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Abstract. This study examines the linkages between the upper ocean (0-200 m) oxygen (O2) content and stratification in the 

North Pacific Ocean in four Earth system models (ESMs), an ocean hindcast simulation, and ocean reanalysis data. Trend 10 
and variability of oceanic O2 content are driven by the imbalance between physical supply and biological demand. The 

physical supply is primarily controlled by ocean ventilation, which is responsible for the transport of O2-rich surface waters 

into subsurface. To quantify the ocean ventilation, Isopycnic Potential Vorticity (IPV) is used as a dynamical proxy in this 

study. IPV is a quasi-conservative tracer proportional to density stratification, which can be interpreted as a proxy for ocean 

ventilation and can be evaluated from temperature and salinity measurements alone. The predictability potential of the IPV 15 
field is evaluated through its information entropy. Results highlight a strong O2-IPV connection and somewhat higher (than 

in rest of the basin) predictability potential for IPV in the tropical Pacific, in the area strongly affected by the El Niño 

Southern Oscillation. This pattern of higher predictability and strong anticorrelation between O2 and stratification is robust 

across multiple models and datasets. In contrast, the variability of IPV at mid-latitudes has low predictability potential and its 

center of action differs from that of O2. In addition, the locations of extreme events or hotspots may or may not differ among 20 
the two fields, with a strong model dependency, which persists in future projections. These results, on one hand, suggest the 

possibility to monitor ocean O2 through few observational sites co-located with some of the more abundant IPV 

measurements in the tropical Pacific, and, on the other, question the robustness of the IPV-O2 relationship in the extra-

tropics. The proposed framework helps characterizing and interpreting O2 variability in relation to physical variability and 

may be especially useful in the analysis of new observationally-based data products derived from the BGC-ARGO float 25 
array in combination with the traditional but far more abundant ARGO data. 

1 Introduction 

Dissolved oxygen (O2) in the oceans is crucial for biogeochemical cycling, marine ecosystem and redox chemistry of 

seawater. O2 is a key element for the survival and functioning of marine organisms as fish, shellfish, marine mammals, and 

other aquatic life rely on O2 to breathe and carry out essential metabolic processes. Many commercially important fish 30 
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species and shellfish thrive only on well-oxygenated waters. Growth, reproduction, and overall health of marine organisms 

depends on the balance between metabolic demands and O2 supply (Deutsch et al., 2015).  

Ocean deoxygenation refers to the long-term decrease in the concentration of O2 in the Earth’s oceans. At the global scale, 

the O2 inventory has been declining significantly over the past decades according to historical observations (Ito et al., 2017; 

Schmidtko et al., 2017). Changes in O2 concentrations can reflect the impacts of climate change, nutrient pollution, 35 
eutrophication, and other human-induced stressors. Monitoring ocean oxygen levels helps scientists assessing the health and 

resilience of marine ecosystems and identifying areas that may be prone to O2 depletion or hypoxic events.  Monitoring and 

predicting oxygen levels in the oceans is especially important around and within Oxygen Minimum Zones (OMZs), which 

are characterized by layers in the water column with very low O2 concentration due to biological, chemical, and physical 

processes. As oceans warm, OMZs are posed to increase in number and size across the globe. In the North Pacific, a large 40 
OMZ exists on the eastern side of the tropical Pacific, and its variability and trends are important also for nitrogen cycling 

and production of N2O, a potent greenhouse gas (Nevison et al., 2003; Yang et al., 2017).  

Interpreting changes in O2 concentrations requires understandings in ocean circulation, mixing, air-sea gas transfer, 

biological productivity and respiration. The air-sea gas exchange for O2 is relatively efficient, and it maintains the surface 

water close to saturation with the overlying atmosphere for ice-free regions. Ocean circulation is the primary pathway 45 
through which O2 is supplied (or ventilated) into the thermocline and deep ocean. In the subsurface, O2 is gradually 

consumed by respiration due to the decomposition of dissolved and particulate organic matter. The O2 concentration 

progressively decreases as water masses age.  At climatological timescale, the rates of O2 supply and consumption are 

balanced to sustain a steady state. In another words, changes in O2 concentration are caused by an imbalance between O2 

supply and O2 consumption.  50 
On the supply side, the ventilation of O2 is essentially controlled by the ocean circulation and mixing processes. Broadly, 

ventilation refers to the exchange of waters between the surface layer and the ocean interior (Talley et al., 2011), and 

involves a wide range of physical processes such as the wind-driven shallow overturning associated with the Subtropical 

cells (Brandt et al., 2015; Duteil et al., 2014; Eddebbar et al., 2019), the formation of mode and intermediate waters (Claret 

et al., 2018; Sallee et al., 2010, 2012; Gnanadesikan et al., 2012) and the lateral (isopycnal) eddy stirring (Rudnickas et al., 55 
2019; Gnanadesikan et al., 2013, 2015). These circulation systems are ultimately driven by the atmospheric winds and air-

sea buoyancy fluxes which exhibit significant interannual, decadal and multi-decadal variability.  

Fluctuations in ventilation rates as well as ocean stratification are known to impact both the O2 levels (Ridder & England, 

2014; Duteil et al., 2014; McKinley et al., 2003) and the distribution of isopycnal potential vorticity (IPV), a dynamical 

tracer which is proportional to the local stratification and the Coriolis parameter. The use of the absolute value of the 60 
Coriolis parameter in the formula, indicated by *, guarantees that the relationship with stratification holds with the same sign 

in both hemispheres, so that higher IPV* indicates stronger stratification and vice versa. A strong winter-time convective 

mixing will produce weakly stratified, O2-rich water masses (low IPV* and high O2), and vice versa. These properties are 

then brought together into the ocean interior following the pathway of large-scale ocean currents.  
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In this study, we build upon this relationship, and we explore the overarching hypothesis that isopycnic potential vorticity 65 
(IPV*) may be used as a proxy for O2 which may provide a path to predict the evolution of O2, with a focus on the North 

Pacific basin. In the North Pacific, the Pacific Decadal Oscillation (PDO) is a leading mode of climate variability, exerting 

the greatest control on stratification and O2 (Ito et al., 2019).  Together with the El Niño Southern Oscillation (ENSO) at 

interannual timescales, it modulates the isopycnal surfaces in the tropics, and influences the depth of the winter mixed-layer 

ventilation and the ventilation processes at mid-latitudes. Our specific objectives are to analyze Earth System Models 70 
(ESMs) to evaluate the hypotheses that (1) the ocean ventilation (IPV*) regulates O2 variability in the oceans, (2) the 

ventilation-O2 linkage provides the basis for the predictability of O2 whenever IPV* is predictable, and (3) the linkage can be 

exploited to identify hotspots of O2 changes in variability, means and extremes (see Methods).  

