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Abstract. This study examines the linkages between the upper ocean (0-200 m) oxygen (O2) content and stratification in the 

North Pacific Ocean in four Earth system models (ESMs), an ocean hindcast simulation, and ocean reanalysis data. Trend 10 
and variability of oceanic O2 content are driven by the imbalance between physical supply and biological demand. The 

physical supply is primarily controlled by ocean ventilation, which is responsible for the transport of O2-rich surface waters 

into the subsurface. Isopycnic Potential Vorticity (IPV) - is a quasi-conservative tracer proportional to density stratification 

that can be evaluated from temperature and salinity measurements - is used as a dynamical proxy for ocean ventilation. The 

predictability potential of the IPV field is evaluated through its information entropy.  15 

Results highlight a strong O2-IPV connection and somewhat higher (than in rest of the basin) predictability potential for IPV 

across the tropical Pacific, where the El Niño Southern Oscillation occurs. This pattern of higher predictability and strong 

anticorrelation between O2 and stratification is robust across multiple models and datasets. In contrast, IPV at mid-latitudes 

has low predictability potential and its center of action differs from that of O2. In addition, the locations of extreme events or 

hotspots may or may not differ among the two fields, with a strong model dependency, which persists in future projections. 20 
These results, on one hand, suggest the possibility to monitor ocean O2 through few observational sites co-located with some 

of the more abundant IPV measurements in the tropical Pacific, and, on the other, question the robustness of the IPV-O2 

relationship in the extra-tropics. The proposed framework helps characterizing and interpreting O2 variability in relation to 

physical variability and may be especially useful in the analysis of new observationally-based data products derived from the 

BGC-ARGO float array in combination with the traditional but far more abundant ARGO data. 25 

1 Introduction 

Dissolved oxygen (O2) in the oceans is crucial for biogeochemical cycling, marine ecosystem and redox chemistry of 

seawater. O2 is a key element for the survival and functioning of marine organisms as fish, shellfish, marine mammals, and 

other aquatic life rely on O2 to breathe and carry out essential metabolic processes. Many commercially important fish 

species and shellfish thrive only on well-oxygenated waters. Growth, reproduction, and overall health of marine organisms 30 
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depends on the balance between metabolic demands and O2 supply (Deutsch et al., 2015).  

Ocean deoxygenation refers to the long-term decrease in the concentration of O2 in the Earth’s oceans. At the global scale, 

the O2 inventory has been declining significantly over the past decades according to historical observations (Ito et al., 2017; 

Schmidtko et al., 2017). Changes in O2 concentrations can reflect the impacts of climate change, nutrient pollution, 

eutrophication, and other human-induced stressors (e.g. Breitburg et al., 2018). Monitoring ocean O2 levels helps scientists 35 
assessing the health and resilience of marine ecosystems and identifying areas that may be prone to O2 depletion or hypoxic 

events.  Monitoring and predicting O2 levels in the oceans are especially important around and within Oxygen Minimum 

Zones (OMZs), which are characterized by layers in the water column with very low O2 concentration due to biological, 

chemical, and physical processes. As oceans warm, OMZs are posed to increase in number and size across the globe. In the 

North Pacific, a large OMZ exists on the eastern side of the tropical Pacific, and its variability and trends are important also 40 
for nitrogen cycling and production of N2O, a potent greenhouse gas (Nevison et al., 2003; Yang et al., 2017).  

Interpreting changes in O2 concentrations requires understandings how ocean circulation, mixing, air-sea gas exchange, 

biological productivity and respiration operate. The air-sea gas exchange for O2 is relatively efficient, and it maintains the 

surface water close to saturation with the overlying atmosphere for ice-free regions. Ocean circulation is the primary 

pathway through which O2 is supplied (or ventilated) into the thermocline and deep ocean. In the subsurface, O2 is gradually 45 
consumed by respiration due to the decomposition of dissolved and particulate organic matter. The O2 concentration 

progressively decreases as water masses age.  At climatological timescale, the rates of O2 supply and consumption are 

balanced to sustain a steady state. In another words, changes in O2 concentration are caused by an imbalance between O2 

supply and O2 consumption.  

On the supply side, the ventilation of O2 is essentially controlled by the ocean circulation and mixing processes. Broadly, 50 
ventilation refers to the exchange of waters between the surface layer and the ocean interior (Talley et al., 2011), and 

involves a wide range of physical processes such as the wind-driven shallow overturning associated with the Subtropical 

cells (Brandt et al., 2015; Duteil et al., 2014; Eddebbar et al., 2019), the formation of mode and intermediate waters (Claret 

et al., 2018; Sallee et al., 2010, 2012; Gnanadesikan et al., 2012) and the lateral (isopycnal) eddy stirring (Rudnickas et al., 

2019; Gnanadesikan et al., 2013, 2015). These circulation systems are ultimately driven by the atmospheric winds and air-55 
sea buoyancy fluxes which exhibit significant interannual, decadal and multi-decadal variability.  

Fluctuations in ventilation rates as well as ocean stratification are known to impact both O2 levels (Ridder & England, 2014; 

Duteil et al., 2014; McKinley et al., 2003) and the distribution of isopycnal potential vorticity (IPV), a dynamical tracer 

which is proportional to the local stratification and the Coriolis parameter. The use of the absolute value of the Coriolis 

parameter in the formula, indicated by *, guarantees that the relationship with stratification holds with the same sign in both 60 
hemispheres, so that higher IPV* indicates stronger stratification and vice versa. A strong winter-time convective mixing 

will produce weakly stratified, O2-rich water masses (low IPV* and high O2), and vice versa. These properties are then 

brought together into the ocean interior following the pathway of large-scale ocean currents.  
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In this study, we build upon this relationship and explore the overarching hypothesis that isopycnic potential vorticity (IPV*) 

may be used as a proxy for O2 with a focus on the North Pacific basin. If this was the case, then IPV* may provide a path to 65 
monitor and predict the evolution of O2.  

In the North Pacific, the Pacific Decadal Oscillation (PDO) is the mode of climate variability that exerts the greatest control 

on stratification and O2, as shown in Ito et al. (2019). Indeed, the dominant mode of oxygen variability in the North Pacific 

Ocean is correlated with the PDO index such that the PDO explains about 25% of its variance.  In the tropics, the PDO 

modulates the depths of isopycnal surfaces and biological productivity/respiration together with the El Niño Southern 70 
Oscillation (ENSO), while at mid-latitudes is the dominant mode influencing the depth of the winter mixed-layer ventilation 

and the ventilation processes. Our specific objectives are to analyze Earth System Models (ESMs) to evaluate the hypotheses 

that (HYP 1) the ocean ventilation (IPV*) regulates O2 variability in the oceans; (HYP 2) the PDO/ENSO-ventilation-O2 

linkage provides the basis for the predictability of O2 whenever IPV* is predictable; and (HYP 3) the linkage can be 

exploited to identify hotspots of O2 changes in variability, means and extremes (see Methods).  75 
Rather than working directly with the observational data, this study applies data-mining tools to a combination of Earth 

System Models (ESMs) outputs. ESMs provide a mathematical representation of underlying physical and biogeochemical 

processes in the form of coupled partial differential equations that are discretized and computationally integrated using high 

performance computing infrastructures. The time-evolving, three-dimensional distribution of physical and biogeochemical 

variables are generated as outputs of such calculations. Here we analyze outputs from the Coupled Model Intercomparison 80 
Project Phase 6 (CMIP6, Eyring, 2016), a major international effort with the primary objective of providing a standardized 

framework for simulating past, present, and future climate conditions. The participating modeling groups run their climate 

models under specified radiative forcing scenarios, and generate a comprehensive set of output datasets freely available to 

the scientific community through data portals and archives provided by the Earth System Grid Federation (ESGF). Using a 

suite of ESMs we will address the following questions:  85 

• How robust is the relationship between O2 and IPV* in the North Pacific across several ESMs and how may it 

evolve by the end of the 21st century? (® HYP 1) 

• What are the linkages between O2 and IPV* versus large-scale modes of climate variability such as PDO and 

ENSO? (® HYP 2) 

• Where are the hotspots of changes in IPV* and O2, both in the historical period and in the projections, and are they 90 
co-located or differ in space and time? (® HYP 3) 

To address the above questions, we apply a data-mining tool for dimensionality reduction and network analysis (δ-MAPS, 

Fountalis et al., 2018), and apply concepts such as information entropy (IE), and the standard Euclidean distance index 
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(SED, Diffenbaugh and Giorgi, 2012). Since the above approaches are relatively new to the ocean biogeochemistry 

community, a brief overview is provided here, followed by detailed definitions in section 2.  95 

First, Information Entropy (IE) is a metric that measures the amount of randomness and therefore unpredictability in a 

dataset. For example, given a time series, IE measures how much information is contained in the data. If the time series is a 

random sequence, the entropy is high because the complexity is high, and the system is chaotic. On the other hand, if it 

approximately follows a sinusoidal curve, its predictability is high, and the IE would be low.  

Second, δ-MAPS (Fountalis et al., 2018) combines feature extraction and network analysis into a single framework. The goal 100 
of δ-MAPS is to identify key features and to visualize how those features relate to one another. It establishes sets of spatially 

connected chunks of grid points sharing similar dynamical features, called domains. This is simpler and easier to interpret 

than empirical orthogonal functions (EOFs) which suffer from orthogonality constraints. It also allows to investigate the 

network of domains, but this step is skipped in this work. The benefits of δ-MAPS include simplicity, interpretability and 

overfitting prevention relative to conventional EOF-based approaches when extracting climate patterns from high-105 
dimensional datasets.  

Finally, the Standard Euclidean Distance (SED) index is a simple and flexible method used to detect total changes in one or 

more variables in a given dataset (in other words to identify regions that stand out for changes in means, extremes and 

variability), through measuring the distance in multi-variate space between a baseline period and any other (Diffenbaugh et 

al., 2008; Diffenbaugh and Giorgi, 2012, Williams et al., 2007). The SED is a non-parametric method, meaning it does not 110 
assume a specific probability distribution for the data. This flexibility makes it applicable to a wide range of datasets, 

regardless of their underlying distribution.  

Before delving into these methodologies, we stress that this work aims not only at testing the hypothesis we put forward, but 

also at introducing recently developed approaches for model intercomparison and more generally data analysis to the ocean 

biogeochemistry community. 115 

 

Text Inserted�
Text
"95"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Text Replaced�
Text
[Old]: "δ-MAPS (Fountalis et al., 2018) combines feature extraction and network analysis into a single framework. The goal of 95" 
[New]: "Information Entropy (IE) is a metric that measures the amount of randomness and therefore unpredictability in a dataset. For example, given a time series, IE measures how much information is contained in the data. If the time series is a random sequence, the entropy is high because the complexity is high, and the system is chaotic. On the other hand, if it approximately follows a sinusoidal curve, its predictability is high, and the IE would be low. 100 Second, δ-MAPS (Fountalis et al., 2018) combines feature extraction and network analysis into a single framework. The goal of"

Text Inserted�
Text
"105"

Text Deleted�
Text
"100"

Text Replaced�
Text
[Old]: "Second, Information Entropy (IE) is a concept that measures the amount of randomness and therefore unpredictability in a dataset. Imagine a climate time series. IE measures how much information is contained in the data. If the time series is a random sequence, the entropy is high because there is more complexity or randomness. On the other hand, if it approximately follows a simple cosine curve, it is more predictable and simpler, thus IE is low. 105 Finally, the Standard Euclidean Distance (SED) index is a simple and flexible method used to detect total changes in one or more variables in a given dataset (in other words to identify regions that stand out for changes in means, extremes and variability), through measuring the distance in multi-variate space between a baseline period and any other (Diffenbaugh et" 
[New]: "Finally, the Standard Euclidean Distance (SED) index is a simple and flexible method used to detect total changes in one or more variables in a given dataset (in other words to identify regions that stand out for changes in means, extremes and variability), through measuring the distance in multi-variate space between a baseline period and any other (Diffenbaugh et 110"

Text Deleted�
Text
"110"

Text Inserted�
Text
"Before delving into these methodologies, we stress that this work aims not only at testing the hypothesis we put forward, but also at introducing recently developed approaches for model intercomparison and more generally data analysis to the ocean 115 biogeochemistry community."



5 
 

 

2 Materials and methods 

In this section, we describe in more details the three tools recently developed for climate science applications and adopted in 

our analysis and how we calculate IPV*.  120 

We evaluated the predictability potential using the Information Entropy (IE). IE is defined following Prado et al. (2020) and 

is based on the recurrence of microstates in a recurrence plot (RP). A RP (Eckmann et al 1987) is a visualization technique 

for trajectory recurrence of a given dynamical system described in phase space by a matrix Rij such that 

𝑅!"(𝜖) = Θ (𝜖 − *𝒙𝒊 − 𝒙𝒋*,  ,  𝒙𝒊  ∈  ℝ& ,  𝑖, 𝑗  =  1,2, … ,  𝐾,                                          (1) 

where Θ is the Heaviside function, |    | is an Euclidean distance, in our work, xi and xj are states at time steps i and j, ε is a 125 
threshold distance (the maximum distance between two states to be considered mutually recurrent), d is the xi space 

dimension and K is the number of states considered (the length of each analyzed time series). Rij is a matrix which represents 

non-recurrent (as zeros) and recurrent (as ones) states in phase space respectively, and it is explicitly dependent on ε. Corso 

et al. (2018) introduced the Recurrence Entropy quantifier, for which for a given time series, the probability of occurrence of 

microstates in its RP is quantified without the need for a space-state reconstruction. A microstate of dimension N is a NxN 130 
matrix sampled inside the RP, with probability of occurrence Pk = nk/Ntot, where nk are the number of occurrences of the 

microstate, and Ntot is the total number of possible configurations of 0 and 1 of the microstate (see Ikuyajolu et al (2021) and 

Prado et al (2020) for more details). The information entropy IE is then defined as  

𝐼𝐸(𝑁'(') =   −  ∑ 𝑃)  ln 𝑃)
*!"!
)+,                                                             (2) 

where k refers to the kth microstate. When IE is normalized by the maximum entropy (corresponding to when all microstates 135 
show the same probability) then IE=0 corresponds to perfect predictability, while IE=1 represents chaos. Furthermore, the 

explicit dependence of the entropy quantifier on ε is removed using the maximum entropy formulation. Prado et al. (2020) 

have shown that a value for which IE is maximum exists, does not vary much for varying ε and is strongly correlated with 

the Lyapunov coefficient of the system, (we refer to Ikuyajolu et al (2021) for the details of the heuristic used to estimate the 

maximum entropy). In brief, Prado et al. (2020) suggests a technique to eliminate the dependence of the entropy 140 
computation on the selection of a distance threshold (e) by finding a clearly defined maximum in the relationship between 

epsilon and the entropy (Smax in Fig. 4 of Prado et al. (2020)). This maximum is robust and relatively stable in a range of 

epsilon values. Furthermore, there is a strong correlation between the maximum entropy and the Lyapunov exponent. In our 

work, the code used to compute the entropy (see Data Availability section) uses the heuristic explained in detail in Ikuyajolu 
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et al (2021) for the calculation of Smax through an iterative procedure that calculates the recurrence entropy for varying e 145 
until a maximum is found and retained. This algorithm requires three input parameters: the microstate dimension (that we set 

at 4, but explored other values as shown in Results), the number of random samples to compute the microstates distribution 

in the RP (here 10000) and a random sub-sample used to determine the e for which entropy is max (here 1000). We compute 

the entropy field of the deseasonalized and detrended IPV* (full signal) using monthly data over the whole historical and 

future periods. In each point, the entropy of the IPV* field is associated with recurring microstates in its time series (that 150 
define the system and thereby impacts its predictability). The higher the predictability of a time series the more recurrent are 

its temporal dynamics, i.e. the easiest will be to predict its future evolution.    

δ-MAPS (Fountalis et al., 2018) is an unsupervised network analysis method that identifies spatially contiguous and possibly 

overlapping regions referred to as domains, and the lagged functional relationships between them. In short, domains are 

spatially contiguous regions that share a highly correlated temporal activity between grid cells of the same domain. In this 155 
work we apply it to the sea surface temperature (SST) anomaly field (see Data) to identify the major modes of climate 

variability in the north Pacific in a reanalysis and in the ESMs. δ-MAPS is an alternative approach to reduce the 

dimensionality of spatio-temporal data to EOFs (standard or rotated). The orthogonality between EOF components 

complicates the interpretation of the results, especially when comparing models and observational datasets, as discussed, for 

example, in Dommenget and Latif (2002) and Falasca et al. (2019), and δ-MAPS offers a powerful solution to this problem. 160 
Given any spatio-temporal field, its local homogeneity is hypothesized to be highest at “epicenters” or “cores”. For each grid 

point, a local homogeneity is defined as the average pairwise cross-correlation between that grid cell and a set of K nearest 

neighbors (see Fountalis et al., 2018 for details). Cores are then determined as neighbors of points where the local 

homogeneity is a local maximum and above a threshold δ. Each core is iteratively expanded and merged using a greedy 

algorithm to iteratively find domains as large as possible that are (i) spatially contiguous, (ii) include at least a core and (iii) 165 
have homogeneity higher than δ. δ is computed using a significance test for the unlagged cross-correlations. Given any 

random pair of grid points, the significance of the Pearson’s correlation of their timeseries is assessed through the Bartlett’s 

formula (Box et al., 2011) with the null hypothesis of no coupling. The significance of each correlation is tested for a user-

specified significance level α, and δ is computed as the average of significant correlations. Here, we applied δ-MAPS with K 

= 8 and α = 0.01.  170 
The Identification of hotspots of change follows the approach Introduced by Diffenbaugh and Giorgi (2012) (which builds 

on Williams et al., 2007 and Diffenbaugh et al., 2008 and references therein), and applied by Turco et al. (2015) to the 
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analysis of global atmospheric data. Hotspots are quantified through a Standard Euclidean Distance index (SED) that 

aggregates the changes in means, variability and extremes of the given spatio-temporal field according to: 

𝑆𝐸𝐷  =  ?∑ ∑ @ !-&#$
./012!-&#$23

A
4

5
"+,

*!-&
!+,        (3)  175 

We compute in each grid point two SED indices, separately for O2 and IPV*. Nind is the total number of indicators per each 

variable and i the index identifying each indicator, j spans the seasons, so that indij is the ith indicator in the jth season, and 

p95 is the 95th percentile. As the indicators and SEDs are computed point by point, i.e. each grid point has one value, the 

percentile is computed spatially over all the grid points. Here we consider December-January-February as (boreal) winter, 

March-April-May as spring, and so on. We consider three indicators for each variable, evaluating changes in means, 180 
variability and extremes between two periods of equal length. Period 1 covers 1950-1981 (1960-1986 for reanalysis and 

E3SM-2G ocean hindcast), and Period 2 1983-2014 (1988-2014 for reanalysis and hindcast) for the historical time, and 

2036-2067 and 2069-2100 for the projected future. In equation (3) indicators of both periods are normalized on the 95th 

percentile calculated over Period 1, in order to fairly compare changes of hotspots intensity over time. We chose not to 

compare 2069-2100 with 1950-1981, but with 2036-2067 instead, because we want to track changes in each period 185 
compared to the preceding timeslot in order to quantify how rapidly they occur in future projections compared to historical. 

