1 Supplement of

2 Molecular-level carbon traits of fine roots: unveiling adaptation and decomposition under

3 flooded condition

- 4
- 5 Mengke Wang et al.
- 6

7 *Correspondence to*: Sifang Kong (mengsiksf@163.com) and Junjian Wang (wangjj@sustech.edu.cn)

8 Text S1 Root sample collection

- 9 For soil-grown fine roots (SGR), surface soil (approximately 0–20 cm) at the tree base was carefully excavated to
- 10 expose the primary lateral roots following the procedure described by Guo et al. (2008). For and water-grown fine
- 11 roots (WGR), whole root systems growing in water were collected. Root branches with intact terminal branch orders
- 12 were cut, and over 50 g of total fresh biomass of the first three-order roots was obtained from each tree. The function
- 13 of the first three-order roots is mainly resource absorption (McCormack et al., 2015), and the "fine roots" in this
- study refer to these absorptive fine roots of the first three orders. Subsamples of the fine roots separated from the
- 15 root systems were gently washed in low-temperature deionized water to remove soil adhering to the roots.
- 16

17 **REFERENCES**

- Guo, D., Xia, M., Wei, X., Chang, W., Liu, Y., and Wang, Z.: Anatomical traits associated with absorption and
 mycorrhizal colonization are linked to root branch order in twenty-three Chinese temperate tree species, New
 Phytol., 180, 673-683, https://doi.org/10.1111/j.1469-8137.2008.02573.x, 2008.
- 21 McCormack, M. L., Dickie, I. A., Eissenstat, D. M., Fahey, T. J., Fernandez, C. W., Guo, D., Helmisaari, H. S., 22 Hobbie, E. A., Iversen, C. M., Jackson, R. B., Leppalammi-Kujansuu, J., Norby, R. J., Phillips, R. P., Pregitzer, 23 K. S., Pritchard, S. G., Rewald, B., and Zadworny, M.: Redefining fine roots improves understanding of below-24 ground contributions to terrestrial biosphere processes, New Phytol., 207. 505-518, 25 https://doi.org/10.1111/nph.13363, 2015.