Rather than working directly with the observational data, this study applies data-mining tools to a combination of Earth 

System Model (ESM) outputs. ESMs provide a mathematical representation of underlying physical and biogeochemical 75 
processes in the form of coupled partial differential equations that are discretized and computationally integrated using high 

performance computing infrastructures. The time-evolving, three-dimensional distribution of physical and biogeochemical 

variables are generated as outputs of such calculations. Here we analyze outputs from the Coupled Model Intercomparison 

Project Phase 6 (CMIP6, Eyring, 2016), a major international effort with the primary objective of providing a standardized 

framework for simulating the past, present, and future climate conditions. The participating modeling groups run their 80 
climate models under specified radiative forcing scenarios, and generate a comprehensive set of output datasets freely 

available to the scientific community through data portals and archives provided by the Earth System Grid Federation 

(ESGF). Using a suite of ESMs we will address the following questions:  

• How robust is the relationship between O2 and IPV* in the North Pacific across several ESMs and how may it 

evolve by the end of the 21st century? 85 

• What are the linkages between O2 and IPV* versus large-scale modes of climate variability such as PDO and 

ENSO? 

• Where are the hotspots of changes in IPV* and O2, both in the historical period and in the projections, and are they 

co-located or differ in space and time? 

To address the above questions, we apply a data-mining tool for dimensionality reduction and network analysis (δ-MAPS, 90 
Fountalis et al., 2018), and apply concepts such as information entropy (IE), and the standard Euclidean distance index 

(SED, Diffenbaugh and Giorgi, 2012). Since the above approaches are relatively new to the ocean biogeochemistry 

community, a brief overview is provided here, followed by detailed definitions in section 2.  
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First, δ-MAPS (Fountalis et al., 2018) combines feature extraction and network analysis into a single framework. The goal of 

δ-MAPS is to identify key features and to visualize how those features relate to one another. It establishes sets of spatially 95 
connected chunks of grid points sharing similar dynamical features, called domains. This is simpler and easier to interpret 

than empirical orthogonal functions (EOFs) which suffer from orthogonality constraints. It also allows to investigate the 

network of domains, but this step is skipped in this work. The benefits of δ-MAPS include simplicity, interpretability and 

overfitting prevention relative to conventional EOF-based approaches when extracting climate patterns from high-

dimensional datasets.  100 
Second, Information Entropy (IE) is a concept that measures the amount of randomness and therefore unpredictability in a 

dataset. Imagine a climate time series. IE measures how much information is contained in the data. If the time series is a 

random sequence, the entropy is high because there is more complexity or randomness. On the other hand, if it 

approximately follows a simple cosine curve, it is more predictable and simpler, thus IE is low.  

Finally, the Standard Euclidean Distance (SED) index is a simple and flexible method used to detect total changes in one or 105 
more variables in a given dataset (in other words to identify regions that stand out for changes in means, extremes and 

variability), through measuring the distance in multi-variate space between a baseline period and any other (Diffenbaugh et 

al., 2008; Diffenbaugh and Giorgi, 2012, Williams et al., 2007). The SED is a non-parametric method, meaning it does not 

assume a specific probability distribution for the data. This flexibility makes it applicable to a wide range of datasets, 

regardless of their underlying distribution.  110 

 

2 Materials and methods 

In this section, we describe in more details the three tools recently developed for climate science applications and adopted in 

our analysis and how we calculate IPV*. The predictability potential of the fields examined is evaluated using the 

Information Entropy (IE). IE is defined following Prado et al. (2020) and is based on the recurrence of microstates for a 115 
recurrence plot (RP). A RP (Eckmann et al 1987) is a visualization technique for trajectory recurrence of a given dynamical 

system described in phase space by a matrix Rij such that 

𝑅!"(𝜖) = Θ (𝜖 − *𝑥! − 𝑥"*,  ,  𝑥!  ∈  ℝ,  𝑖, 𝑗  =  1,2, … ,  𝐾,                                          (1) 

where Θ is the heaviside function, |    | is an Euclidean distance, in our work, xi and xj are dynamical states at time steps i and 

j, ε is a threshold distance (the maximum distance between two states to be considered mutually recurrent), and K is the total 120 
number of time steps. Rij is a matrix of “zeros” and “ones” which represent non-recurrent and recurrent states in phase space 

respectively, and it is explicitly dependent on ε. Corso et al. (2018) introduced the Recurrence Entropy quantifier, for which 

for a given time series, the probability of occurrence of microstates in its RP is quantified, without the need for a space-state 
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reconstruction. A microstate of size N is a NxN matrix inside RP, with probability of occurrence Pk = nk/Ntot, where nk are 

the number of occurrences of the microstate in RP, and Ntot is the total number of possible configurations of 0 and 1 of the 125 
microstate (see Ikuyajolu et al (2021) and Prado et al 2020 for a detailed description). The information entropy IE is then 

defined as  

𝐼𝐸(𝑁$%$) =   −  ∑ 𝑃&  ln 𝑃&
'!"!
&()                                                             (2) 

where k is the kth microstate. When IE is normalized by Ntot the case of IE=0 corresponds to perfect predictability, while 

IE=1 represents full chaos. Furthermore, the explicit dependence of the entropy quantifier on ε is removed using the 130 
maximum entropy formulation. Prado et al. (2020) have shown that a value for which IE is maximum exists, does not vary 

much for varying ε and is strongly correlated with the Lyapunov coefficient of the system. We refer to Ikuyajolu et al (2021) 

for the details of the heuristic used to estimate the maximum entropy. In our work, we compute the entropy field of the 

deseasonalized and detrended IPV* (full signal) using 4 microstates.  