For each variable, we compute three indicators at each grid point and for each season using the Climate Data Operators 

(Schulzweida, 2022) as follows:  

• Changes in means are estimated in each season separately by 𝐼𝑛𝑑1_𝑚𝑒𝑎𝑛𝑠  =  𝑦𝑠𝑒𝑎𝑠𝑚4 −  𝑦𝑠𝑒𝑎𝑠𝑚,, where yseasm1 

and yseasm2 are multi-year seasonal means in Period 1 and 2, respectively. Therefore, taking for example the O2 190 
historical simulations over 1950-2014 (but similar expressions hold for IPV* and the other periods), Ind1DJF = 

<O2DJF>1983-2014 – <O2DJF>1950-1981, Ind1MAM = <O2MAM>1983-2014 – <O2MAM>1950-1981 , Ind1JJA = <O2JJA>1983-2014 – 

<O2JJA>1950-1981 and Ind1SON = <O2SON>1983-2014 – <O2SON>1950-1981 , where < …> is a time mean (seasonal climatology). 

• Changes in multi-year seasonal variability are evaluated by (i) detrending each variable point by point in the two periods 

separately, (ii) computing the multi-year seasonal standard deviation of these detrended fields, yseasσ, for each period 195 
for each season, (iii) computing Ind2_variability as the percentual changes such that  

𝐼𝑛𝑑2_𝑣𝑎𝑟𝑖𝑎𝑏𝑖𝑙𝑖𝑡𝑦  =  100 ⋅ Q67897:% ;67897:'
67897:'

R. Therefore, with the example of O2 historical simulations over 1950-

2014, Ind2DJF = 100 (std(O2DJF)1983-2014 – std(O2DJF)1950-1981)/std(O2DJF)1950-1981 , where std(…) is the multi-year seasonal 

(winter) standard deviation over the specified periods (and equivalent formulations hold for the other seasons: MAM, 

JJA and SON). 200 
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• Finally, changes in extremes (in our case specifically overshots of IPV* and undershots of O2) are computed through the 

following steps: (i) for each season, we compute at each grid point the multi-year seasonal O2 minimum or IPV* 

maximum over Period 1 and we consider it as a threshold (one threshold map per season); (ii) we count how many times 

in each corresponding season of Period 2 O2 < thresholdO2 (IPV* > thresholdIPV*) is verified; (iii) the percentage of 

occurrences computed at point (ii) is taken as indicator of percentual changes in extremes and estimated by 205 

𝐼𝑛𝑑3_𝑒𝑥𝑡𝑟𝑒𝑚𝑒𝑠  =  100 ⋅ Q*"((
*)
R , where Nocc is the number of extremes occurrences (by season) and NT is the total 

number of months in all the corresponding seasons (96 for the models and 81 for reanalysis and hindcast). Building on 

previous works (Falasca et al. 2019; Falasca et al. 2022), we expect the topology of a given model to remain relatively 

stable across ensemble members, i.e. we do not expect the member choice to significantly influence the calculation of 

extremes and hotspots and especially their relationships, and verified that this is indeed the case in one of the models by 210 
testing four additional randomly chosen ensemble members of CanESM5 (see Data). A major advantage of this hotspot 

definition is that it accounts for changes in mean, variability and extremes at the same time in the identification of the 

hotspots. In other words, it accounts for the topology of the simulated climate fields, which can be characterized by 

considering all the three aspects together. This definition of extremes aims at including information on seasons 

exceeding corresponding baseline extremes, without choosing a priori a threshold on the current distribution, which is 215 
especially relevant for comparing changes with respect to a reference baseline. The three indicators, grouped into four 

seasons for each variable, are then used to compute the SED indices.  

Finally, the IPV* (m-1 s-1) is used as a proxy of stratification and is defined as the isopycnic potential vorticity (Talley et al., 

2011) with the absolute value of the Coriolis parameter in its formula: 

 220 

𝐼𝑃𝑉 ∗	= |=|
>
𝑁4       (4). 

Here N2 is the Brunt–Väisälä frequency (which is a measure of a fluid stability to vertical displacements), g is the 

gravitational acceleration and f is the Coriolis parameter. IPV is a conservative tracer in frictionless and adiabatic circulation. 

IPV* is calculated over the three-dimensional ocean volume using Eq. 4 and we consider the 0-200 m vertical weighted 

average. This procedure allows us to compare datasets with different vertical discretization. 225 
 

3 Data 

We consider four ESMs from the CMIP6 catalog, a hindcast and reanalysis data as summarized in Table 1. Whenever 

multiple ensemble members were available, we selected the first (r1i1p1f1). We randomly selected four additional ensemble 

members for CanESM5 (r5i1p1f1, r10i1p1f1, r15i1p1f1 and r20i1p1f1) to further verify the robustness of the hotspots 230 
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calculation to the member choice. All ESMs are forced by the historical radiative forcing from 1850 to 2014 and we analyze 

the monthly outputs from 1950 to 2014. We further discuss future ssp585 scenarios and focus on the 2036-2100 period, 

indicated as future. 

The hindcast is a new ocean-ice biogeochemistry simulation (referred to as the G-Case), E3SMv2.0-BGC (hereafter, E3SM-

2G, Takano et al, 2023), based on the Model for Prediction Across Scales-Ocean (MPAS-O), an ocean component of the 235 
Energy Exascale Earth System Model (E3SM) version 2 (Golaz et al., 2022). Details on ocean physics updates can be found 

in Golaz et al. (2022). One of the major updates is the introduction of Redi isopycnal mixing (Redi, 1982). Along with ocean 

physics updates, this version also incorporated a uniform background vertical diffusion specifically developed for 

simulations of the ocean biogeochemistry to enhance ocean carbon uptake and thermocline ventilation of dissolved inorganic 

carbon (DIC). Incorporating this mixing parameterization results in an improved representation of climatological O2 240 
distributions in the v2.0 version compared to its predecessor (Burrows et al., 2020). The Marine Biogeochemistry Library 

(MARBL, Long et al, 2021) is used to simulate the ecosystem dynamics and cycling of biogeochemical elements. After the 

spin-up period, the model is forced by a meteorological reanalysis dataset, JRA-55do version 1.4 (Tsujino et al., 2020) from 

1958 onward. As ocean reanalysis, we use the ORAS4 product (Balmaseda et al.,2012; Mogensen et al.,2012) available from 

1959 onward, which includes a direct surface fluxes implementation from ERA40 and ERA-Interim and multi-scales bias 245 
correction. When analyzing the E3SM-2G hindcast and the ORAS4 reanalysis, we focus on the 1960-2014 interval to avoid 

the spurious presence of an anticyclonic tropical cyclone in the NE Pacific in 1959 in JRA-55do v1.4.  

All the data are remapped at 1°x1° horizontal resolution.  

 

Table 1. CMIP6 Earth System Models, global ocean hindcast and reanalysis used in this work. 250 

Modeling Group/Center Model Name Atmospheric 

 Component/Resolution 

Oceanic Component/ 

Resolution 

Reference 

National Oceanic and 

Atmospheric Administration, 

Geophysical Fluid Dynamics 

Laboratory 

GFDL-ESM4 AM4.0, ~1o, 49 levels OM4 MOM6, 0.5°x0.5°, 75 

vertical levels (hybrid 

pressure/isopycnal) 

Biogeochemical component:  

COBALTv2 

(Dunne et al., 2020; 

Stock et al., 2020) 
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Canadian Earth System 

Model version 5 

CanESM5 CanAM5, T63 (~2.8o), 49 

levels 

CanNEMO, 45 vertical levels, 

NEMO3.4.1, ORCA1 tripolar 

grid, 1° with refinement to 1/3° 

within 20° of the equator 

Biogeochemical component:  

CMOC 

(Swart et al., 2019; 

Christian et al., 2022) 

NorESM Climate modeling 

Consortium 

NorESM2-LM CAM-OSLO, 2° resolution; 32 

levels.  

MICOM, 1°, 70 vertical levels 

Biogeochemical component:  

iHAMOCC 

(Seland et al.,2020; 

Tjiputra et al., 2020) 

Institut Pierre-Simon 

Laplace 

IPSL-CM6A-LR LMDZ, NPv6, N96; 1.25°Lat 

x 2.5° Lon, 79 levels 

NEMO-OPA (eORCA1.3, 

tripolar primarily 1°, 75 

vertical levels. 

Biogeochemical component:  

PISCESv2 

(Boucher et al., 2020) 

Department of Energy, 

Energy Exascale Earth 

System Model 

E3SMv2.0-BGC 

(E3SM-2G) 

JRA55do reanalysis (55km, 

3hr resolution) 

MPAS-O (30 to 60km 

resolution) 

Biogeochemical component:  

E3SMv2.0-BGC, MARBL 

(Golaz et al, 2022; 

Takano et al., 2023; 

Long et al., 2021) 

ECMWF Ocean reanalysis 

System 

ORAS4 _ Global, 1°, 42 Levels (Balmaseda et al.,2012; 

Mogensen et al.,2012) 

We begin our analysis with a brief evaluation of the ESM biases in the two main fields of interest, IPV* and O2. For the 

IPV*, the ocean reanalysis dataset is used for validating the model outputs for the maximum possible time overlap in the 

historical configuration (1959-2014). For O2, we can only contrast the annual mean O2 climatology between the World 

Ocean Atlas (Garcia et al., 2019) and the ESMs (Fig. 1). We additionally compared the ORAS4 IPV* climatology over 
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1988-2014 (i.e. “period 2” for this reanalysis) with the corresponding climatology computed using SODA3.4.2, which uses a 255 
different ocean component compared to ORAS4. The differences across reanalysis that use different models but assimilate 

the same observations are much smaller (about one order of magnitude) than the signal (Suppl. Fig. S1), and smaller than 

any model bias. 

 

Figure 1. (Left) IPV* annual mean climatology (1959-2014) weighted averaged over 0-200 m depth in the North Pacific basin. (a) 260 
ORAS4. (b-f) Model biases (model – ORAS4) difference. (Right) O2 annual mean climatology (1950-2014) weighted averaged over 0-200 

m depth. (g) World Ocean Atlas climatology. (h-n) Model biases (model – WOA) difference. The RMSE of the modelled IPV* (m-1 s-1) 

and O2 (micro mol kg-1) are shown on top of each panel.  

The E3SM-2G hindcast is forced by observed atmospheric fields and not surprisingly displays the smallest bias and root 

mean square error (RMSE). The RMSE of the modelled IPV* (m-1 s-1) and O2 (micro mol kg-1) are shown atop of each panel 265 
in Figure 1. Overall, the IPV* and O2 biases have broadly anticorrelated patterns, with the models being generally less 

stratified and more oxygen rich than observed in the extra-tropical North Pacific, and often too stratified and with a larger O2 

deficit than observed south of the Equator. However, maximum and minimum biases in the two fields only seldom coincide. 
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Regionally, the E3SM-2G is generally less stratified than observed with a relatively low O2 bias and an overestimation of 

approximately 10 micro mol kg-1 in the subtropical thermocline of the North Pacific basin. The hindcast performs especially 270 
well in the tropical thermocline. Among the CMIP6 models, CanESM5 shows a slightly higher IPV* underestimation in the 

subpolar gyre and a O2 overestimation in the subtropics compared to the other ESMs, while NorESM2-LM emerges as the 

most stratified south of the Equator. In O2 larger biases (positive or negative) are found generally in the tropical thermocline 

and the tropical/subtropical boundaries. The sign and magnitude of the biases are model dependent. Interestingly, models 

generally overestimate O2 at subpolar latitudes.  275 

4 Results 

4.1 Predictability potential (HYP 1) 

We begin our analysis with the predictability potential of IPV*, quantified through the information entropy (IE, see 

Methods). The goal is to verify if and where IPV* has an elevated predictability skill, owing to the presence of quasi-

recurrent behaviors in its time-series. We also aim to examine whether O2 is correlated with IPV* in regions where the latter 280 
has a high predictability potential. As a reminder, IE values close to 1 indicate high complexity and unpredictability, and 

close to 0 perfect predictability (the signal is recurrent, for example constant or periodic). We preliminary tested the 

sensitivity of the entropy field to the microstate dimension, within a meaningful range according to previous literature 

(Ikuyajolu et al., 2021), using microstates of dimension 2, 3, 4 and 5 for GFDL-ESM4 over 1950-2014 (Suppl Fig. S2). The 

IE pattern, i.e. areas more (less) predictable relative to the surroundings are substantially unchanged, i.e. the geographical 285 
patterns are robust, in agreement with Ikuyajolu et al. (2021). Both microstate dimensions 4 and 5 show reasonable entropy 

values and we chose to use a microstate dimension of 4 to conduct all the analysis because it spans the widest range of 

possible values. 

 

O2 – IPV* relationship across ESMs and its future evolution  290 

IE maps for IPV* are shown in Fig. 2 for both historical and future times, with superposed the contours of the areas where 

the (lagged) anticorrelation between IPV* and O2 is at least -0.5 (see Suppl. Fig. S3-S4 for the anticorrelation and lag maps). 

Higher predictability in the historical period is found in the tropical Pacific areas close to the geographical location of ENSO 

(i.e. the area most impacted by ENSO being the domain identified as ENSO-related by d-Maps, which well maps the area 

identified by an EOF analysis over the SST field for having the greatest variance explained by PC1). The predictability 295 
potential is generally highest along two stripes enclosing the ENSO pattern and excluding the upwelling cold tongue. The 

distribution of IE follows broadly that found in a much longer simulation of the IPSL model covering the past 6,000 years 
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and analyzed by Falasca et al. (2022) and appears to be robust. The western boundary current region and the Kuroshio-

Oyashio extensions have low predictability across all datasets considered. In NorESM2-LM and CanESM5, and to a lesser 

degree in ORAS4 and IPSL-CM6A-LR, the higher predictability of the ENSO area extends to the north-eastern portion of 300 
the basin. In general, in both the hindcast and the models, strong anticorrelations between the time series of IPV* and O2 (c.c 

< -0.5) coincide with low IE regions and are linked to ENSO affecting concurrently stratification and O2 in the tropics and 

south of the upwelling area. Very limited IPV* predictability is found in the central and western North Pacific, where the 

variability is dominated by the PDO signal. The PDO does not emerge as easily predictable both in the interval considered, 

in agreement with e.g. Gordon et al. (2021) and, at least in the IPSL model, across the whole second half of the Holocene 305 
(Falasca et al., 2022). In those areas, anticorrelations between O2 and IPV* are relatively weak (generally > -0.4 but for 

NorESM2-LM). The entropy and the regions where the evolution of IPV* and O2 are strongly anticorrelated do not change 

significantly in the future projections in the four models. We further explored whether oxygen solubility, (O2sol), which is 

modulated by ocean warming/cooling, and the apparent oxygen utilization AOU, which is controlled mostly by the 

biogeochemical processes affecting oxygen demand, may be independently linked to IPV* predictability. The areas where 310 
IPV* and AOU time series are positively correlated with correlation coefficients > 0.5 are very similar to the ones obtained 

by analyzing the O2-IPV* relationship. For O2sol, which well approximates preformed O2 at the depths considered, the 

anticorrelations areas (i.e. where c.c. < -0.5) are quite extensive, especially in the hindcast, but mostly superimposed to high-

entropy/low predictability IPV* areas (Suppl. Fig. S5). 

 315 
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Figure 2: IPV* entropy field in the historical interval (left) and in the future (right) for the ESMs, and in the historical 1960-2014 period 

for the hindcast and ORAS4, with superposed the contours of the areas where IPV* and O2 time series are anticorrelated with correlation 

coefficients < -0.5. 

In the next section we isolate the PDO signal to explore whether the low predictability in the northern Pacific Ocean (north 

of ENSO region) related to time scales, i.e. if there is a low frequency PDO modulation with a high frequency “noise” due to 320 
both atmospheric and oceanic variability. The PDO is indeed a lower-frequency mode compared to ENSO and has most 

loading at extra-tropical latitudes where the “noise” is greater.  

4.2 Trends and PDO impact on O2 and IPV* (HYP 2) 

The limited predictability found in the North Pacific does not exclude the possibility of the PDO modulating both IPV* and 

O2 inventories simultaneously. As explored in previous works (for example, Ito et al., 2019), the dominant mode of observed 325 
O2 variability in the northern Pacific Ocean is correlated with the PDO index which explains about 25% of the variance. 

Observations, however, offer only sparse coverage, in both time and space. To further verify the PDO modulation in the 

present work, we computed the first EOF for the E3SM-2G hindcast 0-200m O2 and IPV* anomalies over 1960-2014 over 

the northern Pacific (20.5°N-69.5°N;115.5°E-60.5°W) and the corresponding time series for the first principal component 

(pc1). The first EOF explains 25% of the oxygen variance and about 12% of the IPV* variance. The computed pc1 shows a 330 
significant and strong correlation (Pearson’s R coefficient) with PDO timeseries computed using SST anomalies with |R| = 

0.83 (p < 0.01) for O2, and |R| = 0.44 (p <0.01) for IPV*, after applying 5-year moving means. The correlation with the PDO 

is higher than with ENSO, which is at most |R| = 0.34 (p < 0.01) for O2, after applying a 3-month moving mean. This is 

consistent with previous knowledge that oxygen variability in the North Pacific is mostly associated with the PDO. We 

hereby quantify the (linear) impact of the PDO on the two fields of interest, and then evaluate their residuals. If the PDO is 335 
the main predictor of IPV* and O2 distributions, its impact on the two fields should be strongly anticorrelated and larger than 

the residual. As mentioned, the objective is to verify if the greater availability of IPV* in observations, reanalyses and 

modeled fields could be used to extrapolate information about O2 and its evolution in time, bypassing – at least to a certain 

degree – the need to run full biogeochemical models or measure O2 directly.  

Estimation of climate indices in ESMs and linear regression 340 

We use δ-MAPS (see Material and Methods) applied to the SST field to evaluate the main modes of Pacific climate 

variability, ENSO and PDO with a greater focus on the latter, and their time evolution in the models, the ocean hindcast and 

the reanalysis. While the evolution of ENSO using δ-MAPS is straightforwardly described by the timeseries of the 

cumulative anomalies in the ENSO-related domain (e.g. Falasca et al., 2019), for the PDO we must consider the difference 

between the SST cumulative anomalies of two domains. The domains are identified by the complex network algorithm, and 345 
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we applied a 5-yr running mean to produce the PDO time-series shown in Fig. 3. The domains shape and size are indicated 

in Fig. 4. For ORAS4 and E3SM-2G over 1960-2014, we computed the 0-lag Pearson’s correlation coefficients between 

these timeseries and the commonly defined indices of PDO (following Mantua et al. 1997) and Nino34 (average SST 

anomalies over the box 5oN-5oS, 170oW-120oW) for validation. Both timeseries are retrieved from NOAA 

(https://psl.noaa.gov/data/climateindices/list/), and a 3-month moving average is applied to all the ENSO timeseries (signals 350 
and indices) and a 5-year moving average to all the PDO timeseries (signals and indices). Correlation coefficients are 0.88 

for PDO and 0.93 for ENSO in ORAS4, and are 0.89 for PDO and 0.91 for ENSO in E3SM-2G.  

