
“Dear authors,  

I considered the reviews of the three Referees and your thorough answers. In particular, I 
agreed with your answer to the Anonymous Referee #1, regarding the suitability of your 
manuscript for publication in Biogeosciences. 
Therefore, I am kindly inviting you to submit a revised version of your manuscript to this 
Journal.  

The revision should address all the points raised by the referees.” Dear Editor,  

Thank you for considering our submission. We have thoroughly revised the manuscript 
according to what pointed out by the referees. Along with the revised manuscript, we attach a 
point-by-point answer to the reviewers’ comments. We also include a pdf report on the 
changes we made, generated comparing the initially submitted file with the revised one with 
Adobe Acrobat Reader.  

Kind regards, The authors.  

 



Answers to referees for the submitted manuscript   
Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth 

System Models  
L. Novi, A. Bracco, T. Ito and Y. Takano  

  
Referee #1   
 
Summary: 
 
While the topic is certainly relevant, the approach used is novel and the motivation of the 
study is clearly justified, in my opinion this manuscript is only marginally suitable for 
Biogeosciences as its focus is mostly on the physical processes responsible for the supply of 
oxygen to the upper ocean. I therefore think that this manuscript is much more suitable for 
Ocean Science (also a Copernicus journal; see subject areas there). This does not however 
diminish the merit of this manuscript which upon moderate revision should be apt for 
publication in the appropriate journal.     
 
While we understand the reviewer’s concerns, we respectfully disagree. The topic, oxygen 
reconstruction, is of interest to ocean biologists far more than to physical oceanographers, 
and the readership of Biogeosciences represents the one we wish to reach. Using the words of 
reviewer 2: “The application to O2 is highly relevant as observations of oxygen are becoming 
more autonomous and is interesting on both physical and biogeochemical fronts because of 
its relationship to ventilation processes as well as ecosystem health.” 
       
General comments  
 
Strengths:  
The manuscript is mostly well written and the presentation of the results is of high quality. 
Except for a few areas that need clarification (see specific comments below), the manuscript 
provides an accurate account of the approaches followed by the authors to carry out their 
analyses. Generally speaking, the text is well structured and the connection between 
objectives, approach, results and the corresponding conclusions is clear and easy to follow.  
 
We thank the reviewer for the overall positive assessment of our work. 
 
Weaknesses:   
• “After reading the manuscript it is not completely clear what is the level of uncertainty 

associated with the projections carried out with the different models (described as 
“future” in the text and figures). This should be clearly stated as it might impact the 
applicability of the suggested approach if it were to be employed (as suggested by the 
authors) with large-scale data from autonomous platforms.”  
 
We state in the revised manuscript that the existing uncertainty in CMIP6 models' oxygen 
inventory changes poses a limit to the information that may be extracted in the future. 
While in some models the relationship between IPV* and O2 becomes stronger, that is 
not the case for all of them, and in particular for the GFDL model which has a better 
representation of the historical period than the others. We additionally point to the recent 
work of Abe and Minobe (2023) for a detailed model intercomparison of ocean 
deoxygenation in CMIP6 models, which was beyond the scope of our work. Additionally, 
we now better clarify that a major objective of this study is the presentation of a novel 
integrated approach to assess some of the major relationships between climate dynamics, 
upper ocean stratification and oxygen inventory, and to show if/when these relationships 
are robust across some CMIP6 models, despite their inherent uncertainties. We also add 
additional literature to better frame the limitations of our results (besides Abe and Minobe 



(2023), we include Tokarska et al (2020), Beobide-Arsuaga et al (2021) and Kwiatkowski 
et al (2020). 
  

• “While the study covers open and coastal ocean areas, from the plots it is evident that 
there is a limitation on the resolution in close-coastal areas. I think it would be worth 
stating the proximity to the coasts at which these analyses are valid, as biogeochemical 
processes affecting the oxygen distribution in e.g. eastern boundary upwelling systems 
are particularly intense within 50-150 km from the coast (do we expect the variability in 
near-coastal areas to be smoothed out in climatological time scales?)”  
 
Our work covers open ocean and coastal areas but the currently available resolution for 
CMIP6 models (or the publicly available observations for most part) does not allow for a 
detailed representation of the fine-scale (mesoscale and finer) physical and 
biogeochemical processes occurring near the coast except for specific coastal systems (for 
example the California Current System). While we acknowledge that this is a limitation, 
and an important one in the description of, for example, eastern boundaries upwelling 
systems (EBUS) biogeochemistry, our conclusions focus on large scale processes 
occurring in extended areas of the open ocean rather than on the coastal zones alone. In 
the North Pacific observations and models both suggest that there may be a large-scale 
modulation of oxygen content that extends to the coast. In addition, and most importantly, 
the main findings for the hotspots analysis, such as the large scale longitudinal de-
coupling of hotspots and the extratropical location of changes, are unlikely to be 
influenced by the models’ resolution approaching the coast.  
In the revision, we acknowledge that O2 concentrations in coastal areas are driven by 
complex biophysical interactions and physical processes unresolved by state-of-the-art 
climate models. Consequently, projected oxygen trends may exhibit variability even 
within subregions under the same scenario (see, again for EBUS, Bograd et al. (2023)). 
Analysis at the scales required to capture coastal dynamics, however, would require 
higher resolution models that will use - if projected into the future – CMIP6 runs as 
boundary conditions. Our work would remain relevant in the interpretation of the large 
scale forcing, while the overall methodology could be applied broadly even in higher 
resolution models/observations. We think it is important to clarify these aspects in the 
manuscript, and we better explain both limitations and applicability of our work in the 
revised version. We thank the reviewer for highlighting this point.   
  

