

1 Reviewer comments

2 Author responses

3

4 **RC1**

5

6 MAJOR COMMENTS

7

8 Long-term patterns of CO₂ levels and emissions in rivers have been reported by several
9 studies (Jones et al. 2003; Ran et al. 2015; 2021; Nydahl et al. 2017; Marescaux et al.
10 2018) (non-exhaustive list). Findings from these studies could be used to contextualize the
11 present study (Introduction) and to discuss differences or convergences by comparison
12 (Discussion).

13

14 **Reply:**

15 Thank you for the references.

16

17 In the introduction, we will include a paragraph reviewing the literature on long-term CO₂
18 emission patterns. In the discussion, we will draw on previous studies to compare with our
19 findings and examine time-dependent variations in region-specific attributes.

20

21 L 30: « water pollution » is extremely vague. This should be broken down into several
22 human impacts on riverine systems that do not necessarily lead to the same change in
23 CO₂ emissions. Eutrophication (increase of nutrient inputs) can potentially lead to
24 enhanced primary production and a CO₂ sink in impounded large rivers such as the
25 Mississippi (Crawford et al. 2016). Conversely, croplands seem to also lead to enhanced
26 organic carbon inputs from soils enhancing CO₂ emissions compared to more natural land
27 cover such as forests (Borges et al. 2018; Mwanake et al. 2023) Wastewater inputs lead
28 to CO₂ production in the river, although this impact seems very local, in the near vicinity of
29 the emissary (Marescaux et al. 2018).

30

31 **Reply:**

32 Thank you. We agree with you that “water pollution” is indeed a broad term, and it is
33 important to consider its impacts on riverine CO₂ emissions from various perspectives.

34

35 Accordingly, we will expand our description to encompass different viewpoints, including
36 the effects of organic carbon from agricultural runoff and domestic sewage (Borges et al.,
37 2018; Marescaux et al., 2018; Mwanake et al., 2023), as well as the carbon sink impact
38 attributable to eutrophication caused by increased nutrient levels (Crawford et al., 2016).

39

40 L 30 “this percentage continues to increase because the unprecedented anthropogenic
41 stresses on riverine systems have led to many negative issues such as water pollution”.
42 I’m not sure this statement applies assertively to all climate zones (Crawford et al., 2016).

43 According to Liu et al. (2022), tropical rivers are responsible for 57% of the riverine CO₂
44 global emission, followed by temperate (30%) and Arctic regions (13%). The most direct

45 anthropogenic impacts expected to affect riverine CO₂ emissions should occur at
46 temperate latitudes (North America, Europe and parts of Asia) that account for less than a
47 third of total emissions. Note that this percentage was lower in earlier estimates for which
48 tropical rivers accounted for 80% of riverine CO₂ emissions (Raymond et al. 2013;
49 Lauweardt et al. 2015).

50

51 **Reply:**

52 Thank you. We agree that the impacts of river pollution and restoration efforts on riverine
53 CO₂ emissions, which result from human activities, should be concentrated in regions with
54 high population density.

55

56 We will revise the sentence to offer a more accurate depiction that incorporates the
57 suggestions you have provided.

58

59 L 34: Rivers do not have “ecosystem's natural carbon absorption and storage capabilities”.
60 Rivers do not store carbon in sediments and do not “absorb” carbon on contrary tend to
61 emit CO₂ to the atmosphere. High CO₂ over-saturation in rivers occurs ubiquitously even
62 in pristine (or near pristine) river basins such as the Amazon and Congo.

63

64 **Reply:**

65 Thank you very much for the correction. We agree that most rivers consistently serve as a
66 source of carbon.

67

68 We will revise the text from this perspective.

69

70 L 37: It has been argued that CO₂ emissions from lowland rivers in particular in the tropics
71 are related to inputs from wetlands (Abril et al. 2014; Borges et al. 2015) that are
72 conceptually different (Abril and Borges 2019) from “terrestrial organic carbon (OC)» (as
73 stated).

74

75 **Reply:**

76 Thank you for the correction. We will add the reference and the information.

77

78 L38: Can you please clarify the role of «nutrient availability» in this context?

79

80 **Reply:**

81 We will delete the term "Nutrient availability" here, as it is misleading in this context.

82

83 L44-46: This argument is awkward. DOM produced by phytoplankton should indeed
84 sustain microbial respiration but phytoplankton also photosynthesized prior to DOM
85 release, so both effects should cancel each other in terms of net carbon fluxes.