δ-MAPS (Fountalis et al., 2018) is an unsupervised network analysis method that allows to identify spatially contiguous and 135 
possibly overlapping regions referred to as domains, and the lagged functional relationships between them. In short, domains 

are spatially contiguous regions that share a highly correlated temporal activity between grid cells of the same domain. In 

this work we apply it to the sea surface temperature (SST) anomaly field (see Data) to identify the major modes of climate 

variability in the north Pacific in a reanalysis and in the ESMs. δ-MAPS is an alternative approach to reduce the 

dimensionality of spatio-temporal data to EOFs (standard or rotated). The orthogonality between EOF components 140 
complicates the interpretation of the results, especially when comparing models and observational datasets, as discussed, for 

example, in Dommenget and Latif (2002) and Falasca et al. (2019), and δ-MAPS offers a powerful solution to this problem. 

Given any spatio-temporal fields, its local homogeneity is hypothesized to be highest at “epicenters” or “cores”. For each 

grid point, a local homogeneity is defined as the average pairwise cross-correlation between that grid cell and a set of K 

nearest neighbors (see Fountalis et al., 2018 for details). Cores are then determined as neighbors of points where the local 145 
homogeneity is a local maximum and above a threshold δ. Each core is iteratively expanded and merged using a greedy 

algorithm to iteratively find domains as large as possible that are (i) spatially contiguous, (ii) include at least a core and (iii) 

have homogeneity higher than δ. δ is computed using a significance test for the unlagged cross-correlations. Given any 

random pair of grid points, the significance of the Pearson’s correlation of their timeseries is assessed through the Bartlett’s 

formula (Box et al., 2011) with the null hypothesis of no coupling. The significance of each correlation is tested for a user-150 
specified significance level α, and δ is computed as the average of significant correlations. Here, we applied δ-MAPS with K 

= 8 and α = 0.01.  

The identification of hotspots of change follows the approach introduced by Diffenbaugh and Giorgi (2012) (which builds on 

Williams et al., 2007 and Diffenbaugh et al., 2008 and references therein), and applied by Turco et al. (2015) to the analysis 
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of global atmospheric data. Hotspots are quantified through a Standard Euclidean Distance index (SED) that aggregates the 155 
changes in means, variability and extremes of the given spatio-temporal field according to: 

𝑆𝐸𝐷  =  ?∑ ∑ @ !*+#$
,-./0!*+#$01

A
2

3
"()

'!*+
!()        (3)  

We compute two SED indices, separately for O2 and IPV*. Nind is the total number of indicators per each variable and i the 

index identifying each indicator, j spans the seasons, so that indij is the ith indicator in the jth season, and p95 is the 95th 

percentile. Here we consider December-January-February as (boreal) winter, March-April-May as spring, and so on. We 160 
consider three indicators for each variable, evaluating changes in means, variability and extremes between two periods of 

equal length. Period 1 covers 1950-1981 (1958-1986 for reanalysis and E3SM-2G ocean hindcast), and Period 2 1983-2014 

(1986-2014 for reanalysis and hindcast) for the historical time, and 2036-2067 and 2069-2100 for the projected future. In 

equation (3) indicators of both periods are normalized on the 95th percentile calculated over Period 1, in order to fairly 

compare changes of hotspots intensity over time. We chose not to compare 2069-2100 with 1950-1981, but with 2036-2067 165 
instead, because we want to track changes in each period compared to the preceding timeslot in order to quantify how 

rapidly they occur in future projections compared to historical. We compute the indicators point by point using the Climate 

Data Operator (Schulzweida, 2022) as follows:  

• Changes in means are estimated in each season separately by 𝐼𝑛𝑑1  =  𝑦𝑠𝑒𝑎𝑠𝑚2 −  𝑦𝑠𝑒𝑎𝑠𝑚), where yseasm1 and 

yseasm2 are multi-year seasonal means in Period 1 and 2, respectively.  170 

• Changes in multi-year seasonal variability are evaluated by (i) detrending each variable point by point in the two periods 

separately, (ii) computing the multi-year seasonal standard deviation of these detrended fields, yseasσ, for each period 

for each season, (iii) computing ind2 as the percentual changes such that  𝐼𝑛𝑑2  =  100 ⋅ K456758% 9456758'
456758'

L.  

• Finally, changes in extremes (in our case specifically overshots of IPV* and undershots of O2) are computed through the 

following steps: (i) for each season, we compute at each grid point the multi-year seasonal O2 minimum or IPV* 175 
maximum over Period 1 and we consider it as a threshold (one threshold map per season); (ii) we count how many times 

in each corresponding season of Period 2 O2 < thresholdO2 (IPV* > thresholdIPV*) is verified; (iii) the percentage of 

occurrences computed at point (ii) is taken as indicator of percentual changes in extremes and estimated by 𝐼𝑛𝑑3  =

 100 ⋅ K'"((
')
L , where Nocc is the number of extremes occurrences (by season) and NT is the total number of months in all 

the corresponding seasons (96 for the models and 87 for reanalysis and hindcast).  180 
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We obtain three groups of four indicators (one per season) for each variable that are then used to compute the SED indices. 

Finally, the IPV* (m-1 s-1) is used as a proxy of stratification and is defined as the isopycnic potential vorticity (Talley et al., 

2011) with the absolute value of the Coriolis parameter in its formula: 

 185 

𝐼𝑃𝑉 ∗	= |;|
<
𝑁2       (4). 

Here N2 is the Brunt–Väisälä frequency, g is the gravity acceleration and f is the Coriolis parameter. IPV is a conservative 

tracer in frictionless and adiabatic circulation. IPV* is calculated over the three-dimensional ocean volume using Eq. 5 and 

in this work we consider the 0-200 m vertical weighted average. This procedure allows us to compare datasets with different 

vertical discretization. 190 
 

3 Data 

We consider four ESMs from the CMIP6 catalog, a hindcast and reanalysis data as summarized in Table 1. whenever 

multiple ensemble members were available, we selected the first (r1i1p1f1).  All ESMs are forced by the historical radiative 

forcing from 1850 to 2014. For the ESMs we analyze the monthly model output from 1950 to 2014. We further discuss 195 
future scp585 scenarios and focus on the 2036-2100 period, indicated as future. 