Moving to the models (Fig. 3), in the historical period GFDL-ESM4 slightly underestimates the PDO strength, while the 

opposite is verified in CanESM5 and NorESM2-LM. In the latter, the frequency of the signal is also higher than observed. 

By the end of the 21st century, the strength of the PDO remains unaltered in GFDL-ESM4 and IPSL-CM6A, while decreases 355 
in NorESM2-LM and especially in CanESM5, following a decrease in size of the eastern domain. A decrease in amplitude 

and increase in frequency of the PDO was found also in several models in the CMIP5 ensemble (Li et al., 2020).

 
Figure 3: PDO indices (SST cumulative anomalies) calculated using δ-MAPS (see text) in the historical and future time periods. The 

dashed line in panel (b) is the PDO index timeseries from NOAA (available at https://psl.noaa.gov/data/climateindices/list/), after a 5-year 360 
moving mean is applied and rescaled to fit in the plot (multiplied by the standard deviation of the ORAS4 timeseries in panel (b)).  

https://psl.noaa.gov/data/climateindices/list/
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Given the PDO(t) indices, the residual component of the fields of interest that is not linearly forced by the PDO can be 

separated as a function of time (see e.g. Kucharski et al., 2008) so that for O2 (but the same procedure was applied to IPV*): 

O2res(x,y,t)=O2(x,y,t)-O2PDO(x,y,t)        (5), 

where 365 

O2PDO(x,y,t) = bO2(x,y)*PDO(t)     .        (6) 

bO2 (x,y) is constant in time and determined by least-square fitting through a linear regression for each dataset separately. 

Figure 4 shows bIPV* and bO2 for all datasets with superposed the boundaries of the domains corresponding to the ENSO 

mode and those contributing to the PDO, in the historical period. In most cases there is an overall anticorrelation signal 

between the maps for the two fields, as to be expected, but also several important differences. First, the regions where bO2 is 370 
strongest (both positive and negative values) do not correspond to minima and maxima in bIPV*. Second, the equatorial 

upwelling tends to have a strong positive signal in bO2 and only a weak one, but of the same sign, in bIPV*. Third, the PDO 

impacts on the two fields vary substantially among models, as quantified by the correlation among the respective fields 

indicated atop the bO2 plots, with GFDL being the closest to the hindcast and, for the IPV* case, also to the reanalysis. In 

NorESM2-LM the anticorrelation between the regression fields is too strong and the PDO has both a shape and loading in 375 
the Pacific interior which is different than observed. CanESM5 and IPSL-CM6A-LR display positive spatial correlations, 

with important biases with respect to the hindcast at the equator and along the eastern boundary. Furthermore, the trends of 

the residuals have amplitude comparable to the PDO-forced signal in both fields in the historical period in all cases (see 

Suppl. Fig. S6), and the linear trends of the whole signals are nearly identical to those of the residuals. We will further 

discuss the trends shape when presenting Ind1means (i.e., the indicator for changes in means).  380 

We performed a comparable linear regression analysis also using the ENSO index, instead of the PDO, and obtained similar 

shapes of the b coefficients -as to be expected – but much lower absolute values (Suppl. Fig. S7). This further confirms that 

in the North Pacific the PDO is the dominant role of climate variability.  
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 385 

Figure 4: bIPV* (left) and bO2 (right) regression coefficient maps with superposed contours of the ENSO and of the PDO+ and PDO- 

domains. BIPV* represents the change in IPV* per change in SST, bO2* represents the change in O2 per change in SST. The correlation 

coefficients among the corresponding maps for the same model or hindcast are also indicated. Color limits are fixed as +/- 3 standard 
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deviations of the ensemble for each variable over the whole area (+/- 2.99 10-13 for IPV* and +/- 0.023 for O2). Values in parentheses are 

c.c. computed north of 20oN. All the c.c. values passed a shuffling significance test at 5% level (see Suppl. Mat.).  390 

Figure 5: as in Figure 4 but for the future projections. Color limits are fixed as +/- 3 standard deviations of the ensemble for each variable 

over the whole area (+/- 4.1 10-13 for IPV* and +/- 0.02 for O2). Values in parentheses are c.c. computed north of 20oN. All correlation 

coefficients passed a significance test at 5% level (see Suppl. Mat.). 

 395 
Moving to the projections, the maps of the regression coefficients do not change considerably in three of the models 

considered (Fig. 5). In CanESM5, on the other hand, bIPV* changes sign over most of the domain. The residual trends, when 

compared to the regression coefficients, are stronger and dominate the evolution of both fields, especially in the subtropical 

and subpolar gyres of the North Pacific (Suppl. Fig. S8), superseding the PDO signal.  

4.3 Hotspots of change (HYP 3) 400 

As a last step, we evaluate changes in means, extremes and variability for both variables (considering whole signals, i.e. not 

just the residuals) using the indicators introduced in the Methods. For the historical time, we divide the 1950-2014 interval in 

two periods of equal length covering 1950-1981 and 1983-2014 (1960-1986 and 1988-2014 for E3SM-2G and ORAS4). We 

evaluated the indicators using all seasons separately or averaged together, and found that differences across seasons were 

small, as measured by the standard deviation of the indicators (Suppl. Fig. S9-S11). In the following we discuss only the all-405 
seasons averaged indicators without any loss of information. 
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Figure 6. 1950-2014 Ind1means for IPV* (left) and O2 (right). All indicator maps are obtained by averaging the respective seasonal maps.  

 

Ind1means in Fig. 6 shows the changes in the mean fields, which have very similar patterns to the linear trend in both IPV* 410 
and O2 (see Suppl. Fig. S6). By 2015 stratification has increased nearly everywhere in the ESMs, but for the equatorial 

upwelling region, where is mostly unchanged, and the Kuroshio-Oyashio extension. In ORAS4 there is also a prominent 

band where stratification decreases between 10o and 20oN extending from the coast of the American continent to 150oW in 

the second period and in the overall trend. O2 decreases in most of the north Pacific, especially in the subpolar gyre around 

the Kamchatka peninsula, and increases in the upwelling areas along the coast of Peru, Central America, and the California 415 
Current System. Areas of increasing O2 are also found in the North Equatorial Current region in the E3SM-2G hindcast, the 

GFDL-ESM4 and CanESM5 models, the Equatorial upwelling band in NorEMS2-LM, and portions of the subpolar gyre 

around Alaska in E3SM-2G and IPSL-CM6A-LR.  
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 420 
Figure 7. 1950-2014 Ind2variability for IPV* (left) and O2 (right). The oxygen panel is lacking for ORAS4 as it has no biogeochemistry. 

Indicators of change in (seasonal) variability (Ind2variability, Fig. 7) show strong differences across models in patterns and, at 

least for O2, intensity. Whenever corresponding maps of O2 and stratification have the same sign and comparable amplitude 

at corresponding locations, they indicate that increments or decreases in IPV* variability at seasonal scales are associated 

with corresponding increments in 0-200m O2 variability. In the hindcast, changes are greater for residual O2 than 425 
stratification. This is verified also in three of the models in the north-eastern extratropics. Among the models, GFDL-ESM4 

and NorESM2-LM show patchy changes, both positive and negative, across the domain, with the smallest amplitudes among 

the datasets considered. CanEMS5 undergoes predominately positive changes north of the equator in IPV* and negative to 

the south of it, while the variability in the O2 field decreases also in the central portion of the subtropical gyre. In IPSL-
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CM6A-LM the variability increases nearly everywhere in both fields, but especially at the equator and to the south of it in 430 
IPV* and more uniformly at all latitudes in O2. 

 

Figure 8. 1950-2014 Ind3extremes for IPV* (left) and O2 (right). The oxygen panel is lacking for ORAS4 as it has no biogeochemistry. 

Changes in extremes (Ind3extremes) for the O2 field are stronger than for stratification (Figure 8). Episodes of strong O2 435 
decrease and stratification increase are more frequent in Period 2. For O2 the equatorial regions to the north and south of the 

upwelling band emerge as especially impacted in the E3SM-2G hindcast and GFDL-ESM4, while the subtropical gyre 

displays an increase in extreme events nearly everywhere in CanESM5 and IPSL-CM6A-LM, or at its boundary in E3SM-

2G, or in its eastern portion in GFDL-ESM4 and NorEMS2-LM. The subpolar gyre is affected especially in CanESM5 and 

IPSL-CM6A-LM. Changes in IPV* extremes have less clear latitudinal differences and do not display a robust (across 440 
models) intensification at extratropical latitudes. In ORAS4 maxima are found near the California Current System and in the 

Warm Pool area. 
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 E3SM-2G GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 

Ind1_means  

(means) 

-0.01 (-0.02) -0.07 (-0.07) -0.23 (-0.16) -0.28 (-0.16) -0.12 (-0.07) 

Ind2_variability 

(variability) 

 0.32 (0.24)  0.28 (0.23)  0.04 (0.15) 0.33 (0.21)  0.24 (0.18) 

Ind3_extremes 

(extremes) 

 0.01 (-0.08)  0.29 (0.05)  0.35 (0.47) 0.09 (0.34) -0.03 (0.17) 

Table 2 1950-2014 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values 445 
indicate c.c. > 0.1 that passed the shuffling significance test at 5% level (see Suppl Mat.). Numbers in parentheses reflect c.c. computed 

north of 20oN.  

Table 2 summarizes the correlation coefficients between the maps of the three indicators for the two fields considered. 

Coefficients are negative for all models but small for Ind1means, slightly larger in amplitude and positive for the variability 

indicator in all cases (Ind2variability), and very small for Ind3extremes in the hindcast, CanEMS5 and IPSL-CM6A-LM, while 450 
larger in amplitude and positive for GFDL-ESM4, with a strong contribution from the Equatorial region, and especially 

NorESM-LM, where positive values are also found north of 20oN. 

The resulting hotspot indices (SED), computed separately for the IPV* and the O2 indicators (see Methods) are reported in 

Fig. 9. Except for IPSL-CM6A-LM, the hotspots are found outside the equatorial band. Those for O2 are generally stronger 

along the eastern part of the subtropical gyres, in the eastern part of PDO region and along the California upwelling system, 455 
and the IPV* hotspots are more commonly found over the western parts of the basin and along the southern boundary of the 

subtropical gyre. This result suggests a longitudinal decoupling between hotspots in O2 and stratification in at least three of 

the models and in the hindcast, with NorESM2-LM being the exception due to the simulated superposition of the changes in 

extremes in the two fields. We computed also the SED for the residual fields, obtaining similar results (Suppl Fig. S12).  

 460 
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Figure 9. 1950-2014 (1960-2014 for E3SM-2G and ORAS4) SED index for IPV* (left) and O2 (right). The colorscale is realized with 

rgbmap (Greene, 2023). The oxygen panel is lacking for ORAS4 as it has no biogeochemistry.  

The maps of the indicators for the future projections follow in Fig. 10-12, again averaged over seasons for consistency with 465 
the historical ones. The associated standard deviations are reported in Suppl. Fig. S13-S15. In the projections, the seasonal 

differences are slightly stronger compared to the historical period for Ind1means (IPV*) and Ind3extremes (both IPV* and O2), 

especially for CanESM5, NorESM2-LM and IPSL-CM6A-LR, in the northern subpolar gyres for Ind1means IPV* (Fig. 10) 

and along the subtropical and the northern subpolar gyres for Ind3extremes IPV* (Fig. 12). Standard deviations for Ind3 extremes 

O2 are stronger along the extratropical gyres and weaker in the tropical upwelling region (Suppl. Fig. S15). Areas of higher 470 
standard deviations in the projections are, however, associated with much stronger values of Ind1means and Ind3extremes 

compared to the historical period. In the projections, Ind1means strengthens significantly and is stronger than the actual trend 

shown in Supp. Fig. S8, indicating an acceleration of the changes in the last portion of the 21st century. This is especially 

relevant for IPV* north of the Equator. Stratification increases everywhere but for areas in the southern hemisphere which 

have different extension in the four models and are found in the central and eastern portions of the basin. O2 decreases 475 
everywhere but for small areas around the equatorial upwelling band. The decrease is very strong along the northern 
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boundary of the Pacific Ocean and, depending on the model, at the subtropical gyre boundary (NorESM2-LM and to a lesser 

degree CanESM5) and south of the Equator along the coast of Central and South America (IPSL-CM6A-LR). 

 

480 
Figure 10. 2036-2100 Ind1means for IPV* (left) and O2 (right).  

 

Figure 11. 2036-2100 Ind2 variability for IPV* (left) and O2 (right).  

In terms of variability, very few areas with comparable sign and amplitude (which would indicate comparable increases or 

decreases) can be seen in Fig. 11 when comparing the two variables. IPV* variability increases almost everywhere in three 485 
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of the models, NorESM2-LM being the exception in the Warm Pool and to the south of the Equator in the eastern portion of 

the basin. O2 variability increases in patchy areas mostly in the eastern half of the basin in GFDL-ESM4, only along the 

southern boundary of the subtropical gyre in NorESM2-LM, roughly along the boundaries of the gyres in CanESM5 and 

along the northern gyre boundary and south of the Equator in IPSL-CM6A-LR. Lastly, extremes (Ind3 extremes, Fig. 12) are 

found to increase nearly everywhere but for the equatorial upwelling area in both variables for CanESM5 and IPSL-CM6A-490 
LR, in the northern hemisphere in NorESM2-LM, in the ENSO region, especially in the Warm Pool, and in GFDL-ESM4 

along the northern boundary of the basin for IPV* and along the northern and southern portion of the domain for O2. 

Correlations among maps of the two variables are generally very small for all indicators in the projections (Table 3) with 

|c.c.| < 0.4, except for Ind1means in NorESM2-LM and CanESM5. Finally, we verified the robustness of our results to the 

choice of the ensemble member, computing the extremes indicators of four randomly-chosen ensemble members of the 495 
CanESM5 model for the whole signals of IPV* and O2 during the historical periods. We found no significant changes 

in extremes and SED (Suppl Fig S16-17). 

 

 

500 
Figure 12. 2036-2100 Ind3extremes for IPV*res (left) and residual O2res (right). The percentage shown reaches 60% (three times more than 

during historical, Figure 8). 
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 GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 

Ind1 - 0.21 (-0.15) -0.55 (-0.22) -0.60 (-0.59) -0.32 (-0.28) 

Ind2   0.30 (0.30)  0.14 (0.26)  0.21 (0.19)  0.02 (0.00) 

Ind3 -0.01 (0.56) 0.35 (0.40)  0.23 (0.01) 0.08 (-0.02) 

Table 3. 2036-2100 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values 

indicate c.c. > 0.1 that passed the shuffling significance test at 5% level (see Suppl Mat.). Numbers in parentheses reflects c.c. computed 505 
north of 20oN. 

 

Figure 13. 2036-2100 SED index for IPV* (left) and O2 (right). The colorscale is produced with rgbmap (Greene, 2023). 
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5. Discussion and Conclusions 

 

Earth System Models (ESMs) can simulate the Earth’s climate and biogeochemical processes with good accuracy, offering 515 
valuable insights into the future. Challenges persist, however, in representing reliably ocean biogeochemical dynamics. 

Biogeochemical processes can involve intricate interactions between multiple components of the earth system. These 

processes are often nonlinear and their representation and coupling with physical variables are complex and challenging to 

interpret, therefore requiring advances in diagnosis methods and interpretation. To assess model performance, continued 

efforts to develop metrics for model evaluation and intercomparison are needed. In this study we presented a set of tools 520 
stemming from data-mining techniques that may contribute to this end. These quantitative approaches, together with 

advances in observation-based gridded products, can better characterize and extract information about linkages between 

physical and biogeochemical variables. In particular, the availability of biogeochemical data, including dissolved oxygen, 

remains sparse compared to that of physical data. Limited observational data hinders model validation. Exploiting linkages 

between physical climate and oceanic O2 can enhance understanding and predictive skills for biogeochemical tracers. 525 
Examples of recently developed tools that take advantage of these linkages can be found in Giglio et al. (2018) and Sharp et 

al. (2022), who applied machine learning tools to the ARGO-O2 dataset to generate time-evolving maps of dissolved O2 

concentrations from seasonal to interannual timescales.  

The overarching hypothesis in this work was that in the North Pacific the spatial-temporal variability of O2 reflects that of 

ocean ventilation, which can be measured by the magnitude of the isopycnic potential vorticity (IPV). A recent study (Ito et 530 
al., 2019) found that at subtropical latitudes the variability of winter-time mixed layer depths and the subduction of O2 are 

linked to the PDO. Elevated O2 levels emerge downstream of the deepened winter mixed layer during the positive phase of 

the PDO. According to the same study, in the equatorial Pacific, the variability of upper ocean O2 is linked to the 

stratification and the depth of thermocline, which in turn are modulated by the PDO. There has been a wide range of 

mechanisms suggested for the connection between upper ocean O2 and ventilation, many of which can be represented in 535 
ESMs. We should note, however, that Ito et al., (2019) also showed that extra-tropical O2 variability involves multiple types 

of physical-biogeochemical coupling that may compensate one another. For example, ventilation variability can have 

opposite imprint on O2 than water mass shifts depending on the vertical stratification of temperature and O2. In the 

subtropical thermocline, both temperature and O2 decrease with depth, and vertical shifts of water masses generate positive 

correlation between them. However, a negative relationship is expected between temperature and O2 under ventilation-driven 540 
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variability, as colder conditions are typically associated with stronger ventilation (thus higher O2). The superposition of these 

two processes may cause partial compensations and could amplify inter-model differences, especially in O2.  

Our goal was to challenge the overarching hypothesis using four ESMs, a hindcast and reanalysis data.  We verified the 

simplistic view that the spatial-temporal variability of O2 reflects that of ocean ventilation through the analysis of potential 

predictability, of the linkages between ventilation and O2 with the dominant climate modes of the North Pacific, and of the 545 
patterns of extreme events in ventilation and O2. As tracer of physical ventilation, we chose Isopycnic Potential Vorticity or 

IPV*: a strong ventilation is assumed to generate a negative anomaly in IPV*, which then is advected and mixed through 

physical transport. Ventilation supplies O2-rich surface waters into the interior ocean, implying a negative correlation 

between O2 and IPV*.  First, the information entropy (IE) was adopted to identify the areas where IPV* has a high 

predictability potential. Predictability was generally high along two stripes enclosing the ENSO pattern and excluding the 550 
upwelling cold tongue regions, which were found to correspond to areas where O2 and IPV* are strongly anticorrelated. The 

underlying mechanisms are relatively well understood (Ito et al., 2019) and this behavior is robust across all the analyzed 

datasets and does not change significantly in the future projections in the four ESMs. Therefore, around the Pacific Equator 

IPV*, which is easily retrievable from temperature and salinity data, has a good predictability potential (higher than in the 

rest of the basin) and can be used as proxy for O2. The greater availability of temperature and salinity (and therefore 555 
stratification) observations from ARGO floats, reanalyses and modeled fields could be used in conjunction to the fewer co-

located observations of O2 to validate our findings and further extrapolate information about O2 and its time evolution in 

these tropical areas.  