26 Text S2 Sequential extraction procedure and GC-MS quantification

- 27 Solvent extraction for the dichloromethane and methanol extractable fraction (F_{DcMe}) was performed with 100.0 mg
- of homogenized root samples (R1), which was extracted with 15 mL dichloromethane (DCM), methanol (MeOH):
- 29 DCM (1:1, v/v), and MeOH consecutively in 50 mL fluorinated ethylene propylene (FEP) tubes via ultrasonication
- 30 for 15 min on an ultrasonic instrument (ANPEL 2400TH; frequency of 40 kHz) at 20°C. After centrifugation (3000
- g for 5 min), the combined solvent extracts were concentrated via rotary evaporation and filtered through a 0.45 μm
- 32 polyether sulfone filter. The filtrates were dried under N₂ gas in 2 mL glass vials. The remaining samples (non-
- extractable residues, R2) were air-dried, weighed, and stored at -20° C.
- For the base-hydrolyzable fraction (F_{KOHhy}), subsamples of the solvent-extracted residues (R2) were hydrolyzed with
- 15 mL of freshly prepared 1 mol·L⁻¹ methanolic KOH in hydrothermal reactors with 20 mL polytetrafluoroethylene
- 36 (PTFE) cups at 100°C for 3 h. After cooling to 20°C, the contents were centrifuged, and the supernatants were
- 37 allowed to evaporate, then they were acidified to pH < 1. The hydrolyzable products were liquid-liquid extracted
- 38 with 30 mL ethyl acetate three times. The extracts were then concentrated via rotary evaporation and dried under N₂
- 39 gas in 2 mL glass vials. The remaining samples (R3) were air-dried, weighed, and stored at -20° C.
- 40 For the CuO-oxidizable fraction (F_{CuOox}), subsamples after the base hydrolysis (R3) were oxidized with 1 g CuO,
- 41 100 mg Fe(NH₄)₂(SO₄)₂·6H₂O, and 15 mL of 1 mol·L⁻¹ NaOH (pre-sparged with N₂ for 5 min) in PTFE-lined
- 42 reactors at 170°C for 2.5 h. After cooling to room temperature (20°C), the reaction products were centrifuged; the
- 43 supernatants were then allowed to evaporate, acidified to pH < 1, and kept in the dark for at least 1 h. The lignin
- 44 phenols were liquid-liquid extracted with 30 mL ethyl acetate three times. The extracts were then concentrated and
- 45 dried under N₂ gas in 2 mL glass vials. The remaining samples (R4) were washed with 0.01 mol·L⁻¹ HCl to remove
- 46 any excess CuO and then rinsed with deionized water to remove excess HCl, followed by freeze-drying, weighing,
- 47 and storing at -20° C.
- 48 Aliquots of F_{DcMe} and F_{CuOox} were trimethylsilyl derivatized with *N*,*O*-bis(trimethylsilyl)trifluoroacetamide (BSTFA)
- 49 at 70°C for 1 h. An aliquot of F_{KOHby} was first methylated with N,N-dimethylformamide dimethyl acetal (DMF-
- 50 DMA) at 60°C for 0.5 h and then trimethylsilyl derivatized. After derivatization, all compounds were analyzed using
- 51 an Agilent 7890B gas chromatograph equipped with a 5977B mass spectrometer using an HP-5MS column (30 m \times
- 52 0.25 mm i.d., film thickness, 0.25 μ m). The injection volume was 1 μ L, and the injection temperature was 300°C.
- 53 The oven temperature was programmed from 60 to 300°C at a rate of $6^{\circ}C \cdot min^{-1}$ and held at 300°C for 20 min. The
- 54 compounds of F_{DcMe} and F_{KOHhv} were detected in scan mode, with the mass scan range from 50 to 550 Da. F_{CuOox}
- 55 compounds were detected in selected ion mode based on the method of Kaiser and Benner (2012). For F_{DcMe}, a
- 56 mixed standard of tetracosane, 1-docosanol, methyl tricosanoate, and ergosterol was used. For aliphatics in F_{KOHhy}, a
- 57 mixed standard of methyl tricosanoate and methyl oleate was used. For phenolics in F_{KOHhy} and F_{CuOox} , a mixed
- 58 standard containing a total of 11 lignin phenols (including *p*-hydroxybenzoic acid (PAD), *p*-hydroxyacetophenone
- 59 (PON), *p*-hydroxybenzaldehyde (PAL), vanillic acid (VAD), acetovanillone (VON), vanillin (VAL), syringic acid
- 60 (SAD), acetosyringone (SON), syringaldehyde (SAL), *p*-coumaric acid (CAD), and ferulic acid (FAD)) was used.
- 61 Also, the total carbon content of root samples (R1) and residues after dichloromethane and methanol extraction (R2),
- 62 base hydrolysis (R3), and CuO oxidation (R4; Figure 1) were determined using a Vario MACRO cube elemental

- 63 analyzer (Elementar, Hanau, Germany). Root ash content was determined as the remaining proportion of root mass
- 64 after burning at 550°C in a muffle furnace for 4 h.
- 65

66 **REFERENCES**

- 67 Kaiser, K. and Benner, R.: Characterization of lignin by gas chromatography and mass spectrometry using a
- 68 simplified CuO oxidation method, Anal. Chem., 84, 459-464, https://doi.org/10.1021/ac202004r, 2012.

- 69 **Table S1** Molecular-level compositions of dichloromethane and methanol extractable fractions (F_{DcMe}) and base-
- 70 hydrolyzable fractions (F_{KOHhy}) of soil-grown (SGR) and water-grown fine roots (WGR). x-/ω-OH acids: x- or ω-
- 71 hydroxyalkanoic acids; FAs: saturated normal fatty acids; DAs: saturated normal fatty diacids; UAs: unsaturated
- 72 normal fatty acid.

