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Referee #2  
The manuscript would benefit from much more explicit signposting throughout.  
The analyses are impressive but are presented in such a way that they feel separate and the 
reader must make their own logical steps. In addition, the manuscript lacks a critical analysis 
of the results and their connection to existing literature on BGC reconstructions. Adding text 
to connect all the sections together and references to other literature will allow readers to 
better understand the method and its applicability to the problem of sparse observations of 
BGC variables, even outside of ocean oxygen. 
 
We thank the reviewer for this general comment. We modified the presentation of the results 
following the above suggestions. 
 
General Comments:   
• “The manuscript would benefit from explicit signposting throughout its sections. The 
authors set out their hypotheses in the introduction but there are jumps between the results 
sections. The hypotheses focus on the regulation of O2 variability by IPV* yet most of the 
analyses approach IPV* and O2 separately (albeit connected by the PDO index).”   
 
We added signposting explicitly linking each subsection of the results to one of hypotheses 
and we significantly restructured the main text to help clarify our message.  
 
• “Additionally, hypothesis (3) seems to relate to regions where predictability is high, but 

in the results the identification of hotspots uses the residuals from the PDO regression, 
which is where predictability is low. The lack of signposting makes it difficult for the 
reader to understand the full implications of the previous analyses when a new analysis is 
introduced, and there is ambiguity as to how well the hypotheses have been answered in 
the conclusions section.”  
 

In the revision, we clarify that we isolate the PDO signal to verify if the low predictability in 
the N. Pacific (north of the ENSO region) is an issue of time scales (i.e. there is a low 
frequency PDO modulation with a high frequency ‘noise’ due to both atmospheric and 
oceanic variability. The PDO is indeed a lower frequency mode compared to ENSO and has 
most loading at higher latitudes, where weather ‘noise’ is greater). However, even when the 
PDO is isolated we do not find a strong anticorrelation between PDO-induced changes in IPV 
and PDO-induced changes in O2 in the E3SM forced simulation and there is large intermodel 
difference in the CMPI6 runs.  
In the original manuscript, the rational for running the hotspot analysis on the residual fields 
was motivated by the fact that the PDO-forced component is low frequency variability and 
does not vary much over time (b, i.e. the regression coefficient between the PDO-forced 
physical fields and the PDO index, does not depend on time, which is only contained in the 
PDO index, which is shown). In addition, we had verified that the changes in the mean 
essentially coincide with the trends (therefore we were not removing any significant 
information). Taken together, these two considerations imply that the extremes will not 
depend on the PDO forced contribution. This is indeed the case, but we should have used the 
whole signal. We do so now, and both the maps of the indicators and SED are essentially 
unchanged (see for example the figures below for historical and future SED). We thank the 
referee for this comment. 



 
Fig.1 Historical (and 1960-2014 period for the hindcast and ORAS4) SED index for the whole fields. 

  
          Fig.2 Future SED index for the whole fields. 

 
• “I am not sure why the PDO was chosen as the potential proxy for understanding 

upper-ocean O2 concentrations. A priori I would assume that ENSO would play a 
significant role, and the results show a connection between ENSO and predictability 
of IPV* and O2, whereas when looking at the PDO alone there appears to be a limited 
connection. In the introduction Ito et al (2019) is mentioned but some further 
explanation would be helpful.”  
 
Our focus is on the North Pacific, as stated in the Introduction, and outside the 
tropical band the PDO modulates the variability at climate scales more so than ENSO. 
As also explored in previous literature (for example, Ito et al. (2019)), the dominant 
mode of oxygen variability in the northern Pacific Ocean is correlated with the PDO 
index which explains about 25% of the variance. To further verify it in the present 
work, we computed the first EOF for the E3SM-2G hindcast 0-200m O2 and 
IPV*anomalies over 1960-2014 over the northern Pacific (20.5°N-69.5°N;115.5°E-
60.5°W) and the corresponding time series for the first principal component (pc1). 
The first EOF explains 25% of the oxygen variance and about 12% of the 
IPV*variance. The –pc1 shows a significant and strong correlation (Pearson’s R 
coefficient) with PDO timeseries computed using SST anomalies as detailed in the 
manuscript (R = 0.83, pval < 0.01 for O2, and R = -0.44, pval <0.01 for ipv*, after 
applying a 5-year moving means). The correlation with the PDO is higher than the 
one with ENSO, which is at most R = 0.34, pval < 0.01 for O2, after applying a 3-
month moving mean. This is consistent with previous knowledge that a coherent 
basin-wide pattern of oxygen variability is mostly associated with PDO in the 
northern Pacific Ocean. We included in the revised Introduction a clarification of this 



point and we discuss the outcome of the EOF analysis when indicating how we 
separate the PDO forced-component.  
 