86

87 **Reply:**

88 Thank you. The sentence will be deleted.

89 L 44: reference to "lakes and reservoirs » seems to be out of context here.

90

91 **Reply:**

92 Will be rephrased.

93

94 L49-50: statement "trophic status related to nutrient availability significantly impacts the
95 levels of CO₂ in rivers" is contradicted by the fact that CO₂ emissions in rivers are in
96 majority related to lateral inputs of carbon from soils and ground-waters (Hotchkiss et al.
97 2015) or from wetlands (Abril and Borges 2019), and are not related to in-stream CO₂
98 production from metabolism (Hotchkiss et al. 2015; Abril et al. 2014; Borges et al. 2019).

99

100 **Reply:**

101 In this study, Figures 3c and 3d demonstrate the significant and negative correlation
102 between RUE (the ratio of Chl-a to nutrient concentrations) and pCO₂.

103

104 The sentence will be rephrased deleting the terms 'trophic status related nutrient
105 availability' and replaced by 'nutrient concentration'.

106

107 L 51: reference to "biodiversity" seems out of context here.

108

109 **Reply:**

110 Will be rephrased.

111

112 L 55: The authors should cite the "existing studies" they critique rather than stating this in
113 a vague way.

114

115 **Reply:**

116 Thank you. Related studies will be cited (like Nydahl et al. (2017); Marescaux et al. (2018)
117 etc.)

118

119 L 55: Please clarify what is meant by "short term effects »? "effects" of what on what? Do
120 you mean short-term time-series? Some studies have reported relatively long time series
121 (Jones et al. 2003; Ran et al. 2015; 2021; Nydahl et al. 2017; Marescaux et al. 2018). It is
122 not necessary to downplay existing literature to put forward your own study.

123

124 **Reply:**

125 Thank you. In our study, "Short-term effects" is a relative term compared with continuous
126 long term time series, refers to the analysis of F_{CO₂} or CO₂ efflux below 10 years (decadal).
127 Will be clarified.

128

129 For the research you provided, While Ran et al. (2015) provided extensive data on long-
130 term pCO₂, they did not conduct analyses related to F_{CO₂}. After that, Ran et al. (2021)
131 compared CO₂ efflux from the average of two periods (1980s to the 2010s) but did not offer
132 an exhaustive continuous time series analysis. Similarly, the work of Nydahl et al. (2017)

133 and Marescaux et al. (2018) was primarily directed towards understanding pCO₂ dynamics,
134 with less emphasis on F_{CO₂}. As a result, there is a research gap in continuous and long-
135 term analyses of F_{CO₂} and CO₂ efflux, which our research questions aim to address. Will
136 be rephrased and related studies will be included.

137

138 L 55: What do you mean by «hydrological conditions»? CO₂ emissions from rivers depend
139 on CO₂ concentration between water and air, and on the gas transfer velocity. Both are
140 more or less indirectly linked to “hydrological conditions” but this should be clarified,
141 especially when criticizing “existing studies”.

142

143 **Reply:**

144 Thank you. In this research, we are using estimates of both the flow discharge and flow
145 velocity for the estimation of the gas transfer velocity and water surface area. The
146 parameters represent hydrological conditions.

147 This aspect will be clarified in the text.

148

149 L61: Please provide a reference to back this statement, and clarify compared to which
150 other rivers was it the most polluted? At European level? Globally? It could be also useful
151 to take into account size effects. A very small stream can be extremely impacted by
152 wastewater from a small village, while very large rivers are unaffected by large cities
153 because all inputs are diluted by high discharge.

154

155 **Reply:**

156 Thank you. Before 1990, the Elbe River was one of the most polluted rivers in European
157 scale. Related references will be added (ICPER, 2023; Kempe, 1982).

158

159 L 163: the equation relating river width and Q given by Raymond et al. (2012) was derived
160 for small streams. Can you comment on its applicability to large rivers? Also this relation is
161 probably affected by channelization and probably does not apply to highly engineered
162 rivers such as the Elbe.