			SGR	WGR
DcMe	phenolics		1.46 ± 0.04	2.25 ± 0.27
		Vanillin	0.15 ± 0	0.33 ± 0.03
		3-Hydroxybenzoic acid	0.24 ± 0.01	0.19 ± 0.04
		4-Hydroxybenzoic acid	0.23 ± 0.03	0.26 ± 0.03
		Protocatechoic acid	0.84 ± 0.06	1.02 ± 0.14
		Ferulic acid	0	0.46 ± 0.06
	glycerolics		3.7 ± 0.17	2.41 ± 0.21
		Glycerol	3.31 ± 0.05	1.75 ± 0.11
		1-Monopalmitin	0.39 ± 0.13	0.66 ± 0.10
	prenolics		5.84 ± 0.63	14.3 ± 1.07
		Dihydroabietic acid	0.13 ± 0.03	0.15 ± 0.03
		β-Guaiene-like	0	0.22 ± 0.04
		β-Guaiene	0.13 ± 0	0.23 ± 0.02
		α-Panasinsen	0.15 ± 0.03	0.31 ± 0.03
		Globulol-like	0.20 ± 0.04	0.29 ± 0.06
		Globulol	1.72 ± 0.22	5.42 ± 0.33
		Terpene-like 1	0.23 ± 0.02	0.27 ± 0.01
		Terpene-like 2	0.21 ± 0.03	0.86 ± 0.07
		Terpene-like 3	0.39 ± 0.07	0
		Terpene-like 4	0.38 ± 0.05	0.47 ± 0.04
		Terpene-like 5	0.59 ± 0.05	1.77 ± 0.17
		Terpene-like 6	0.28 ± 0.04	0.49 ± 0.03
		Andrographolide	0.20 ± 0.02	0.62 ± 0.06
		Terpene-like 7	0.44 ± 0.07	1.17 ± 0.12
		Terpene-like 8	0.45 ± 0.05	1.38 ± 0.11
		Terpene-like 9	0.35 ± 0.09	0.63 ± 0.08
	carbohydrates		9.13 ± 1.09	7.06 ± 0.78
		meso-Erythritol	0.57 ± 0.32	0.50 ± 0.04
		Ribofuranose	0.15 ± 0.01	0.31 ± 0.04
		α-Arabinopyranose	0.13 ± 0	0.17 ± 0.03
		Arabinopyranose	0.15 ± 0.02	0.18 ± 0.03
		Fucopyranose	0.39 ± 0.05	0.29 ± 0.04
		Xylitol	1.36 ± 0.52	1.52 ± 0.13
		Fructofuranose	0.97 ± 0.27	0.33 ± 0.08
		Sorbitol	1.64 ± 0.35	2.00 ± 0.16
		Glucose	1.20 ± 0.09	0.93 ± 0.04
		Myo-Inositol	1.45 ± 0.04	0.37 ± 0.10
		Sucrose	0.51 ± 0.45	0.05 ± 0.08
		Lactose	0.60 ± 0.13	0.41 ± 0.10
	fatty acyls		17.03 ± 1.96	11.82 ± 1.80

