 
groups of individual B. elegans corals were fed respective diets of Artemia salina nauplii with different δ15N 308 
values, twice per week for 530 days (Spero et al., 1993). Unhatched Artemia salina sourced from specific 309 
geographic locations have widely different δ15N values, owing to the different N isotope dynamics of the 310 
environments from which they were collected, which makes these organisms useful for trophic studies (Spero et 311 
al. 1993). Eighteen coral specimens were fed Artemia nauplii hatched from cysts from the Great Salt Lake 312 
(Reference Code: GSL) with a δ15N of 17.0 ± 0.3 ‰. Twelve corals were fed hatched nauplii from Lake Ulzhay 313 
in Russia (Reference Code: 1816) with a δ15N of 13.8 ± 0.4 ‰. Twelve corals were fed hatched nauplii from 314 
Vinh Chau in Vietnam (Reference Code: 1805) with a δ15N of 9.9 ± 0.3‰. Twelve corals were fed hatched 315 
nauplii from Tibet (Reference Code: 1808) with δ15N of 6.3 ± 0.2‰. The GSL Artemia was procured from 316 
Aquatic Foods California Blackworm Co. (Great Salt Lake), whereas all other Artemia were obtained from the 317 
Artemia Reference Center (Ghent, Belgium). The δ15N of the diet for each treatment was calculated as the mean 318 
value measured from each group of unhatched cysts and hatched nauplii (Table S2 and S3). 319 

Fresh batches of nauplii were hatched from Artemia cysts at approximately monthly intervals, filtered into a 320 
concentrated suspension, stored frozen at -18ºC, and thawed immediately before feeding to the corals. Due to low 321 
hatch rates of the Artemia group 1808, corals in that treatment group were fed nauplii harvested from 322 
decapsulated Artemia cysts from day 151 (November 19, 2019) to 245 (February 22, 2020). The δ15N of the 323 
hatched nauplii ranged from 6.3 ± 0.2 to 17.0 ± 0.3 ‰ (measured by EA-IRMS; Table S2). The δ15N of the 324 
nauplii did not change significantly over prolonged storage of several months in the freezer (ANOVA test; F(1) = 325 
0.07, p-value = 0.80; Figure S5). Artemia nauplii had a statistically indistinguishable molar C:N ratios among 326 
regional groups, averaging 6.0 ± 0.6 (ANOVA test; F(3) = 0.31; p-value = 0.82, Table S3). These results show 327 
that there was limited variability in the diet of corals due to freezer storage and hatching of multiple individual 328 
batches of Artemia (Table S2, S3, Figure S5). 329 

Corals were fed their respective nauplii diets by transferring coral individuals from their incubation bottle to 330 
a small dish filled with artificial seawater with minimal exposure to air so as not to stress the corals. Each coral 331 
was fed 20 µL of thawed nauplii suspension by pipetting the food directly into their oral cavity, making it 332 
possible to visually ensure complete consumption and thus minimize variability in feeding rates. Each coral was 333 
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returned to its bottle with a fresh allotment of seawater when its mouth had remained closed for several minutes, 345 
signifying that it was finished eating (Figure 2).  346 

After a shift in the δ15N of diet, it is expected that coral tissue δ15N will evolve as a function of time until the 347 
composition of tissue reaches an equilibrium in line with the new diet. In order to assess the rate (referred to here 348 
as the isotopic turnover time) at which this evolution occurs, individual corals were sacrificed at discrete intervals 349 
throughout the experiment. Corals were always sacrificed three days after feeding to ensure that no food 350 
remained in the oral cavity. The corals were removed from their bottles and rinsed with artificial seawater. The 351 
coral tissue was then separated from the skeleton using a fine stream of compressed air. The tissue and skeleton 352 
were frozen at -18ºC and stored separately until processed for isotope ratio analyses. 353 

2.3.2  Experiment to evaluate the effects of starvation conditions 354 

An additional 522-day feeding experiment was performed to assess the influence of starvation on the δ15N of 355 
the coral soft tissue. Live corals collected during a sampling campaign at the end of November 2020 and shipped 356 
live to St. Olaf College were randomly assigned to two treatment groups (starved and not-starved). Corals in the 357 
starved treatment were fed at 25% of our normal feeding frequency, or every two weeks, whereas those in the 358 
not-starved treatment were fed twice a week. These feeding regimes were chosen based on the work of Crook et 359 
al. (2013) and Beauchamp et al. (1989), who assumed feeding every 3 days to represent plentiful food supply and 360 
feeding every 21 days (close to our starvation condition) to represent minimal maintenance food supply. Both 361 
groups were fed Artemia nauplii with a δ15N of 9.9 ± 0.3 ‰, approximately 3 ‰ lower than the coral tissue of 362 
average B. elegans collected from Friday Harbor, and thus presumably closest in δ15N to what the corals is eating 363 
in the wild given a canonical trophic isotope effect. Coral incubations and feedings were conducted as described 364 
above. Individuals were sacrificed over the course of the 522-day experiment, and tissue samples were frozen at -365 
18ºC until isotope analysis. 366 

Figure 2. Photo illustration of a coral feeding sequence. Photo 1 shows coral before food is given. Photo 2 
shows food being pipetted onto coral mouth. Photos 3 through 6 show the coral feeding as the mouth opens to 
engulf food and closes when finished, about 15 minutes in total. Corals are ~1 cm in diameter. 
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2.4 Coral preparation for isotope ratio analyses 405 

Frozen coral tissue samples (and hatched nauplii) were freeze-dried using a Labconco FreeZone 4.5 and then 406 
powdered using a mortar and pestle. The samples were sent to the University of Connecticut, Avery Point 407 
(Groton, CT, USA) for isotope ratio analyses. 408 

Coral skeletons from specimens collected at Friday Harbor were separated from the coral soft tissue and were 409 
rinsed and individually and ultrasonicated two times in Milli-Q™ (MQ) water for 20 minutes each in order to 410 
remove any residual seawater. Samples were then individually ultrasonicated in a 1% sodium hypochlorite 411 
(bleach) solution for at least two 20-minute intervals with fresh bleach for each new ultrasonication interval until 412 
no tissue remained on the skeleton, as assessed visually under a dissection microscope. Individual skeletons were 413 
then rinsed and ultrasonicated for 20 minutes in MQ another three times (each time with a new batch of MQ 414 
water) in order to remove any bleach residue. Skeleton samples were sent to Pomona College (California, USA) 415 
for further processing. 416 

It is necessary to isolate organic matter from the coral carbonate matrix in advance of the N isotope 417 
measurement methods used here (see Section 2.6 below). Organic material in the skeleton matrix was isolated 418 
and oxidized to nitrate following the protocol of Wang et al. (2014). Briefly, bulk samples weighing 50-100 mg 419 
were ground into coarse powder, and a fraction between 63 and 200 µm was collected by sieving through two 420 
metal sieves. The 10-15 mg of sieved powder was rinsed sequentially with of sodium polyphosphate-sodium 421 
bicarbonate buffered dithionite-citrate reagent, then treated with 13.5% sodium hypochlorite overnight on a 422 
shaker. Skeletal material was dissolved in 4 N ultrapure hydrochloric acid, then oxidized to nitrate by autoclaving 423 
in basic potassium persulfate solution. Standards of glutamine reference material USGS-40 and USGS-41 424 
(respective δ15N of 4.52 ‰ vs. air and 47.57 ‰ vs. air) were oxidized in tandem and used to correct for 425 
processing blanks. The resulting nitrate samples were sent to the University of Connecticut for nitrate isotope 426 
ratio analysis. The long-term averaged reagent blank was 0.4-0.6 µmol L-1, while the typical samples were 10-15  427 