• “The results and conclusions section are rather puzzling. While the results in all 
subsections are well described, the discussion is limited and at the end one does not grasp 
the main message until reading the whole manuscript. My impression is that most of the 
current text on the conclusions actually corresponds to the missing text on the discussion. 
I recommend the authors to revise these two sections and cut down the conclusions to a 
brief text in which they state whether the study’s goals (as laid out in the introduction) 
were achieved or not and why.”  
 
We thank the reviewer for this comment, which we comply with by restructuring the 
discussion and conclusion sections of the manuscript as suggested.  
 
 

• Specific comments (All taken care of) 
l.122: replace “for which” by “in which”.  
l.143: replace “its” by “theirs”  
l.235: I strongly suggest changing this section to “Results and Discussion”. 
l.243–244: Please elaborate on the criteria used to classify an area as “most impacted by 
ENSO”.  



l.252: “(…) where the variability is dominated by PDO (…)”. Same comment as above for 
ENSO.  
l.337–340: This sentence is long and not understandable at all. Please revise.   
l.338: Remove apostrophe after “Peru”.  
l.375–378: This sentence is long and not understandable at all. Please revise.  
l.426–437: This can be omitted or significantly reduced as this information is mostly 
redundant. 
l.474: Consider changing to: “pointing to an area of further investigation”. 
 
We made all the requested minor corrections. We also clarify that we identified the ENSO 
and PDO impacted areas using the network inference and that we referred to the d-MAPS 
domains in Figures 4-5.   
 
• General comment to tables: according to Copernicus guidelines, “horizontal lines should 

normally only appear above and below the table, and as a separator between the head and 
the main body of the table”. Please revise.   
 

     We changed the table as suggested. Thanks for noticing it. 
 
 
References used in the answer to Referee#1:  
 
Abe, Y. and Minobe, S.: Comparison of ocean deoxygenation between CMIP models and an 
observational dataset in the North Pacific from 1958 to 2005. Frontiers in Marine Science. 
10. 10.3389/fmars.2023.1161451, 2023 
 
Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of ENSO-amplitude 
projections in CMIP5 and CMIP6 models, Clim. Dynam., 56, 3875–
3888, https://doi.org/10.1007/s00382-021-05673-4, 2021.   
 
Bograd, S. J. et al.: Climate change impacts on eastern boundary upwelling systems. Annu. 
Rev. Mar. Sci. 15, 303–328, 2023. 
   
Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, 
J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., 
Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., Stock, C. A., Tagliabue, A., 
Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and 
Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-
ocean nutrient and primary production decline from CMIP6 model projections, 
Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-2020, 2020 
 
Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., and Knutti, 
R.: Past warming trend constrains future warming in CMIP6 models, Sci. Adv., 6, 
eaaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020. 
 

https://doi.org/10.1007/s00382-021-05673-4
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.1126/sciadv.aaz9549


Answers to referees for the submitted manuscript   
Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth 

System Models  
L. Novi, A. Bracco, T. Ito and Y. Takano  

  
Referee #2  
The manuscript would benefit from much more explicit signposting throughout.  
The analyses are impressive but are presented in such a way that they feel separate and the 
reader must make their own logical steps. In addition, the manuscript lacks a critical analysis 
of the results and their connection to existing literature on BGC reconstructions. Adding text 
to connect all the sections together and references to other literature will allow readers to 
better understand the method and its applicability to the problem of sparse observations of 
BGC variables, even outside of ocean oxygen. 
 
We thank the reviewer for this general comment. We modified the presentation of the results 
following the above suggestions. 
 
General Comments:   
• “The manuscript would benefit from explicit signposting throughout its sections. The 
authors set out their hypotheses in the introduction but there are jumps between the results 
sections. The hypotheses focus on the regulation of O2 variability by IPV* yet most of the 
analyses approach IPV* and O2 separately (albeit connected by the PDO index).”   
 
We added signposting explicitly linking each subsection of the results to one of hypotheses 
and we significantly restructured the main text to help clarify our message.  
 
• “Additionally, hypothesis (3) seems to relate to regions where predictability is high, but 

in the results the identification of hotspots uses the residuals from the PDO regression, 
which is where predictability is low. The lack of signposting makes it difficult for the 
reader to understand the full implications of the previous analyses when a new analysis is 
introduced, and there is ambiguity as to how well the hypotheses have been answered in 
the conclusions section.”  
 