163

164 **Reply:**

165 Most of the Elbe River's flow, categorized with Strahler orders from 1 to 6, matches the
166 flow discharge range used to create the equation by Raymond et al. (2012) (Figure R1).

167

168

169 Figure R1. Flow discharge distribution of tributaries of the Elbe River. Discharge data obtained and
 170 resampled from GRADES (The Global Reach-scale A priori Discharge Estimates for SWOT) (Lin et al.,
 171 2019; Yang et al., 2019).

172

173 For the larger segments of the river, classified as Strahler orders 7 and 8, primarily the
 174 mainstem, we compared our estimated river widths with the research of Mallast et al.
 175 (2020). Their measurements were derived from satellite imagery. The average river width
 176 we estimated showed good agreement with their findings (this research: 177 m for Strahler
 177 order 7&8 (Figure R2), versus Mallast et al. (2020): 183 m, with an area of 107 km² divided
 178 by a length of 594 km).

179

180 Therefore, we believe the error introduced by our method in this research should be minor.
 181 An additional discussion of uncertainties will be added.

182

183 Figure R2: Estimated River width across different Strahler orders.

184 L 300: can you please provide a numerical comparison and a reference for the data for
185 the 1954–1977 period?

186

187 **Reply:**

188 The modeled pCO₂ and the corresponding data and plot will be added.

189

190 Can you please explain somewhere in text why the analysis was not extended back to
191 1954 and only started in 1984?

192

193 **Reply:**

194 Since our study conducted a temporal and spatial analysis. In this process, we integrated
195 a range of environmental indicators along with carbon. On the other hand, the data from
196 1954 was restricted to just one site (sample location of the local water works company
197 Hamburg Wasser) and did not provide any environmental indicators (Kempe, 1982).

198

199 Consequently, we employed this data merely as a background reference value. A short
200 explanation will be added.

201

202 L341-344: This statement does not seem relevant. Indeed, it is conceivable that light
203 absorption by CDOM limits photosynthesis from aquatic primary producers, but in rivers
204 CDOM mostly originates from soils. Also, DOM from phytoplankton is usually very labile
205 and is quickly consumed by micro-organisms. CDOM is usually related to highly
206 refractory substances, typically from soils.

207

208 **Reply:**

209 The sentence will be deleted.

210

211 L 370-373: Please clarify the text of the two hypothesis and also provide extra arguments
212 and references to back them.

213

214 **Reply:**

215 The two main arguments are as follows:

216

217 Firstly, the treatment of municipal wastewater has resulted in a decrease in the amount of
218 labile organic carbon being directly introduced into the river, thereby reducing the potential
219 for its degradation into CO₂ (Lasaki et al., 2023). Secondly, the reduced discharge of heavy
220 metals, along with reductions in nitrogen and phosphorus concentrations, has promoted a
221 healthier aquatic ecosystem (Qasem et al., 2021). Although photosynthesis and respiration
222 processes may balance each other, the net growth of aquatic plants contributes to the
223 overall reduction of CO₂ in the river if the rate of plant growth exceeds the rate of
224 decomposition of plant residues (Demars et al., 2016).

225

226 Will be clarified with extra arguments and references.

227

228 What do you mean by "biomass amount » and why should it not increase in « restored
229 aquatic system»?

230

231 **Reply:**

232 The most important factor affecting biomass quantity is the toxicity from heavy metals,
233 which impedes biomass growth. As environmental conditions shift from polluted to non-
234 polluted states, the quantity of biomass is expected to change, subsequently influencing
235 CO₂ levels. However, heavy metals primarily originate from industrial inputs, and the
236 closure of factories along with advanced wastewater treatment technologies has
237 significantly improved water quality (Amann et al., 2012). Since trace elements do not
238 exceed the thresholds that limit phytoplankton growth, biomass remains relatively stable.

239

240 Will be rephrased. And a plot of temporal biomass amount variations will also be provided.

241

242 What do you mean by "challenging through water quality treatments."

243

244 **Reply:**

245 The challenge could be that CO₂ emissions from sewage water discharge may be avoided
246 at the cost of CO₂ emission of wastewater treatment plants through biological treatment
247 process and electricity consumption.