µmol L-1 (typical amount of nitrogen in skeleton being 2-5 µmole/g of aragonite). Samples were typically run in 428 

duplicates with an average reproducibility of ~ ± 0.5 ‰. An internal laboratory standard of ground material of the 429 

cold-water colonial scleractinian coral Lophelia pertusa had a long-term d15N value 9.4 ± 0.8 ‰ (n=57)  430 

2.5  Hydrographic data 431 

To infer the natural food source of the B. elegans, we collected samples for analysis of the δ15N of particulate 432 
and dissolved N pools in relation to ambient hydrographic variables (temperature and salinity) near Friday 433 
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Harbor, WA. Seasonal sampling campaigns were conducted in September and November 2020 and in April, 443 
June, and August 2021 (Table S1). In all but the August 2021 campaign, particulate and dissolved N samples 444 
were collected by divers at unspecified depths between the surface and the depth of coral collection. Samples 445 
were stored frozen in 30 mL HDPE bottles. Surface net tows were performed with a mesh size of 120 µm; 446 
materials were stored and shipped frozen and thawed at a later time to be filtered onto pre-combusted GF/F filters 447 
(0.7µm nominal pore size) that were stored frozen pending isotope analysis. No hydrographic variables were 448 
recorded during the campaigns except in August 2021.  449 

During the August 2021 campaign, depth profiles of temperature and salinity from the surface to 35 m were 450 
characterized with a CastAway®-CTD (conductivity temperature depth) profiler. Water samples were collected 451 
at 5 m intervals between 5 and 30 m using a Van Dorn water sampler. Water was filtered onto pre-combusted 452 
glass fiber filters (GF/F; 0.7µm nominal pore size) into pre-cleaned 30 mL HDPE bottles and stored frozen 453 
pending analyses of nitrate concentrations and nitrate isotope ratios. The corresponding filters were stored frozen 454 
for isotope ratio analysis of suspended particulate organic material (SPOM). Surface (5 m) and deeper (25 m to 455 
the surface) net tows were conducted using plankton nets with respective mesh sizes of 150 µm and 80 µm. Net 456 
tow material was filtered directly onto a pre-combusted GF/F filters and frozen pending analysis. A portion of the 457 
net tow material from the August 2021 campaign was sieved to separate size classes of 80-100 µm, 100-250 µm, 458 
≥ 250µm, 250-500 µm, and ≥ 500 µm. Material from the respective size classes was filtered onto pre-combusted 459 
GF/F filters and frozen until isotope analysis.  460 

2.6  Nitrate concentrations and isotope ratio analyses 461 

Nitrate concentrations of oxidized coral skeletons and in aqueous samples were measured by reduction to 462 
nitric oxide in hot vanadium III solution followed by chemiluminescence detection of nitric oxide (Braman and 463 
Hendrix, 1989) on a Teledyne chemiluminescence NOx analyzer Model T200 (Thousand Oaks, CA). 464 

The δ15N and δ13C of lyophilized coral tissue samples were analyzed at the University of Connecticut on a 465 
Costech Elemental Analyzer–Isotope Ratio Mass Spectrometer (Delta V) and are expressed in standard delta 466 
notation (e.g. for N, δ15N (‰ vs. air) = [[(15N/14Nsample)/( 15N/14Nair)] – 1]*1000). Approximately 0.75 mg of 467 
lyophilized sample (35 µg N) was allotted into tin cups and analyzed in tandem with recognized glutamine 468 
reference materials USGS-40 and USGS-41 with respective δ15N (vs. air) of 4.52 ‰ and 47.57 ‰ and δ13C of -469 
26.39 ‰ and 37.63 ‰ (vs. PDB). Replicate analyses of (n ≥ 2) reference materials yielded an analytical precision 470 
of (±1 SD) of 0.3 ‰ for both δ15N and δ13C. 471 
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Nitrate N (and O) isotope ratios of aqueous seawater samples and N isotope ratios of the skeleton matrix 474 
samples were analyzed at University of Connecticut using the denitrifier method (Casciotti et al., 2002; McIlvin 475 
and Casciotti, 2011; Sigman et al., 2001). Nitrate sample solutions were injected at target concentrations of 20 476 
nmol for seawater samples and 7 nmol for skeleton matrix samples. N2O was extracted, concentrated and purified 477 
using a custom-modified Thermo Gas Bench II equipped with a GC Pal autosampler and dual cold traps and 478 
analyzed on a Thermo Delta V Advantage continuous flow isotope ratio mass spectrometer (Casciotti et al., 2002; 479 
McIlvin and Casciotti, 2011). Individual analyses were referenced to injections of N2O from a pure gas cylinder 480 
and standardized through comparison potassium nitrate reference materials International Atomic Energy Agency 481 
nitrate (IAEA-N3) and the isotopic nitrate reference material United States Geological Survey 34 (USGS-34), 482 
with respective δ15N vs. air of 4.7 ‰ and -1.8 ‰ vs. air (International Atomic Energy Agency, 1995), and 483 
respective δ18O of 25.61 ‰ and -27.9 ‰ vs. Vienna Standard Mean Ocean Water (VSMOW; Gonfiantini, 1995;  484 
Böhlke et al., 2003). To account for bacterial blanks and source linearity, nitrate concentrations of the standard 485 
material – diluted in N-free seawater for aqueous seawater samples and air-equilibrated milli-Q water for 486 
skeleton matrix samples – were matched to those of samples within batch analyses, and additional bacterial 487 
blanks were also measured (Weigand et al., 2016; Zhou et al., 2022). Replicate measurements (n ≥ 2) of all 488 
samples yielded an average analytical precision (±1 SD) of 0.3‰ for both δ15N and δ18O. 489 

 490 
2.7.  N turnover model 491 

We estimate values of the trophic δ15N offset for B. elegans, ϵ, and the rate of isotopic turnover by fitting 492 
the data from our trophic isotope experiment to a nonlinear least-squares regression model corresponding to the 493 
isotope mixing relationship shown in Equation 1 below.  Equation 1 treats the coral tissue as a single reservoir of 494 
N with some initial isotope composition that is evolving to reflect the new diet as a function of time (after Cerling 495 
et al. 2007; Ayliffe et al. 2004).  496 

									𝛿()𝑁(𝑡) = [𝛿()𝑁*+, − 𝛿()𝑁-./* + 𝜖] ∙ 𝑒01* + 𝛿()𝑁-./* + 𝜖.	                            Equation 1 497 

The term δ15Nt=0 is the value of the bulk coral tissue at the onset of the experiment, δ15Ndiet is that of the corals’ 498 
new Artemia diet (i.e. what it is fed during the experiment), t is the number of days since the start of the 499 
experiment, ϵ is the difference between the δ15N of the diet and tissue at equilibrium (i.e. once the isotopic 500 
composition of inputs to the system equals the isotope composition of outputs), and λ describes the specific rate 501 
at which new N is incorporated into the coral tissue (days-1). We use this model to calculate the e-folding time of 502 
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the system, which is defined as 1/ λ (days) and represents the time at which ~63% of the original N reservoir in 522 
coral tissue has been replaced with new N from the experimental coral diet.  523 