In the revision, we clarify that we isolate the PDO signal to verify if the low predictability in 
the N. Pacific (north of the ENSO region) is an issue of time scales (i.e. there is a low 
frequency PDO modulation with a high frequency ‘noise’ due to both atmospheric and 
oceanic variability. The PDO is indeed a lower frequency mode compared to ENSO and has 
most loading at higher latitudes, where weather ‘noise’ is greater). However, even when the 
PDO is isolated we do not find a strong anticorrelation between PDO-induced changes in IPV 
and PDO-induced changes in O2 in the E3SM forced simulation and there is large intermodel 
difference in the CMPI6 runs.  
In the original manuscript, the rational for running the hotspot analysis on the residual fields 
was motivated by the fact that the PDO-forced component is low frequency variability and 
does not vary much over time (b, i.e. the regression coefficient between the PDO-forced 
physical fields and the PDO index, does not depend on time, which is only contained in the 
PDO index, which is shown). In addition, we had verified that the changes in the mean 
essentially coincide with the trends (therefore we were not removing any significant 
information). Taken together, these two considerations imply that the extremes will not 
depend on the PDO forced contribution. This is indeed the case, but we should have used the 
whole signal. We do so now, and both the maps of the indicators and SED are essentially 
unchanged (see for example the figures below for historical and future SED). We thank the 
referee for this comment. 



 
Fig.1 Historical (and 1960-2014 period for the hindcast and ORAS4) SED index for the whole fields. 

  
          Fig.2 Future SED index for the whole fields. 

 
• “I am not sure why the PDO was chosen as the potential proxy for understanding 

upper-ocean O2 concentrations. A priori I would assume that ENSO would play a 
significant role, and the results show a connection between ENSO and predictability 
of IPV* and O2, whereas when looking at the PDO alone there appears to be a limited 
connection. In the introduction Ito et al (2019) is mentioned but some further 
explanation would be helpful.”  
 
Our focus is on the North Pacific, as stated in the Introduction, and outside the 
tropical band the PDO modulates the variability at climate scales more so than ENSO. 
As also explored in previous literature (for example, Ito et al. (2019)), the dominant 
mode of oxygen variability in the northern Pacific Ocean is correlated with the PDO 
index which explains about 25% of the variance. To further verify it in the present 
work, we computed the first EOF for the E3SM-2G hindcast 0-200m O2 and 
IPV*anomalies over 1960-2014 over the northern Pacific (20.5°N-69.5°N;115.5°E-
60.5°W) and the corresponding time series for the first principal component (pc1). 
The first EOF explains 25% of the oxygen variance and about 12% of the 
IPV*variance. The –pc1 shows a significant and strong correlation (Pearson’s R 
coefficient) with PDO timeseries computed using SST anomalies as detailed in the 
manuscript (R = 0.83, pval < 0.01 for O2, and R = -0.44, pval <0.01 for ipv*, after 
applying a 5-year moving means). The correlation with the PDO is higher than the 
one with ENSO, which is at most R = 0.34, pval < 0.01 for O2, after applying a 3-
month moving mean. This is consistent with previous knowledge that a coherent 
basin-wide pattern of oxygen variability is mostly associated with PDO in the 
northern Pacific Ocean. We included in the revised Introduction a clarification of this 



point and we discuss the outcome of the EOF analysis when indicating how we 
separate the PDO forced-component.  
 

• “Additionally, I would be interested in seeing the regression analysis using both ENSO 
and the PDO as predictors and seeing how the residuals depend on the climate indices 
used for the regression.”  
We computed the linear regression analysis using the ENSO index, with the same 
procedure used for PDO, obtaining similar b shapes of the coefficients -as to be expected 
- but much lower absolute values, further confirming that the effect of PDO is overall 
dominant in the regression. Color limits are +/-3 standard deviations of the ensembles as 
in the main text. We included this finding in the Supplementary Material.  

Fig. 3: 
Fig. 3 bIPV* (left) and bO2 (right) ENSO-regression coefficient maps with superposed contours of the ENSO 
and of the PDO+ and PDO- domains. The correlation coefficients among the corresponding maps for the same 
model or hindcast are also indicated. Color limits are fixed as +/- 3 standard deviations of the ensemble for each 
variable over the whole area.  

 
 
 

• “There is no discussion section, and the conclusions section seems to repeat the 
findings of the study without any connection to the wider literature. I would 
recommend changing Section 5 to “Discussion and Conclusions” (or adding a 
separate Discussions section) and including a critical analysis on the relationship of 
this study to other work on the PDO and North Pacific oxygen (e.g., Ito et al 2019) or 
to reconstruction efforts (e.g. Sharp et al., 2022).”   
 
We thank the referee for this comment. In the revision we provide a “Discussion and 
Conclusion” section that addresses the requested points. We extensively restructured 
the text to improve and extend it as suggested. Few examples of what we included: 
We added a discussion on how our findings align with Ito et al (2019) in identifying a 
cohesive basin-wide prevailing pattern of oxygen variability in the northern Pacific 
primarily associated to the Pacific Decadal Oscillation.  
We also discussed that reconstruction efforts (such as the one proposed in Sharp et al. 
(2022) for example) need to interpolate on a regular distribution, leading to additional 
uncertainty.  
We stress that our framework could help determine the large-scale predictability 
potential of any field of interest.  
We also included a discussion of the limitations of our work, as also stated elsewhere 
in this revision file. These include, for example, recognizing that oxygen 



concentrations in coastal areas are influenced by complex biophysical interactions and 
physical processes that state-of-the-art climate models currently cannot fully resolve. 
As a result, projected oxygen trends may exhibit variability even within subregions 
under the same scenario, as demonstrated in studies like Bograd et al. (2023) for 
EBUS. Analyzing coastal dynamics at the required scales would necessitate higher 
resolution models, which, if projected into the future, would use, however, CMIP6 
runs as boundary conditions.  
A more extensive discussion and critical analysis with regard of existing literature is 
also provided in the revised manuscript.  
 