The hindcast is a new ocean-ice biogeochemistry simulation (referred to as the G-Case), E3SMv2.0-BGC (hereafter, E3SM-

2G, Takano et al, in prep), based on the Model for Prediction Across Scales-Ocean (MPAS-O), an ocean component of the 

Energy Exascale Earth System Model (E3SM) version 2 (Golaz et al., 2022). Details on ocean physics updates can be found 

in Golaz et al. (2022). One of the major updates is the introduction of Redi isopycnal mixing (Redi, 1982) in version 2. 200 
Along with ocean physics updates, we also incorporated a uniform background vertical diffusion specifically for ocean 

biogeochemistry simulations to enhance ocean carbon uptake and thermocline ventilation of dissolved inorganic carbon 

(DIC). Incorporation of these ocean mixing (parameterizations) results in improved representation of climatological O2 

distributions in the version2 from its predecessor (Burrows et al., 2020). The Marine Biogeochemistry Library (MARBL, 

Long et al, 2021) is used to simulate the ecosystem dynamics and cycling of biogeochemical elements. After the model spin-205 
up, the model is forced by a meteorological reanalysis dataset, JRA-55do version 1.4 (Tsujino et al., 2020) from 1958 

onward. Given its availability, we consider the 1958-2014 interval for the E3SM-2G hindcast and the ORAS4 reanalysis.  

All the data are remapped at 1°x1° horizontal resolution.  
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Table 1. CMIP6 Earth System Models, global ocean hindcast and reanalysis used in this work. 

Modeling Group/Center Model Name Atmospheric 

 Component/Resolution 

Oceanic Component/ 

Resolution 

Reference 

National Oceanic and 

Atmospheric Administration, 

Geophysical Fluid Dynamics 

Laboratory 

GFDL-ESM4 AM4.0, ~1o, 49 levels OM4 MOM6, 0.5°x0.5°, 75 

vertical levels (hybrid 

pressure/isopycnal) 

(Dunne et al., 2020) 

Canadian Earth System 

Model version 5 

CanESM5 CanAM5, T63 (~2.8o), 49 

levels 

CanNEMO, 45 vertical levels, 

NEMO3.4.1, ORCA1 tripolar 

grid, 1° with refinement to 1/3° 

within 20° of the equator 

(Swart et al., 2019) 

NorESM Climate modeling 

Consortium 

NorESM2-LM CAM-OSLO, 2° resolution; 32 

levels.  

MICOM, 1°, 70 vertical levels (Seland et al.,2020) 

Institut Pierre-Simon 

Laplace 

IPSL-CM6A-LR LMDZ, NPv6, N96; 1.25°Lat 

x 2.5° Lon, 79 levels 

NEMO-OPA (eORCA1.3, 

tripolar primarily 1°, 75 

vertical levels. 

(Boucher et al., 2020) 

Department of Energy, 

Energy Exascale Earth 

System Model 

E3SMv2.0-BGC 

(E3SM-2G) 

JRA55do reanalysis (55km, 

3hr resolution) 

MPAS-O (30 to 60km 

resolution) 

(Golaz et al, 2022; 

Takano et al., in prep) 

ECMWF Ocean reanalysis 

System 

ORAS4 _ Global, 1°, 42 Levels (Balmaseda et al.,2012; 

Mogensen et al.,2012) 
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We begin our analysis with a brief evaluation of the ESM biases in the two main fields of interest, IPV* and O2. For the 

IPV*, the ocean reanalysis dataset is used for validating the model outputs.  For O2, we can only contrast the annual mean O2 

climatology between the World Ocean Atlas (Garcia et al., 2019) and the ESMs (Fig. 1).  215 

 

Figure 1. (Left) IPV* annual mean climatology (1959-2014) weighted averaged over 0-200 m depth in the North Pacific basin. (a) 

ORAS4. (b-f) Model biases (model – ORAS4) difference. (Right) O2 annual mean climatology (1950-2014) weighted averaged over 0-200 

m depth. (g) World Ocean Atlas climatology. (h-n) Model biases (model – WOA) difference.  

The E3SM-2G hindcast is forced by the observed atmospheric state and not surprisingly displays the lowest model bias and 220 
root mean square error (RMSE). The RMSE of the modelled IPV* are 5.1 10-9 m-1 s-1 (E3SM-2G), 4.9 10-9 m-1 s-1 (GFDL-

ESM4), 5.4 10-9 m-1 s-1 (CanESM5), 4.9 10-9 m-1 s-1 (NorESM2-LM) and 5.5 10-9 m-1 s-1 (IPSL-CM6A-LR), while for O2 are, 

respectively, 15.8 micro mol/kg (E3SM-2G), 19.4 micro mol/kg (GFDL-ESM4), 23.7 micro mol/kg (CanESM5), 18.8 micro 

mol/kg (NorESM2-LM), 22.2.6 micro mol/kg (IPSL-CM6A-LR). Overall, the IPV* and O2 biases have broadly 

anticorrelated patterns, with the models being generally less stratified and more oxygen rich than observed in the extra-225 
tropical North Pacific, and often too stratified and with a larger O2 deficit than observed south of the Equator. However, 
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maximum and minimum biases in the two fields only seldom coincide. Regionally, the E3SM-2G is generally less stratified 

than observed with a relatively low O2 bias and an overestimation of approximately 10 mmol/kg in the subtropical 

thermocline of the North Pacific basin. The hindcast performs especially well in the tropical thermocline. Among the CMIP6 

models, CanESM5 shows a slightly higher IPV* underestimation in the subpolar gyre and a O2 overestimation in the 230 
subtropics compared to the other ESMs, while NorESM2-LM emerges as the most stratified south of the Equator. In O2 there 

is the tendency that larger biases (positive or negative) are found in the tropical thermocline and the tropical/subtropical 

boundaries. The sign and magnitude of the biases are model dependent. Interestingly, models generally overestimate O2 at 

the subpolar latitudes.  