 524 

3. Results 525 

3.1 Trophic isotope effect 526 

At the onset of the culture experiment, the soft tissue among all experimental corals had a δ15N of 11.7 ± 0.5 527 
‰. Over the course of the experiment, the δ15N of the tissue increased or decreased in respective treatments 528 
depending on the δ15N of their Artemia diet (Figure 3); the tissue δ15N increased in corals fed diets with δ15N 529 
values of 17.0, 13.8, and 9.9 ‰, whereas the tissue δ15N decreased for the diet of 6.4 ‰. The δ15N of soft tissue 530 
in all groups trended towards an asymptotic offset relative to the diet δ15N, as expected for an approach to a new 531 
equilibrium. However, at day 530, at the end of the experiment, it appeared as though the coral tissue δ15N had 532 
not yet reached a constant offset value, suggesting that the coral tissue had not yet reached an equilibrium with 533 

Figure 3. Evolution of the coral soft tissue δ15N in response to diet δ15N. Colors correspond to 
the respective Artemia strains. Dashed lines are the model output of our simultaneous nonlinear 
least squares regression fits to the data using Equation 1. Solid lines mark the diet δ15N ± s. 
The mean analytical error on tissue δ15N analyses was ± 0.2 ‰. 
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the new diet. Specifically, at the end of the experiment, the coral tissue of the treatment groups reached δ15N 540 
values of 9.4 ± 0.3‰, 12.6 ± 0.5‰, 15.9 ± 0.1 ‰, and 18.1 ± 0.1 ‰ for groups fed the lowest to highest Artemia 541 
δ15N values, respectively. The difference between coral soft tissue and diet δ15N ranged from a minimum of 1.0 ± 542 
0.1‰ to a maximum of 3.0 ± 0.3‰ across the different experimental groups at day 530 (Figure 3).  543 

Despite the fact that coral tissue had not yet reached an equilibrium with the new coral diet at the end of our 544 
experiment, we are able to estimate values of the trophic δ15N offset for B. elegans, ϵ, and the rate of isotopic 545 
turnover by fitting the data from our trophic isotope experiment to the nonlinear least-squares regression model 546 
given Equation 1 in Section 2.7.  To more confidently calculate ϵ and λ for each individual experimental group, 547 
we generate 4 equations, (one for each experimental group of the form given in Eq. 1 but with different values of 548 
δ15Ndiet) and fit them simultaneously using least-squares regression. From this fit, we are able to obtain estimates 549 
for both ϵ and λ in B. elegans. An inherent assumption of this approach is that all experimental groups have the 550 
same e-folding time and the same trophic isotope effect. We note here that we refer to the e-folding time as the 551 
‘turnover rate’ of N in corals throughout the rest of this text (e.g., Tanaka et al. 2018). Our model fit yielded a 552 
trophic isotope effect, ϵ, of 3.0 ‰ with a standard error of 0.1 ‰ between coral tissue and diet. The turnover rate 553 
of N (i.e. e-folding time, 1/ λ) was 291 days with a standard error of 15 days. The four individual model equations 554 
generated by our nonlinear least squares regression are presented as the dashed lines in Figure 3.  555 

3.2  Effect of starvation  556 

 At the onset of the starvation trial, the coral tissue had an average δ15N of 11.5 ± 0.1 ‰. At the end of the 557 
522-day experiment, the starved group (N=15 coral individuals) had an average δ15N of 12.4 ± 0.4 ‰ and the 558 
frequently fed group (N=15) with a δ15N of 12.7 ± 0.1 ‰ (Figure 4). The starved group was +2.5 ± 0.4 ‰ 559 
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compared to its diet, statistically indistinguishable from that of the frequently fed group of +2.8 ± 0.1 ‰ higher 607 
than the diet (p-value = 0.059, pairwise t-test).  608 

3.3 δ15N comparison of field specimen polyp tissue and skeleton 609 

The δ15N of the soft tissue from individual B. elegans specimens collected live near Friday Harbor ranged 610 
between 11.2 to 13.1 ‰, averaging 12.0 ± 0.6 ‰ (Figure 5a). The soft tissue δ15N differed among coral groups 611 
collected during different sampling campaigns, with higher values in spring (March 2019 and April 2021) 612 
compared to summer and fall (June 2019, September and November 2020; ANOVA F(4) = 40.39; p-value ≤ 0.01, 613 
post-hoc pairwise t-test; p-value < 0.05). The average δ15N of corresponding skeletal tissue was 13.5 ± 0.7 ‰ and 614 
did not differ discernibly among sampling campaigns (ANOVA F(2) = 0.916; p-value = 0.431). The average 615 

Figure 4. Evolution of the δ15N of individual coral polyps fed Artemia nauplii (δ15N 9.9 ‰) twice weekly (not 
starved) vs. every two weeks (starved). The analytical error associated with individual tissue δ15N 
measurements was ± 0.2 ‰. 
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difference between skeleton and soft tissue δ15N (∆δ15N) among coral individuals for which both soft tissue and 621 
skeleton was measured was 1.2 ± 0.6 ‰ (Figure 5b). 622 

3.4 Regional hydrography and N isotope ratios of nitrate and plankton material  623 

Hydrographic profiles recorded at stations near Friday Harbor in August 2021 showed characteristic density 624 
structures that were sensitive to tidal phase (Figure 6 a,b; Banas et al. 1999). Profiles collected during flood tide 625 

Figure 5. (a) Tissue and skeleton δ15N measurements from B. elegans individuals collected during different 
sampling campaigns. Errors on skeleton data are based on replicate analyses of samples from individual 
polyps.  (b) Boxplot of the difference between tissue and skeleton of individual B. elegans corals. The boxplot 
shows the mean, first and third quartile, maxima, and minima. Individual data points are overlaid on the plot. 
Colors correspond to respective sampling campaigns. 
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(collected between 11:40 and 14:20 on August 2, 2021) were relatively well-mixed (salinity 30, temperature 637 
11.8˚C), with fresher and warmer water restricted to the near surface (≤ 5 m), whereas ebb-tide profiles (collected 638 
at 9:00 on August 2, 2023) showed a progressive decrease in salinity from 30 to 27 and a corresponding increase 639 
in temperature from 11.8˚C at 35 m to 14.5˚C at the surface.  640 

Nitrate concentrations were nearly uniform with depth during flood tide (~20 µmol L-1), decreasing slightly at 641 
5 m, whereas during ebb tide nitrate concentrations decreased progressively from 20 to 10 µmol L-1 between 30 642 
and 10 m (Figure 6c). Nitrate concentrations in samples collected during the other sampling campaigns ranged 643 
from 12 to 32 µmol L-1, and appeared generally higher at stations visited during the September and November 644 
2020 campaigns compared to those in April and August 2021 (Figure S6).  645 