  
• “I would like to see more discussion on the use of the CMIP6 ESMs. What are 
the implications of using relatively coarse-resolution models in this 
analysis? Particularly in the higher latitudes where eddy mixing is parameterized. 
What are the implications of having such a broad inter-model range in the results? It 
is not clear to me whether the emergent relationships are consistent enough across the 
models to justify the emphasis between IPV*, O2, and the PDO.” 
 
CMIP6 models are state-of-the-art in terms of climate prediction capabilities, but they 
are imperfect and limited in resolution. However, they are the only tool we have that 
allow for an evaluation of the decadal modes of climate variability, their impacts and 
their potential changes in a warming planet. Recognizing the biases these models 
have, we also analyzed a hindcast (E3SM-2G). Our goal is precisely to see if there is a 
relationship that is robust across models between large-scale climate modes of 
variability in the N Pacific and their impact on IPV and O2. If this was the case, 
independently of the PDO or ENSO representation - which may differ in each model - 
we could reasonably conclude that IPV, which can be monitored, for example through 
ARGO floats, could be used to track the large-scale variability of O2. This could also 
be done through models, where the resolution can be more easily increased if a simple 
(or no) biogeochemical module is included, and for which a validation can be 
conducted with less uncertainty on physical (instead of biogeochemical) variables due 
to the greater abundance of observations.  
Indeed, the variability across the models is, for some of our hypotheses, too large to 
reach any conclusion and the relationship not as strong as hypothesized on the base of 
the available sparse observations. At the same time, at least for the historical period, 
our analysis allows for identifying which models may be more realistic in its 
representation of the large-scale variability of the North Pacific. 
We expanded the Discussion and Conclusion section to include the points above.  

 
• “I would like to see some discussion on the use of predictability studies for 
real-world reconstructions. As I understand it, the predictability mentioned in this 
study assumes perfect knowledge at a time t of a specific field, either IPV* or O2 (for 
Section 4.1) or sea surface temperatures (for the PDO index used in the regression 
analysis in Section 4.2). However, T and S profiles from Argo are still irregularly 
distributed, which is a nontrivial problem for ocean reconstructions of both heat and 
salinity themselves (e.g., Smith and Murphy 2007, Cheng and Zhu 2016) and ocean 
BGC (e.g., Turner et al. 2023, Keppler et al. 2023)”. 
 
Models and analyses or hindcasts allow for testing if a system is predictable -
notwithstanding their biases -, or to calculate the potential predictability of a system. 
When using observations such as ARGO profiles, it is necessary to interpolate onto a 
regular distribution, which will increase the uncertainty. If the predictability potential 
is high, such an exercise will be worth it, if the potential predictability is low, futile. 
This assumes that the model(s) are capturing the main features driving the -in our case 



large scale – predictability.  We added a discussion point on the final section of the 
manuscript to reflect this comment.  
 

Specific Comments:  

Line 174: I am not familiar with this definition of extremes. Is there a reason you have not 
used a general quantile threshold or a distribution fit to characterize the extremes? As you use 
only one realization for each model, there is a nontrivial chance of “significant” changes in 
extremes due to internal variability.  
 
We thank the referee for this comment. Building on previous works (Falasca et al. (2019); 
Falasca et al (2022)), we expect the topology of a given model to remain relatively stable, i.e. 
we do not expect the member choice to significantly influence the calculation of extremes 
and hotspots with the chosen definition. We verified the robustness of our results, computing 
the extremes indicators of four randomly-chosen ensemble members of the CanESM5 model 
for the whole signals of IPV* and O2 for the historical periods. We found no significant 
changes in extremes and SED, as shown in the figures below.  

A major advantage of the hotspot definition chosen is that it accounts for changes in mean, 
variability and extremes at the same time in the identification of the hotspots. In other words, 
it accounts for the topology of the simulated climate fields, which can be characterized by 
considering all the three aspects together (as done also, implicitly, in d-Maps).  

The definition of extremes adopted aims at including information on seasons exceeding 
corresponding baseline extremes, without choosing a priori a threshold on the current 
distribution, which is especially relevant for comparing changes with respect to a reference 
baseline.  
 
 

 

Fig4. O2 (left) and IPV*(right) indicators for changes in extremes (historical, whole signal) for four different 
ensemble members of the CanESM5 model.  



 

Fig5. O2 (left) and IPV*(right) SED indices (historical, whole signal) for four different ensemble members of 
the CanESM5 model.  

 
Line 189: Why is the depth horizon set to the top 200 m? 
We set the depth horizon at 200m as it represents a reasonable trade-off between being in the 
upper thermocline, being deep enough to smooth the gas-exchange effects dominant at the 
surface, but not too deep as models tend to lose a good representation of variability 
(interannual and longer) when compared to observations.  
 
Line 193: What is the reasoning behind the choice of ESM models for the ensemble? Without 
choosing multiple realizations for each model and using 4 models, the ensemble seems quite 
small relative to the available CMIP6 output. Also it would be good to know which 
biogeochemical models each ESM employs in Table 1, even if biological oxygen cycling is 
outside the scope of this manuscript.  
 