FKOHhy	Aliphatics		11.88 ± 1.01	9.67 ± 0.27
		25-Hydroxycholesterol	1.77 ± 0.08	14.25 ± 2.31
		β-Eudesmol	1.52 ± 0.06	7.91 ± 0.84
		Androstadien-like	17.41 ± 2.28	45.08 ± 2.66
		Cholestane-like 2	3.63 ± 1.21	16.35 ± 1.63
		Cholestane-like 1	2.09 ± 0.29	5.79 ± 0.82
		β-Sitosterol	6.03 ± 0.10	5.06 ± 0.30
		Stigmasterol	3.01 ± 0.11	2.94 ± 0.24
		Campesterol	3.87 ± 0.26	2.56 ± 0.12
		Glycocholate-like 5	1.10 ± 0.10	1.50 ± 0.09
		Glycocholate-like 4	0	1.21 ± 0.15
		Steroid-like 6	1.10 ± 0.09	2.51 ± 0.17
		Steroid-like 5	1.26 ± 0.09	2.85 ± 0.23
		Glycocholate-like 3	2.42 ± 0.43	1.87 ± 0.20
		Glycocholate-like 2	1.07 ± 0.05	1.72 ± 0.16
		Steroid-like 4	1.32 ± 0.08	2.24 ± 0.21
		Steroid-like 3	1.10 ± 0.06	1.80 ± 0.11
		Acetic acid	1.54 ± 0.15	2.06 ± 0.21
		Glycocholate-like 1	1.23 ± 0.09	1.61 ± 0.1
		Steroid-like 2	1.16 ± 0.09	2.55 ± 0.2
		Androst-5-ene	0	1.61 ± 0.13
		Steroid-like 1	0	1.08 ± 0.06
		11-Ketoetiocholanolone	1.23 ± 0.14	1.13 ± 0.08
	steroids		53.83 ± 4.41	125.68 ± 8.80
		Stearic acid	1.02 ± 0.04	0.75 ± 0.20
		11-Octadecenoic acid	0.74 ± 0.18	0.47 ± 0.07
		Hexadecane-1,2-diol	0.59 ± 0.19	0.46 ± 0.05
		Palmitic Acid	3.37 ± 0.54	2.97 ± 0.24
		Palmitelaidic acid	1.97 ± 0.42	1.21 ± 0.10
		Myristic acid	0.33 ± 0.14	0
		Citric acid	1.20 ± 0.14	0.60 ± 0.16
		Azelaic acid	0.43 ± 0.16	0.54 ± 0.11
		Malic acid	2.25 ± 0.52	0.36 ± 0.20
		Doconexent	0.09 ± 0.10	0.22 ± 0.07
		6-Hydroxyhexanoic acid	0.03 ± 0.05	0
		Nonanoic acid	0.07 ± 0.12	0.26 ± 0.06
		2-Butenedioic acid	0.28 ± 0.19	0
		methylpropanoic acid Glyceric acid	0.22 ± 0.08	0.11 ± 0.10
		2,3-Dihydroxy-2-	0.31 ± 0.04	0.43 ± 0.08
		Butanedioic acid	0.79 ± 0.13	0.67 ± 0.09
		3-Hydroxybutyric acid	0.61 ± 0.13	0.50 ± 0.05
		Hydracrylic acid	0.21 ± 0.19	0.22 ± 0.04
		Levulinic acid	0.62 ± 0.07	0.70 ± 0.13
		Glycolic acid	0.99 ± 0.02	0.57 ± 0.16