Secondly, the variability of O2 and IPV* was examined in relation to large-scale modes of climate variability in the extra-

tropical North Pacific. At mid-latitudes, the regional climate variability is PDO-dominated and our analysis shows very low 560 
predictability of IPV*, unlike the ENSO-dominated equatorial regions. The low predictability extends to the western 

boundary current and the Kuroshio-Oyashio extension region. In the extra-tropical North Pacific, the (linear) contribution of 

the PDO on O2 and IPV*, and the trends of their residuals have comparable amplitude over the historical period. This is not 

verified in the future projections, when the trends become increasingly dominant. Pattern correlations in the PDO regression 

maps (b coefficients) are generally quite small across models.   565 

Thirdly, we evaluated the hotspots of change in IPV* and O2 in the historical period and in the future projections. Overall, 

the historical hotspot indices or SED, computed separately for IPV* and O2, suggest a longitudinal decoupling across the two 

variables for all datasets except for the NorESM2-LM. In addition, most of hotspots are in the extratropics. O2 SED tend to 

be stronger along the eastern portion of the basin, while IPV* hotspots are mostly found over the western side of the basin 

and along the southern boundary of the subtropical gyre. The intensity of the SED increases over time from the historical 570 
period to the end of the 21st century, as to be expected. Larger changes and hotspots are found at the gyre boundaries and in 

the northern portion of the basin, from the Kamchatka peninsula to the Gulf of Alaska. While O2 loss is broadly linked to the 
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strong increase in stratification, there are significant differences across model patterns, pointing to the need of further 

investigation.  

The existing uncertainty In the CMIP6 models’ representation of oxygen inventory changes limits the information that may 575 
be extracted from the projections. A detailed model intercomparison of ocean deoxygenation in CMIP6 models is beyond the 

scope of our work, and has been addressed by Abe and Minobe (2023). Major sources of uncertainty in the future projections 

reside, for example, in their ENSO-amplitude representation as detailed in Beobide-Arsuaga et al. (2021), and in 

uncertainties in the amount of future warming (Tokarska et al., 2020), and consequently in changes in upper-ocean 

stratification. Compared to the CMIP5 catalog, CMIP6 models tend to warm more, and show a decline of subsurface oxygen 580 
ventilation with no consistent decrease of inter-model uncertainties (Kwiatkowski et al. 2020). Here we found that while in 

some models the relationship between IPV* and O2 becomes stronger, that is not the case for all, and in particular it is not 

verified in GFDL-ESM4, which has the highest horizontal resolution and the best representation of the historical period.  

A note of caution should be spent on the representation of regional changes and hotspots. The currently available spatial 

resolution for CMIP6 models does not resolve the fine-scale (mesoscale and finer) physical and biogeochemical processes 585 
occurring near the coast. This is especially true in regions of elevated nutrient supply such as along the California Current 

System and more generally the Eastern Boundary Upwelling Systems (EBUS). Consequently, projected oxygen trends may 

exhibit variability even within subregions under the same scenario as shown, for EBUS, by Bograd et al. (2023). Analysis at 

the scales required to capture coastal dynamics, however, would require higher resolution models that will need – if 

projected into the future – boundary conditions from CMIP6 simulations. CMIP6 models indeed remain the only tool for 590 
evaluating changes in large-scale modes of climate variability at interannual to decadal times. While resolution is an 

important limitation for coastal areas, our main findings remain relevant in the interpretation of the large scale forcing. In 

particular, the outcome of the hotspots analysis, i.e., that there is a large-scale longitudinal de-coupling between the areas of 

most prominent changes in IPV* and O2 despite the PDO imprinting, is unlikely to be influenced by the models’ resolution. 

If this was the case, independently of the PDO or ENSO representation – which may differ in each model – we could 595 
reasonably conclude that IPV and O2, which can be monitored together, for example through the accumulation of ARGO 

floats equipped with CTD and O2 sensor, could be used to track the large-scale co-variability of physics and 

biogeochemistry. We found that the linkages between extra-tropical O2 and PDO are model-dependent, and the new BGC-

Argo array may be able to validate the performance of each model by testing relationships between temperature, IPV and O2. 

This could also be done through models with different resolutions, where including smaller-scale physical processes 600 
(potentially with a simple biogeochemical module) may better represent physical-biogeochemical coupling and they can be 

validated against new BGC-Argo observations. Indeed, the variability across the current generation of CMIP models is, for 

some of our hypotheses, too large to reach any conclusion and the relationship not as strong as hypothesized on the base of 

the available sparse observations. At the same time, at least for the historical period, our analysis allows for identifying 

which models may be more realistic in its representation of the large-scale variability of the North Pacific.  605 
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Additionally, models and reanalyses or hindcasts such as E3SM-2G allow for testing if there may be predictability 

notwithstanding their biases, and for the case of the North Pacific, if there is a robust relationship across models between 

large-scale climate modes of variability, stratification and O2. The predictability potential extrapolated by global ESMs at the 

resolution adopted in CMIP6 represents an upper bound of the actual one, but it is useful for identifying when further 

exploration may be warranted or where such exercise may simply be futile. For example, the information entropy could be 610 
evaluated using ARGO datasets opportunely interpolated onto a regular distribution (e.g., Smith and Murphy 2007, Cheng 

and Zhu 2016, and for BGC-ARGO Turner et al. 2023, Keppler et al. 2023, Sharp et al., 2022). The interpolation alone will 

increase the uncertainty. In regions where the predictability potential is high, such an exercise is warranted, wherever the 

potential predictability is low, futile. In reference to the second hypothesis, we found that the PDO modulates IPV* and O2, 

but the signal is not robust across models, limiting the possibility to monitor the large-scale evolution of O2 from temperature 615 
and salinity data alone. Relatively high predictability of IPV* and O2 in the equatorial regions can be exploited as the tropics 

are generally under-sampled in historical O2 datasets. While there is relatively weak predictability at mid-latitudes, the 

sampling density is relatively higher in historical O2 datasets and there are more direct observations likely due to the 

proximity to population centers.   

As a final remark, we carried out our analysis on a subsample of the CMIP6 catalog. However, adding more models will not 620 
challenge the main conclusions of this work: 1) There is significant inter-model differences in the representation of climate 

variability in the North Pacific. This is not just reflected in the representation of the patterns of physical climate variability, 

but also in the representation of the relationships between physical (IPV*) and biogeochemical (O2) variables; 2) The IPV* - 

O2 relationship in the North Pacific is not robust in terms of patterns and time evolution across the datasets analyzed, but is 

nonetheless statistically significant under several metrics in the hindcast and in some models, GFDL-ESM4 being the best 625 
example and also the model that best represents matches the hindcast and the reanalysis over the historical period.  

 

 

 
 630 
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in this study are from NOAA at https://psl.noaa.gov/data/climateindices/list/).  The CMIP6, Earth system model output used 635 
in this study is available via the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/). 

Authors contribution 

LN performed all analysis, AB and TI conceived the study, TI and YT helped supervise the project, YT led the E3SM-2G 

development and integration. AB took the lead in writing the manuscript. All authors provided critical feedback and helped 

shape the research, analysis and manuscript. 640 

 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgements 

We thank Fabrizio Falasca and Ilias Fountalis, who developed several of the software tools for the data mining component of 645 
this project. We acknowledge the Gibbs SeaWater (GSW) Oceanographic Toolbox for Python and the Python package (eofs) 

for EOF analysis of spatial-temporal data, which we employed. The authors were supported by the Department of Energy, 

Regional and Global Model Analysis (RGMA) Program, Grant No. 0000253789. YT was supported by the U.S. Department 

of Energy, Office of Science, Office of Biological and Environmental Research, as part of the Energy Exascale Earth System 

Model project, and through NERC-NSF grant (C-STREAMS, reference NE/W009579/1). 650 

 

 

 

References 

Abe, Y. and Minobe, S.: Comparison of ocean deoxygenation between CMIP models and an observational dataset in the 655 
North Pacific from 1958 to 2005. Frontiers in Marine Science. 10. 10.3389/fmars.2023.1161451, 2023 

Balmaseda, M. A., Mogensen, K. and Weaver, A. T.: Evaluation of the ECMWF ocean reanalysis system ORAS4. Q.J.R. 

Meteorol. Soc., doi: 10.1002/qj.2063, 2012. 

Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of ENSO-amplitude projections in CMIP5 and 
CMIP6 models, Clim. Dynam., 56, 3875–3888, https://doi.org/10.1007/s00382-021-05673-4, 2021.   660 

Bograd, S. J. et al.: Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci. 15, 303–328, 

2023. 

https://psl.noaa.gov/data/climateindices/list/
https://esgf-node.llnl.gov/search/cmip6/
https://doi.org/10.1007/s00382-021-05673-4
Text Replaced�
Text
[Old]: "490" 
[New]: "635"

Annotation Inserted�
Annotation
 

Annotation Inserted�
Annotation
 

Text Replaced�
Text
[Old]: "495" 
[New]: "640"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Text Replaced�
Text
[Old]: "500" 
[New]: "645"

Text Inserted�
Text
"We acknowledge the Gibbs SeaWater (GSW) Oceanographic Toolbox for Python and the Python package (eofs) for EOF analysis of spatial-temporal data, which we employed."

Text Replaced�
Text
[Old]: "505" 
[New]: "YT was supported by the U.S. Department of Energy, Office of Science, Office of Biological and Environmental Research, as part of the Energy Exascale Earth System 650 Model project, and through NERC-NSF grant (C-STREAMS, reference NE/W009579/1)."Font-size "11.9976" changed to "10.08".
Font-color changed.

Text Inserted�
Text
"655 Abe, Y. and Minobe, S.: Comparison of ocean deoxygenation between CMIP models and an observational dataset in the North Pacific from 1958 to 2005. Frontiers in Marine Science. 10. 10.3389/fmars.2023.1161451, 2023"

Text Inserted�
Text
"Beobide-Arsuaga, G., Bayr, T., Reintges, A., and Latif, M.: Uncertainty of ENSO-amplitude projections in CMIP5 and"

Graphic Element Inserted�
Graphic Element
 

Text Inserted�
Text
"CMIP6 models, Clim. Dynam., 56, 3875–3888, 660"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"https://doi.org/10.1007/s00382-021-05673-4, 2021. Bograd, S. J. et al.: Climate change impacts on eastern boundary upwelling systems. Annu. Rev. Mar. Sci. 15, 303–328, 2023."

Text Inserted�
Text
"31"



32 
 

Box, G. E., Jenkins, G. M. and Reinsel, G. C.: Time series analysis: forecasting and control, Wiley, 2011.  

Boucher, O., Servonnat, J., Albright, A. L., Aumont, O., Balkanski, Y., Bastrikov, V., Bekki, S., Bonnet, R., Bony, S., Bopp, 

L., Braconnot, P., Brockmann, P., Cadule, P., Caubel, A., Cheruy, F., Codron, F., Cozic, A., Cugnet, D., D’Andrea, F., 665 
Davini, P., Lavergne, C. de, Denvil, S., Deshayes, J., Devilliers, M., Ducharne, A., Dufresne, J.-L., Dupont, E., Éthé, C., 

Fairhead, L., Falletti, L., Flavoni, S., Foujols, M.-A., Gardoll, S., Gastineau, G., Ghattas, J., Grandpeix, J.-Y., Guenet, B., 

Guez, L., Guilyardi, É., Guimberteau, M., Hauglustaine, D., Hourdin, F., Idelkadi, A., Joussaume, S., Kageyama, M., 

Khodri, M., Krinner, G., Lebas, N., Levavasseur, G., Lévy, C., Li, L., Lott, F., Lurton, T., Luyssaert, S., Madec, G., 

Madeleine, J.-B., Maignan, F., Marchand, M., Marti, O., Mellul, L., Meurdesoif, Y., Mignot, J., Musat, I., Ottlé, C., Peylin, 670 
P., Planton, Y., Polcher, J., Rio, C., Rochetin, N., Rousset, C., Sepulchre, P., Sima, A., Swingedouw, D., Thiéblemont, R., 

Traore, A. K., Vancoppenolle, M., Vial, J., Vialard, J., Viovy, N., and Vuichard, N.: Presentation and evaluation of the 

IPSL-CM6A-LR climate model, J. Adv. Model. Earth Sy., 12, e2019MS002010, https://doi.org/10.1029/2019MS002010, 

2020. 

Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., 675 
Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, 

K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: De- clining oxygen in the global ocean and coastal 

waters, Science, 359, https://doi.org/10.1126/science.aam7240, 2018  

Brandt, P., Bange, H. W., Banyte, D., Dengler, M., Didwischus, S.-H., Fischer, T., Greatbatch, R. J., Hahn, J., Kanzow, T., 

Karstensen, J., Körtzinger, A., Krahmann, G., Schmidtko, S., Stramma, L., Tanhua, T., and Visbeck, M.: On the role of 680 
circulation and mixing in the ventilation of oxygen minimum zones with a focus on the eastern tropical North Atlantic, 

Biogeosciences, 12, 489–512, https://doi.org/10.5194/bg-12-489-2015, 2015. 

Burrows, S. M., Maltrud, M., Yang, X., Zhu, Q., Jeffery, N., Shi, X., Ricciuto, D., Wang, S., Bisht,G., Tang, J., Wolfe, J., 

Harrop, B. E., Singh, B., Brent,L., Baldwin, S., Zhou,T., Cameron-Smith, P., Keen, N., Collier, N., Xu, M., Hunke, E. C., 

Elliott, S. M., Turner, A. K., Li, H., Wang, H., Golaz, J.-C., Bond-Lamberty, B., Hoffman, F. M., Riley, W. J., Thornton, P. 685 
E., Calvin,K., Leung, L. R.: The DOE E3SM v1.1 biogeochemistry configuration: Description and simulated ecosystem-

climate responses to historical changes in forcing. Journal of Advances in Modeling Earth Systems, 12(9), e2019MS001766. 

https://doi.org/10.1029/2019ms001766 , 2020.  

Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface 

Temperature Variations. J. Climate, 29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1.  690 
Claret, M., Galbraith, E.D., Palter, J.B., Bianchi, D., Fennel, K., Gilbert, D. and Dunne, P.J.: Rapid coastal deoxygenation 

due to ocean circulation shift in the northwest Atlantic. Nature Clim Change 8, 868–872, https://doi.org/10.1038/s41558-

https://doi.org/10.1029/2019MS002010
https://doi.org/10.1029/2019ms001766
https://doi.org/10.1038/s41558-018-0263-1
Text Deleted�
Text
"510"

Text Inserted�
Text
"665"

Text Replaced�
Text
[Old]: "D'Andrea," 
[New]: "D’Andrea,"

Text Deleted�
Text
"515"

Text Inserted�
Text
"670"

Graphic Element Inserted�
Graphic Element
 

Annotation Inserted�
Annotation
 

Text Replaced�
Text
[Old]: "520 2020." 
[New]: "2020. 675 Breitburg, D., Levin, L. A., Oschlies, A., Grégoire, M., Chavez, F. P., Conley, D. J., Garçon, V., Gilbert, D., Gutiérrez, D., Isensee, K., Jacinto, G. S., Limburg, K. E., Montes, I., Naqvi, S. W. A., Pitcher, G. C., Rabalais, N. N., Roman, M. R., Rose, K. A., Seibel, B. A., Telszewski, M., Yasuhara, M., and Zhang, J.: De-clining oxygen in the global ocean and coastal waters, Science, 359, https://doi.org/10.1126/science.aam7240, 2018"Font-size "11.9976" changed to "10.08".

Text Inserted�
Text
"680"

Text Replaced�
Text
[Old]: "25" 
[New]: "32"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"525"

Text Inserted�
Text
"685"

Annotation Inserted�
Annotation
 

Text Deleted�
Text
"530"

Text Inserted�
Text
"Cheng, L., and J. Zhu, 2016: Benefits of CMIP5 Multimodel Ensemble in Reconstructing Historical Ocean Subsurface 690 Temperature Variations. J. Climate, 29, 5393–5416, https://doi.org/10.1175/JCLI-D-15-0730.1."

Annotation Inserted�
Annotation
 



33 
 

018-0263-1, 2018. 

Corso, G., Prado, T., Lima, G., Kurths, J., and Lopes, S.: Quantifying entropy using recurrence matrix microstates. Chaos 

28:083108. doi: 10.1063/1.5042026 , 2018. 695 
Deutsch C., Ferrel A., Seibel B., Pörtner H.O., Huey R.B.: Ecophysiology. Climate change tightens a metabolic constraint on 

marine habitats. Science, 348(6239):1132-5. doi: 10.1126/science.aaa1605. PMID: 26045435. 2015. 

Diffenbaugh, N. S., and Giorgi, F.: Climate change hotspots in the CMIP5 global climate model ensemble, Clim. Change, 

114 (3–4), 813–822, 2012. 

Diffenbaugh, N.S., Giorgi, F. and Pal, J.S.: Climate change hotspots in the United States. Geophys Res Lett 35,  700 
doi:10.1029/2008GL035075 , 2008. 

Dommenget, D. and Latif, M.: A cautionary note on the interpretation of EOFs. Journal of Climate,  15,  216–225, 2002.  

 

Dunne, J. P., Horowitz, L. W., Adcroft, A. J., Ginoux, P., Held, I. M., John, J. G., Krasting, J. P., Malyshev, S., Naik, V., 

Paulot, F., Shevliakova, E., Stock, C. A., Zadeh, N., Balaji, V., Blanton, C., Dunne, K. A., Dupuis, C., Durachta, J., Dussin, 705 
R., Gauthier, P. P. G., Griffies, S. M., Guo, H., Hallberg, R. W., Harrison, M., He, J., Hurlin, W., McHugh, C., Menzel, R., 

Milly, P. C. D., Nikonov, S., Paynter, D. J., Ploshay, J., Radhakrishnan, A., Rand, K., Reichl, B. G., Robinson, T., 

Schwarzkopf, D. M., Sentman, L. T., Underwood, S., Vahlenkamp, H., Winton, M., Wittenberg, A. T., Wyman, B., Zeng, 

Y., and Zhao, M.: The GFDL Earth System Model version 4.1 (GFDL-ESM 4.1): Overall coupled model description and 

simulation characteristics, J. Adv. Model. Earth Sy., 12, e2019MS002015, https://doi.org/10.1029/2019MS002015, 2020. 710 
Duteil, O., Böning, C.W., Oschlies, A.: Variability in subtropical-tropical cells drives oxygen levels in the tropical Pacific 

Ocean. Geophys Res Lett 41(24):8926–8934, 2014. 