The objective of this work is to present a set of metrics (a framework) that may help in 
identifying relationships and quantifying predictability potential across physical and 
biogeochemical variables.  
With the goal above in mind, we chose a subsample of the CMIP6 catalog that did not 
resemble each other in terms of components and/or resolution. Adding more models will not 
challenge the main conclusions: 1) There remain significant intermodal differences in the 
representation of climate variability in the North Pacific. This is not just reflected in the 
patterns, but also in the representation of the relationships between physical (IPV) and 
biogeochemical (O2) variables, which is the focus of our investigation. 2) Such a relationship 
appears weaker than we hoped in all datasets analyzed, but is statistically significant under 
several metrics, in the hindcast and in some models (GFDL being the best example).  
We clarify this point in the revised manuscript. 
 
Line 206: JRA-55do v1.4 has an anticyclonic tropical cyclone in the NE Pacific in 1959 (as 
well as multiple anticyclonic tropical cyclones in the Atlantic, see https://climate.mri-
jma.go.jp/pub/ocean/JRA55-do/). The issue is fixed in v1.5. It would be ideal to re-run the 
hindcast with the corrected atmospheric forcing. If that is not possible 1959 should be 
excluded from your analysis, perhaps using 1960-2014 as your historical period. 
 
We thank the reviewer for the comment, as we were not aware of this problem. We re-ran all 
the computations involving E3SM-2G and ORAS4 (for consistency of comparison) over 
1960-2014. Results are nearly identical, as one year alone does not modify the PDO or the 
overall Pacific variability (see figure below). In particular, for both E3SM-2G and ORAS4, 
we re-run the entropy regression, and hotspots analyses over the new period. For the latter, 

https://climate.mri-jma.go.jp/pub/ocean/JRA55-do/
https://climate.mri-jma.go.jp/pub/ocean/JRA55-do/


we divided 1960-2014 in two intervals of equal length, 1960-1986 and 1988-2014. We 
replaced these new analyses in the revised manuscript.  

 

Fig. 6: PDO (left) and ENSO (right) indices (SST cumulative anomalies) calculated using δ-MAPS in the historical period, 
using E3SM-2G over 1958-2014 (green) and 1960-2014 (black). The numbers on top-right of the panels are the correlation 
coefficients between the two curves where they overlap in time, i.e. 1960-2014.  

  

 
Line 238: I am not sure exactly what predictability means. Based on (1), this assumes some 
perfect knowledge of t=0 everywhere in the North Pacific for each of these models? What is 
the length of time used to calculate the IE? Perhaps I misunderstand something in the 
methods with these questions, but clearer definitions for predictability both here and in the 
methods would be helpful.  
 
We thank the referee for pointing out the need for additional clarifications. We added a more 
detailed explanation of predictability as linked to the entropy measure in the method section. 
The quantification of IE relies on recurrence. In each point, the entropy of the field under 
investigation is associated with recurring microstates in its time series (that define the system 
and thereby impacts its predictability). The higher the predictability of a time series the more 
recurrent are its temporal dynamics, i.e. the easiest will be to predict its future evolution. We 
computed IE using monthly data over the whole historical and future periods.   
 
Line 244: What do you mean by “area most impacted by ENSO”? Has there been a 
regression analysis done for ENSO in each of the models? Figure 2 a-f seem to have quite 
high IE (low predictability) in the equatorial upwelling region across all the models.  
 
We rephrased it to indicate more clearly that we mean. Here we meant the domain identified 
as ENSO-related by d-Maps, which well follows what would be identified by an EOF 
analysis over the SST field as region where the variance explained by PC1 is greatest.  As 
stated in the manuscript “The predictability potential is higher along two stripes enclosing the 
ENSO domain but excluding the upwelling cold tongue regions.” This result is not new. The 
predictability of the cold tongue has been found to be low over much longer periods in the 
IPSL model (Falasca et al. (2020)), and in SODA reanalysis and a large suite of CMIP5 
models in Ikuyajolu et al (2021). 
 
Line 319-320: How do the regression coefficients stay relatively stable if the domain for the 
PDO evolves? Also, what is the implication about the residuals dominating the evolution of 
both IPV* and O2 in terms of predictability (and, in particular, predictability related to the 
PDO)?  
The regression coefficients are computed point by point using the local value of O2 (or IPV*) 
timeseries, and the PDO time-series (the same for all grid points). The PDO signal is 
computed using the timeseries associated to the PDO domains, which capture the overall 
decadal climate variability regardless of their exact shape, and this decadal variability is not 
changing significantly in most cases (the PDO dynamics are not changing significantly, 
which is not surprising).  



 
 
Technical Comments:  
 
Line 119: Should xi be multidimensional?  
Thank you for catching this typo. Yes, xi is indeed multi-dimensional. Also, in equation (1) 
of the revised version, we replaced xi∈ℝ with xi∈ℝd, being d the xi space dimension.	
 
Line 135: What is the reasoning behind the use of 4 microstates? 
We ran a sensitivity analysis of the entropy field to m, within a meaningful range according to 
previous literature (Ikuyajolu et al. (2021)). We tested m = 2,3,4,5 for GFDL-ESM4 over 
1950-2014. In the figure below we show the results when the same color scale is used (panels 
a-d) and when each case has a different color scale to highlight the spatial features (panels e-
h). The pattern, i.e. areas more (less) predictable relative to the surroundings are substantially 
unchanged, i.e. the geographical patterns are robust, as also found in Ikuyajolu et al. m = 4 and 
m = 5 show reasonable entropy values, but we chose m=4 is because it spans the widest range 
of possible values, as also shown by the histogram below.   
 