• “Additionally, I would be interested in seeing the regression analysis using both ENSO 
and the PDO as predictors and seeing how the residuals depend on the climate indices 
used for the regression.”  
We computed the linear regression analysis using the ENSO index, with the same 
procedure used for PDO, obtaining similar b shapes of the coefficients -as to be expected 
- but much lower absolute values, further confirming that the effect of PDO is overall 
dominant in the regression. Color limits are +/-3 standard deviations of the ensembles as 
in the main text. We included this finding in the Supplementary Material.  

Fig. 3: 
Fig. 3 bIPV* (left) and bO2 (right) ENSO-regression coefficient maps with superposed contours of the ENSO 
and of the PDO+ and PDO- domains. The correlation coefficients among the corresponding maps for the same 
model or hindcast are also indicated. Color limits are fixed as +/- 3 standard deviations of the ensemble for each 
variable over the whole area.  

 
 
 

• “There is no discussion section, and the conclusions section seems to repeat the 
findings of the study without any connection to the wider literature. I would 
recommend changing Section 5 to “Discussion and Conclusions” (or adding a 
separate Discussions section) and including a critical analysis on the relationship of 
this study to other work on the PDO and North Pacific oxygen (e.g., Ito et al 2019) or 
to reconstruction efforts (e.g. Sharp et al., 2022).”   
 
We thank the referee for this comment. In the revision we provide a “Discussion and 
Conclusion” section that addresses the requested points. We extensively restructured 
the text to improve and extend it as suggested. Few examples of what we included: 
We added a discussion on how our findings align with Ito et al (2019) in identifying a 
cohesive basin-wide prevailing pattern of oxygen variability in the northern Pacific 
primarily associated to the Pacific Decadal Oscillation.  
We also discussed that reconstruction efforts (such as the one proposed in Sharp et al. 
(2022) for example) need to interpolate on a regular distribution, leading to additional 
uncertainty.  
We stress that our framework could help determine the large-scale predictability 
potential of any field of interest.  
We also included a discussion of the limitations of our work, as also stated elsewhere 
in this revision file. These include, for example, recognizing that oxygen 



concentrations in coastal areas are influenced by complex biophysical interactions and 
physical processes that state-of-the-art climate models currently cannot fully resolve. 
As a result, projected oxygen trends may exhibit variability even within subregions 
under the same scenario, as demonstrated in studies like Bograd et al. (2023) for 
EBUS. Analyzing coastal dynamics at the required scales would necessitate higher 
resolution models, which, if projected into the future, would use, however, CMIP6 
runs as boundary conditions.  
A more extensive discussion and critical analysis with regard of existing literature is 
also provided in the revised manuscript.  
 
  
• “I would like to see more discussion on the use of the CMIP6 ESMs. What are 
the implications of using relatively coarse-resolution models in this 
analysis? Particularly in the higher latitudes where eddy mixing is parameterized. 
What are the implications of having such a broad inter-model range in the results? It 
is not clear to me whether the emergent relationships are consistent enough across the 
models to justify the emphasis between IPV*, O2, and the PDO.” 
 