Depth profiles collected in August 2021 revealed uniform nitrate δ15N values of ~7 ‰ at 30 m among 646 
profiles. In well-mixed profiles, nitrate δ15N increased slightly to 7.5 ‰ above 10 m. In stratified profile, nitrate 647 
δ15N increased progressively to 8.2 ‰ at 10 m (Figure 6d). Among all sampling campaigns, the δ15N of nitrate 648 
ranged from 6.1 ‰ to 8.2 ‰, with median values of 6.8 ± 0.4 ‰ (Figure 7a). The relationship between nitrate 649 
δ15N and nitrate concentration in August 2021 was fit to a closed-system Rayleigh distillation model (Mariotti et 650 
al. 1981), suggesting a nitrate assimilation isotope effect of 1.5 ± 0.1 ‰ (Figure 8). 651 

The δ15N of SPOM collected at depths above 35 m near Friday Harbor during the different sampling 652 
campaigns ranged from 1.6 to 11.7 ‰, averaging 5.7 ± 1.7 ‰ (Figure 7b). Values were lowest for the four 653 
samples collected in April (4.4 ± 0.4 ‰), and highest for the four samples collected in September and November 654 
(6.2 ± 2.6 ‰), although these trends may be an artifact of the low data density in April (n = 4) and Sept./Nov. (n 655 
= 5) relative to August 2021 (n = 29), at which time the observed range of δ15N subsumed that in the other two 656 

Figure 6. Depth profiles during the August 2021 sampling campaign of (a) salinity, (b) temperature, (c) nitrate 
concentration, (d) the δ15N of nitrate for analytical replicates and (e) the δ15N of SPOM of replicate samples (n 
≥ 2). Green and red symbols correspond to flood tide (collected between 11:00am and 2:00pm on August 2, 
2021), blue symbols correspond to ebb tide (collected at 9:00am on August 3, 2021). 
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campaigns. Values did not differ coherently with depth in August 2021, although any potential depth structure 664 
was obscured by the large variability among sample replicates (Figure 6e). 665 

The δ15N of material collected in net tows (120 µm mesh size) during sampling campaigns in September 2020, 666 
and June 2021 ranged between 7.9 to 8.8 ‰ (Figure 7c). Material collected in net tows of 80 µm and 150 µm 667 
mesh size in August 2021 and separated by size class post-collection revealed a coherent δ15N increase with size 668 
class (Figure 7c; Figure 9). The ≥ 80 µm size class had a mean δ15N of 6.0 ± 0.3 ‰ whereas that ≥ 500 µm had an 669 
average δ15N of 8.0 ± 0.8 ‰, which was significantly greater than the δ15N of the other size classes (ANOVA, p-670 
value <0.05). 671 

4. Discussion 672 

This study of B. elegans provides novel constraints on the trophic ecology of scleractinian CWCs. Foremost, 673 
our observations of B. elegans collectively suggest that the relatively large global δ15N offset of 8-9 ‰ between 674 
CWC skeletal tissue and the δ15N of PON exported from the surface ocean is neither explained by a large 675 
difference between tissue and skeleton δ15N, nor by an unusually large trophic isotope effect. Further, controlled 676 

Figure 7. Boxplots of aqueous and particulate N pools at respective sampling times. (a) The δ15N of 
nitrate from samples above 30 m collected during respective sampling campaigns. (b) The δ15N of 
suspended particulate organic matter (SPOM) at sites near Friday Harbor during respective sampling 
campaigns. (c) The δ15N of net tows (≥ 120 µm mesh size) conducted during respective sampling 
campaigns. 
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feeding experiments yielded direct estimates of the trophic isotope effect and the corresponding N turnover rate 677 
of B. elegans soft tissue. Examination of soft tissue δ15N of wild specimens in relation to regional hydrography 678 
and food web components near Friday Harbor leads us to conclude that B. elegans feeds predominantly metazoan 679 
zooplankton prey, implicating more than one trophic transfer between exported PON and coral soft tissue. We 680 
contextualize our findings to existing studies of CWC trophic ecology and discuss the implications of considering 681 
a two-level trophic transfer for paleo-reconstructions of ocean N cycling using B. elegans and CWCs more 682 
generally.  683 

4.1 Culture experiments revealed a normal trophic isotope effect 684 

We investigated whether the large difference in δ15N between PON export from the surface and coral 685 
skeleton-bound δ15N (8-9 ‰) observed by Wang et al. (2014) could arise from an unusually large trophic level 686 
offset specific to CWCs. The long-term feeding experiment of B. elegans polyps revealed a ‘normal’ trophic 687 

Figure 8. Rayleigh plot of nitrate δ15N vs. ln of nitrate concentration for samples collected from the surface to 
40 m around Friday Harbor. The isotope effect of ~1.5 ± 0.1 ‰ corresponds to the slope of the best fit linear 
regression line for the August 2021 data, 𝛿()𝑁234 = 11.7 − 1.5	ln	[𝑁𝑂40].  
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isotopic offset between coral tissue and diet of ε = +3.0 ± 0.1 ‰. This value conforms to the expected range of 691 
+3.4 ± 1.1 ‰ for a single trophic level offset in δ15N (Minagawa and Wada, 1984).  692 

 693 

 694 

To support the above conclusion, we assess the assumptions inherent to the isotope mixing model (Eq. 1) 695 
used to derive ε and the corresponding nitrogen turnover rate from our culture data. First, the model only 696 
accounts for the turnover of a single pool of N, requiring the assumption that all N in the coral polyp tissues 697 
equilibrate at the same rate. This notion is unlikely to be wholly accurate, as fluxes of N may vary among tissue 698 
types. However, given the relatively low resolution of our sampling over the course of the culture experiments 699 
(necessary due to constraints on numbers of total samples) we are unable to extend our model to one with 700 
multiple pools (e.g. as in Ayliffe et al. 2004). As soft tissues of individual coral polyps were homogenized, we 701 
suggest that the d15N values and corresponding estimate of ε thus represent the average of soft tissues with 702 
potentially different turnover rates. The estimates of ε and N turnover rate further rely on the assumption that the 703 

Figure 9. Boxplots of net tow material collected above 30 m in August 2021, separated by size class. 
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nutritional quality of the respective diets among treatments was equivalent, as trophic isotope effects can be 712 
sensitive to food type. Diets low in protein can be associated with greater ε values due to internal recycling of 713 
nitrogen (Adams and Sterner, 2000; Webb et al., 1998). For instance, locusts fed a low protein diet were enriched 714 
5.1 ‰ from their diet, compared to 2.3‰ for those fed a high protein diet (Webb et al., 1998). Conversely, a 715 
compilation of studies of various metazoan consumers raised on controlled diets suggests that high protein diets 716 
generally result in higher trophic isotope effects (~3.3 ‰) compared to more herbivorous diets (~2.2 ‰), a 717 
dynamic ascribed to higher rates of N excretion to assimilation in consumers fed high protein diets (McCutchan 718 
Jr et al., 2003). As noted in Table S3 and in Section 2.3.1, our Artemia prey had similar C:N ratios among 719 
treatments, in line with our model treatment. Finally, our model assumes that N turnover was dominated by 720 
metabolic tissue replacement, rather than net growth, consistent with the observation that adult B. elegans growth 721 
is slow (Gerrodette 1981).   722 