 

 

Fig.7: Historical (1950-2014) GFDL-ESM4 Entropy maps computed using m=1,2,3,4. Panels (a)-(d) have the same color 
scale than the one used in the main text. Each panel from (e) to (h) (same fields as panels (a)-(d)) has a diffent color scale, to 
show the spatial pattern.  

 
 

 
 



Fig.8: Histograms for historical (1950-2014) GFDL-ESM4 Entropy maps computed using m=1,2,3,4. 

 
Line 160: Why have you not used the same years across the models and reanalysis and 
hindcast product for each period? 
We are looking at a decadal variability mode, the PDO, as main focus of our study, and 
wanted to cover the longest possible period for the models and as further as possible in the 
future projections (historical, 1950-2014 and future 2036-2100), but the reanalysis and 
hindcast are only available over a shorter time period. Therefore, we decided to keep the 
model on a longer time range to capture the PDO temporal scales as best as possible.  
 
Line 162: I find the use of shortcuts like Period 1/2, Ind 1/2/3, yseasm to hinder my 
understanding, particularly when examining the figures. More descriptive shortcuts (e.g., 
\overbar{DJF1983-2014} - \overbar{DJF1950-1981} instead of Ind1 ) would greatly help 
readability  
We changed notations in the revised manuscript as recommended. 
 
Answers to all minor points is after the comments list:  
 
Line 186: perhaps define N2 here? 
Line 188: Do you mean Equation 4?  
Line 195: Which variables are used from the CMIP6 models? If T and S, it would be helpful 
to know which models use EOS-80 and which use TEOS-10 for their density fields.  
Line 196: Do you mean SSP?  
Line 207: ORAS4 could use a description in this section. Also to explain about the lack of O2 
results (I presume the reanalysis has no biogeochemistry?) 
Line 221: RMSE values embedded within Figure 1 rather than presented as a list would 
increase readability of this section. 
Line 223 and elsewhere: Please use consistent units formatting with superscripts. 
Line 279: Is it possible to include a scaled version of the NOAA PDO time series in Figure 3 
for comparison?  
Line 294: Is there one bO2 and bIPV* for all scenarios or are the coefficients calculated for 
each scenario separately? 
Line 335: ORAS4  
Line 435: Repeat here the vertical domain (0-200m) 
We thank the referee for catching some typos and giving recommendations for 
improvements. In the revised manuscript we implemented all the corrections and requested 
changes. We answer to the questions as follows:  
L195: That is correct, the variables from the CMIP6 models are potential temperature and 
salinity. The requested information will be included in the revised table describing the 
models.  
L207: Yes, that is correct. We will add a clarification in the revised text.  
L294: The coefficients are computed for each dataset separately.  
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Answers to referees for the submitted manuscript   
Evolution of oxygen and stratification in the North Pacific Ocean in CMIP6 Earth 

System Models  
L. Novi, A. Bracco, T. Ito and Y. Takano  

  
Referee #3  
Clarifications to the methods for non-specialists  
• I am not familiar with the methods regarding data-mining tools (∂-Maps) nor Information 

Entropy (IE). I found the explanation of how IE was calculated very well put, and I was 
able to follow without much difficulty. The exception here, however, was when the 
authors state “the explicit dependence of the entropy quantifier one is removed using the 
maximum entropy formulation”.  At this point I was not sure of what the authors were 
doing, since the way an explicit e is removed is explained in Ikuyajolu et al (2021) that 
the authors point to and I am not familiar with. 
We added a sentence to explain this point. More in detail, the recent work of Prado et al. 
(2020) proposes a method to free the entropy calculation from the selection a distance 
threshold (epsilon). They analyzed the dependency of Entropy on epsilon, and found that 
the Entropy-epsilon relationship has a well-defined maximum (Smax in Fig 4 of Prado et 
al. (2020)), which is robust and relatively stable within a range of epsilon values, and that 
this maximum entropy is strongly correlated with the Lyapunov exponent. In our work, 
we applied the heuristic explained in detail in Ikuyajolu et al (2021) for the calculation of 
Smax through an iterative procedure that calculates the recurrence entropy for varying 
epsilon until a maximum is found and retained. This algorithm requires three input 
parameters: the microstate dimension (that we set at m=4 but explored other values as 
well in the revision), the number of random samples to compute the microstates 
distribution in the RP (here 10000) and the number of random sub-samples used to 
determine the epsilon for which entropy is max (here 1000).  
  

• Another thing, am I interpreting things correctly if the choice to use 4 microstates means 
that their IE calculation uses 4 probabilities of occurrence (k=4 in equation 2)? Doesn’t 
this mean that the authors are choosing four different e values to create these 4 
microstates from the same timeseries of IPV* Euclidean Distances (Eqn. 1)? So here I am 
confused about how e and Eqn. 1 is actually being done.  
 