4 Results 235 

4.1 Predictability potential 

We begin our analysis with a discussion of the predictability potential of IPV*, quantified through the information entropy 

(IE, see Methods). The goal is to verify if and where IPV* has an elevated predictability skill, owing to the presence of 

quasi-recurrent behaviors in its time-series. We also aim to examine whether O2 is correlated with IPV* in regions where the 

latter has a high predictability potential. As a reminder, IE values close to 1 indicate high complexity and unpredictability, 240 
and close to 0 perfect predictability (the signal is recurrent, for example constant or periodic). IE maps for IPV* are shown in 

Fig. 2 for both historical and future times, with superposed the contours of the areas where the (lagged) anticorrelation 

between IPV* and O2 is at least -0.5 (see Suppl. Fig. S1 for the anticorrelation and lag maps). Higher predictability in the 

historical period is found in the area most impacted by ENSO. The predictability potential is generally highest along two 

stripes enclosing the ENSO pattern and excluding the upwelling cold tongue regions. The distribution of IE follows broadly 245 
that found in a much longer simulation of the IPSL model covering the past 6,000 years and analyzed by Falasca et al. 

(2022). The western boundary current region and the Kuroshio-Oyashio extensions have low predictability across all datasets 

considered. In NorESM2-LM and CanESM5, and to a lesser degree in ORAS4 and IPSL-CM6A-LR, the higher 

predictability of the ENSO area extends to the north-eastern portion of the basin. In general, in both the hindcast and the 

models, strong anticorrelations between the time series of IPV* and O2 (<-0.5) coincide with low IE regions and are linked 250 
to ENSO affecting concurrently stratification and O2 in the tropics and south of the upwelling area. Very limited IPV* 

predictability is found in the central and western North Pacific, where the variability is dominated by the PDO signal which 

does not emerge as easily predictable both in the interval considered, in agreement with e.g. Gordon et al. (2021) and, at least 

in the IPSL model, across the second half of the Holocene (Falasca et al., 2022). In those areas, anticorrelations between O2 

and IPV* are also relatively weak (generally > -0.4 but for NorESM2-LM). The entropy and the regions where the evolution 255 
of IPV* and O2 are strongly anticorrelated do not change significantly in the future projections in the four models. 
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Figure 2: IPV* entropy field in the historical interval (left) and in the future (right) for the ESMs, and in the historical 1958-2014 period 

for the hindcast and ORAS4 with superposed the contours of the areas where IPV* and O2 time series are anticorrelated with correlation 

coefficients < -0.5. 260 

 

4.2 Trends and PDO impact  

The limited predictability found in the North Pacific does not exclude the possibility of the PDO modulating both IPV* and 

O2 inventories simultaneously. We therefore quantify the (linear) impact of the PDO on the two fields of interest, and then 

evaluate the evolution of their residuals. If the PDO is the main predictor of IPV* and O2 distributions, its impact on the two 265 
fields should be strongly anticorrelated and larger than the residual. As mentioned in the Introduction, the objective is to 

verify if the greater availability of IPV* observations, reanalyses and modeled fields could be used to extrapolate 

information about O2 and its evolution in time, bypassing the need to run full biogeochemical models or measure O2 directly. 

We use δ-MAPS (see Material and Methods) applied to the SST field to evaluate the main modes of Pacific climate 

variability, ENSO and PDO with a greater focus on the latter, and their time evolution in the models, the ocean hindcast and 270 
the reanalysis. While the evolution of ENSO using δ-MAPS is straightforwardly described by the timeseries of the 

cumulative anomalies in the ENSO-related domain (e.g. Falasca et al., 2019), for the PDO we must consider the difference 

https://doi.org/10.5194/bg-2023-129
Preprint. Discussion started: 7 September 2023
c© Author(s) 2023. CC BY 4.0 License.



12 
 

between the SST cumulative anomalies of two domains. The domains are identified by the complex network algorithm, and 

we applied a 5-yr running mean to produce the PDO time-series shown in Fig. 3. The domains shape and size are indicated 

in Fig. 4.  275 
For ORAS4 and E3SM-2G, we computed the 0-lag correlations between these timeseries and the commonly defined indices 

of PDO (following Mantua et al. 1997) and Nino34 (average SST anomalies over the box 5oN-5oS, 170oW-120oW) for 

validation. Both timeseries are retrieved from NOAA (https://psl.noaa.gov/data/climateindices/list/). Correlation coefficients 

are 0.92 for PDO and 0.93 for ENSO in ORAS4, and are 0.53 for PDO and 0.88 for ENSO in E3SM-2G.  

Moving to the models (Fig. 3), in the historical period GFDL-ESM4 slightly underestimates the PDO strength, while the 280 
opposite is verified in CanESM5 and NorESM2-LM. In the latter, the frequency of the signal, which changes in sign every 

10-15 years, is also higher than observed. By the end of the 21st century, the strength of the PDO remains unaltered in 

GFDL-ESM4 and IPSL-CM6A, while decreases in NorESM2-LM and especially in CanESM5, following a decrease in size 

of the eastern domain. A decrease in amplitude and increase in frequency of the PDO was found also in several models in the 

CMIP5 ensemble (Li et al., 2020).285 

 

Figure 3: PDO indices (SST cumulative anomalies) calculated using δ-MAPS (see text) in the historical and future time periods.
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With the indices, PDO(t), we can separate the residual component of the fields of interest that is not linearly forced by the 

PDO in all datasets as a function of time following, for example, Kucharski et al. (2008) and defining for O2 (but the same 

procedure was applied to IPV*): 290 

O2res(x,y,t)=O2(x,y,t)-O2PDO(x,y,t)        (5), 

where 

O2PDO(x,y,t) = bO2(x,y)*PDO(t)             (6) 

and bO2 (x,y) is constant in time and determined by least-square fitting through a linear regression for each dataset. 