	x-OH acids	0.36 ± 0.04	0.28 ± 0.01
	9, 10-OH 18 FA	0.17 ± 0.03	0.13 ± 0
	2-OH C10 DA	0.18 ± 0	0.15 ± 0
	ω-OH acids	0.64 ± 0.03	0.15 ± 0.01 0.58 ± 0.01
	ω-OH C16 FA	0.41 ± 0.03	0.38 ± 0.01
	ω-OH C22 FA	0.23 ± 0.01	0.21 ± 0.02
	n-alkanols	1.3 ± 0.18	1.04 ± 0.03
	C22 alkanol	0.62 ± 0.07	0.50 ± 0.01
	C24 alkanol	0.49 ± 0.09	0.38 ± 0.01
	C26 alkanol	0.19 ± 0.02	0.16 ± 0.01
	FAs	2.02 ± 0.03	1.56 ± 0.01
	C16 FA	1.07 ± 0.07	0.77 ± 0.02
	C18 FA	0.39 ± 0.01	0.32 ± 0.01
	C24 FA	0.18 ± 0.01	0.14 ± 0.01
	C26 FA	0.38 ± 0.02	0.32 ± 0.01
	DAs	2.01 ± 0.06	1.83 ± 0.08
	C10 DA	0.21 ± 0.01	0.15 ± 0.01
	C11 DA	0.21 ± 0.01	0.15 ± 0.01
	C16 DA	1.18 ± 0.03	1.08 ± 0.08
	C18 DA	0.42 ± 0.03	0.46 ± 0.01
	UAs	5.56 ± 0.74	4.36 ± 0.15
	9-C16:1 FA	1.47 ± 0.10	1.22 ± 0.07
	9-C18:1 FA	0.45 ± 0.01	0.31 ± 0.01
	11-C18:1 FA	0.49 ± 0.02	0.30 ± 0.01
	9, 12-C18:2 FA	1.47 ± 0.37	1.00 ± 0.05
	9-C20:1 FA	0.45 ± 0.07	0.35 ± 0.01
	10,13-C20:2 FA	0.45 ± 0.13	0.34 ± 0.02
	13-C22:1 FA	0.44 ± 0.06	0.48 ± 0.03
	15-C24:1 FA	0.35 ± 0.02	0.35 ± 0.02
Phenolics		13.08 ± 0.28	25.27 ± 1.84
	Benzoic acid	0.49 ± 0	0.34 ± 0.01
	p-Hydroxybenzaldehyde	0.54 ± 0.03	0.44 ± 0.01
	p-Hydroxybenzoic acid	0.59 ± 0	0.55 ± 0.03
	Acetovanillone	0.45 ± 0.02	0.55 ± 0.04
	Vanillic acid	2.65 ± 0.18	4.98 ± 0.40
	Vanillin	1.02 ± 0.09	2.73 ± 0.18
	iso-Vanillin	0.49 ± 0.02	1.17 ± 0.09
	Syringic acid	1.05 ± 0.05	0.63 ± 0.04
	Syringaldehyde	0.38 ± 0.02	0.37 ± 0.01
	p-Coumaric acid	0.53 ± 0.24	0.41 ± 0.02
	Ferulic acid	3.31 ± 0.18	11.13 ± 0.91
	iso-Ferulic acid	0.55 ± 0.02	0.95 ± 0.15
	Bisphenol1	0.37 ± 0.04	0.43 ± 0.06
	Bisphenol2	0.32 ± 0.01	0.33 ± 0.01
	Bisphenol3	0.37 ± 0.02	0.25 ± 0
	=		

Table S2 Chemical properties (means \pm standard errors) of CuO-oxidizable fractions (F_{CuOox}) of different fine-root samples. The *P*-value indicates the75significance level of a two-tailed *t*-test between soil-grown roots (SGR) and water-grown roots (WGR).

Ũ		•			
	Abbreviations	Units	SGR	WGR	<i>P</i> -values
Total 11 phenol yield	Λ11	mg g C ⁻¹	24.21 ± 5.25	30.93 ± 2.95	0.125
Total lignin phenol yield	$\Lambda 8$	mg g C ⁻¹	23.32 ± 4.86	29.07 ± 2.56	0.144
<i>p</i> -hydroxy phenol yield	Р	mg g C ⁻¹	0.89 ± 0.38	1.86 ± 0.45	0.047
Vanillyl phenol yield	V	mg g C ⁻¹	15.63 ± 3.23	21.23 ± 2.33	0.072
Syringyl phenol yield	S	mg g C ⁻¹	6.81 ± 1.61	6.97 ± 0.87	0.890
Cinnamyl phenol yield	С	mg g C ⁻¹	0.87 ± 0.54	0.87 ± 0.58	0.999
Vanillyl : lignin phenol ratio	$V:\Lambda 8$	-	0.67 ± 0.01	0.73 ± 0.02	0.009
Syringyl: lignin phenol ratio	<i>S</i> :Λ8	-	0.29 ± 0.01	0.24 ± 0.01	0.009
Cinnamyl: lignin phenol ratio	$C:\Lambda 8$	-	0.04 ± 0.02	0.03 ± 0.02	0.729
Syringyl : vanillyl phenol ratio	S:V	-	0.43 ± 0.02	0.33 ± 0.02	0.002
Cinnamyl : vanillyl phenol ratio	C:V	-	0.06 ± 0.04	0.04 ± 0.03	0.641
Acid : aldehyde for vanillyl phenols	$(Ad:Al)_V$	-	0.38 ± 0.05	0.46 ± 0.02	0.056
Acid : aldehyde for syringyl phenols	$(Ad:Al)_S$	-	0.40 ± 0.03	0.53 ± 0.05	0.020