We thank the reviewer for having pointed this out, and we acknowledge that the 
explanation was not clear, therefore we corrected it in the revised version. In particular, 
the sentence “using 4 microstates” at line 134 of the initially submitted manuscript should 
have been instead “using microstates of dimension 4”. Indeed, the dimension of a 
microstate is the size of the NxN matrix introduced at line 124 (of the initially submitted 
version), i.e. N=4 in this case. Microstates are calculated sampling matrices of size NxN 
inside the recurrence plot (RP), and the total number of possible configurations of a 
microstate of dimension N is Ntot = 2^(N^2). Therefore, the Probability of occurrence of 
the generic kth microstate is Pk is used in eq (2) of the initially submitted version and 
detailed at line 124 (initially submitted version). Therefore, that equation uses Ntot 
different values in the summation. We thank very much the referee for this useful 
comment, as it helped clarify the method in the revised version. 
We also note that in response to Rev 2, we will be adding in the supplementary a 
sensitivity analysis based on the number of microstates. 
 

• It is also not clear to me on reading the methods how you calculate the 95th percentile of 
mean, variability and extremes in Eqn. 3. For the mean (indicator 1), as an example, are 
you computing the differences across all years in Period 1, then calculating the 95th 
percentile of these differences? But actually, this doesn’t seem to be the case, because you 
state that ind1jis equal to 𝑦𝑠𝑒𝑎𝑠𝑚2 − 𝑦𝑠𝑒𝑎𝑠𝑚), where yseasm1 and yseasm2 are multi-



year seasonal means in Period 1 and 2, respectively. Multi-year is arbitrary, and on first 
reading I am inclined to believe that its averaging across the whole length of the period. 
This suggests to me that ind1j is one number, and so it is not clear to me how you then 
retrieve a 95th percentile. Could you please make this explanation clearer?  
 
The indicators and SEDs are computed point by point, i.e. each grid point has one value. 
The percentile is therefore computed spatially over all the grid points. We added a 
sentence in the text to clarify this point. 

   
Other recommendations:  

I very much agree with Reviewer 2 in that the paper would benefit from more signposting 
throughout, and that a reader only really appreciates what they have learned from the 
results in the final sentences of the conclusions.  
I also agree that there is probably additional studies to point to so that the work can be 
placed amongst the wider literature.  
We have addressed all reviewer 2’ comments and restructured greatly the presentation of 
the results to help the readers following the presentation of all the analyses and how they 
are relevant to the stated hypotheses.  

“There is also very little discussion or mention of the other processes affecting O2. Apart 
from ventilation, there is also the solubility effect of warming and biogeochemical processes 
affecting oxygen demand. I think the paper would benefit from a discussion of how these two 
other factors come into play. For the solubility effect, it is not obvious how one would 
separate it from the ventilation component captured by IPV, since both are driven by 
warming and the IPV-O2 relationship should actually encompass both the ventilation and 
solubility effects. I leave it to the authors to think about how the solubility effect could be 
separated from the ventilation effect. However, for the biogeochemical processes, it would 
not be so difficult to calculate preformed O2 from the T and S of each model and redo some 
of your analysis. An analysis of the IPV* - preformed O2 relationship would eliminate any 
impact of the biogeochemical process, and then allow you to focus on predictability of 
physical O2 injection. I would expect substantially more predictability and over a much 
greater area. Similarly, you could take preformed O2 away from your O2 tracer to get AOU, 
and you could look at the predictability of AOU, which is likely not predictable at all from 
IPV? Maybe give this a try, and see if some interesting results jump out. This would at least 
allow you diagnose why IPV-O2 predictability falls over in some regions?” 
We thank the referee for this insightful comment. We re-ran all calculations to evaluate the 
IPV*-linked predictability potential for AOU, i.e. the areas where IPV* and AOU time series 
are positively correlated with correlation coefficients > 0.5. These areas are very similar to 
the ones obtained by studying the relationship O2-IPV* proposed in the submitted 
manuscript. We also separated the solubility part O2sol, which is a very good approximation 
for preformed O2 at the considered depths, and computed the anticorrelations areas (i.e. 
where c.c. < -0.5, as for the IPV*-O2 relationship). Interestingly, these areas are not too small 
(especially in the hindcast) but are mostly superimposed to high-entropy/low predictability 
areas for IPV*. These results are reported in the figures below. We added a discussion of the 
two contributions in the revision and the difference in spatial patterns. 



 

Fig.1: IPV* entropy field in the historical interval for the ESMs, and in the historical 1960-2014 period for the hindcast and 
ORAS4 with superposed the contours of the areas where IPV* and AOU time series are correlated with correlation 
coefficients > 0.5 (left), and where IPV* and O2sol time series are anticorrelated with correlation coefficients < -0.5 (right) 

 

 
Specific comments:  
• Line 182: More accurate to say “We obtain three indicators grouped into four seasons for 

each variable”?  
We thank the referee for the proposed rewording. This is correct and clearer that what 
stated, so we updated the text as suggested.  
 

• Line 214: I know gridded Argo doesn’t provide T and S as far back as your period 1, but 
couldn’t you compare the ORAS4 against gridded Argo in Period 2? This would then 
provide some measure of how much bias there is in ORAS4, with which you are then 
using to assess bias in the models. Case in point is that the IPSL IPV fields looks (at least 
by eye) the least biased. It is not a coincidence because the IPSL and ORAS4 both use 
NEMO as their ocean models. 
 
