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Abstract. Humans can act as fire starters or suppressors, changing fire regimes by increasing the number of ignitions, changing

their timing, and altering fuel structure and abundance, which can be considered a human–environmental coupling. Consid-

ering the human influences on fire activity, representing socio-economic impacts on fires in global fire models is crucial to

underpin the confidence in these modelling frameworks. In this work we implement a socio-economic factor in the fire ignition

and suppression parametrisation in INFERNO based on a Human Development Index (HDI). HDI captures human develop-5

ment’s income, health, and education dimensions leading to a representation where if there is more effort to improve human

development, the population also invests in higher fire suppression. Including this representation of socio-economic factors in

INFERNO reduces the annual mean burnt area (between 1997 - 2016) positive biases found in Temperate North America, Cen-

tral America, Europe and Southern Hemisphere South America, by more than 100 % without statistically significant impact to

other areas. In addition, it improves the representation of the burnt area trends, especially in Africa. Central Asia and Australia10

where observations show negative trends. Including socio-economic impacts on fire based on HDI in INFERNO provides a

simple and linear representation of these effects on fire ignition and suppression, leading to an improvement of the model

performance, especially in developed regions, These impacts are especially relevant to understand future climate regimes and

inform policymakers on effects of fire policy in a changing climate.

1 Introduction15

Fire is a global-scale environmental process and a critical Earth System component that influences climate, atmospheric com-

position, vegetation, biogeochemical cycles and human activities (Bowman et al., 2009; Daniau et al., 2013; Solomon et al.,

2022). Humans can act as fire starters or suppressors, changing fire regimes by increasing the number of ignitions, changing

their timing and altering fuel structure and abundance, which can be considered a human–environmental coupling (Marlon

et al., 2008; Archibald et al., 2009; Bowman et al., 2011; Andela and Van Der Werf, 2014), thereby changing background20

levels of natural fire activity. Different cultural and political influences in fire management can shape fire regimes at a regional
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level (Bowman et al., 2011; Chinamatira et al., 2016; Sullivan et al., 2022). For example, governments may allow the logging

of burnt forests, adding incentive to setting forests alight. Moreover, in flammable biomes, such as tropical savannas and sea-

sonally dry forests, maintained by their natural fire regimes, policies to reduce fire risk to humans and their infrastructure or

support their livelihoods may change the fire regimes and the biodiversity they support (Laris, 2002). However, this can be25

greatly affected by a lack of public support and resources, inadequate training, ambiguous laws, and lack of deterrent measures

(Chinamatira et al., 2016).

Studies from Riley et al. (2019) and Andela et al. (2017) provide an overview of the impacts of climate, fuel availability

and human drivers on fires globally and throughout different regions. These studies highlight that a reduction of global burned

area is driven by a decline of 1.27% per year in Africa that is likely the result of human-mediated landscape changes (Andela30

et al., 2017), suggesting that, for this region, human impacts on fire activity are dominant over the global climate feedback

which would increase fire activity globally. Furthermore, Andela et al. (2017) demonstrates that human population density

and prosperity can significantly impact burnt areas. On the one hand, areas with low population density are associated with

lower burnt areas, and densely populated areas tend to be associated with increased burnt area. On the other hand, for heavily

populated and prosperous regions, burnt area decline is likely a function of perceived threats to highly valued infrastructure,35

prompting extensive fire suppression efforts, sometimes involving high monetary costs.

Most fire models follow a representation of anthropogenic fire ignitions where there is an increase of fire ignitions with

increasing population density up to a point at which human suppression becomes the dominant factor and fire ignitions are

reduced as the population rises (Rabin et al., 2017; Teckentrup et al., 2019). This approach does not account for the socio-

economic impacts of anthropogenic fire ignitions or suppression. It does not capture how humans influence regional variation40

in contemporary burning practices. Ford et al. (2021) reviewed different approaches to modelling human-fire interactions from

different disciplinary contexts. In their work, the authors have noted that global fire models often apply simplistic represen-

tations of human ignitions, generally specified as a function of population density, increasing up to a threshold value after

which there are no additional ignitions with an increasing population. Although some models represent ignitions depending on

human economic activities (e.g., Pfeiffer et al. (2013)), creating appropriate driving data sets is vital to implement human-fire45

interactions in global models realistically.