Equation 1 could be invalidated if the corals can access nutritional N sources other than N in Artemia, given 723 
that the model assumes that Artemia are the only source of N to corals in our experiment. Biological N2 fixation 724 
and chemoautotrophy have been detected in association with CWC holobionts, providing some N nutrition to the 725 
corals (Middelburg et al., 2016). Our trophic isotope effect estimate was in the range expected for a single trophic 726 
transfer, arguably suggesting that N2 fixation, if occurring, was not a substantial contribution to the corals’ 727 
nutrition; it would otherwise result in a lower value of ε given a δ15N contribution of -1 to 0 ‰ (Carpenter et al. 728 
1997). That the trophic isotope effect of the poorly fed corals did not differ from that of corals that were well-fed 729 
also argues for no sources of N additional to the Artemia, as starved corals would presumably increase their 730 
reliance on said source. In a related vein, N recycling between the B. elegans specimens and potential microbial 731 
symbionts (e.g. Middelburg et al. 2016) could also dampen the trophic isotope effect relative to the Artemia prey 732 
and yield an over-estimate of soft tissue turnover rate for N. The normal trophic isotope effect indicated here 733 
suggests a modest role of N retention and recycling by microbial symbionts, in contrast to tropical symbiotic 734 
corals wherein bacterial symbionts promote substantial N retention and recycling, and consequently lower trophic 735 
isotope effects (Tanaka et al. 2018). Finally, the validity of our estimates could be sensitive to differences in 736 
feeding rates, which can influence the rate of N turnover of tissues (Martínez del Rio and Carleton, 2012; Rangel 737 
et al., 2019). Corals were fed at identical times among treatments, at a relatively high feeding rate (Crook et al., 738 
2013). However, given the limited number of studies on feeding in B. elegans, it is difficult to compare our 739 
feeding strategy and that of this species’ natural environment. Overall, we consider that the mixing model 740 
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described by Equation 1 is appropriate to derive the first-order trophic isotope effect and turnover rate of B. 756 
elegans. 757 

Changes in metabolism due to underfeeding or prolonged fasting have the potential to increase trophic-level 758 
isotope offsets due to increased protein metabolism (Adams and Sterner, 2000). For instance, extensive amino 759 
acid recycling in overwintered adult insect larvae was cited to explain trophic isotope effects upward of 10‰ 760 
(Scrimgeour et al., 1995). A meta-analysis on the effects of starvation on consumer δ15N revealed that starvation 761 
generally led to increased organism δ15N by an average of 0.5 ‰, up to 4.3 ‰ (Doi et al., 2017). This dynamic 762 
was documented for the tropical symbiotic coral Stylophora phistillata, where heterotrophically starved corals 763 
were enriched in δ15N by ~0.5 ‰ compared to frequently fed corals (Reynaud et al., 2009). The trophic isotope 764 
offset of B. elegans soft tissue relative to its diet, ε, was not discernibly influenced by near starvation; that of 765 
corals fed once every other week was similar to that of corals fed twice a week – in spite of visible signs of stress 766 
among the former, including relatively more sluggish feeding (Figure S7) and thinner soft tissue (data not 767 
shown). Deep sea coral reefs are often highly productive environments with high levels of biodiversity, 768 
commensurate with a relatively high food supply (Duineveld et al., 2007; 2004; Genin et al., 1986; Roberts et al., 769 
2006; Soetaert et al., 2016; Thiem et al., 2006; Cathalot et al. 2015). Nevertheless, periodicity and spatial 770 
heterogeneity in the food supply of CWC reefs implicate periods of lower food density (e.g., Duineveld et al. 771 
2007). High currents, downwelling and/or vertically migrating zooplankton temporally boost the export of 772 
surface organic matter to the seabed, creating ‘feast’ conditions, interspersed with ‘famine’ periods during the 773 
non-productive season (Maier et al. 2023). Regardless, our trials suggest that starvation, if pertinent to CWC 774 
communities, does not result in greater-than-expected trophic isotope offsets, at least for B. elegans.  775 

4.2 Turnover rate for B. elegans 776 

We report the first estimate of the nitrogen turnover for a non-symbiotic cold-water coral of 291 ± 15 days 777 
for B. elegans soft tissue. This value falls within the range of existing estimates for tropical symbiotic corals. 778 
Pulse-chase experiments with 15N-nitrate conducted with fragments of the tropical symbiotic coral Porites 779 
cylindrica yielded a N turnover time of 370 days, and of 210 days for the tropical symbiotic coral Acropora 780 
pulcra (Tanaka et al. 2006; 2018). These relatively long turnover times are attributed to the recycling and 781 
retention of N within the coral-symbiont system in nutrient-deplete ecosystems. In comparison, the corresponding 782 
carbon turnover in A. pulcra was 18 days – compared to 210 days for N – because the system is ultimately N 783 
limited (Tanaka et al., 2006). Tanaka et al. (2018) inferred that the N turnover in P. cylindrica would be 784 
substantially faster than 370 days without symbionts, on the order of 56 days based on estimates of polyp-specific 785 
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N uptake rates. Nevertheless, the N turnover estimated for the tropical symbiotic coral Porites lutea was notably 792 
shorter that A. pulcra and P. cylindrica, on the order of 87 days (Rangel et al., 2019), implicating different N 793 
nutritional strategies among symbiotic coral groups and/or ecosystems. The N turnover for B. elegans estimated 794 
here is of the same order as but still longer than that for tropical symbiotic corals suggesting that cold-water 795 
species have lower metabolic and growth rates compared to tropical symbiotic species, although efficient N 796 
recycling has also been documented previously in cold-water corals (Middelburg et al. 2016). The slower 797 
turnover of CWCs relative to their symbiotic tropical counterparts may reflect the lower temperatures of the 798 
former’s habitats (Miller, 1995; Thomas and Crowther 2015).  799 

Constraints on N turnover also allow for calibration of the temporal resolution that is achievable with the 800 
CWCs δ15N proxy for marine N cycling. Corals are constantly accreting skeleton, such that coral proxies have the 801 
potential to provide annual resolution (e.g., Adkins et al. 2004). In theory, a rapid N turnover in CWC could 802 
record seasonal changes in regional N dynamics. A turnover time of 291 ± 15 days for N in B. elegans soft tissue, 803 
however, signifies that the δ15N of coral skeleton is unlikely to provide a faithful record of seasonal differences in 804 
the δ15N of the coral diet. Moreover, the turnover of the pool of N that sources the skeletal tissue may be different 805 
from that of bulk tissue, and thus decoupled from the soft tissue turnover rate. We suggest that CWCs can likely 806 
record changes in their diet on annual or longer timescales, compatible with the ability to date CWC with 807 
subdecadal resolution (Adkins et al. 2004).  808 