 

Eckmann, J. P., Kamphorst, S. O.  and Ruelle, D.: Recurrence Plots of Dynmiacal Systems, Europhys. Lett. 4, 973 (1987). 

Eddebbar, Y. A. et al.: El Niño-like physical and biogeochemical ocean response to tropical eruptions. J. Clim. 32, 2627–715 
2649, 2019. 

Eyring, V., Bony, S., Meehl, G. A., Senior, C. A., Stevens, B., Stouffer, R. J., and Taylor, K. E.: Overview of the Coupled 

Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization, Geosci. Model Dev., 9, 1937–1958, 

https://doi.org/10.5194/gmd-9-1937-2016, 2016. 

Falasca, F., Bracco, A., Nenes, A., and Fountalis, I.: Dimensionality Reduction and Network Inference for Climate Data 720 
Using δ-MAPS: Application to the CESM Large Ensemble Sea Surface Temperature, J. Adv. Model. Earth Sy., 11, 1479–

1515, https://doi.org/10.1029/2019MS001654, 2019. 

Falasca, F., Crétat, J., Braconnot, P. and Bracco: A. Spatiotemporal complexity and time-dependent networks in sea surface 

temperature from mid- to late Holocene, Eur. Phys. J. Plus 135, 392, https://doi.org/10.1140/epjp/s13360-020-00403-x , 

https://doi.org/10.1038/s41558-018-0263-1
https://doi.org/10.1029/2019MS002015
https://doi.org/10.1140/epjp/s13360-020-00403-x
Annotation Inserted�
Annotation
 

Text Replaced�
Text
[Old]: "535" 
[New]: "695"

Text Replaced�
Text
[Old]: "540" 
[New]: "700"

Text Inserted�
Text
"705"

Text Deleted�
Text
"545"

Text Inserted�
Text
"710"

Annotation Inserted�
Annotation
 

Graphic Element Inserted�
Graphic Element
 

Text Deleted�
Text
"550"

Graphic Element Deleted�
Graphic Element
 

Text Inserted�
Text
"715"

Text Deleted�
Text
"555"

Text Inserted�
Text
"720"

Text Replaced�
Text
[Old]: "26" 
[New]: "33"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"560"

Annotation Inserted�
Annotation
 



34 
 

2020. 725 
Fountalis, I., Dovrolis, C., Bracco, A., Dilkina, B. and Keilholz, S.: δ-MAPS: from spatio-temporal data to a weighted and 

lagged network between functional domains. Appl Netw Sci 3, 21, https://doi.org/10.1007/s41109-018-0078-z , 2018. 

Garcia, H. E., Boyer, T. P., Baranova, O. K., Locarnini, R. A., Mishonov, A. V., Grodsky, A., Paver, C.R, Weathers, K.W., 

Smolyar, I.V., Reagan, J.R., Seidov, D. and Zweng, M.M.: World ocean atlas 2018: Product documentation. A. Mishonov, 

Technical Editor, 2019. 730 
Giglio, D., Lyubchich, V. and Mazloff, M. R.: Estimating Oxygen in the Southern Ocean Using Argo Temperature and 

Salinity. J. Geophys Res. Oceans, 123 (6), 4280−4297. 2018. 

Gilpin, W: Deep Reconstruction of Strange Attractors From Time Series. Cambridge, MA: Harvard University, 2020. 

Gnanadesikan, A., Dunne, J. P., and John, J.: Understanding why the volume of suboxic waters does not increase over 

centuries of global warming in an Earth System Model, Biogeosciences, 9, 1159–1172, https://doi.org/10.5194/bg-9-1159-735 
2012, 2012. 

Gnanadesikan, A., Bianchi, D., and Pradal, M. A.: Critical role for mesoscale eddy diffusion in supplying oxygen to hypoxic 

ocean waters, Geophys. Res. Lett., 40, 5194–5198, https://doi.org/10.1002/GRL.50998, 2013. 

Gnanadesikan A., Pradal M., Abernathey R.: Isopycnal mixing by mesoscale eddies significantly impacts oceanic 

anthropogenic carbon uptake. Geophys. Res. Lett. 42, 4249–4255. doi: 10.1002/2015GL064100, 2015. 740 
Golaz, J.C., Van Roekel, L.P., Zheng, X., Roberts, A.F., Wolfe, J.D., Lin, W., Bradley, A.M., Tang, Q.; Maltrud, M.E., 

Forsyth, R.M. et al.: The DOE E3SM Model Version 2: Overview of the physical model and initial model evaluation. J. 

Adv. Model. Earth Syst. 14, e2022MS003156, 2022. 

Gordon, E. M., Barnes, E. A., and Hurrell, J. W.: Oceanic harbingers of Pacific Decadal Oscillation predictability in CESM2 

detected by neural networks. Geophysical Research Letters, 48, e2021GL095392. https://doi.org/10.1029/2021GL095392, 745 
2021. 

Greene, C.: rgbmap color maps (https://www.mathworks.com/matlabcentral/fileexchange/46874-rgbmap-color-maps), 

MATLAB Central File Exchange. Retrieved June 27, 2023 

Ikuyajolu, O. J., Falasca, F. and Bracco, A.: Information Entropy as Quantifier of Potential Predictability in the Tropical 

Indo-Pacific Basin. Front. Clim. 3:675840. doi: 10.3389/fclim.2021.675840, 2021. 750 
Ito, T., Minobe, S., Long, M. C., and Deutsch, C.: Upper ocean O2 trend.: 1958–2015, Geophys. Res. Lett., 44, 4214–

4223, https://doi.org/10.1002/2017GL073613, 2017. 

Ito, T., Long, M. C., Deutsch, C., Minobe, S., and Sun, D.: Mechanisms of low-frequency oxygen variability in the North 

Pacific. Global Biogeochemical Cycles,  33(2), 110–124. https://doi.org/10.1029/2018GB005987, 2019. 

Kucharski, F., Bracco, A., Yoo, J.H. and Molteni, F.: Atlantic forced component of the Indian monsoon interannual 755 
variability. Geophys. Res. Lett. 35 (4) https://doi.org/10.1029/2007gl033037 , 2008. 

https://doi.org/10.1007/s41109-018-0078-z
https://doi.org/10.1002/2017GL073613
https://doi.org/10.1029/2018GB005987
https://doi.org/10.1029/2007gl033037
Text Inserted�
Text
"725"

Text Deleted�
Text
"565"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"730"

Text Deleted�
Text
"570"

Text Inserted�
Text
"735"

Text Replaced�
Text
[Old]: "https://doi.org/10.5194/bg-9-11592012, 2012. 575" 
[New]: "https://doi.org/10.5194/bg-9-1159 2012, 2012."

Text Inserted�
Text
"740"

Text Deleted�
Text
"580"

Text Inserted�
Text
"745"

Text Deleted�
Text
"585"

Text Inserted�
Text
"750"

Annotation Inserted�
Annotation
 

Text Deleted�
Text
"590"

Text Deleted�
Text
"Sun, D.: Mechanisms of low-frequency oxygen variability in the North"

Text Inserted�
Text
"Sun, D.: Mechanisms of low-frequency oxygen variability in the North"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"755"

Text Replaced�
Text
[Old]: "27" 
[New]: "34"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Annotation Inserted�
Annotation
 



35 
 

Keppler, L., Landschützer, P., Lauvset, S. K., & Gruber, N. (2023). Recent trends and variability in the oceanic storage of 

dissolved inorganic carbon. Global Biogeochemical Cycles, 37, e2022GB007677. https://doi.org/10.1029/2022GB007677 

 

Li, S., Wu, L., Yang, Y., Geng, T., Cai, W., Gan, B., Chen, Z., Jing, Z., Wang, G. and Ma, X.:The Pacific Decadal 760 
Oscillation less predictable under greenhouse warming. Nat. Clim. Chang. 10, 30–34, https://doi.org/10.1038/s41558-019-

0663-x, 2020. 

Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., 

John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., 

Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and 765 
Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary 

production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470, https://doi.org/10.5194/bg-17-3439-

2020, 2020 

 

Long, M. C., Moore, J. K., Lindsay, K., Levy, M., Doney, S. C., Luo, J. Y., Krumhardt, K. M., Letscher, R. T., Grover, M., 770 
and Sylvester, Z. T.: Simulations With the Marine Biogeochemistry Library (MARBL), J. Adv. Model. Earth Sy., 13, 

e2021MS002647, https://doi.org/10.1029/2021MS002647, 2021.  

 

Marwan, N., Romano, M. C., Thiel, M., and Kurths, J.: Recurrence plots for the analysis of complex systems. Phys. Rep. 

438, 237–329. doi: 10.1016/j.physrep.2006.11.001 , 2007. 775 
` 

Mantua, N. J., Hare, S. R., Zhang, Y, Wallace,  J.M., Francis, R. C.: A Pacific interdecadal climate 

oscillation with impacts on salmon production Bull. Am. Meteorol. Soc., 78, pp. 1069-1080, 1997. 

McKinley, G. A., Follows, M. J., and Marshall, J.: Mechanisms of air-sea CO2 flux variability in the 

equatorial Pacific and the North Atlantic. Global Biogeochemical Cycles, 18(2), C07S06. 780 
https://doi.org/10.1029/2003GB002179, 2004. 

Mogensen, K., Alonso Balmaseda, M., Weaver, A.: The NEMOVAR ocean data assimilation system as 

implemented in the ECMWF ocean analysis for System4. ECMWF Technical Memorandum 668. 59 

pages, 2012. 

Nevison, C., Butler, J. H., and Elkins, J. W.: Global distribution of N2O and the ΔN2O-AOU yield in the 785 
subsurface ocean, Global Biogeochem. Cy., 17, 1119, https://doi.org/10.1029/2003GB002068, 2003. 

Prado, T., Corso, G., Santos Lima, G., Budzinski, R., Boaretto, B., Ferrari, F., Macau, E.E.N. and Lopes, 

S.R.: Maximum entropy principle in recurrence plot analysis on stochastic and chaotic 

systems. Chaos 30:043123. doi: 10.1063/1.5125921, 2020.  

https://doi.org/10.1038/s41558-019-0663-x
https://doi.org/10.1038/s41558-019-0663-x
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.5194/bg-17-3439-2020
https://doi.org/10.1029/2021MS002647
https://doi.org/10.1029/2003GB002179
Text Replaced�
Text
[Old]: "595" 
[New]: "Keppler, L., Landschützer, P., Lauvset, S. K., & Gruber, N. (2023). Recent trends and variability in the oceanic storage of dissolved inorganic carbon. Global Biogeochemical Cycles, 37, e2022GB007677. https://doi.org/10.1029/2022GB007677 760"Font-size "11.9976" changed to "10.08".

Annotation Inserted�
Annotation
 

Text Replaced�
Text
[Old]: "https://doi.org/10.1038/s41558-0190663-x," 
[New]: "https://doi.org/10.1038/s41558-019"Font-style changed.

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"0663-x, 2020. Kwiatkowski, L., Torres, O., Bopp, L., Aumont, O., Chamberlain, M., Christian, J. R., Dunne, J. P., Gehlen, M., Ilyina, T., John, J. G., Lenton, A., Li, H., Lovenduski, N. S., Orr, J. C., Palmieri, J., Santana-Falcón, Y., Schwinger, J., Séférian, R., 765 Stock, C. A., Tagliabue, A., Takano, Y., Tjiputra, J., Toyama, K., Tsujino, H., Watanabe, M., Yamamoto, A., Yool, A., and Ziehn, T.: Twenty-first century ocean warming, acidification, deoxygenation, and upper-ocean nutrient and primary production decline from CMIP6 model projections, Biogeosciences, 17, 3439–3470,"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"https://doi.org/10.5194/bg-17-3439"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"2020, 2020 770 Long, M."

Text Deleted�
Text
"Long, M."

Text Deleted�
Text
"600"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"775"

Text Inserted�
Text
"`"

Text Deleted�
Text
"605"

Text Inserted�
Text
"780"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"785"

Text Deleted�
Text
"610"

Text Replaced�
Text
[Old]: "28" 
[New]: "35"



36 
 

Redi, M.H.: Oceanic Isopycnal Mixing by Coordinate Rotation. Journal of Physical Oceanography, 12, 790 
1154-1158, 1982. 

Ridder, N. N. and England, M. H.: Sensitivity of ocean oxygenation to variations in tropical zonal wind 

stress magnitude, Global Biogeochem. Cy., 28, 909–926, 2014. 

Rudnickas, D. Jr., Palter, J., Hebert, D., Rossby,H.T.: Isopycnal mixing in the North Atlantic oxygen 

minimum zone revealed by RAFOS floats J. Geophys. Res.: Oceans, 124, 10.1029/2019JC015148, 2019. 795 
Sallée, J. B., Rintoul, S. R. and Wijffels, S. E.: Southern ocean thermocline ventilation. J. Phys. Oceanogr. 

40, 509–529, 2010. 

Sallée, J.B., Matear, R., Rintoul, S. et al.: Localized subduction of anthropogenic carbon dioxide in the 

Southern Hemisphere oceans. Nature Geosci 5, 579–584, https://doi.org/10.1038/ngeo1523, 2012. 

Schulzweida, U.: CDO User Guide (2.1.0). Zenodo. https://doi.org/10.5281/zenodo.7112925, 2022. 800 
Schmidtko, S., Stramma, L. And Visbeck, M.: Decline in global oceanic oxygen content during the past 

five decades. Nature 542, 335–339, https://doi.org/10.1038/nature21399 , 2017. 

Seland, Ø., Bentsen, M., Olivié, D., Toniazzo, T., Gjermundsen, A., Graff, L. S., Debernard, J. B., Gupta, 

A. K., He, Y.-C., Kirkevåg, A., Schwinger, J., Tjiputra, J., Aas, K. S., Bethke, I., Fan, Y., Griesfeller, J., 

Grini, A., Guo, C., Ilicak, M., Karset, I. H. H., Landgren, O., Liakka, J., Moseid, K. O., Nummelin, A., 805 
Spensberger, C., Tang, H., Zhang, Z., Heinze, C., Iversen, T., and Schulz, M.: Overview of the Norwegian 

Earth System Model (NorESM2) and key climate response of CMIP6 DECK, historical, and scenario 

simulations, Geosci. Model Dev., 13, 6165–6200, https://doi.org/10.5194/gmd-13-6165-2020, 2020. 

Sharp, J. D., Fassbender, A. J., Carter, B. R., Johnson, G. C., Schultz, C., and Dunne, J. P.: GOBAI-O2: 

temporally and spatially resolved fields of ocean interior dissolved oxygen over nearly two decades, Earth 810 
Syst. Sci. Data Discuss. [preprint], https://doi.org/10.5194/essd-2022-308, in review, 2022. 

 

Smith, D. M. and Murphy, J. M.: An objective ocean temperature and salinity analysis using covariances from a global 

climate model, J. Geophys. Res.-Oceans, 112, C02022, https://doi.org/10.1029/2005JC003172, 2007 

 815 
Stock, C. A., Dunne, J. P., Fan, S., Ginoux, P., John, J., Krasting, J. P., et al.: Ocean biogeochemistry in GFDL’s Earth 

System Model 4.1 and its response to increasing atmospheric CO2. Journal of Advances in Modeling Earth Systems 12, 

e2019MS002043, 2020. 

 

Swart, N. C., Cole, J. N. S., Kharin, V. V., Lazare, M., Scinocca, J. F., Gillett, N. P., Anstey, J., Arora, V., Christian, J. R., 820 
Hanna, S., Jiao, Y., Lee, W. G., Majaess, F., Saenko, O. A., Seiler, C., Seinen, C., Shao, A., Sigmond, M., Solheim, L., von 

Salzen, K., Yang, D., and Winter, B.: The Canadian Earth System Model version 5 (CanESM5.0.3), Geosci. Model Dev., 12, 

https://doi.org/10.1038/ngeo1523
https://doi.org/10.5281/zenodo.7112925
Text Inserted�
Text
"790"

Text Deleted�
Text
"615"

Text Inserted�
Text
"795"

Text Deleted�
Text
"620"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"800"

Annotation Inserted�
Annotation
 

Text Deleted�
Text
"625"

Graphic Element Deleted�
Graphic Element
 

Text Deleted�
Text
"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Image Deleted�
Image
 

Graphic Element Deleted�
Graphic Element
 

Text Inserted�
Text
"805"

Text Deleted�
Text
"630"

Text Replaced�
Text
[Old]: "https://doi.org/10.5194/gmd-13-6165 2020," 
[New]: "https://doi.org/10.5194/gmd-13-6165-2020,"

Text Inserted�
Text
"810"

Text Replaced�
Text
[Old]: "635" 
[New]: "815 Smith, D. M. and Murphy, J. M.: An objective ocean temperature and salinity analysis using covariances from a global climate model, J. Geophys. Res.-Oceans, 112, C02022, https://doi.org/10.1029/2005JC003172, 2007 Stock, C. A., Dunne, J. P., Fan, S., Ginoux, P., John, J., Krasting, J. P., et al.: Ocean biogeochemistry in GFDL’s Earth System Model 4.1 and its response to increasing atmospheric CO2. Journal of Advances in Modeling Earth Systems 12, e2019MS002043, 2020. 820"

Text Inserted�
Text
"36"



37 
 

4823–4873, https://doi.org/10.5194/gmd-12-4823-2019, 2019.  

 

Takano, Y., Maltrud, M., Sinha, A., Jeffery, N., Smith, K., Conlon, L., Wolfe, J., and Petersen, M.: Global Ocean Carbon 825 
Cycle Simulations with the 2 E3SM version 2 (E3SMv2), https://doi.org/10.5281/zenodo.10093369, Zenodo, 2023 

 

Talley, L. D., Pickard, G. L., Emery, W. J. , Swift, J. H.: Descriptive Physical Oceanography: An Introduction, Academic 

Press, London, 2011. 

Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.-830 
C., Olivié, D., Seland, Ø., and Schulz, M.: Ocean biogeochemistry in the Norwegian Earth System Model version 2 

(NorESM2), Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, 2020. 

Turco, M., Palazzi, E., Hardenberg, J. and Provenzale, A.: Observed climate change hotspots Geophys. Res. Lett. 42 3521–8, 

2015. 

Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., and Knutti, R.: Past warming trend 835 
constrains future warming in CMIP6 models, Sci. Adv., 6, eaaz9549, https://doi.org/10.1126/sciadv.aaz9549, 2020. 

 

Tsujino, H., Urakawa, L. S., Griffies, S. M., Danabasoglu, G., Adcroft, A. J., Amaral, A. E., Arsouze, T., Bentsen, M., 

Bernardello, R., Böning, C. W., Bozec, A., Chassignet, E. P., Danilov, S., Dussin, R., Exarchou, E., Fogli, P. G., Fox-

Kemper, B., Guo, C., Ilicak, M., Iovino, D., Kim, W. M., Koldunov, N., Lapin, V., Li, Y., Lin, P., Lindsay, K., Liu, H., 840 
Long, M. C., Komuro, Y., Marsland, S. J., Masina, S., Nummelin, A., Rieck, J. K., Ruprich-Robert, Y., Scheinert, M., 

Sicardi, V., Sidorenko, D., Suzuki, T., Tatebe, H., Wang, Q., Yeager, S. G., and Yu, Z.: Evaluation of global ocean–sea-ice 

model simulations based on the experimental protocols of the Ocean Model Intercomparison Project phase 2 (OMIP-2), 

Geosci. Model Dev., 13, 3643–3708, https://doi.org/10.5194/gmd-13-3643-2020, 2020. 