Figure 4 shows bIPV* and bO2 for all datasets with superposed the boundaries of the domains corresponding to the ENSO and 295 
those contributing to the PDO in the historical period. In most cases there is an overall anticorrelation signal between the 

maps for the two fields, as to be expected, but also several important differences. First, the regions where bO2 is strongest 

(both positive and negative values) do not correspond to minima and maxima in bIPV*. Second, the equatorial upwelling tends 

to have a strong positive signal in bO2 and only a weak one, but of the same sign, in bIPV*. Third, the PDO impacts on the two 

fields considered vary substantially among models, as quantified by the correlation among the respective fields indicated in 300 
the figure, with GFDL being the closest to the hindcast and, for the IPV* case, also to the reanalysis. In NorESM the 

anticorrelation between the regression fields is too strong and the PDO has both a shape and loading in the Pacific interior 

which is different than observed. CanESM5 and IPSL display domain-averaged positive correlations, with important biases 

at the equator and along the eastern boundary with respect to the hindcast. The correlations between the bO2(x,y) and 

bIPV*(x,y) maps are indicated in the figure. Furthermore, the trends of the residuals have comparable amplitude of the PDO-305 
forced signal in both fields in the historical period in all cases (see Suppl. Fig. S2). We will further discuss the trends shape 

when presenting Ind1. 
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Figure 4: bIPV* (left) and bO2 (right) regression coefficient maps with superposed contours of the ENSO and of the PDO+ and PDO- 310 
domains. The correlation coefficients among the corresponding maps for the same model or hindcast are also indicated. Color limits are 

fixed as +/- 3 standard deviations of the ensemble for each variable over the whole area (+/- 2.85 10 for IPV* and +/- 0.021 for O2). Values 

in parentheses are c.c. computed north of 20oN. All the c.c. values passed the shuffling significance test at 5% level (see Suppl. Mat.) 

Figure 5: as in Figure 4 but for the future projections. Color limits are fixed as +/- 3 standard deviations of the ensemble for each variable 315 
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over the whole area (+/- 3.01 10-13 for IPV* and +/- 0.02 for O2). Values in parentheses are c.c. computed north of 20oN. All the 

correlation coefficients passed the significance test at 5% level (see Suppl. Mat.) 
Moving to the projections, the regression coefficient maps do not significantly change in three models considered (Fig. 5). In 

CanESM5, on the other hand, bIPV* changes sign over most of the domain. The residual trends, when compared to the 

regression coefficients, are stronger and dominate the evolution of both fields, especially in the subtropical and subpolar 320 
gyres of the North Pacific (Suppl. Fig. S3), superseding the PDO signal. 

4.3 Hot spots of change 

As a last step, we evaluate changes in means, extremes and variability in the residual of both variables using the indicators 

introduced in the Methods. For the historical time, we divide the 1950-2014 interval in two periods of equal length covering 

1950-1981 and 1983-2014 (1958-1986 and 1986-2014 for E3SM-2G). We evaluated the indicators using all seasons 325 
averaged together or separately, and found that differences across seasons were small, as measured by the standard deviation 

of the indicators (Suppl. Fig. S4-S6). In the following we discuss only the all-seasons averaged indicators without any loss of 

information. 

 

Figure 6. 1950-2014 Ind1 for residual IPV* (left) and residual O2 (right). All indicator maps are obtained by averaging the respective four 330 
seasonal maps. 
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Ind1 in Fig. 6 shows the changes in the residual mean fields, which have very similar patterns to the linear trend in both 

IPV*res and O2res (see Suppl. Fig. S2). By 2015 stratification has increased nearly everywhere in the ESMs, but for the 

equatorial upwelling region where is mostly unchanged, and the Kuroshio-Oyashio extension. In ORA4 there is also a 335 
prominent band where stratification decreases between 10o and 20oN extending from the coast of the American continent to 

150oW in the second period and in the overall trend. O2res decreases in most of the north Pacific but for the upwelling areas 

along the coast of Peru’, Central America, and the California Current System in all simulations but for IPSL-CM6A-LR, the 

North Equatorial Current region in the E3SM-2G hindcast, GFDL-ESM4 and CanESM5, the Equatorial upwelling band in 

NorEMS-LM, and portions of the subpolar gyre around Alaska in E3SM-2G and IPSL-CM6A-LR. The O2res Ind1 maps 340 
suggest that a significant decrease in O2 should have affected the subpolar gyre around the Kamchatka peninsula. 

 

 
Figure 7. 1950-2014 Ind2 for residual IPV* (left) and residual O2 (right).  

Indicators of change in (seasonal) variability (Ind2, Fig. 7) show strong differences across models in patterns and, at least for 345 
O2, intensity. Whenever corresponding maps of O2 and stratification have the same sign and comparable amplitude at 

corresponding locations, they indicate that increments or decreases in IPV* variability at seasonal scales are associated with 

corresponding increments in 0-200m O2res variability. In the hindcast, changes are greater for residual O2 than stratification. 

This is verified also in three of the models in the north-eastern extratropics. Among the models, GFDL-ESM4 and NorESM-
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LM show patchy changes, both positive and negative, across the domain, with the smallest amplitudes among the datasets 350 
considered. CanEMS5 undergoes predominately positive changes north of the equator in IPV*res and negative to the south of 

it, while the variability in the O2res field decreases also in the central portion of the subtropical gyre. In IPSL-CM6A-LM the 

variability increases nearly everywhere in both fields, but especially at the equator and to the south of it in IPV*res and more 

uniformly at all latitudes in O2res. 

 355 

Figure 8. 1950-2014 Ind3 for residual IPV* (left) and residual O2 (right).  