4.3 Soft tissue vs. skeleton δ15N  809 

A large biosynthetic δ15N offset between the coral soft tissue and its skeleton could conceivably account for a 810 
large δ15N offset between coral skeleton-bound organic matter and N of export that is not explained by single 811 
trophic level enrichment of ~3 ‰. However, the mean difference between soft tissue and skeleton-bound δ15N 812 
among B. elegans specimens collected at Friday Harbor was relatively modest, on the order of +1.2 ‰, ranging 813 
between +0.5 and +2.2 ‰. The observed range was dictated primarily by the variability in the δ15N of the coral 814 
soft tissue, as skeleton-associated δ15N values were relatively invariant among specimens sampled from different 815 
locations and field seasons – likely due to the fact that the amount of skeleton analyzed represented multiple 816 
years of growth. The amount of skeleton-bound organic N is small relative to aragonite mass (2-5 µmol N per g 817 
of skeleton in our samples), such that homogenization of 50-100 mg aragonite fragments may alias seasonally-818 
driven variability in skeletal δ15N. Soft tissue values in spring were ~1.5 ‰ higher than in summer and fall, such 819 
that they appeared to record seasonal changes in diet (Figure 5a). In this regard, the asymptotic nature of the two 820 
end-member isotope mixing model (Eq. 1) renders B. elegans’s soft tissue sensitive to seasonal changes in prey 821 
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δ15N, but not likely to reach isotopic equilibrium on seasonal timescales - given an N turnover of ~291 days, as 828 
discussed above. Seasonal variations in the δ15N of the food source of B. elegans near Friday Harbor could arise 829 
from corresponding differences in the δ15N of nitrate entrained to the surface driven by seasonal hydrographic 830 
variability around San Juan archipelago, in the extent of surface nitrate consumption, in food web structure, or 831 
from some combination of these. The data density among all but the August 2021 sampling campaign is too 832 
sparse to be conclusive in this regard. Otherwise, the observed differences in soft tissue δ15N may result from 833 
spatial heterogeneity in food source δ15N among the different collection sites visited for respective campaigns at 834 
Friday Harbor.  835 

As documented here for B. elegans, the δ15N difference between coral tissue and skeleton appears to be 836 
modest among various scleractinian coral species. Specimens of the symbiotic tropical coral Porites lutea showed 837 
a δ15N offset of +1.1 ‰ between skeleton and soft tissue, whereas the symbiotic tropical coral Favia stelligera 838 
revealed an insignificant offset of -0.1 ‰ (Erler et al., 2015). Similarly, no offset was observed for proteinaceous 839 
cold-water corals of the genus Lepidisis collected off Tasmania (Sherwood et al., 2009), whereas an offset of -1.9 840 
± 0.8 ‰, was reported for cold-water proteinaceous corals of the genus Primnoa from the Gulf of Alaska, 841 
Isadella from the Central California Margin, and Kulamanamana from the North Pacific Subtropical Gyre 842 
(McMahon et al., 2018). Conversely, a study of numerous species of both symbiotic and non-symbiotic corals 843 
reported a +4 ‰ offset between the skeletal organic matrix and soft tissue among the non-symbiotic corals 844 
specifically, but no difference among the symbiotic corals (Muscatine et al., 2005), suggesting that biosynthetic 845 
offsets may occur for certain CWC species or conditions. 846 

4.4  Implications for components of CWC diet 847 

Cold water corals are considered opportunistic feeders, ingesting whatever is available in the water column 848 
(Mortensen, 2001; Freiwald, 2002; Duineveld et al. 2004; 2007; Kiriakoulakis et al. 2005; Carlier et al. 2009; 849 
Dodds et al. 2009; van Oevelen et al. 2009). They are reported to feed on zooplankton (Kiriakoulakis et al., 2005; 850 
Naumann et al., 2011), including microzooplankton (Houlbrèque et al. 2004), on phytoplankton and 851 
phytodetritus, including the bacterial fraction of phytodetritus (Maier et al., 2020; Houlbrèque et al. 2004), 852 
dissolved organic matter (Mueller et al., 2014; Ferrier 1991, Al-Moghrabi et al. 1993; Hoegh-Guldberg & 853 
Williamson 1999; Houlbrèque et al. 2004; Grover et al. 2008), and the CWC holobiont has been observed to 854 
display biological N2  fixation and chemoautotrophy (Middelburg et al. 2016). While it is clear that corals may be 855 
able to consume a variety of components within the food web, the soft tissue δ15N of B. elegans specimens 856 
collected at Friday Harbor averaged 12.0 ‰, signifying that they fed on material with a δ15N of approximately 857 
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9.0 ‰ – accounting for a normal trophic offset relative to their diet (3 ‰) confirmed by our culture experiment 862 
results. Here, we seek to determine the primary nutrition source for B. elegans at Friday Harbor by comparing the 863 
δ15N of these corals’ expected diet with measured δ15N of different food web components including SPOM and 864 
net tow material. 865 

We first explore whether the SPOM fraction of the food web was the dominant component of B. elegans’ diet 866 
at Friday Harbor. SPOM is operationally defined as the particulate material retained onto glass fiber filters (GF/F, 867 
0.7µm nominal pore size) from filtered aqueous samples. At the ocean surface, including at the stations near 868 
Friday Harbor, SPOM is generally dominated by phytoplankton material. At the ocean subsurface, below the 869 
euphotic zone, SPOM derives from organic material exiting the ocean surface, but is considered a distinct pool 870 
from the ballasted sinking PON collected in sediment traps. The δ15N of SPOM typically increases with depth, 871 
with the steepest gradient across the 100-300 m depth interval, reaching upwards of ~4-5 ‰ in the ocean 872 
subsurface, which are higher values than the corresponding sinking particles at abyssal depths due to recycling 873 
and remineralization (Altabet, 1988; Casciotti et al., 2008; Saino and Hattori, 1987). Wang et al. (2014) reasoned 874 
that because the δ15N of SPOM is approximately one trophic level lower that of the N preserved in skeletons of 875 
the deep-dwelling (deeper than ~ 500 m) CWC Desmophyllum dianthus, and because suspended particles are the 876 
most abundant form of small particles in the deep ocean, cold-water corals must feed predominantly on SPOM. 877 
However, SPOM collected in the upper 30 meters near Friday Harbor was 5.7 ± 1.7 ‰, which is ~ 6 ‰ lower 878 
than B. elegans soft tissue, a difference greater than expected for a single trophic level. Thus, the SPOM at Friday 879 
Harbor was evidently not the predominant food source for B. elegans growing in this depth interval.  880 

Additionally, it has been suggested that CWCs can assimilate dissolved organic nitrogen (DON) (Gori et al., 881 
2014). We do not have δ15N DON measurements from our field study. However, we do not expect the potential 882 
assimilation of DON to explain the elevated δ15N of organic tissue that was observed. There are two components 883 
of marine DON, refractory and labile (Bronk et al. 2002), which have different δ15N (Knapp et al. 2018). At 884 
Friday Harbor, we don’t know the partitioning of the δ15N between these pools, but even if we did, the labile 885 
fraction (which would presumably be the pool available to corals) is expected to converge on the δ15N value of 886 
SPOM (Bronk et al., 2002, Sigman and Fripiat 2019 their Fig. 4; Knapp et al., 2018, Zhang et al., 2020), given 887 
that the most recently produced DON is generally most labile. As a result, consumption of DON would not 888 
explain the high δ15N of coral organic tissue. 889 

 Instead, we suggest that the relatively high δ15N of ~ 12 ‰ of B. elegans soft tissue at Friday Harbor results 890 
from these corals deriving nutrition predominantly from larger metazoan zooplankton. Indeed, this is supported 891 
by a comparison of the δ15N coral tissue and the δ15N of the largest size class of net tow material (≥ 500 µm) of 892 
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8.0 ± 0.8 ‰. This is the only component of the organic matter nitrogen budget that is offset from the coral tissue 921 
by ~ 3.5 ‰, consistent with one trophic level transfer. Additionally, the net tow material had a molar C:N ratio of 922 
4.4 ± 0.6, compared to 6.5 ± 2.2 for the SPOM (Figure S8), suggesting a dietary preference for metazoan 923 
zooplankton would provide higher protein content and nutritional density for these corals (Adams and Sterner, 924 
2000).  925 