CMIP6 models are state-of-the-art in terms of climate prediction capabilities, but they 
are imperfect and limited in resolution. However, they are the only tool we have that 
allow for an evaluation of the decadal modes of climate variability, their impacts and 
their potential changes in a warming planet. Recognizing the biases these models 
have, we also analyzed a hindcast (E3SM-2G). Our goal is precisely to see if there is a 
relationship that is robust across models between large-scale climate modes of 
variability in the N Pacific and their impact on IPV and O2. If this was the case, 
independently of the PDO or ENSO representation - which may differ in each model - 
we could reasonably conclude that IPV, which can be monitored, for example through 
ARGO floats, could be used to track the large-scale variability of O2. This could also 
be done through models, where the resolution can be more easily increased if a simple 
(or no) biogeochemical module is included, and for which a validation can be 
conducted with less uncertainty on physical (instead of biogeochemical) variables due 
to the greater abundance of observations.  
Indeed, the variability across the models is, for some of our hypotheses, too large to 
reach any conclusion and the relationship not as strong as hypothesized on the base of 
the available sparse observations. At the same time, at least for the historical period, 
our analysis allows for identifying which models may be more realistic in its 
representation of the large-scale variability of the North Pacific. 
We expanded the Discussion and Conclusion section to include the points above.  

 
• “I would like to see some discussion on the use of predictability studies for 
real-world reconstructions. As I understand it, the predictability mentioned in this 
study assumes perfect knowledge at a time t of a specific field, either IPV* or O2 (for 
Section 4.1) or sea surface temperatures (for the PDO index used in the regression 
analysis in Section 4.2). However, T and S profiles from Argo are still irregularly 
distributed, which is a nontrivial problem for ocean reconstructions of both heat and 
salinity themselves (e.g., Smith and Murphy 2007, Cheng and Zhu 2016) and ocean 
BGC (e.g., Turner et al. 2023, Keppler et al. 2023)”. 
 
Models and analyses or hindcasts allow for testing if a system is predictable -
notwithstanding their biases -, or to calculate the potential predictability of a system. 
When using observations such as ARGO profiles, it is necessary to interpolate onto a 
regular distribution, which will increase the uncertainty. If the predictability potential 
is high, such an exercise will be worth it, if the potential predictability is low, futile. 
This assumes that the model(s) are capturing the main features driving the -in our case 



large scale – predictability.  We added a discussion point on the final section of the 
manuscript to reflect this comment.  
 

Specific Comments:  

Line 174: I am not familiar with this definition of extremes. Is there a reason you have not 
used a general quantile threshold or a distribution fit to characterize the extremes? As you use 
only one realization for each model, there is a nontrivial chance of “significant” changes in 
extremes due to internal variability.  
 
We thank the referee for this comment. Building on previous works (Falasca et al. (2019); 
Falasca et al (2022)), we expect the topology of a given model to remain relatively stable, i.e. 
we do not expect the member choice to significantly influence the calculation of extremes 
and hotspots with the chosen definition. We verified the robustness of our results, computing 
the extremes indicators of four randomly-chosen ensemble members of the CanESM5 model 
for the whole signals of IPV* and O2 for the historical periods. We found no significant 
changes in extremes and SED, as shown in the figures below.  

A major advantage of the hotspot definition chosen is that it accounts for changes in mean, 
variability and extremes at the same time in the identification of the hotspots. In other words, 
it accounts for the topology of the simulated climate fields, which can be characterized by 
considering all the three aspects together (as done also, implicitly, in d-Maps).  

The definition of extremes adopted aims at including information on seasons exceeding 
corresponding baseline extremes, without choosing a priori a threshold on the current 
distribution, which is especially relevant for comparing changes with respect to a reference 
baseline.  
 
 

 

Fig4. O2 (left) and IPV*(right) indicators for changes in extremes (historical, whole signal) for four different 
ensemble members of the CanESM5 model.  



 

Fig5. O2 (left) and IPV*(right) SED indices (historical, whole signal) for four different ensemble members of 
the CanESM5 model.  

 
Line 189: Why is the depth horizon set to the top 200 m? 
We set the depth horizon at 200m as it represents a reasonable trade-off between being in the 
upper thermocline, being deep enough to smooth the gas-exchange effects dominant at the 
surface, but not too deep as models tend to lose a good representation of variability 
(interannual and longer) when compared to observations.  
 
Line 193: What is the reasoning behind the choice of ESM models for the ensemble? Without 
choosing multiple realizations for each model and using 4 models, the ensemble seems quite 
small relative to the available CMIP6 output. Also it would be good to know which 
biogeochemical models each ESM employs in Table 1, even if biological oxygen cycling is 
outside the scope of this manuscript.  
 