Changes in extremes (Ind3) for the residual O2 field are stronger than for stratification (Figure 8). Episodes of strong O2 

decrease and stratification increase are more frequent in Period 2. For O2res the equatorial regions to the north and south of 

the upwelling band emerge as especially impacted in the E3SM-2G hindcast and GFDL-ESM4, while the subtropical gyre 360 
displays an increase in extreme events nearly everywhere (CanESM5 and IPSL-CM6A-LM), or at its boundary (E3SM-2G) 

or in its eastern portion (GFDL-ESM4 and NorEMS2-LM). The subpolar gyre is affected especially in CanESM5 and IPSL-

CM6A-LM. Changes in IPV*res extremes have less clear latitudinal differences and do not display a robust (across models) 
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intensification at extratropical latitudes. In ORAS4 maxima are found near the California Current System and in the Warm 

Pool area. 365 

 

 

 E3SM-2G GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 

Ind1 -0.06 (0.01) -0.12 (-0.14) -0.23 (-0.16) -0.31 (-0.24) -0.12 (-0.08) 

Ind2  0.26 (0.22)  0.26 (0.17)  0.3 (0.32) 0.3 (0.19)  0.2 (0.22) 

Ind3  0.1 (-0.1)  0.29 (0.03)  0.52 (0.63) 0.11 (0.43) -0.02 (0.21) 

Table 2 1950-2014 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values that 

passed the shuffling significance test at 5% level (see Suppl Mat.). Numbers in parentheses reflect c.c. computed north of 20oN.  

Table 2 summarizes the correlation coefficients between the maps of the three indicators for the two fields considered. 370 
Coefficients are negative for all models but small for Ind1, slightly larger in amplitude and positive for the variability 

indicator in all cases, and very small for Ind3 in the hindcast, CanEMS5 and IPSL-CM6A-LM, while larger in amplitude and 

positive for GFDL-ESM4 and especially NorESM-LM. 

The resulting hotspot indices (SED), computed separately for the IPV*res and the O2res indicators (see Methods) are reported 

in Fig. 9. Except for IPSL-CM6A-LM, the hotspots are found outside the equatorial band. Those for O2 are generally 375 
stronger along the eastern part of the subtropical gyres, in the eastern part of PDO region and along the California upwelling 

system, and the IPV*res hotspots are more commonly found over the western parts of the basin and along the southern 

boundary of the subtropical gyre. This result suggests a longitudinal decoupling between hotspots in O2 and stratification in 

at least three of the models and in the hindcast, with NorESM2-LM being the exception due to the simulated superposition of 

the changes in extremes in the two fields. 380 
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Figure 9. 1950-2014 SED index for IPV*res (left) and residual O2res (right). The colorscale is realized with rgbmap (Greene, 2023).  

The maps of the indicators for the future projections follow in Fig. 10-12, again averaged over seasons for consistency with 

the historical ones. The associated standard deviations are reported in Suppl. Fig. S8-S10. In the projections, the seasonal 385 
differences are slightly stronger compared to the historical period for Ind1 (IPV*res) and Ind3 (both IPV*res and O2res), 

especially for CanESM5, NorESM2-LM and IPSL-CM6A-LR, in the northern subpolar gyres for Ind1 IPV*res (Suppl. Fig. 

S8) and along the subtropical and the northern subpolar gyres for Ind3 IPV*res (Suppl. Fig. S10). Standard deviations for 

Ind3 O2res are stronger along the extratropical gyres and weaker in the tropical upwelling region (Suppl. Fig. S10). Areas of 

higher standard deviations in the projections are, however, associated with much stronger values of Ind1 and Ind3 compared 390 
to the historical period. In the projections, Ind1, which for a perfectly linear trend would represent the trend itself, 

strengthens significantly and is stronger than the actual trend shown in Supp. Fig. S3, indicating an acceleration of the 

changes in the last portion of the 21st century. This is especially relevant for IPV*res north of the Equator. Stratification 

increases everywhere but for areas in the southern hemisphere which have different extension in the four models and are 

found in the central and eastern portions of the basin. O2res decreases everywhere but for small areas around the equatorial 395 
upwelling band. The decrease is very strong along the northern boundary of the Pacific Ocean and, depending on the model, 

https://doi.org/10.5194/bg-2023-129
Preprint. Discussion started: 7 September 2023
c© Author(s) 2023. CC BY 4.0 License.



20 
 

at the subtropical gyre boundary (NorESM-LM and to a lesser degree CanESM5) and south of the Equator along the coast of 

Central and South America (IPSL-CM6A-LR). 

 

400 
Figure 10. 2036-2100 Ind1 for IPV*res (left) and O2res (right).  

 

Figure 11. 2036-2100 Ind2 for IPV*res (left) and O2res (right).  

In terms of variability, very few areas with comparable sign and amplitude (which would indicate comparable increases or 

decreases) can be seen in Fig. 11 when comparing the two variables. IPV*res variability increases almost everywhere in three 405 
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of the models, NorESM2-LM being the exception in the Warm Pool and to the south of the Equator in the eastern portion of 

the basin. O2res variability increases in patchy areas mostly in the eastern half of the basin in GFDL-ESM4, only along the 

southern boundary of the subtropical gyre in NorESM2-LM, roughly along the boundaries of the gyres in CanESM5 and 

along the northern gyre boundary and south of the Equator in IPSL-CM6A-LR. Lastly, extremes (Ind3, Fig. 12) are found to 

increase nearly everywhere but for the equatorial upwelling area in both variables for CanESM5 and IPSL-CM6A-LR, in the 410 
northern hemisphere in NorESM2-LM, in the ENSO region, especially in the Warm Pool, and in GFDL-ESM4 along the 

northern boundary of the basin for IPV*res and along the northern and southern portion of the considered domain for O2res. 

Correlations among maps of the two variables are generally very small for all indicators in the projections (Table 3) with 

|c.c.| < 0.4, except for Ind1 in NorESM2-LM and CanESM5. 

 415 

Figure 12. 2036-2100 Ind3 for IPV*res (left) and residual O2res (right). The percentage shown reaches 60% (three times more than during 

historical, Figure 8). 
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 GFDL-ESM4 NorESM2-LM CanESM5 IPSL-CM6A-LR 

Ind1 - 0.25 (-0.18) -0.54 (-0.22) -0.61 (-0.59) -0.32 (-0.28) 

Ind2   0.34 (0.32)  0.12 (0.21)  0.18 (0.19)  0.04 (0.06) 

Ind3 -0.05 (0.51) 0.39 (0.4)  0.2 (0.01) 0.11 (0.04) 

Table 3. 2036-2100 Correlation coefficients (c.c) between the corresponding indicator maps for IPV* and O2. Bold underlined values that 420 
passed the shuffling significance test at 5% level (see Suppl. Mat.). Numbers in parentheses reflects c.c. computed north of 20oN. 