Despite evidence for zooplankton as the main dietary source for B. elegans at Friday Harbor, we 926 
acknowledge that this feeding strategy may not apply for corals of other species living in habitats that are 927 
hundreds to thousands of meters deep. As pointed out in a recent review (Maier et al. 2023), the presence of 928 
CWC reefs in the food-limited deep ocean appears paradoxical, and it is not likely that the food available to 929 
corals at Friday Harbor looks identical to food available to corals living at >1000 m water depth. Indeed, Maier et 930 
al. 2023 suggest that the biodiversity and productivity of CWC reefs in the deep sea are supported by a number of 931 
processes such as CWC’s ability to consume a range of dietary components (DOM, bacterioplankton, inorganic 932 
resources such and inorganic C and ammonium), efficient resource recycling, and their ability to align their 933 
feeding strategies and growth with fluctuations in food availability.  While we cannot speculate about the flux of 934 
DOM to corals living at >1000m depth, the δ15N of deep DOM has a uniform value of ~5 ‰, which cannot 935 
explain the high δ15N of CWCs (see Sigman and Fripiat, 2019). 936 

Maier et al. (2023) and references therein highlight that most deep CWC reefs occur in regions with higher-937 
than-average annual primary productivity, indicating that these CWC reefs are sustained by inputs of high energy 938 
to the system, where there is also evidence for the presence of vertically migrating zooplankton. The vertically 939 
migrating zooplankton have been found near both relatively shallow (<200 m, Duineveld et al. 2007, Garcia-940 
Herrera et al., 2022) and deep (~1000 m, e.g. Carlier et al. 2009) CWC reefs. Moreover, there are a number of 941 
other independent studies that reveal a single trophic level offset between the δ15N of zooplankton prey and the 942 
δ15N soft tissue of asymbiotic scleractinian corals at specific sites (Duineveld et al., 2004, Sherwood et al. 2005; 943 
2008; 2009; Carlier et al., 2009; Hill et al., 2014; Maier et al., 2020). Given the ‘normal’ trophic level offset 944 
reported for CWCs in our laboratory culture experiment, these published observations underscore that 945 
zooplankton could be a dominant dietary component of corals other than B. elegans as well. Additional evidence 946 
from lipid biomarkers corroborates the assertion that deep-dwelling CWC species such Lophelia pertusa 947 
(recently re-classified as Desmophyllum pertusum) and Madrepora oculata feed predominantly on metazoan 948 
zooplankton (Dodds et al., 2009; Kiriakoulakis et al., 2005; Naumann et al. 2015). Some deep-dwelling CWCs 949 
(Desmophylum pertusum, Madrepora oculata, Dendrophyllia cornigera) exhibit prey preference for larger 950 
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zooplankton (Da Ros et al. 2022), suggesting that zooplankton prey are an essential component of their diet. 965 
Indeed, an exclusive diet of phytodetritus (Maier et al. 2019) and the exclusion of zooplankton from diet 966 
(Naumann et al. 2011) led to decreases in coral metabolism. More fundamentally, the shared traits of tentacles 967 
and nematocysts are evidence of a predatory life strategy, indicating that zooplankton are an important food 968 
source for corals (Lewis and Price, 1975; Sebens et al., 1996). The coral morphology of B. elegans and that of 969 
other cold water scleractinian corals is consistent with an adaptation for the capture of prey of a commensurate 970 
size (Fautin, 2009). Correspondingly, D. dianthus is considered to be a generalized zooplankton predator that can 971 
prey on medium to large copepods and euphasiids (Höfer et al., 2018). In contrast, gorgonian corals do not 972 
capture naturally occurring zooplankton and have a correspondingly low density of nematocysts (Lasker 1981). 973 
In summary, while our data cannot directly indicate that all CWCs, including the deep-dwelling ones, derive their 974 
primary nutrition from zooplankton, the results of our trophic experiment and field study (when evaluated in the 975 
context of the published literature) suggest that it may be important to consider metazooplankton as a significant 976 
component of CWC diet, and that CWC δ15N is likely to be sensitive to food web dynamics. We discuss the 977 
implications of these suggestions further in the sections below.  978 

4.5 Does coral-bound δ15N reflect surface ocean processes at Friday Harbor? 979 

The effectiveness of coral skeleton-bound δ15N as an archive to reconstruct past ocean N cycling depends on 980 
its ability to record the δ15N of the surface PON export. In turn, the δ15N imparted to the phytoplankton 981 
component of surface particles, from which PON export derives, is highly dependent on surface ocean dynamics 982 
that influence the degree of nitrate consumption and associated isotope fractionation. Here, we describe local 983 
marine N cycling dynamics in order to evaluate whether coral-bound δ15N recorded in the B. elegans specimens 984 
reflects local surface ocean processes.  985 

Given complete assimilation of inorganic N pools, the δ15N of phytoplankton material - the dominant 986 
component of SPOM at the surface ocean - converges on the δ15N of the N sources, new nitrate and recycled N 987 
sources (Treibergs et al., 2014; Fawcett et al. 2011). At steady state, the δ15N of the sinking PON flux reflects the 988 
isotope signature of the nitrate upwelled to the surface (Altabet, 1988). Alternatively, given partial nitrate 989 
consumption in the context of a finite pool (Rayleigh dynamic), such as in high-nutrient low-chlorophyll regions 990 
and in upwelling systems, the SPOM δ15N is fractionated relative to the nitrate δ15N as function of the 991 
assimilation isotope effect and the extent of nitrate consumption (Sigman et al., 1999). The δ15N of the sinking 992 
flux then reflects both the δ15N of nitrate upwelled to the surface and the degree of nitrate consumption (Altabet 993 
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and François 1994; François et al. 1997). In this section, we discuss whether coral-bound δ15N reflects the δ15N of 1115 
nitrate entrained to the surface.  1116 

Nitrate assimilation at Friday Harbor appeared to be incomplete, potentially implicating the fractionation of 1117 
N isotopes between nitrate and biomass. Although depleted nitrate concentrations are generally expected at 1118 
coastal sites during the summer in density stratified water column due to phytoplankton assimilation, nitrate 1119 
concentrations at Friday Harbor in August of 2021 were upwards of 15 µM at the surface and 20 µM at 30 m 1120 
depth. Indeed, nitrate in the San Juan Channel is replete year-round, even at the surface, due to vigorous mixing 1121 
within the channel (Mackas and Harrison, 1997; Murray et al., 2015).  1122 

The region experiences tidal mixing, designating it as a well-mixed estuary with minimal density 1123 
stratification (Banas et al., 1999; Mackas and Harrison, 1997). The tidal influence is clearly identified from the 1124 
diurnal patterns of vertical hydrographic structure variability with the salinity/temperature gradients changing 1125 
with the tidal phase (Figure 6a and b). The tidal pumping drives vertical mixing between high nutrient deep water 1126 
from the Juan de Fuca Strait and fresher surface water from the Strait of Georgia (Banas et al., 1999; Lewis, 1127 
1978; Murray et al., 2015; Mackas and Harrison, 1997). Nutrient concentrations in the surface Georgia Strait vary 1128 
seasonally and are depleted during the summer at the stratified, fresher surface (Del Bel Belluz et al., 2021; 1129 
Mackas and Harrison, 1997). Our temperature-salinity plot in August 2021 reflects end-member mixing between 1130 
more saline/colder water from the Juan de Fuca Strait with fresher/warmer surface water from the Georgia Strait 1131 
(Figure S9; Banas et al., 1999). The influence of Georgia Strait surface water is recognized by the salinity 1132 
minima originating from the outflow of the Fraser River (Figures S10; Mackas and Harrison, 1997). The nitrate 1133 
profiles in August 2021, though collected with a lower vertical resolution, do show diurnal variability in vertical 1134 
gradients similar to salinity/temperature, consistent with the tidal mixing effect (Figure 6c). 1135 