Table S3 The number of assigned formulae and the sum of assigned signal of three replicates, and the number of formulae and percentage of signal of their

78	common formulae. F _{DcMe} : dichlorometh	nane and methanol extractable fra	actions; F _{KOHby} : b	base-hydrolyzable fraction	ons; F_{CuOox} : CuO-oxidizable fractions.

				SGR			WGR				
			F_{DcMe}	F_{KOHhy}	F_{CuOox}	F_{DcMe}	F_{KOHhy}	F_{CuOox}			
Donligato 1	Number of assigned for	3913	2674	2674 4285		2383	2347				
Replicate-1	Sum of assigned signa	1.72E+11	1.42E+11	1.76E+11	1.10E+11	6.28E+10	5.24E+10				
Donligato 2	Number of assigned for	3445	3029	4546	3381	3021	2254				
Replicate-2	Sum of assigned signa	1.90E+11	1.60E+11	1.72E+11	1.10E+11	8.37E+10	5.71E+10				
Doplicate 3	Number of assigned for	3252	2608	4214	3457	2662	2201				
Replicate-3	Sum of assigned signa	1.37E+11	1.53E+11	1.48E+11	1.31E+11	7.48E+10	5.04E+10				
	Number of formulae		2500	2070	3380	2594	1962	1746			
Common	Percentage of signal	replicate-1	78%	92%	87%	90%	95%	93%			
formulae		replicate-2	88%	74%	94%	91%	90%	94%			
		replicate-3	93%	86%	94%	86%	93%	94%			

79 **Table S4** Molecular characterization of sequentially extractable fractions in soil-grown roots (SGR) and water-grown roots (WGR), as determined using Fourier

80 transform ion cyclotron resonance mass spectrometry (FT-ICR MS). "wa" indicates intensity weighted average value. Different letters indicate the statistically

significant differences (P < 0.05) among the three fractions. Asterisks indicate the statistically significant differences (P < 0.05) of a certain fraction between

82 SGR and WGR. F_{DcMe}: dichloromethane and methanol extractable fractions; F_{KOHhy}: base-hydrolyzable fractions; F_{CuOox}: CuO-oxidizable fractions. CHO:

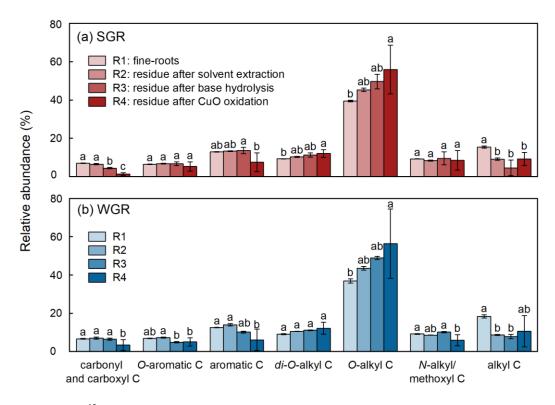
83 formulae containing only carbon, hydrogen, and oxygen; CHON: formulae containing only carbon, hydrogen, oxygen, and nitrogen; CHOS: formulae containing

84 only carbon, hydrogen, oxygen, and sulfur; CHONS: formulae containing only carbon, hydrogen, oxygen, nitrogen, and sulfur.