 

Figure 13. 2036-2100 SED index for IPV*res (left) and O2res (right). The colorscale is produced with rgbmap (Greene, 2023). 
 

5. Conclusions 425 

Earth System Models (ESMs) have made significant progress in simulating the Earth's climate and biogeochemical processes 

and have provided valuable insights into what the future may hold. However, there are still challenges and limitations in 

accurately capturing ocean biogeochemical dynamics. Improving model performance requires continued collaboration 

between biogeochemists, climate modelers, and observationalists. The availability of observational data for biogeochemical 

processes is often limited, especially in remote and poorly sampled regions (e.g., subsurface waters or far away from 430 
population centers). This lack of data makes it difficult to validate and constrain model simulations accurately. Linkages 

between physical climate and ocean O2 can be exploited to better understand and to improve predictive skills of 
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biogeochemical tracers. We anticipate an increase in autonomous observations of biogeochemical variables such as BGC-

ARGO floats soon, which will provide better data coverage for O2 concentrations from seasonal to interannual timescales, 

improving the chances to identify new relationships between ocean O2 and physical variables such as temperature and 435 
salinity. The analysis approaches and the findings from this study will help focusing the upcoming observational analysis 

and modeling efforts.  The overarching hypothesis of this study was that the spatial-temporal variability of O2 reflects that of 

ocean ventilation, which can be measured by the magnitude of the isopycnic potential vorticity (IPV). There has been a wide 

range of mechanisms suggested for the connection between O2 and upper ocean ventilation, many of which can be 

represented in the ESMs. In this study IPV* is chosen as the tracer of physical ventilation processes, where a strong 440 
ventilation is assumed to generate a negative anomaly in IPV*, which then is advected and mixed through the transport 

processes. The same strong ventilation is expected to inject O2-rich surface waters into the interior ocean, leading to a 

negative correlation between O2 and IPV*. This simplistic view has been challenged through the analyses of data 

complexity, linkages to the dominant climate modes, and patterns of extreme events. First, the robustness of the relationship 

between O2 and IPV* was examined for the present and future climate. The entropy analysis identified the areas where IPV 445 
has a high predictability potential (generally along two stripes enclosing the ENSO pattern and excluding the upwelling cold 

tongue regions), which are also areas where O2 and IPV show a strong anti-correlation. This behavior is robust across all the 

analyzed datasets and does not change significantly in the future projections in the four ESMs. This relationship provides a 

linkage between IPV* (easily retrievable from physical variables) and O2, and IPV* can be a good proxy for O2 showing a 

strong predictability in the areas where the anticorrelation (lagged or simultaneous) is strong and IE is lower than in the rest 450 
of the basin. The greater availability of temperature and salinity (and therefore stratification) observations from ARGO 

floats, reanalyses and modeled fields could be used in conjunction to the fewer co-located observations of O2 to validate our 

findings and further extrapolate information about O2 and its evolution in time in these tropical areas.  

Secondly, the variability of O2 and IPV* was examined in relation to large-scale modes of climate variability in the North 

Pacific. In general, ENSO-dominated regions are characterized by a higher predictability potential for IPV*, in the tropics 455 
and south of the upwelling regions including the northeastern portion of the basin, where O2 is negatively correlated with it. 

On the other hand, PDO-dominated regions show very little IPV* predictability. The low predictability extends to the 

western boundary current region and the Kuroshio-Oyashio extensions. In addition, in the extra-tropical North Pacific, where 

the PDO has its center of action, the imprint of PDO on O2 and IPV*, and the trends of their residuals have comparable 

amplitude in the historical period. This is not verified in the future projections, when the trends become increasingly 460 
dominant. Correlations in the PDO regression maps are generally quite small across models.   

Thirdly, the hotspots of IPV* and O2 variability were examined in the historical period and in the future projections. Overall, 

the historical hotspot indices or SED, computed separately for IPV* and O2, suggest a longitudinal decoupling of changes for 

all datasets considered but NorESM2-LM. Most of hotspots of change are in the extratropics. The geographic distribution of 

IPV* and O2 SED can differ from each other. O2 SED are generally stronger in the eastern parts and along the California 465 
upwelling system, while IPV* strongest hotspots are mostly found over the western parts of the basin and southern boundary 
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of the subtropical gyre. The intensity of the SED increases over time, and much stronger and more widely distributed 

hotspots are found in the projections. In the projections, the northern part of the North Pacific is characterized by a strong 

SED index for both O2 and IPV* in all the models. For three out of four models, strong IPV* SED indices are located along 

the northern subtropical gyre, where also the O2 SED are high. IPSL-CM6A-LR is an exception, and the SED indices for the 470 
two fields remain strongly de-coupled. Larger changes and hotspots are found at the gyre boundaries and in the northern 

portion of the basin, from the Kamchatka peninsula to the Gulf of Alaska. There is a general agreement that the loss of O2 is 

linked to the strong increase in stratification, but there are significant differences in the regions affected across models, 

pointing to the area of further investigation.  

Biogeochemical processes involve intricate interactions between multiple components of the earth system. These processes 475 
are often nonlinear and can be influenced by feedback loops, making their representation and coupling with physical 

variables (such as IPV*) complex and challenging to interpret, therefore requiring advances in diagnosis methods and 

interpretation. To accurately assess model performance, continued efforts to develop metrics for model evaluation and 

intercomparison are needed. In this study we presented a set of tools that may contribute to this end. These quantitative 

approaches together with advances in observation-based gridded products, can better characterize and extract information 480 
about linkages between physical and biogeochemical variables. In particular, the availability of biogeochemical data, 

including dissolved oxygen, while still sparse compared to that of physical data, has grown significantly in the last decade. 

Using the ARGO-O2 dataset as a primary input, Giglio et al. (2018) and Sharp et al. (2022) generated time-evolving maps of 

dissolved O2 concentrations from seasonal to interannual timescales using machine learning tools. The ever-increasing data 

volume and the generation of (multiple) gridded data products will enable new types of quantitative analysis and this works 485 
provides a framework for it and for new models-observations intercomparisons.  
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