248

249 According to global estimates, the degradation of OC during wastewater treatment in 2010
250 contributed to approximately 770 Tg CO₂-equivalent GHG emissions, representing nearly
251 1.57% of the total global GHG emissions of 49,000 Tg CO₂ (Edenhofer, 2015).

252

253 On the other hand, the oxidized and anaerobic digestion of the organic carbon of
254 wastewater is converted mainly to CO₂ and CH₄ (Campos et al., 2016), thus offsetting the
255 reduction in CO₂ in wastewater treatment.

256

257 MINOR COMMENTS

258 Text contains numerous awkward phrasing or typos or redundancies. The senior co-
259 authors should spend some time looking through the text and make the necessary
260 improvements; this is not the reviewer's job. Nevertheless, some are listed hereafter (not
261 an exhaustive list):

262

263 **Reply:**

264 We apologize for this oversight. We will do our utmost to significantly improve the language
265 quality of the text.

266

267 L40 + L 337: Labile instead of "liable"?

268

269 **Reply:**

270 Will be replaced.

271

272 L 55: context instead of « contest» ?
273
274 **Reply:**
275 **Will be replaced.**
276
277 L42: "phytoplankton behaviors » is awkward, please rephrase.
278
279 **Reply:**
280 **Will be rephrased.**
281
282 L61: most instead of "highest"
283
284 **Reply:**
285 **Will be replaced.**
286
287 L66: "FCO2 efflux » is redundant sinc "F" of "FCO2" abbreviates the word flux.
288
289 **Reply:**
290 **Will be replaced.**
291
292 L68: "high-resolution" is self-evaluation, please simply state instead the actual time step of
293 the data.
294
295 **Reply:**
296 **Extra descriptions will be added.**
297
298 L 368: "CO2 drawdown ratio by water quality management" is awkward, please rephrase.
299
300 **Reply:**
301 **Will be rephrased.**
302
303
304
305
306
307
308
309
310
311
312
313
314
315

316 **References**

317 Amann, T., Weiss, A., & Hartmann, J. (2012). Carbon dynamics in the freshwater part of the Elbe
318 estuary, Germany: Implications of improving water quality. *Estuarine, Coastal and Shelf
319 Science*, 107, 112-121. <https://doi.org/10.1016/j.ecss.2012.05.012>

320 Borges, A. V., Darchambeau, F., Lambert, T., Bouillon, S., Morana, C., Brouyere, S., Hakoun, V.,
321 Jurado, A., Tseng, H. C., Descy, J. P., & Roland, F. A. E. (2018). Effects of agricultural land
322 use on fluvial carbon dioxide, methane and nitrous oxide concentrations in a large
323 European river, the Meuse (Belgium). *Sci Total Environ*, 610-611, 342-355.
324 <https://doi.org/10.1016/j.scitotenv.2017.08.047>

325 Campos, J. L., Valenzuela-Heredia, D., Pedrouso, A., Val del Río, A., Belmonte, M., & Mosquera-
326 Corral, A. (2016). Greenhouse gases emissions from wastewater treatment plants:
327 minimization, treatment, and prevention. *Journal of Chemistry*, 2016.

328 Crawford, J. T., Loken, L. C., Stanley, E. H., Stets, E. G., Dornblaser, M. M., & Striegl, R. G. (2016).
329 Basin scale controls on CO₂ and CH₄ emissions from the Upper Mississippi River.
330 *Geophysical Research Letters*, 43(5), 1973-1979. <https://doi.org/10.1002/2015gl067599>

331 Demars, B. O. L., Gíslason, G. M., Ólafsson, J. S., Manson, J. R., Friberg, N., Hood, J. M., Thompson,
332 J. J. D., & Freitag, T. E. (2016). Impact of warming on CO₂ emissions from streams
333 countered by aquatic photosynthesis. *Nature Geoscience*, 9(10), 758-761.
334 <https://doi.org/10.1038/ngeo2807>

335 Edenhofer, O. (2015). *Climate change 2014: mitigation of climate change*, . Cambridge University
336 Press.

337 ICPER. (2023). International Commission for the Protection of the Elbe River · ICPER.
338 (<https://www.ikse-mkol.org/> last access on 2023-12-04).