Thank you for this comment, we attach below the comparison between the ORAS4 IPV* 
climatology over the “period 2” (1988-2014 for this reanalysis) with the corresponding 
climatology computed using SODA3.4.2, which is suitable as it uses a different ocean 
component compared to ORAS4 and overcomes the limitations of  T and S data from 
ARGO before 2002. As shown in the figure below, the difference across reanalysis that 
use different models but assimilate the same observations is much smaller (about one 
order of magnitude) that the signal, and smaller than any model bias. We will include this 
information in the Supplementary Material.  



 

 
Fig.2: Comparison between IPV* 1988-2014 climatology computed with ORAS4 and SODA.3.4.2.  

 
• Line 221: How is it that the RMSE of the NorESM2-LM is the lowest among the models? 

Are you sure this is calculated correctly?  
Thank you for this comment. We verified the rmse calculation with three different scripts, 
two of them in Matlab and one of them via cdo (“climate data operators”). In cdo, for 
example, we used the following: cdo -L -sqrt -fldmean -sqr -sub model_nor.nc rean.nc 
rmse_nor.nc  
where model_nor.nc and rean.nc are the IPV* climatology over 1950-2014 (multiyear 
seasonal means computed with cdo) of NorESM2-LM and ORAS4 respectively.  
We always obtained the same result, 4.92 * 10-9. We also verified that the climatologies 
were computed correctly. The two extratropical areas where the bias is higher (which we 
agree make the visual estimation of rmse hard) are likely more than counter-balanced by 
the tropical areas where the bias is small. In the revised version, we updated both the plots 
and the RMSE calculations to comply with what requested by Referee#2, i.e. to re-do all 
the calculations involving E3SM-2G over 1960-2014 (instead of 1958-2014 for these 
members) with no significant differences.  
 

• Line 307: Maybe remind the reader here was Ind1 is.  
Thank you, we added a sentence in the text. We also followed the advice of referee#2 are 
used a more readable notation throughout the revised manuscript. 
 

• Figures 4 and 5: Add text to the legend stating a more intuitive way of interpreting the 
plots. For bIPV* you are presenting the change in IPV* (m-1 s-1) per change in SST (ºC-
1), right?  
Yes, this is correct. We updated the figures as requested.  
 

• Is the MPAS-O ocean model based on some version of MOM? The correspondence 
between the two models is striking.  
No, the MPAS-O ocean model is not based on MOM. See Ringler et al (2013).  

  
Supplementary Material comments:  



 
Figure S4: you’ve stated 1950-2014 twice?  
Thank you for catching this typo. It is now corrected.  

 
   
Thank you for considering my input to your research,  
Pearse J. Buchanan.  
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Ikuyajolu, O. J., Falasca, F. and Bracco, A.: Information Entropy as Quantifier of Potential 
Predictability in the Tropical Indo-Pacific Basin. Front. Clim. 3:675840. doi: 
10.3389/fclim.2021.675840, 2021.  

Prado, T., Corso, G., Santos Lima, G., Budzinski, R., Boaretto, B., Ferrari, F., Macau, E.E.N. 
and Lopes, S.R.: Maximum entropy principle in recurrence plot analysis on stochastic and 
chaotic systems. Chaos 30:043123. doi: 10.1063/1.5125921, 2020 

Ringler, T., Petersen, M., Higdon, R. L., Jacobsen, D., Jones, P. W., and Maltrud, M.: A 
multi-resolution approach to global ocean modeling, Ocean Model., 69, 211–232, 
doi:10.1016/j.ocemod.2013.04.010, 2013  

 



Summary of substantial changes to the manuscript. For a detailed list of changes please refer 
to (1) the revised manuscript and (2) the pdf report of changes generated comparing the 
initially submitted pdf with the revised one.  
 

• Inclusion of discussion on existing uncertainty in CMIP6 models. 
• Inclusion of additional literature. 
• Inclusion of discussion on limitations and applicability with regard to model 

resolution in coastal areas and EBUS systems . 
• We give more detailed explanations in Methods, and especially on the calculations of 

(1) entropy, (2) hotspots and extremes, as requested.  
• Revision of the Conclusion and the Results section. Now we have a “Discussion and 

Conclusion” section, where we focus on discussing the results with respect to the 
current knowledge (including literature), limitations and applications, relationships to 
predictability for real-world reconstructions, and we removed as much as possible any 
overlap with what is now stated in Results. In Results, we included a critical analysis 
of our findings, and we now clearly point each outcome to the hypotheses stated in the 
introduction. We also adopted explicit signposting throughout the manuscript, as 
recommended.  

• We clarified how we obtained the ENSO and PDO domains shown in Fig. 4 and Fig. 
5 of the revised manuscript.  

• We carried out all the additional calculations as requested and included their outcomes 
where appropriate, in the Main text or in the Supplementary material. These include 
the regression analysis for ENSO, the robustness assessment to the choice of 
ensemble members, the sensitivity to the microstate dimension in the entropy 
calculation and the re-calculation of the all the hotspots analysis using the full fields 
instead of the residuals, as requested. (See revised manuscript for details).  

• We re-ran all our analysis for E3SM2G and ORAS4 from 1960 as requested, and 
updated all our results accordingly. 

• We re-ran all calculations to evaluate the IPV*-linked predictability potential for 
AOU and O2sol, and added the results in the revised manuscript. 

• We add a EOFs analysis to further verify the PDO modulation on O2 content in the 
North Pacific. 

• All minor comments addressed. 
• The tables are now re-formatted as requested.  
• We corrected typos, mistakes and inaccuracies.  
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