The δ15N of nitrate measured at stations near Friday Harbor also corroborate the mixing of nitrate-rich deeper 1136 
water with nitrate-deplete surface water from Georgia Strait. The apparent isotope effect for nitrate assimilation 1137 
in August 2021 was ~1.5 ‰, markedly lower than the canonical value of 5 ‰ associated with nitrate assimilation 1138 
by surface ocean phytoplankton communities (DiFiore et al., 2006; Sigman et al., 1999; Altabet and François, 1139 
1994). A low apparent isotope effect is consistent with two end-member mixing of lower d15N, nitrate-rich water 1140 

with highly fractionated (high d15N), low-nitrate water (Sigman et al., 1999). Highly fractionated nitrate, in turn, 1141 
likely originated from nutrient-depleted Georgia Strait surface waters entrained into the Channel Islands. The 1142 
linear relationship between salinity and nitrate concentration in August 2021 further substantiates physical 1143 
mixing as the dominant control on nitrate concentrations and isotope ratios in San Juan Channel (Figure S10; 1144 
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Mackas and Harrison, 1997). Moreover, the δ15N of nitrate was relatively uniform with depth, indicating effective 1166 
vertical mixing of the Georgia Strait and Juan de Fuca Strait water masses. The relatively slight decrease in 1167 
nitrate δ15N with depth suggests a secondary influence of local nitrate assimilation on its concentration and 1168 
isotope ratios.  1169 

The corresponding δ15N of SPOM at Friday Harbor covered a broad range, from 4.2 ‰ to 8.7 ‰ in August 1170 
2021. The depth distribution of SPOM did not mirror the corresponding nitrate δ15N profile, as could otherwise 1171 
be expected. At the stratified near-surface (5 m) at station 1, the δ15N of SPOM averaged 4.2 ‰ compared to 7.4 1172 
‰ for nitrate. In the context of Rayleigh fractionation, this result suggests that particulate material at the surface 1173 
consisted primarily of the instantaneous product of nitrate assimilation (Mariotti et al., 1981). The lower δ15N 1174 
SPOM values could also reflect some degree of reliance on regenerated N species, which would result in δ15N of 1175 
SPOM lower than that of incident nitrate (Fawcett et al., 2011; Lourey et al., 2003; Treibergs et al., 2014). 1176 
Deeper in the water column, the δ15N of SPOM converged on the δ15N of incident nitrate, between 6 and 7‰, 1177 
suggesting that SPOM derived from the complete consumption of an incident nitrate pool (even though nitrate 1178 
was present at these depths). Phytoplankton at these depths may thus have originated from surface water 1179 
entrained from the Strait of Georgia – where nitrate was completely utilized. The above dynamics complicate 1180 
validation of the offset between δ15N of exported PON and coral-bound δ15N. Yet we find little evidence for 1181 
nitrate fractionation from partial assimilation on  d15N of phytoplankton SPOM, which suggests that the δ15N 1182 
imparted on local B. elegans skeletons should reflect the δ15N of nitrate entrained to the surface. The ~ 7‰ 1183 
difference between coral skeleton d15N (~13.5‰) and the entrained nitrate (~6.5‰) is similar to the empirical 1184 
range of 7 - 9‰ reported  for other CWC species, (e.g. D. petusa,  Kiriakoulakis et al., 2005) and D. dianthus 1185 
(Wang et al. 2014) and suggests that B. elegans provides a record of the thermocline nitrate  d15N and surface 1186 
nutrient dynamics at Friday Harbor.  1187 

5. Conclusions and implications for paleo-reconstruction from coral δ15N 1188 

We conclude that the solitary scleractinian cold water coral B. elegans in Friday Harbor, WA predominantly 1189 
derives nutrition from metazoan zooplankton prey. While our study was limited to a shallow field site, our 1190 
isotope feeding experiment, evaluated alongside previously published studies, points to the possibility that 1191 
deeper-dwelling CWCs could also rely on zooplankton prey as a fundamental component of their diet. SPOM 1192 
may contribute to these CWCs’ diet, but it cannot be presumed to exclusively account for the large offset 1193 
between δ15N of PON export and coral skeleton δ15N documented by Wang et al. (2014). The δ15N of skeletal 1194 
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material recovered from coral archives is thus likely to be sensitive to local food web dynamics; for a given δ15N 1291 
of sinking PON exiting the surface ocean, the δ15N recorded by CWC may differ among individuals of the same 1292 
species feeding on different zooplankton prey, depending on availability. In fact, Wang et al. (2014) did report a 1293 
“natural variability” of 1-1.5‰ within a single specimen that might have resulted from some variability of the 1294 
local food web on a short time scale of few years. Some studies have documented an increase in the degree of 1295 
carnivory of zooplankton with depth (Dodds et al., 2009; Vinogradov, 1962). For instance, Hannides et al. (2013) 1296 
recorded a 3.5 ‰ increase in zooplankton δ15N from 150 m to 1000 m in the Subtropical North Pacific, with the 1297 
steepest rate of increase from 100 – 300 m. Koppelmann et al. (2009) reported a similar pattern of 1298 

zooplankton d15N through the water column. These findings could explain previous reports of small but 1299 
resolvable (1-2 ‰) depth-dependencies of coral δ15N (Wang et al. 2014) if corals feed predominantly on 1300 
zooplankton with depth-dependent degree of carnivory of zooplankton and increasing with depth d15N. The δ15N 1301 
recorded in CWC skeletons also tends to differ among species by 1-2‰, as respective species occupy different 1302 
nutritional niches (Teece et al., 2011). The relationship between CWC species represented in fossil archives to 1303 
the depth structure of their zooplankton prey warrants further investigation. 1304 

Consideration of the possible dependence of coral-bound δ15N on food web dynamics informs the questions 1305 
that can be competently addressed by this proxy. Although we do not have direct estimates of the δ15N range that 1306 
can be expected from local food web variability, the scatter around the global compilation of Wang et al. (2014) 1307 
for coral-bound δ15N of D. dianthus relative to the δ15N of PON suggests that this range is modest, on the order of 1308 
~1-2 ‰. Given this range, we suggest that the coral-bound δ15N proxy will be most useful for reconstructing 1309 
larger environmental δ15N signals and where chosen coral samples belong to the same species and are collected at 1310 
comparable depths as has already been successfully demonstrated by Wang et al. (2017), Studer et al.  (2018) and 1311 
Chen et al. (2023). If used in this way, the broad geographic and temporal coverage afforded by CWCs, the 1312 
opportunity to measure multiple proxies from individual specimens and the imperviousness of coral-bound δ15N 1313 
to diagenetic alteration render it a valuable paleo-proxy for reconstructing marine N cycling. 1314 

 1315 
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