The objective of this work is to present a set of metrics (a framework) that may help in 
identifying relationships and quantifying predictability potential across physical and 
biogeochemical variables.  
With the goal above in mind, we chose a subsample of the CMIP6 catalog that did not 
resemble each other in terms of components and/or resolution. Adding more models will not 
challenge the main conclusions: 1) There remain significant intermodal differences in the 
representation of climate variability in the North Pacific. This is not just reflected in the 
patterns, but also in the representation of the relationships between physical (IPV) and 
biogeochemical (O2) variables, which is the focus of our investigation. 2) Such a relationship 
appears weaker than we hoped in all datasets analyzed, but is statistically significant under 
several metrics, in the hindcast and in some models (GFDL being the best example).  
We clarify this point in the revised manuscript. 
 
Line 206: JRA-55do v1.4 has an anticyclonic tropical cyclone in the NE Pacific in 1959 (as 
well as multiple anticyclonic tropical cyclones in the Atlantic, see https://climate.mri-
jma.go.jp/pub/ocean/JRA55-do/). The issue is fixed in v1.5. It would be ideal to re-run the 
hindcast with the corrected atmospheric forcing. If that is not possible 1959 should be 
excluded from your analysis, perhaps using 1960-2014 as your historical period. 
 
We thank the reviewer for the comment, as we were not aware of this problem. We re-ran all 
the computations involving E3SM-2G and ORAS4 (for consistency of comparison) over 
1960-2014. Results are nearly identical, as one year alone does not modify the PDO or the 
overall Pacific variability (see figure below). In particular, for both E3SM-2G and ORAS4, 
we re-run the entropy regression, and hotspots analyses over the new period. For the latter, 

https://climate.mri-jma.go.jp/pub/ocean/JRA55-do/
https://climate.mri-jma.go.jp/pub/ocean/JRA55-do/


we divided 1960-2014 in two intervals of equal length, 1960-1986 and 1988-2014. We 
replaced these new analyses in the revised manuscript.  

 

Fig. 6: PDO (left) and ENSO (right) indices (SST cumulative anomalies) calculated using δ-MAPS in the historical period, 
using E3SM-2G over 1958-2014 (green) and 1960-2014 (black). The numbers on top-right of the panels are the correlation 
coefficients between the two curves where they overlap in time, i.e. 1960-2014.  

  

 
Line 238: I am not sure exactly what predictability means. Based on (1), this assumes some 
perfect knowledge of t=0 everywhere in the North Pacific for each of these models? What is 
the length of time used to calculate the IE? Perhaps I misunderstand something in the 
methods with these questions, but clearer definitions for predictability both here and in the 
methods would be helpful.  
 
We thank the referee for pointing out the need for additional clarifications. We added a more 
detailed explanation of predictability as linked to the entropy measure in the method section. 
The quantification of IE relies on recurrence. In each point, the entropy of the field under 
investigation is associated with recurring microstates in its time series (that define the system 
and thereby impacts its predictability). The higher the predictability of a time series the more 
recurrent are its temporal dynamics, i.e. the easiest will be to predict its future evolution. We 
computed IE using monthly data over the whole historical and future periods.   
 
Line 244: What do you mean by “area most impacted by ENSO”? Has there been a 
regression analysis done for ENSO in each of the models? Figure 2 a-f seem to have quite 
high IE (low predictability) in the equatorial upwelling region across all the models.  
 
We rephrased it to indicate more clearly that we mean. Here we meant the domain identified 
as ENSO-related by d-Maps, which well follows what would be identified by an EOF 
analysis over the SST field as region where the variance explained by PC1 is greatest.  As 
stated in the manuscript “The predictability potential is higher along two stripes enclosing the 
ENSO domain but excluding the upwelling cold tongue regions.” This result is not new. The 
predictability of the cold tongue has been found to be low over much longer periods in the 
IPSL model (Falasca et al. (2020)), and in SODA reanalysis and a large suite of CMIP5 
models in Ikuyajolu et al (2021). 
 