 845 
Turner, K. E., Smith, D. M., Katavouta, A., and Williams, R. G.: Reconstructing ocean carbon storage with CMIP6 Earth 

system models and synthetic Argo observations, Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, 

2023. 

 

Webber, C. L., Jr. and Zbilut, J. P.: Dynamical assessment of physiological systems and states using recurrence plot 850 
strategies,  J. Appl. Physiol. 76, 965, 1994. 

Williams, J. W., Jackson, S.T. and Kutzbach, J.E.: Projected distributions of novel and disappearing climates by 2100AD, 

Proc. Natl. Acad. Sci. U. S. A., 104, 5738– 5742, 2007. 

Wright, D. G. (1997). An equation of state for use in ocean models: Eckart's formula revisited. Journal of Atmospheric and 

Oceanic Technology, 14(3), 735–740. https://doi.org/10.1175/1520-0426(1997)014<0735:AEOSFU>2.0.CO;2 855 
Yang S., Gruber N., Long M. C., Vogt M.: ENSO-driven variability of denitrification. Global Biogeochemical Cycles, 31 

https://doi.org/10.5281/zenodo.10093369
https://doi.org/10.1126/sciadv.aaz9549
https://doi.org/10.1175/1520-0426(1997)014
http://2.0.co/
Text Inserted�
Text
"825 Takano, Y., Maltrud, M., Sinha, A., Jeffery, N., Smith, K., Conlon, L., Wolfe, J., and Petersen, M.: Global Ocean Carbon"

Graphic Element Inserted�
Graphic Element
 

Text Inserted�
Text
"Cycle Simulations with the 2 E3SM version 2 (E3SMv2),"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"https://doi.org/10.5281/zenodo.10093369, Zenodo, 2023"

Text Deleted�
Text
"640"

Text Inserted�
Text
"830 Tjiputra, J. F., Schwinger, J., Bentsen, M., Morée, A. L., Gao, S., Bethke, I., Heinze, C., Goris, N., Gupta, A., He, Y.- C., Olivié, D., Seland, Ø., and Schulz, M.: Ocean biogeochemistry in the Norwegian Earth System Model version 2 (NorESM2), Geosci. Model Dev., 13, 2393–2431, https://doi.org/10.5194/gmd-13-2393-2020, 2020."

Text Inserted�
Text
"835 Tokarska, K. B., Stolpe, M. B., Sippel, S., Fischer, E. M., Smith, C. J., Lehner, F., and Knutti, R.: Past warming trend constrains future warming in CMIP6 models, Sci. Adv., 6, eaaz9549,"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"https://doi.org/10.1126/sciadv.aaz9549, 2020."

Text Replaced�
Text
[Old]: "Fox645" 
[New]: "Fox840"

Text Inserted�
Text
"845"

Text Replaced�
Text
[Old]: "650" 
[New]: "Turner, K. E., Smith, D. M., Katavouta, A., and Williams, R. G.: Reconstructing ocean carbon storage with CMIP6 Earth system models and synthetic Argo observations, Biogeosciences, 20, 1671–1690, https://doi.org/10.5194/bg-20-1671-2023, 2023. 850"Font-size "11.9976" changed to "10.08".

Text Inserted�
Text
"Wright, D. G. (1997). An equation of state for use in ocean models: Eckart's formula revisited. Journal of Atmospheric and 855 Oceanic Technology, 14(3), 735–740."

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"https://doi.org/10.1175/1520-0426(1997)014<0735:AEOSFU>2.0.CO;2"

Annotation Inserted�
Annotation
 

Text Inserted�
Text
"37"

Text Deleted�
Text
"655"



38 
 

(10), 1470–1487. doi: 10.1002/2016gb005596, 2017. 

Zbilut, J. P. and Webber, C. L., Jr.: Embeddings and delays as derived from quantification of recurrence plots, Phys. Lett. A 

171, 199, 1992. 

 860 

 

Text Inserted�
Text
"860"

Text Replaced�
Text
[Old]: "29" 
[New]: "38"


	Acr314239238781441573556.tmp
	Local€Disk
	file://NoURLProvided






file://NoURLProvided[06/02/24, 22:14:55]


Summary


Shows Replacements


Shows Insertions


Shows Deletions


729
Total Changes







1 
 


Evolution of oxygen and stratification in the North Pacific Ocean in 
CMIP6 Earth System Models  
Lyuba Novi1, Annalisa Bracco1, Takamitsu Ito1, Yohei Takano2,3 
1School of earth and Atmospheric Sciences,Georgia Institute of technology , Atlanta, GA, USA.  
2British Antarctic Survey, Cambridge, UK. 5 
3Los Alamos National Laboratory, Los Alamos, NM, USA. 
 


Correspondence to: L. Novi (lnovi3@gatech.edu) 


Abstract. This study examines the linkages between the upper ocean (0-200 m) oxygen (O2) content and stratification in the 


North Pacific Ocean in four Earth system models (ESMs), an ocean hindcast simulation, and ocean reanalysis data. Trend 10 
and variability of oceanic O2 content are driven by the imbalance between physical supply and biological demand. The 


physical supply is primarily controlled by ocean ventilation, which is responsible for the transport of O2-rich surface waters 


into subsurface. To quantify the ocean ventilation, Isopycnic Potential Vorticity (IPV) is used as a dynamical proxy in this 


study. IPV is a quasi-conservative tracer proportional to density stratification, which can be interpreted as a proxy for ocean 


ventilation and can be evaluated from temperature and salinity measurements alone. The predictability potential of the IPV 15 
field is evaluated through its information entropy. Results highlight a strong O2-IPV connection and somewhat higher (than 


in rest of the basin) predictability potential for IPV in the tropical Pacific, in the area strongly affected by the El Niño 


Southern Oscillation. This pattern of higher predictability and strong anticorrelation between O2 and stratification is robust 


across multiple models and datasets. In contrast, the variability of IPV at mid-latitudes has low predictability potential and its 


center of action differs from that of O2. In addition, the locations of extreme events or hotspots may or may not differ among 20 
the two fields, with a strong model dependency, which persists in future projections. These results, on one hand, suggest the 


possibility to monitor ocean O2 through few observational sites co-located with some of the more abundant IPV 


measurements in the tropical Pacific, and, on the other, question the robustness of the IPV-O2 relationship in the extra-


tropics. The proposed framework helps characterizing and interpreting O2 variability in relation to physical variability and 


may be especially useful in the analysis of new observationally-based data products derived from the BGC-ARGO float 25 
array in combination with the traditional but far more abundant ARGO data. 


1 Introduction 


Dissolved oxygen (O2) in the oceans is crucial for biogeochemical cycling, marine ecosystem and redox chemistry of 


seawater. O2 is a key element for the survival and functioning of marine organisms as fish, shellfish, marine mammals, and 


other aquatic life rely on O2 to breathe and carry out essential metabolic processes. Many commercially important fish 30 
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species and shellfish thrive only on well-oxygenated waters. Growth, reproduction, and overall health of marine organisms 


depends on the balance between metabolic demands and O2 supply (Deutsch et al., 2015).  


Ocean deoxygenation refers to the long-term decrease in the concentration of O2 in the Earth’s oceans. At the global scale, 


the O2 inventory has been declining significantly over the past decades according to historical observations (Ito et al., 2017; 


Schmidtko et al., 2017). Changes in O2 concentrations can reflect the impacts of climate change, nutrient pollution, 35 
eutrophication, and other human-induced stressors. Monitoring ocean oxygen levels helps scientists assessing the health and 


resilience of marine ecosystems and identifying areas that may be prone to O2 depletion or hypoxic events.  Monitoring and 


predicting oxygen levels in the oceans is especially important around and within Oxygen Minimum Zones (OMZs), which 


are characterized by layers in the water column with very low O2 concentration due to biological, chemical, and physical 


processes. As oceans warm, OMZs are posed to increase in number and size across the globe. In the North Pacific, a large 40 
OMZ exists on the eastern side of the tropical Pacific, and its variability and trends are important also for nitrogen cycling 


and production of N2O, a potent greenhouse gas (Nevison et al., 2003; Yang et al., 2017).  


Interpreting changes in O2 concentrations requires understandings in ocean circulation, mixing, air-sea gas transfer, 


biological productivity and respiration. The air-sea gas exchange for O2 is relatively efficient, and it maintains the surface 


water close to saturation with the overlying atmosphere for ice-free regions. Ocean circulation is the primary pathway 45 
through which O2 is supplied (or ventilated) into the thermocline and deep ocean. In the subsurface, O2 is gradually 


consumed by respiration due to the decomposition of dissolved and particulate organic matter. The O2 concentration 


progressively decreases as water masses age.  At climatological timescale, the rates of O2 supply and consumption are 


balanced to sustain a steady state. In another words, changes in O2 concentration are caused by an imbalance between O2 


supply and O2 consumption.  50 
On the supply side, the ventilation of O2 is essentially controlled by the ocean circulation and mixing processes. Broadly, 


ventilation refers to the exchange of waters between the surface layer and the ocean interior (Talley et al., 2011), and 


involves a wide range of physical processes such as the wind-driven shallow overturning associated with the Subtropical 


cells (Brandt et al., 2015; Duteil et al., 2014; Eddebbar et al., 2019), the formation of mode and intermediate waters (Claret 


et al., 2018; Sallee et al., 2010, 2012; Gnanadesikan et al., 2012) and the lateral (isopycnal) eddy stirring (Rudnickas et al., 55 
2019; Gnanadesikan et al., 2013, 2015). These circulation systems are ultimately driven by the atmospheric winds and air-


sea buoyancy fluxes which exhibit significant interannual, decadal and multi-decadal variability.  


Fluctuations in ventilation rates as well as ocean stratification are known to impact both the O2 levels (Ridder & England, 


2014; Duteil et al., 2014; McKinley et al., 2003) and the distribution of isopycnal potential vorticity (IPV), a dynamical 


tracer which is proportional to the local stratification and the Coriolis parameter. The use of the absolute value of the 60 
Coriolis parameter in the formula, indicated by *, guarantees that the relationship with stratification holds with the same sign 


in both hemispheres, so that higher IPV* indicates stronger stratification and vice versa. A strong winter-time convective 


mixing will produce weakly stratified, O2-rich water masses (low IPV* and high O2), and vice versa. These properties are 


then brought together into the ocean interior following the pathway of large-scale ocean currents.  
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In this study, we build upon this relationship, and we explore the overarching hypothesis that isopycnic potential vorticity 65 
(IPV*) may be used as a proxy for O2 which may provide a path to predict the evolution of O2, with a focus on the North 


Pacific basin. In the North Pacific, the Pacific Decadal Oscillation (PDO) is a leading mode of climate variability, exerting 


the greatest control on stratification and O2 (Ito et al., 2019).  Together with the El Niño Southern Oscillation (ENSO) at 


interannual timescales, it modulates the isopycnal surfaces in the tropics, and influences the depth of the winter mixed-layer 


ventilation and the ventilation processes at mid-latitudes. Our specific objectives are to analyze Earth System Models 70 
(ESMs) to evaluate the hypotheses that (1) the ocean ventilation (IPV*) regulates O2 variability in the oceans, (2) the 


ventilation-O2 linkage provides the basis for the predictability of O2 whenever IPV* is predictable, and (3) the linkage can be 


exploited to identify hotspots of O2 changes in variability, means and extremes (see Methods).  


Rather than working directly with the observational data, this study applies data-mining tools to a combination of Earth 


System Model (ESM) outputs. ESMs provide a mathematical representation of underlying physical and biogeochemical 75 
processes in the form of coupled partial differential equations that are discretized and computationally integrated using high 


performance computing infrastructures. The time-evolving, three-dimensional distribution of physical and biogeochemical 


variables are generated as outputs of such calculations. Here we analyze outputs from the Coupled Model Intercomparison 


Project Phase 6 (CMIP6, Eyring, 2016), a major international effort with the primary objective of providing a standardized 


framework for simulating the past, present, and future climate conditions. The participating modeling groups run their 80 
climate models under specified radiative forcing scenarios, and generate a comprehensive set of output datasets freely 


available to the scientific community through data portals and archives provided by the Earth System Grid Federation 


(ESGF). Using a suite of ESMs we will address the following questions:  


• How robust is the relationship between O2 and IPV* in the North Pacific across several ESMs and how may it 


evolve by the end of the 21st century? 85 


• What are the linkages between O2 and IPV* versus large-scale modes of climate variability such as PDO and 


ENSO? 


• Where are the hotspots of changes in IPV* and O2, both in the historical period and in the projections, and are they 


co-located or differ in space and time? 


To address the above questions, we apply a data-mining tool for dimensionality reduction and network analysis (δ-MAPS, 90 
Fountalis et al., 2018), and apply concepts such as information entropy (IE), and the standard Euclidean distance index 


(SED, Diffenbaugh and Giorgi, 2012). Since the above approaches are relatively new to the ocean biogeochemistry 


community, a brief overview is provided here, followed by detailed definitions in section 2.  
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First, δ-MAPS (Fountalis et al., 2018) combines feature extraction and network analysis into a single framework. The goal of 


δ-MAPS is to identify key features and to visualize how those features relate to one another. It establishes sets of spatially 95 
connected chunks of grid points sharing similar dynamical features, called domains. This is simpler and easier to interpret 


than empirical orthogonal functions (EOFs) which suffer from orthogonality constraints. It also allows to investigate the 


network of domains, but this step is skipped in this work. The benefits of δ-MAPS include simplicity, interpretability and 


overfitting prevention relative to conventional EOF-based approaches when extracting climate patterns from high-


dimensional datasets.  100 
Second, Information Entropy (IE) is a concept that measures the amount of randomness and therefore unpredictability in a 


dataset. Imagine a climate time series. IE measures how much information is contained in the data. If the time series is a 


random sequence, the entropy is high because there is more complexity or randomness. On the other hand, if it 


approximately follows a simple cosine curve, it is more predictable and simpler, thus IE is low.  


Finally, the Standard Euclidean Distance (SED) index is a simple and flexible method used to detect total changes in one or 105 
more variables in a given dataset (in other words to identify regions that stand out for changes in means, extremes and 


variability), through measuring the distance in multi-variate space between a baseline period and any other (Diffenbaugh et 


al., 2008; Diffenbaugh and Giorgi, 2012, Williams et al., 2007). The SED is a non-parametric method, meaning it does not 


assume a specific probability distribution for the data. This flexibility makes it applicable to a wide range of datasets, 


regardless of their underlying distribution.  110 


 


2 Materials and methods 


In this section, we describe in more details the three tools recently developed for climate science applications and adopted in 


our analysis and how we calculate IPV*. The predictability potential of the fields examined is evaluated using the 


Information Entropy (IE). IE is defined following Prado et al. (2020) and is based on the recurrence of microstates for a 115 
recurrence plot (RP). A RP (Eckmann et al 1987) is a visualization technique for trajectory recurrence of a given dynamical 


system described in phase space by a matrix Rij such that 


𝑅!"(𝜖) = Θ (𝜖 − *𝑥! − 𝑥"*,  ,  𝑥!  ∈  ℝ,  𝑖, 𝑗  =  1,2, … ,  𝐾,                                          (1) 


where Θ is the heaviside function, |    | is an Euclidean distance, in our work, xi and xj are dynamical states at time steps i and 


j, ε is a threshold distance (the maximum distance between two states to be considered mutually recurrent), and K is the total 120 
number of time steps. Rij is a matrix of “zeros” and “ones” which represent non-recurrent and recurrent states in phase space 


respectively, and it is explicitly dependent on ε. Corso et al. (2018) introduced the Recurrence Entropy quantifier, for which 


for a given time series, the probability of occurrence of microstates in its RP is quantified, without the need for a space-state 
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reconstruction. A microstate of size N is a NxN matrix inside RP, with probability of occurrence Pk = nk/Ntot, where nk are 


the number of occurrences of the microstate in RP, and Ntot is the total number of possible configurations of 0 and 1 of the 125 
microstate (see Ikuyajolu et al (2021) and Prado et al 2020 for a detailed description). The information entropy IE is then 


defined as  


𝐼𝐸(𝑁$%$) =   −  ∑ 𝑃&  ln 𝑃&
'!"!
&()                                                             (2) 


where k is the kth microstate. When IE is normalized by Ntot the case of IE=0 corresponds to perfect predictability, while 


IE=1 represents full chaos. Furthermore, the explicit dependence of the entropy quantifier on ε is removed using the 130 
maximum entropy formulation. Prado et al. (2020) have shown that a value for which IE is maximum exists, does not vary 


much for varying ε and is strongly correlated with the Lyapunov coefficient of the system. We refer to Ikuyajolu et al (2021) 


for the details of the heuristic used to estimate the maximum entropy. In our work, we compute the entropy field of the 


deseasonalized and detrended IPV* (full signal) using 4 microstates.  


δ-MAPS (Fountalis et al., 2018) is an unsupervised network analysis method that allows to identify spatially contiguous and 135 
possibly overlapping regions referred to as domains, and the lagged functional relationships between them. In short, domains 


are spatially contiguous regions that share a highly correlated temporal activity between grid cells of the same domain. In 


this work we apply it to the sea surface temperature (SST) anomaly field (see Data) to identify the major modes of climate 


variability in the north Pacific in a reanalysis and in the ESMs. δ-MAPS is an alternative approach to reduce the 


dimensionality of spatio-temporal data to EOFs (standard or rotated). The orthogonality between EOF components 140 
complicates the interpretation of the results, especially when comparing models and observational datasets, as discussed, for 


example, in Dommenget and Latif (2002) and Falasca et al. (2019), and δ-MAPS offers a powerful solution to this problem. 


Given any spatio-temporal fields, its local homogeneity is hypothesized to be highest at “epicenters” or “cores”. For each 


grid point, a local homogeneity is defined as the average pairwise cross-correlation between that grid cell and a set of K 


nearest neighbors (see Fountalis et al., 2018 for details). Cores are then determined as neighbors of points where the local 145 
homogeneity is a local maximum and above a threshold δ. Each core is iteratively expanded and merged using a greedy 


algorithm to iteratively find domains as large as possible that are (i) spatially contiguous, (ii) include at least a core and (iii) 


have homogeneity higher than δ. δ is computed using a significance test for the unlagged cross-correlations. Given any 


random pair of grid points, the significance of the Pearson’s correlation of their timeseries is assessed through the Bartlett’s 


formula (Box et al., 2011) with the null hypothesis of no coupling. The significance of each correlation is tested for a user-150 
specified significance level α, and δ is computed as the average of significant correlations. Here, we applied δ-MAPS with K 


= 8 and α = 0.01.  