	SGR									WG	R							
	F _{DcMe}			$F_{\rm KOHhy}$			F _{CuOox}			FDCM			F _{KOH}	hy		F _{CuOo}	оx	
Number of assigned formulae	3537 ± 340	b		2770 ± 226	c		4348 ± 175	a	*	3305±201	a		2689 ± 320	b		2267 ± 74	b	
<i>m/z</i> _{wa}	359 ± 10	а		359 ± 13	а		366 ± 1	a		362 ± 2	a		365 ± 4	а		367 ± 1	а	
H/C _{wa}	1.68 ± 0.00	а	*	1.59 ± 0.02	b	*	1.56 ± 0.02	c	*	1.38 ± 0.02	a		0.93 ± 0.01	b		0.87 ± 0.00	c	
O/C _{wa}	0.33 ± 0.01	а		0.34 ± 0.01	а		0.35 ± 0.01	а		0.38 ± 0.01	c	*	0.52 ± 0.01	b	*	0.54 ± 0.01	а	*
DBE _{wa}	4.07 ± 0.11	с		4.79 ± 0.08	b		5.14 ± 0.20	а		6.61 ± 0.24	c	*	10.34 ± 0.07	b	*	10.81 ± 0.09	а	*
$AI_{mod wa}$	0.09 ± 0.00	с		0.12 ± 0.01	b		0.14 ± 0.01	а		0.23 ± 0.01	c	*	0.46 ± 0.00	b	*	0.49 ± 0.00	а	*
NOSC _{wa}	-0.98 ± 0.03	c		$\textbf{-0.89} \pm 0.04$	b		$\textbf{-0.8} \pm 0.04$	а		$\textbf{-0.58} \pm 0.04$	c	*	0.12 ± 0.01	b	*	0.23 ± 0.03	a	*
Number of CHO (%)	54 ± 2	b		58 ± 1	а		50 ± 0	c		58 ± 2	b		64 ± 5	a		68 ± 1	a	*
Abundance of CHO (%)	84 ± 0	а		87 ± 2	а		86 ± 1	а		91 ± 0	a	*	89 ± 2	a		90 ± 0	a	*
Number of CHON (%)	34 ± 1	b		36 ± 1	b		44 ± 1	а	*	40 ± 1	а	*	34 ± 5	ab		30 ± 1	b	
Abundance of CHON (%)	8 ± 1	b		12 ± 3	а		12 ± 1	а	*	9 ± 0	a		11 ± 2	a		9 ± 0	a	
Number of CHOS (%)	12 ± 1	а	*	6 ± 1	b	*	6 ± 1	b	*	3 ± 0	a		1 ± 0	b		2 ± 1	ab	
Abundance of CHOS (%)	6 ± 1	а	*	2 ± 0	b	*	2 ± 0	b	*	<1	a		<1	a		<1	a	
Number of CHONS (%)	1 ± 0	а	*	<1	b		<1	b		<1	a		<1	a		<1	а	
Abundance of CHONS (%)	1 ± 0	a	*	<1	b		<1	b		<1	a		<1	а		<1	a	

86 **Table S5** Two-way ANOVA for the effects of redox condition, root class and their interaction on root carbon

	Carbon r	remaining
	F	Р
Redox condition	241.05	< 0.001
Root type	162.94	< 0.001
Redox condition × Root type	0.14	0.714



87 remaining during root decomposition.