339 Kempe, S. (1982). Long-term records of CO₂ pressure fluctuations in fresh waters. *SCOPE/UNEP
340 Sonderband*, 52, 91-332.

341 Lasaki, B. A., Maurer, P., Schönberger, H., & Alvarez, E. P. (2023). Empowering municipal
342 wastewater treatment: Enhancing particulate organic carbon removal via chemical
343 advanced primary treatment. *Environmental Technology & Innovation*, 32.
344 <https://doi.org/10.1016/j.eti.2023.103436>

345 Lin, P., Pan, M., Beck, H. E., Yang, Y., Yamazaki, D., Frasson, R., David, C. H., Durand, M., Pavelsky,
346 T. M., Allen, G. H., Gleason, C. J., & Wood, E. F. (2019). Global Reconstruction of
347 Naturalized River Flows at 2.94 Million Reaches. *Water Resour Res*, 55(8), 6499-6516.
348 <https://doi.org/10.1029/2019WR025287>

349 Mallast, U., Staniek, M., & Koschorreck, M. (2020). Spatial upscaling of CO₂ emissions from
350 exposed river sediments of the Elbe River during an extreme drought. *Ecohydrology*,
351 13(6). <https://doi.org/10.1002/eco.2216>

352 Marescaux, A., Thieu, V., Borges, A. V., & Garnier, J. (2018). Seasonal and spatial variability of the
353 partial pressure of carbon dioxide in the human-impacted Seine River in France. *Sci Rep*,
354 8(1), 13961. <https://doi.org/10.1038/s41598-018-32332-2>

355 Mwanake, R. M., Gettel, G. M., Wangari, E. G., Glaser, C., Houska, T., Breuer, L., Butterbach-Bahl,
356 K., & Kiese, R. (2023). Anthropogenic activities significantly increase annual greenhouse
357 gas (GHG) fluxes from temperate headwater streams in Germany. *Biogeosciences*,
358 20(16), 3395-3422. <https://doi.org/10.5194/bg-20-3395-2023>

359 Nydahl, A. C., Wallin, M. B., & Weyhenmeyer, G. A. (2017). No long-term trends in pCO₂ despite
360 increasing organic carbon concentrations in boreal lakes, streams, and rivers. *Global
361 Biogeochemical Cycles*, 31(6), 985-995. <https://doi.org/10.1002/2016gb005539>

362 Qasem, N. A. A., Mohammed, R. H., & Lawal, D. U. (2021). Removal of heavy metal ions from
363 wastewater: a comprehensive and critical review. *npj Clean Water*, 4(1).
364 <https://doi.org/10.1038/s41545-021-00127-0>

365 Ran, L., Butman, D. E., Battin, T. J., Yang, X., Tian, M., Duvert, C., Hartmann, J., Geeraert, N., & Liu,
366 S. (2021). Substantial decrease in CO₂ emissions from Chinese inland waters due to
367 global change. *Nat Commun*, 12(1), 1730. <https://doi.org/10.1038/s41467-021-21926-6>

368 Ran, L., Lu, X. X., Richey, J. E., Sun, H., Han, J., Yu, R., Liao, S., & Yi, Q. (2015). Long-term spatial
369 and temporal variation of CO₂ partial pressure in the Yellow
370 River, China. *Biogeosciences*, 12(4), 921-932. <https://doi.org/10.5194/bg-12-921-2015>

371 Raymond, P. A., Zappa, C. J., Butman, D., Bott, T. L., Potter, J., Mulholland, P., Laursen, A. E.,
372 McDowell, W. H., & Newbold, D. (2012). Scaling the gas transfer velocity and hydraulic
373 geometry in streams and small rivers. *Limnology and Oceanography: Fluids and
374 Environments*, 2(1), 41-53. <https://doi.org/10.1215/21573689-1597669>

375 Yang, Y., Pan, M., Beck, H. E., Fisher, C. K., Beighley, R. E., Kao, S. C., Hong, Y., & Wood, E. F.
376 (2019). In Quest of Calibration Density and Consistency in Hydrologic Modeling:
377 Distributed Parameter Calibration against Streamflow Characteristics. *Water Resources
378 Research*, 55(9), 7784-7803. <https://doi.org/10.1029/2018wr024178>

379