Line 319-320: How do the regression coefficients stay relatively stable if the domain for the 
PDO evolves? Also, what is the implication about the residuals dominating the evolution of 
both IPV* and O2 in terms of predictability (and, in particular, predictability related to the 
PDO)?  
The regression coefficients are computed point by point using the local value of O2 (or IPV*) 
timeseries, and the PDO time-series (the same for all grid points). The PDO signal is 
computed using the timeseries associated to the PDO domains, which capture the overall 
decadal climate variability regardless of their exact shape, and this decadal variability is not 
changing significantly in most cases (the PDO dynamics are not changing significantly, 
which is not surprising).  



 
 
Technical Comments:  
 
Line 119: Should xi be multidimensional?  
Thank you for catching this typo. Yes, xi is indeed multi-dimensional. Also, in equation (1) 
of the revised version, we replaced xi∈ℝ with xi∈ℝd, being d the xi space dimension.	
 
Line 135: What is the reasoning behind the use of 4 microstates? 
We ran a sensitivity analysis of the entropy field to m, within a meaningful range according to 
previous literature (Ikuyajolu et al. (2021)). We tested m = 2,3,4,5 for GFDL-ESM4 over 
1950-2014. In the figure below we show the results when the same color scale is used (panels 
a-d) and when each case has a different color scale to highlight the spatial features (panels e-
h). The pattern, i.e. areas more (less) predictable relative to the surroundings are substantially 
unchanged, i.e. the geographical patterns are robust, as also found in Ikuyajolu et al. m = 4 and 
m = 5 show reasonable entropy values, but we chose m=4 is because it spans the widest range 
of possible values, as also shown by the histogram below.   
 
 

 

Fig.7: Historical (1950-2014) GFDL-ESM4 Entropy maps computed using m=1,2,3,4. Panels (a)-(d) have the same color 
scale than the one used in the main text. Each panel from (e) to (h) (same fields as panels (a)-(d)) has a diffent color scale, to 
show the spatial pattern.  

 
 

 
 



Fig.8: Histograms for historical (1950-2014) GFDL-ESM4 Entropy maps computed using m=1,2,3,4. 

 
Line 160: Why have you not used the same years across the models and reanalysis and 
hindcast product for each period? 
We are looking at a decadal variability mode, the PDO, as main focus of our study, and 
wanted to cover the longest possible period for the models and as further as possible in the 
future projections (historical, 1950-2014 and future 2036-2100), but the reanalysis and 
hindcast are only available over a shorter time period. Therefore, we decided to keep the 
model on a longer time range to capture the PDO temporal scales as best as possible.  
 
Line 162: I find the use of shortcuts like Period 1/2, Ind 1/2/3, yseasm to hinder my 
understanding, particularly when examining the figures. More descriptive shortcuts (e.g., 
\overbar{DJF1983-2014} - \overbar{DJF1950-1981} instead of Ind1 ) would greatly help 
readability  
We changed notations in the revised manuscript as recommended. 
 
Answers to all minor points is after the comments list:  
 
Line 186: perhaps define N2 here? 
Line 188: Do you mean Equation 4?  
Line 195: Which variables are used from the CMIP6 models? If T and S, it would be helpful 
to know which models use EOS-80 and which use TEOS-10 for their density fields.  
Line 196: Do you mean SSP?  
Line 207: ORAS4 could use a description in this section. Also to explain about the lack of O2 
results (I presume the reanalysis has no biogeochemistry?) 
Line 221: RMSE values embedded within Figure 1 rather than presented as a list would 
increase readability of this section. 
Line 223 and elsewhere: Please use consistent units formatting with superscripts. 
Line 279: Is it possible to include a scaled version of the NOAA PDO time series in Figure 3 
for comparison?  
Line 294: Is there one bO2 and bIPV* for all scenarios or are the coefficients calculated for 
each scenario separately? 
Line 335: ORAS4  
Line 435: Repeat here the vertical domain (0-200m) 
We thank the referee for catching some typos and giving recommendations for 
improvements. In the revised manuscript we implemented all the corrections and requested 
changes. We answer to the questions as follows:  
L195: That is correct, the variables from the CMIP6 models are potential temperature and 
salinity. The requested information will be included in the revised table describing the 
models.  
L207: Yes, that is correct. We will add a clarification in the revised text.  
L294: The coefficients are computed for each dataset separately.  
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