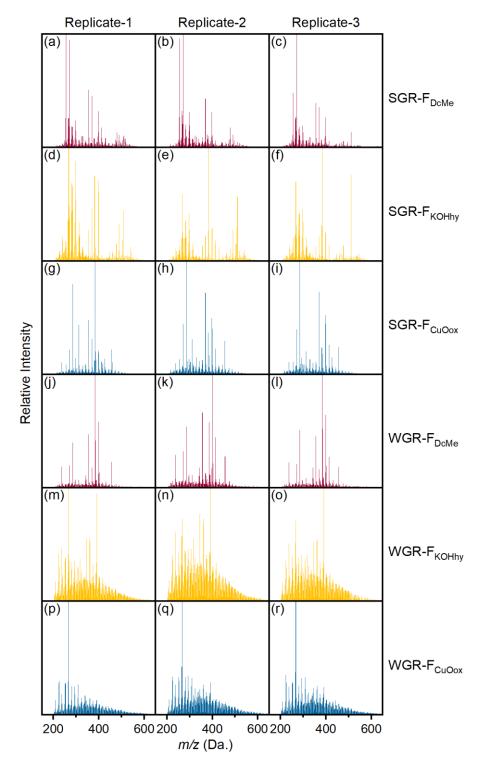
- Figure S1 One of the mature trees of *Dysoxylum binectariferum* Hook. f growing by a slow flowing stream and its soil-grown (SGR) and water-grown fine roots
- 91 (WGR). WGR had observably different morphology, such as larger diameter and less branches. These photographic materials were taken by Mengke Wang.

92

93 **Figure S2** Solid-state ¹³C cross-polarization magic angle spinning nuclear magnetic resonance integration results for

94 SGR (a) and WGR (b) samples before and during sequential extraction with a variety of extraction procedures. Bars

95 represent mean \pm standard error (n = 3). Different letters at the top of each bar indicate significant differences (P < 1


96 0.05) in percentages of carbon regions among different solid phases after sequential extraction. Four colors from

97 light to dark indicate original fine-root samples (R1) and residues after solvent extraction (R2), base hydrolysis (R3),

and CuO oxidation (R4). The carbonyl and carboxyl C, *O*-aromatic C, aromatic C, *di-O*-alkyl C, *O*-alkyl C, *N*-

99 alkyl/methoxy C, and alkyl C are restricted within chemical shifts (ppm) of 165–210, 145–165, 110–145, 95–110,

100 60–95, 45–60, and 0–45, respectively.

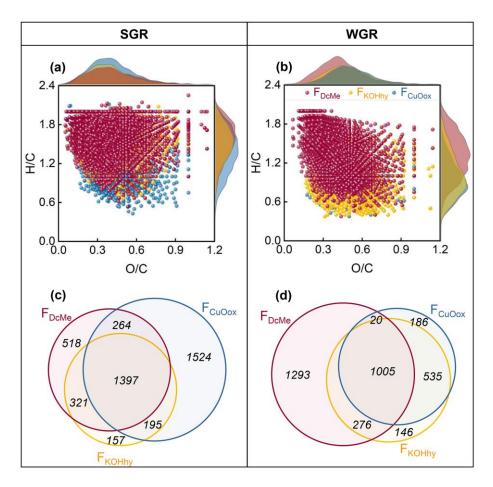


Figure S3 Fourier transform ion cyclotron resonance mass spectra (FT-ICR MS) of the different extractable

103 fractions of organic matter in three replicates of f soil-grown roots (SGR, a-i) and water-grown roots (WGR, j-r).

 F_{DcMe} : dichloromethane and methanol extractable fractions; F_{KOHhy} : base-hydrolyzable fractions; F_{CuOox} : CuO-

105 oxidizable fractions.

Figure S4 van Krevelen and Venn diagrams of Fourier transform ion cyclotron resonance mass spectrometry (FT-108ICR MS)-detected formulae from sequentially extracted fractions of soil-grown roots (SGR; a, c) and water-grown109roots (WGR; b, d). F_{DcMe} : dichloromethane and methanol extractable fractions; F_{KOHhy} : base-hydrolyzable fractions;110 F_{CuOox} : CuO-oxidizable fractions. Note that the formulae in van Krevelen diagrams (**a**, **b**) are the common formulae111existing in all three replicates, and the percentage of number and signal of these common formulae in the total112number and total signal were on average 76% and 90%, respectively (Table S3).