The identification of hotspots of change follows the approach introduced by Diffenbaugh and Giorgi (2012) (which builds on 


Williams et al., 2007 and Diffenbaugh et al., 2008 and references therein), and applied by Turco et al. (2015) to the analysis 
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of global atmospheric data. Hotspots are quantified through a Standard Euclidean Distance index (SED) that aggregates the 155 
changes in means, variability and extremes of the given spatio-temporal field according to: 


𝑆𝐸𝐷  =  ?∑ ∑ @ !*+#$
,-./0!*+#$01


A
2


3
"()


'!*+
!()        (3)  


We compute two SED indices, separately for O2 and IPV*. Nind is the total number of indicators per each variable and i the 


index identifying each indicator, j spans the seasons, so that indij is the ith indicator in the jth season, and p95 is the 95th 


percentile. Here we consider December-January-February as (boreal) winter, March-April-May as spring, and so on. We 160 
consider three indicators for each variable, evaluating changes in means, variability and extremes between two periods of 


equal length. Period 1 covers 1950-1981 (1958-1986 for reanalysis and E3SM-2G ocean hindcast), and Period 2 1983-2014 


(1986-2014 for reanalysis and hindcast) for the historical time, and 2036-2067 and 2069-2100 for the projected future. In 


equation (3) indicators of both periods are normalized on the 95th percentile calculated over Period 1, in order to fairly 


compare changes of hotspots intensity over time. We chose not to compare 2069-2100 with 1950-1981, but with 2036-2067 165 
instead, because we want to track changes in each period compared to the preceding timeslot in order to quantify how 


rapidly they occur in future projections compared to historical. We compute the indicators point by point using the Climate 


Data Operator (Schulzweida, 2022) as follows:  


• Changes in means are estimated in each season separately by 𝐼𝑛𝑑1  =  𝑦𝑠𝑒𝑎𝑠𝑚2 −  𝑦𝑠𝑒𝑎𝑠𝑚), where yseasm1 and 


yseasm2 are multi-year seasonal means in Period 1 and 2, respectively.  170 


• Changes in multi-year seasonal variability are evaluated by (i) detrending each variable point by point in the two periods 


separately, (ii) computing the multi-year seasonal standard deviation of these detrended fields, yseasσ, for each period 


for each season, (iii) computing ind2 as the percentual changes such that  𝐼𝑛𝑑2  =  100 ⋅ K456758% 9456758'
456758'


L.  


• Finally, changes in extremes (in our case specifically overshots of IPV* and undershots of O2) are computed through the 


following steps: (i) for each season, we compute at each grid point the multi-year seasonal O2 minimum or IPV* 175 
maximum over Period 1 and we consider it as a threshold (one threshold map per season); (ii) we count how many times 


in each corresponding season of Period 2 O2 < thresholdO2 (IPV* > thresholdIPV*) is verified; (iii) the percentage of 


occurrences computed at point (ii) is taken as indicator of percentual changes in extremes and estimated by 𝐼𝑛𝑑3  =


 100 ⋅ K'"((
')
L , where Nocc is the number of extremes occurrences (by season) and NT is the total number of months in all 


the corresponding seasons (96 for the models and 87 for reanalysis and hindcast).  180 
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We obtain three groups of four indicators (one per season) for each variable that are then used to compute the SED indices. 


Finally, the IPV* (m-1 s-1) is used as a proxy of stratification and is defined as the isopycnic potential vorticity (Talley et al., 


2011) with the absolute value of the Coriolis parameter in its formula: 


 185 


𝐼𝑃𝑉 ∗	= |;|
<
𝑁2       (4). 


Here N2 is the Brunt–Väisälä frequency, g is the gravity acceleration and f is the Coriolis parameter. IPV is a conservative 


tracer in frictionless and adiabatic circulation. IPV* is calculated over the three-dimensional ocean volume using Eq. 5 and 


in this work we consider the 0-200 m vertical weighted average. This procedure allows us to compare datasets with different 


vertical discretization. 190 
 


3 Data 


We consider four ESMs from the CMIP6 catalog, a hindcast and reanalysis data as summarized in Table 1. whenever 


multiple ensemble members were available, we selected the first (r1i1p1f1).  All ESMs are forced by the historical radiative 


forcing from 1850 to 2014. For the ESMs we analyze the monthly model output from 1950 to 2014. We further discuss 195 
future scp585 scenarios and focus on the 2036-2100 period, indicated as future. 


The hindcast is a new ocean-ice biogeochemistry simulation (referred to as the G-Case), E3SMv2.0-BGC (hereafter, E3SM-


2G, Takano et al, in prep), based on the Model for Prediction Across Scales-Ocean (MPAS-O), an ocean component of the 


Energy Exascale Earth System Model (E3SM) version 2 (Golaz et al., 2022). Details on ocean physics updates can be found 


in Golaz et al. (2022). One of the major updates is the introduction of Redi isopycnal mixing (Redi, 1982) in version 2. 200 
Along with ocean physics updates, we also incorporated a uniform background vertical diffusion specifically for ocean 


biogeochemistry simulations to enhance ocean carbon uptake and thermocline ventilation of dissolved inorganic carbon 


(DIC). Incorporation of these ocean mixing (parameterizations) results in improved representation of climatological O2 


distributions in the version2 from its predecessor (Burrows et al., 2020). The Marine Biogeochemistry Library (MARBL, 


Long et al, 2021) is used to simulate the ecosystem dynamics and cycling of biogeochemical elements. After the model spin-205 
up, the model is forced by a meteorological reanalysis dataset, JRA-55do version 1.4 (Tsujino et al., 2020) from 1958 


onward. Given its availability, we consider the 1958-2014 interval for the E3SM-2G hindcast and the ORAS4 reanalysis.  


All the data are remapped at 1°x1° horizontal resolution.  
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Table 1. CMIP6 Earth System Models, global ocean hindcast and reanalysis used in this work. 


Modeling Group/Center Model Name Atmospheric 


 Component/Resolution 


Oceanic Component/ 


Resolution 


Reference 


National Oceanic and 


Atmospheric Administration, 


Geophysical Fluid Dynamics 


Laboratory 


GFDL-ESM4 AM4.0, ~1o, 49 levels OM4 MOM6, 0.5°x0.5°, 75 


vertical levels (hybrid 


pressure/isopycnal) 


(Dunne et al., 2020) 


Canadian Earth System 


Model version 5 


CanESM5 CanAM5, T63 (~2.8o), 49 


levels 


CanNEMO, 45 vertical levels, 


NEMO3.4.1, ORCA1 tripolar 


grid, 1° with refinement to 1/3° 


within 20° of the equator 


(Swart et al., 2019) 


NorESM Climate modeling 


Consortium 


NorESM2-LM CAM-OSLO, 2° resolution; 32 


levels.  


MICOM, 1°, 70 vertical levels (Seland et al.,2020) 


Institut Pierre-Simon 


Laplace 


IPSL-CM6A-LR LMDZ, NPv6, N96; 1.25°Lat 


x 2.5° Lon, 79 levels 


NEMO-OPA (eORCA1.3, 


tripolar primarily 1°, 75 


vertical levels. 


(Boucher et al., 2020) 


Department of Energy, 


Energy Exascale Earth 


System Model 


E3SMv2.0-BGC 


(E3SM-2G) 


JRA55do reanalysis (55km, 


3hr resolution) 


MPAS-O (30 to 60km 


resolution) 


(Golaz et al, 2022; 


Takano et al., in prep) 


ECMWF Ocean reanalysis 


System 


ORAS4 _ Global, 1°, 42 Levels (Balmaseda et al.,2012; 


Mogensen et al.,2012) 
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We begin our analysis with a brief evaluation of the ESM biases in the two main fields of interest, IPV* and O2. For the 


IPV*, the ocean reanalysis dataset is used for validating the model outputs.  For O2, we can only contrast the annual mean O2 


climatology between the World Ocean Atlas (Garcia et al., 2019) and the ESMs (Fig. 1).  215 


 


Figure 1. (Left) IPV* annual mean climatology (1959-2014) weighted averaged over 0-200 m depth in the North Pacific basin. (a) 


ORAS4. (b-f) Model biases (model – ORAS4) difference. (Right) O2 annual mean climatology (1950-2014) weighted averaged over 0-200 


m depth. (g) World Ocean Atlas climatology. (h-n) Model biases (model – WOA) difference.  


The E3SM-2G hindcast is forced by the observed atmospheric state and not surprisingly displays the lowest model bias and 220 
root mean square error (RMSE). The RMSE of the modelled IPV* are 5.1 10-9 m-1 s-1 (E3SM-2G), 4.9 10-9 m-1 s-1 (GFDL-


ESM4), 5.4 10-9 m-1 s-1 (CanESM5), 4.9 10-9 m-1 s-1 (NorESM2-LM) and 5.5 10-9 m-1 s-1 (IPSL-CM6A-LR), while for O2 are, 


respectively, 15.8 micro mol/kg (E3SM-2G), 19.4 micro mol/kg (GFDL-ESM4), 23.7 micro mol/kg (CanESM5), 18.8 micro 


mol/kg (NorESM2-LM), 22.2.6 micro mol/kg (IPSL-CM6A-LR). Overall, the IPV* and O2 biases have broadly 


anticorrelated patterns, with the models being generally less stratified and more oxygen rich than observed in the extra-225 
tropical North Pacific, and often too stratified and with a larger O2 deficit than observed south of the Equator. However, 
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maximum and minimum biases in the two fields only seldom coincide. Regionally, the E3SM-2G is generally less stratified 


than observed with a relatively low O2 bias and an overestimation of approximately 10 mmol/kg in the subtropical 


thermocline of the North Pacific basin. The hindcast performs especially well in the tropical thermocline. Among the CMIP6 


models, CanESM5 shows a slightly higher IPV* underestimation in the subpolar gyre and a O2 overestimation in the 230 
subtropics compared to the other ESMs, while NorESM2-LM emerges as the most stratified south of the Equator. In O2 there 


is the tendency that larger biases (positive or negative) are found in the tropical thermocline and the tropical/subtropical 


boundaries. The sign and magnitude of the biases are model dependent. Interestingly, models generally overestimate O2 at 


the subpolar latitudes.  


4 Results 235 


4.1 Predictability potential 


We begin our analysis with a discussion of the predictability potential of IPV*, quantified through the information entropy 


(IE, see Methods). The goal is to verify if and where IPV* has an elevated predictability skill, owing to the presence of 


quasi-recurrent behaviors in its time-series. We also aim to examine whether O2 is correlated with IPV* in regions where the 


latter has a high predictability potential. As a reminder, IE values close to 1 indicate high complexity and unpredictability, 240 
and close to 0 perfect predictability (the signal is recurrent, for example constant or periodic). IE maps for IPV* are shown in 


Fig. 2 for both historical and future times, with superposed the contours of the areas where the (lagged) anticorrelation 


between IPV* and O2 is at least -0.5 (see Suppl. Fig. S1 for the anticorrelation and lag maps). Higher predictability in the 


historical period is found in the area most impacted by ENSO. The predictability potential is generally highest along two 


stripes enclosing the ENSO pattern and excluding the upwelling cold tongue regions. The distribution of IE follows broadly 245 
that found in a much longer simulation of the IPSL model covering the past 6,000 years and analyzed by Falasca et al. 


(2022). The western boundary current region and the Kuroshio-Oyashio extensions have low predictability across all datasets 


considered. In NorESM2-LM and CanESM5, and to a lesser degree in ORAS4 and IPSL-CM6A-LR, the higher 


predictability of the ENSO area extends to the north-eastern portion of the basin. In general, in both the hindcast and the 


models, strong anticorrelations between the time series of IPV* and O2 (<-0.5) coincide with low IE regions and are linked 250 
to ENSO affecting concurrently stratification and O2 in the tropics and south of the upwelling area. Very limited IPV* 


predictability is found in the central and western North Pacific, where the variability is dominated by the PDO signal which 


does not emerge as easily predictable both in the interval considered, in agreement with e.g. Gordon et al. (2021) and, at least 


in the IPSL model, across the second half of the Holocene (Falasca et al., 2022). In those areas, anticorrelations between O2 


and IPV* are also relatively weak (generally > -0.4 but for NorESM2-LM). The entropy and the regions where the evolution 255 
of IPV* and O2 are strongly anticorrelated do not change significantly in the future projections in the four models. 


https://doi.org/10.5194/bg-2023-129
Preprint. Discussion started: 7 September 2023
c© Author(s) 2023. CC BY 4.0 License.



Graphic Element Deleted�

Graphic Element

 



Text Deleted�

Text

"https://doi.org/10.5194/bg-2023-129 Preprint. Discussion started: 7 September 2023 c Author(s) 2023. CC BY 4.0 License."



Image Deleted�

Image

 



Graphic Element Deleted�

Graphic Element

 



Image Deleted�

Image

 



Graphic Element Deleted�

Graphic Element

 



Text Inserted�

Text

"270"



Text Replaced�

Text

[Old]: "mmol/kg" 
[New]: "micro mol kg -1"



Text Deleted�

Text

"230"



Text Deleted�

Text

"there is the tendency that"



Text Inserted�

Text

"generally"



Text Inserted�

Text

"275"



Text Deleted�

Text

"the"



Text Deleted�

Text

"235"



Text Inserted�

Text

"(HYP 1)"



Text Deleted�

Text

"a discussion of"



Text Replaced�

Text

[Old]: "quasi-recurrent" 
[New]: "quasi280 recurrent"



Text Deleted�

Text

"240"



Text Inserted�

Text

"We preliminary tested the sensitivity of the entropy field to the microstate dimension, within a meaningful range according to previous literature (Ikuyajolu et al., 2021), using microstates of dimension 2, 3, 4 and 5 for GFDL-ESM4 over 1950-2014 (Suppl Fig. S2). The 285 IE pattern, i.e. areas more (less) predictable relative to the surroundings are substantially unchanged, i.e. the geographical patterns are robust, in agreement with Ikuyajolu et al. (2021). Both microstate dimensions 4 and 5 show reasonable entropy values and we chose to use a microstate dimension of 4 to conduct all the analysis because it spans the widest range of possible values. 290 O 2 – IPV* relationship across ESMs and its future evolution"



Text Replaced�

Text

[Old]: "S1" 
[New]: "S3-S4"



Text Replaced�

Text

[Old]: "area most impacted by ENSO. The predictability potential is generally highest along two 245 stripes enclosing the ENSO pattern and excluding the upwelling cold tongue regions." 
[New]: "tropical Pacific areas close to the geographical location of ENSO (i.e. the area most impacted by ENSO being the domain identified as ENSO-related by d-Maps, which well maps the area 295 identified by an EOF analysis over the SST field for having the greatest variance explained by PC1). The predictability potential is generally highest along two stripes enclosing the ENSO pattern and excluding the upwelling cold tongue."



Text Replaced�

Text

[Old]: "(2022)." 
[New]: "(2022) and appears to be robust."



Text Inserted�

Text

"300"



Text Deleted�

Text

"250"



Text Replaced�

Text

[Old]: "(<-0.5)" 
[New]: "(c.c < -0.5)"



Text Replaced�

Text

[Old]: "signal which" 
[New]: "signal. The PDO"



Text Inserted�

Text

"305"



Text Inserted�

Text

"whole"



Text Deleted�

Text

"255"



Text Deleted�

Text

"also"



Text Inserted�

Text

"We further explored whether oxygen solubility, (O 2 sol), which is modulated by ocean warming/cooling, and the apparent oxygen utilization AOU, which is controlled mostly by the 310 biogeochemical processes affecting oxygen demand, may be independently linked to IPV* predictability. The areas where IPV* and AOU time series are positively correlated with correlation coefficients > 0.5 are very similar to the ones obtained by analyzing the O 2 -IPV* relationship."



Text Inserted�

Text

"For O"



Text Inserted�

Text

"2 sol, which well approximates preformed O 2 at the depths considered, the anticorrelations areas (i.e. where c.c. < -0.5) are quite extensive, especially in the hindcast, but mostly superimposed to highentropy/low predictability IPV* areas (Suppl. Fig. S5)."



Image Inserted�

Image

 



Text Inserted�

Text

"315"



Text Replaced�

Text

[Old]: "10" 
[New]: "12"







11 
 


 


Figure 2: IPV* entropy field in the historical interval (left) and in the future (right) for the ESMs, and in the historical 1958-2014 period 


for the hindcast and ORAS4 with superposed the contours of the areas where IPV* and O2 time series are anticorrelated with correlation 


coefficients < -0.5. 260 


 


4.2 Trends and PDO impact  


The limited predictability found in the North Pacific does not exclude the possibility of the PDO modulating both IPV* and 


O2 inventories simultaneously. We therefore quantify the (linear) impact of the PDO on the two fields of interest, and then 


evaluate the evolution of their residuals. If the PDO is the main predictor of IPV* and O2 distributions, its impact on the two 265 
fields should be strongly anticorrelated and larger than the residual. As mentioned in the Introduction, the objective is to 


verify if the greater availability of IPV* observations, reanalyses and modeled fields could be used to extrapolate 


information about O2 and its evolution in time, bypassing the need to run full biogeochemical models or measure O2 directly. 


We use δ-MAPS (see Material and Methods) applied to the SST field to evaluate the main modes of Pacific climate 


variability, ENSO and PDO with a greater focus on the latter, and their time evolution in the models, the ocean hindcast and 270 
the reanalysis. While the evolution of ENSO using δ-MAPS is straightforwardly described by the timeseries of the 


cumulative anomalies in the ENSO-related domain (e.g. Falasca et al., 2019), for the PDO we must consider the difference 
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between the SST cumulative anomalies of two domains. The domains are identified by the complex network algorithm, and 


we applied a 5-yr running mean to produce the PDO time-series shown in Fig. 3. The domains shape and size are indicated 


in Fig. 4.  275 
For ORAS4 and E3SM-2G, we computed the 0-lag correlations between these timeseries and the commonly defined indices 


of PDO (following Mantua et al. 1997) and Nino34 (average SST anomalies over the box 5oN-5oS, 170oW-120oW) for 


validation. Both timeseries are retrieved from NOAA (https://psl.noaa.gov/data/climateindices/list/). Correlation coefficients 


are 0.92 for PDO and 0.93 for ENSO in ORAS4, and are 0.53 for PDO and 0.88 for ENSO in E3SM-2G.  


Moving to the models (Fig. 3), in the historical period GFDL-ESM4 slightly underestimates the PDO strength, while the 280 
opposite is verified in CanESM5 and NorESM2-LM. In the latter, the frequency of the signal, which changes in sign every 


10-15 years, is also higher than observed. By the end of the 21st century, the strength of the PDO remains unaltered in 


GFDL-ESM4 and IPSL-CM6A, while decreases in NorESM2-LM and especially in CanESM5, following a decrease in size 


of the eastern domain. A decrease in amplitude and increase in frequency of the PDO was found also in several models in the 


CMIP5 ensemble (Li et al., 2020).285 


 


Figure 3: PDO indices (SST cumulative anomalies) calculated using δ-MAPS (see text) in the historical and future time periods.
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With the indices, PDO(t), we can separate the residual component of the fields of interest that is not linearly forced by the 


PDO in all datasets as a function of time following, for example, Kucharski et al. (2008) and defining for O2 (but the same 


procedure was applied to IPV*): 290 


O2res(x,y,t)=O2(x,y,t)-O2PDO(x,y,t)        (5), 


where 


O2PDO(x,y,t) = bO2(x,y)*PDO(t)             (6) 


and bO2 (x,y) is constant in time and determined by least-square fitting through a linear regression for each dataset. 


Figure 4 shows bIPV* and bO2 for all datasets with superposed the boundaries of the domains corresponding to the ENSO and 295 
those contributing to the PDO in the historical period. In most cases there is an overall anticorrelation signal between the 


maps for the two fields, as to be expected, but also several important differences. First, the regions where bO2 is strongest 


(both positive and negative values) do not correspond to minima and maxima in bIPV*. Second, the equatorial upwelling tends 


to have a strong positive signal in bO2 and only a weak one, but of the same sign, in bIPV*. Third, the PDO impacts on the two 


fields considered vary substantially among models, as quantified by the correlation among the respective fields indicated in 300 
the figure, with GFDL being the closest to the hindcast and, for the IPV* case, also to the reanalysis. In NorESM the 


anticorrelation between the regression fields is too strong and the PDO has both a shape and loading in the Pacific interior 


which is different than observed. CanESM5 and IPSL display domain-averaged positive correlations, with important biases 


at the equator and along the eastern boundary with respect to the hindcast. The correlations between the bO2(x,y) and 


bIPV*(x,y) maps are indicated in the figure. Furthermore, the trends of the residuals have comparable amplitude of the PDO-305 
forced signal in both fields in the historical period in all cases (see Suppl. Fig. S2). We will further discuss the trends shape 


when presenting Ind1. 
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Figure 4: bIPV* (left) and bO2 (right) regression coefficient maps with superposed contours of the ENSO and of the PDO+ and PDO- 310 
domains. The correlation coefficients among the corresponding maps for the same model or hindcast are also indicated. Color limits are 


fixed as +/- 3 standard deviations of the ensemble for each variable over the whole area (+/- 2.85 10 for IPV* and +/- 0.021 for O2). Values 


in parentheses are c.c. computed north of 20oN. All the c.c. values passed the shuffling significance test at 5% level (see Suppl. Mat.) 


Figure 5: as in Figure 4 but for the future projections. Color limits are fixed as +/- 3 standard deviations of the ensemble for each variable 315 
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over the whole area (+/- 3.01 10-13 for IPV* and +/- 0.02 for O2). Values in parentheses are c.c. computed north of 20oN. All the 


correlation coefficients passed the significance test at 5% level (see Suppl. Mat.) 
Moving to the projections, the regression coefficient maps do not significantly change in three models considered (Fig. 5). In 


CanESM5, on the other hand, bIPV* changes sign over most of the domain. The residual trends, when compared to the 


regression coefficients, are stronger and dominate the evolution of both fields, especially in the subtropical and subpolar 320 
gyres of the North Pacific (Suppl. Fig. S3), superseding the PDO signal. 


4.3 Hot spots of change 


As a last step, we evaluate changes in means, extremes and variability in the residual of both variables using the indicators 


introduced in the Methods. For the historical time, we divide the 1950-2014 interval in two periods of equal length covering 


1950-1981 and 1983-2014 (1958-1986 and 1986-2014 for E3SM-2G). We evaluated the indicators using all seasons 325 
averaged together or separately, and found that differences across seasons were small, as measured by the standard deviation 


of the indicators (Suppl. Fig. S4-S6). In the following we discuss only the all-seasons averaged indicators without any loss of 


information. 


 


Figure 6. 1950-2014 Ind1 for residual IPV* (left) and residual O2 (right). All indicator maps are obtained by averaging the respective four 330 
seasonal maps. 
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Ind1 in Fig. 6 shows the changes in the residual mean fields, which have very similar patterns to the linear trend in both 


IPV*res and O2res (see Suppl. Fig. S2). By 2015 stratification has increased nearly everywhere in the ESMs, but for the 


equatorial upwelling region where is mostly unchanged, and the Kuroshio-Oyashio extension. In ORA4 there is also a 335 
prominent band where stratification decreases between 10o and 20oN extending from the coast of the American continent to 


150oW in the second period and in the overall trend. O2res decreases in most of the north Pacific but for the upwelling areas 


along the coast of Peru’, Central America, and the California Current System in all simulations but for IPSL-CM6A-LR, the 


North Equatorial Current region in the E3SM-2G hindcast, GFDL-ESM4 and CanESM5, the Equatorial upwelling band in 


NorEMS-LM, and portions of the subpolar gyre around Alaska in E3SM-2G and IPSL-CM6A-LR. The O2res Ind1 maps 340 
suggest that a significant decrease in O2 should have affected the subpolar gyre around the Kamchatka peninsula. 


 


 
Figure 7. 1950-2014 Ind2 for residual IPV* (left) and residual O2 (right).  


Indicators of change in (seasonal) variability (Ind2, Fig. 7) show strong differences across models in patterns and, at least for 345 
O2, intensity. Whenever corresponding maps of O2 and stratification have the same sign and comparable amplitude at 


corresponding locations, they indicate that increments or decreases in IPV* variability at seasonal scales are associated with 


corresponding increments in 0-200m O2res variability. In the hindcast, changes are greater for residual O2 than stratification. 


This is verified also in three of the models in the north-eastern extratropics. Among the models, GFDL-ESM4 and NorESM-
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LM show patchy changes, both positive and negative, across the domain, with the smallest amplitudes among the datasets 350 
considered. CanEMS5 undergoes predominately positive changes north of the equator in IPV*res and negative to the south of 


it, while the variability in the O2res field decreases also in the central portion of the subtropical gyre. In IPSL-CM6A-LM the 


variability increases nearly everywhere in both fields, but especially at the equator and to the south of it in IPV*res and more 


uniformly at all latitudes in O2res. 


 355 


Figure 8. 1950-2014 Ind3 for residual IPV* (left) and residual O2 (right).  


Changes in extremes (Ind3) for the residual O2 field are stronger than for stratification (Figure 8). Episodes of strong O2 


decrease and stratification increase are more frequent in Period 2. For O2res the equatorial regions to the north and south of 


the upwelling band emerge as especially impacted in the E3SM-2G hindcast and GFDL-ESM4, while the subtropical gyre 360 
displays an increase in extreme events nearly everywhere (CanESM5 and IPSL-CM6A-LM), or at its boundary (E3SM-2G) 


or in its eastern portion (GFDL-ESM4 and NorEMS2-LM). The subpolar gyre is affected especially in CanESM5 and IPSL-


CM6A-LM. Changes in IPV*res extremes have less clear latitudinal differences and do not display a robust (across models) 
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intensification at extratropical latitudes. In ORAS4 maxima are found near the California Current System and in the Warm 


Pool area. 365 


 


 


 E3SM-2G GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 


Ind1 -0.06 (0.01) -0.12 (-0.14) -0.23 (-0.16) -0.31 (-0.24) -0.12 (-0.08) 


Ind2  0.26 (0.22)  0.26 (0.17)  0.3 (0.32) 0.3 (0.19)  0.2 (0.22) 


Ind3  0.1 (-0.1)  0.29 (0.03)  0.52 (0.63) 0.11 (0.43) -0.02 (0.21) 


Table 2 1950-2014 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values that 


passed the shuffling significance test at 5% level (see Suppl Mat.). Numbers in parentheses reflect c.c. computed north of 20oN.  


Table 2 summarizes the correlation coefficients between the maps of the three indicators for the two fields considered. 370 
Coefficients are negative for all models but small for Ind1, slightly larger in amplitude and positive for the variability 


indicator in all cases, and very small for Ind3 in the hindcast, CanEMS5 and IPSL-CM6A-LM, while larger in amplitude and 


positive for GFDL-ESM4 and especially NorESM-LM. 


The resulting hotspot indices (SED), computed separately for the IPV*res and the O2res indicators (see Methods) are reported 


in Fig. 9. Except for IPSL-CM6A-LM, the hotspots are found outside the equatorial band. Those for O2 are generally 375 
stronger along the eastern part of the subtropical gyres, in the eastern part of PDO region and along the California upwelling 


system, and the IPV*res hotspots are more commonly found over the western parts of the basin and along the southern 


boundary of the subtropical gyre. This result suggests a longitudinal decoupling between hotspots in O2 and stratification in 


at least three of the models and in the hindcast, with NorESM2-LM being the exception due to the simulated superposition of 


the changes in extremes in the two fields. 380 
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Figure 9. 1950-2014 SED index for IPV*res (left) and residual O2res (right). The colorscale is realized with rgbmap (Greene, 2023).  


The maps of the indicators for the future projections follow in Fig. 10-12, again averaged over seasons for consistency with 


the historical ones. The associated standard deviations are reported in Suppl. Fig. S8-S10. In the projections, the seasonal 385 
differences are slightly stronger compared to the historical period for Ind1 (IPV*res) and Ind3 (both IPV*res and O2res), 


especially for CanESM5, NorESM2-LM and IPSL-CM6A-LR, in the northern subpolar gyres for Ind1 IPV*res (Suppl. Fig. 


S8) and along the subtropical and the northern subpolar gyres for Ind3 IPV*res (Suppl. Fig. S10). Standard deviations for 


Ind3 O2res are stronger along the extratropical gyres and weaker in the tropical upwelling region (Suppl. Fig. S10). Areas of 


higher standard deviations in the projections are, however, associated with much stronger values of Ind1 and Ind3 compared 390 
to the historical period. In the projections, Ind1, which for a perfectly linear trend would represent the trend itself, 


strengthens significantly and is stronger than the actual trend shown in Supp. Fig. S3, indicating an acceleration of the 


changes in the last portion of the 21st century. This is especially relevant for IPV*res north of the Equator. Stratification 


increases everywhere but for areas in the southern hemisphere which have different extension in the four models and are 


found in the central and eastern portions of the basin. O2res decreases everywhere but for small areas around the equatorial 395 
upwelling band. The decrease is very strong along the northern boundary of the Pacific Ocean and, depending on the model, 
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at the subtropical gyre boundary (NorESM-LM and to a lesser degree CanESM5) and south of the Equator along the coast of 


Central and South America (IPSL-CM6A-LR). 


 


400 
Figure 10. 2036-2100 Ind1 for IPV*res (left) and O2res (right).  


 


Figure 11. 2036-2100 Ind2 for IPV*res (left) and O2res (right).  


In terms of variability, very few areas with comparable sign and amplitude (which would indicate comparable increases or 


decreases) can be seen in Fig. 11 when comparing the two variables. IPV*res variability increases almost everywhere in three 405 
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of the models, NorESM2-LM being the exception in the Warm Pool and to the south of the Equator in the eastern portion of 


the basin. O2res variability increases in patchy areas mostly in the eastern half of the basin in GFDL-ESM4, only along the 


southern boundary of the subtropical gyre in NorESM2-LM, roughly along the boundaries of the gyres in CanESM5 and 


along the northern gyre boundary and south of the Equator in IPSL-CM6A-LR. Lastly, extremes (Ind3, Fig. 12) are found to 


increase nearly everywhere but for the equatorial upwelling area in both variables for CanESM5 and IPSL-CM6A-LR, in the 410 
northern hemisphere in NorESM2-LM, in the ENSO region, especially in the Warm Pool, and in GFDL-ESM4 along the 


northern boundary of the basin for IPV*res and along the northern and southern portion of the considered domain for O2res. 


Correlations among maps of the two variables are generally very small for all indicators in the projections (Table 3) with 


|c.c.| < 0.4, except for Ind1 in NorESM2-LM and CanESM5. 


 415 


Figure 12. 2036-2100 Ind3 for IPV*res (left) and residual O2res (right). The percentage shown reaches 60% (three times more than during 


historical, Figure 8). 
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 GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 


Ind1 - 0.25 (-0.18) -0.54 (-0.22) -0.61 (-0.59) -0.32 (-0.28) 


Ind2   0.34 (0.32)  0.12 (0.21)  0.18 (0.19)  0.04 (0.06) 


Ind3 -0.05 (0.51) 0.39 (0.4)  0.2 (0.01) 0.11 (0.04) 


Table 3. 2036-2100 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values that 420 
passed the shuffling significance test at 5% level (see Suppl. Mat.). Numbers in parentheses reflects c.c. computed north of 20oN. 


 


Figure 13. 2036-2100 SED index for IPV*res (left) and O2res (right). The colorscale is produced with rgbmap (Greene, 2023). 
 


5. Conclusions 425 


Earth System Models (ESMs) have made significant progress in simulating the Earth's climate and biogeochemical processes 


and have provided valuable insights into what the future may hold. However, there are still challenges and limitations in 


accurately capturing ocean biogeochemical dynamics. Improving model performance requires continued collaboration 


between biogeochemists, climate modelers, and observationalists. The availability of observational data for biogeochemical 


processes is often limited, especially in remote and poorly sampled regions (e.g., subsurface waters or far away from 430 
population centers). This lack of data makes it difficult to validate and constrain model simulations accurately. Linkages 


between physical climate and ocean O2 can be exploited to better understand and to improve predictive skills of 
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biogeochemical tracers. We anticipate an increase in autonomous observations of biogeochemical variables such as BGC-


ARGO floats soon, which will provide better data coverage for O2 concentrations from seasonal to interannual timescales, 


improving the chances to identify new relationships between ocean O2 and physical variables such as temperature and 435 
salinity. The analysis approaches and the findings from this study will help focusing the upcoming observational analysis 


and modeling efforts.  The overarching hypothesis of this study was that the spatial-temporal variability of O2 reflects that of 


ocean ventilation, which can be measured by the magnitude of the isopycnic potential vorticity (IPV). There has been a wide 


range of mechanisms suggested for the connection between O2 and upper ocean ventilation, many of which can be 


represented in the ESMs. In this study IPV* is chosen as the tracer of physical ventilation processes, where a strong 440 
ventilation is assumed to generate a negative anomaly in IPV*, which then is advected and mixed through the transport 


processes. The same strong ventilation is expected to inject O2-rich surface waters into the interior ocean, leading to a 


negative correlation between O2 and IPV*. This simplistic view has been challenged through the analyses of data 


complexity, linkages to the dominant climate modes, and patterns of extreme events. First, the robustness of the relationship 


between O2 and IPV* was examined for the present and future climate. The entropy analysis identified the areas where IPV 445 
has a high predictability potential (generally along two stripes enclosing the ENSO pattern and excluding the upwelling cold 


tongue regions), which are also areas where O2 and IPV show a strong anti-correlation. This behavior is robust across all the 


analyzed datasets and does not change significantly in the future projections in the four ESMs. This relationship provides a 


linkage between IPV* (easily retrievable from physical variables) and O2, and IPV* can be a good proxy for O2 showing a 


strong predictability in the areas where the anticorrelation (lagged or simultaneous) is strong and IE is lower than in the rest 450 
of the basin. The greater availability of temperature and salinity (and therefore stratification) observations from ARGO 


floats, reanalyses and modeled fields could be used in conjunction to the fewer co-located observations of O2 to validate our 


findings and further extrapolate information about O2 and its evolution in time in these tropical areas.  


Secondly, the variability of O2 and IPV* was examined in relation to large-scale modes of climate variability in the North 


Pacific. In general, ENSO-dominated regions are characterized by a higher predictability potential for IPV*, in the tropics 455 
and south of the upwelling regions including the northeastern portion of the basin, where O2 is negatively correlated with it. 


On the other hand, PDO-dominated regions show very little IPV* predictability. The low predictability extends to the 


western boundary current region and the Kuroshio-Oyashio extensions. In addition, in the extra-tropical North Pacific, where 


the PDO has its center of action, the imprint of PDO on O2 and IPV*, and the trends of their residuals have comparable 


amplitude in the historical period. This is not verified in the future projections, when the trends become increasingly 460 
dominant. Correlations in the PDO regression maps are generally quite small across models.   


Thirdly, the hotspots of IPV* and O2 variability were examined in the historical period and in the future projections. Overall, 


the historical hotspot indices or SED, computed separately for IPV* and O2, suggest a longitudinal decoupling of changes for 


all datasets considered but NorESM2-LM. Most of hotspots of change are in the extratropics. The geographic distribution of 


IPV* and O2 SED can differ from each other. O2 SED are generally stronger in the eastern parts and along the California 465 
upwelling system, while IPV* strongest hotspots are mostly found over the western parts of the basin and southern boundary 
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of the subtropical gyre. The intensity of the SED increases over time, and much stronger and more widely distributed 


hotspots are found in the projections. In the projections, the northern part of the North Pacific is characterized by a strong 


SED index for both O2 and IPV* in all the models. For three out of four models, strong IPV* SED indices are located along 


the northern subtropical gyre, where also the O2 SED are high. IPSL-CM6A-LR is an exception, and the SED indices for the 470 
two fields remain strongly de-coupled. Larger changes and hotspots are found at the gyre boundaries and in the northern 


portion of the basin, from the Kamchatka peninsula to the Gulf of Alaska. There is a general agreement that the loss of O2 is 


linked to the strong increase in stratification, but there are significant differences in the regions affected across models, 


pointing to the area of further investigation.  


Biogeochemical processes involve intricate interactions between multiple components of the earth system. These processes 475 
are often nonlinear and can be influenced by feedback loops, making their representation and coupling with physical 


variables (such as IPV*) complex and challenging to interpret, therefore requiring advances in diagnosis methods and 


interpretation. To accurately assess model performance, continued efforts to develop metrics for model evaluation and 


intercomparison are needed. In this study we presented a set of tools that may contribute to this end. These quantitative 


approaches together with advances in observation-based gridded products, can better characterize and extract information 480 
about linkages between physical and biogeochemical variables. In particular, the availability of biogeochemical data, 


including dissolved oxygen, while still sparse compared to that of physical data, has grown significantly in the last decade. 


Using the ARGO-O2 dataset as a primary input, Giglio et al. (2018) and Sharp et al. (2022) generated time-evolving maps of 


dissolved O2 concentrations from seasonal to interannual timescales using machine learning tools. The ever-increasing data 


volume and the generation of (multiple) gridded data products will enable new types of quantitative analysis and this works 485 
provides a framework for it and for new models-observations intercomparisons.  


Data availability 


The python version of  d-MAPS is available at https://github.com/FabriFalasca/py-dMaps . The code for the Information 


Entropy computation is available at https://github.com/FabriFalasca/NonLinear_TimeSeries_Analysis . Climate indices used 


in this study are from NOAA at https://psl.noaa.gov/data/climateindices/list/).  The CMIP6, Earth system model output used 490 
in this study is available via the Earth System Grid Federation (https://esgf-node.llnl.gov/search/cmip6/). 
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