Chuvieco et al. (2021) analysed burnt area trends, as well as interannual variability at regional and global scales, focusing

on human control of fires. In this study, the authors show that one of the human variables that were more clearly associated

with fire variability was the Human Development Index (HDI). In addition, it also demonstrated that burnt areas tend to be

similar in different years when HDI values decrease and when cropland and livestock density increase, probably due to using50

agricultural practices less dependent on fire. Furthermore, the work of Li et al. (2013) includes an implementation of socio-

economic impacts of fire, based on the use of the Gross domestic product, to parametrise the anthropogenic influences on fires.

However, this is only applied to agricultural fires, not accounting for human factors in managing fires holistically.

In addition Bowman et al. (2020) showed that human influences on fire activity have become more pronounced since the

late eighteenth century; this is due to the effects of reflecting the effects of industrialisation and climate change, land clearance,55

human population growth, replacement of indigenous and traditional fire management, and the subsequent development of
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large-scale firefighting and fuel management in the twentieth century. Considering this, there is a need for data collection to

improve the quantification and modelling of fire activity and human populations, including their socio-economic status and

historical and cultural and political legacies especially as vegetation fires’ economic and environmental impacts will worsen

due to anthropogenic climate change (Kelley et al., 2019). Furthermore, Nikolakis and Roberts (2022) explored how policy60

learning can occur within wildfire governance and how wildfire policies have evolved in British Columbia. This case study

demonstrates that policy transfer from similar contexts, Indigenous peoples and their governments, can reframe perceptions

of wildfire risk and solutions as we learn to live with wildfire in an increasingly uncertain future. In addition, several authors

have shown that for developed regions, land and fire management policies on the land and fire management have a greater role

than other human behaviours in controlling ignitions (Nikolakis and Roberts, 2022; Jacobson et al., 2022; Ford et al., 2021;65

Carreiras et al., 2014; Mourão and Martinho, 2014).

Socio-economic and adaptation policies have a large impact on fire regimes in an evolving climate. Therefore, representing

these in global fire models is crucial to build confidence in the modelling frameworks which are used to understand future

climate regimes. This, in turn, can underpin decision-making by policy-makers in regards to fire policy in the future.

In this work, we explore the use of the HDI to represent socio-economic impacts on fires in the Pechony and Shindell70

(2009) anthropogenic fire ignitions representation, building on the work of Mangeon et al. (2016), to represent socio-economic

impacts on fires. We aim to improve the regional representation of human–environmental coupling for applications at large

spatial scales within an Earth System Model (ESM) context.

Section 2 describes the INFERNO fire model, the coupling of INFERNO to the latest representation of the land surface

model (JULES-ES) as used in the UK’s Earth System Model (UKESM1), and how we include HDI into INFERNO’s ignition75

scheme. In Section 3, we evaluate the impact of considering HDI on burnt area, burnt area trends, as well as the impact of

external model drivers of burnt area trends. Discussion and conclusions from this work are presented in Section 4 where we

focus on novel model results, placing the link between socio-economic factors and fires in context with existing literatureModel

limitations and known issues are also highlighted..

2 Methods80

2.1 INFERNO fire model

We simulate fire using the INFERNO (INteractive Fires and Emissions algoRithm for Natural envirOnments; Mangeon et al.

(2016)) fire model. INFERNO uses an approach based on Pechony and Shindell (2009), adapted to allow interaction within an

ESM framework. More precisely, INFERNO uses water vapour pressure deficit as one of the main indicators of flammability

and an inverse exponential relationship to relate flammability to soil moisture.85

The burnt area, represented in Eq. 1, is associated with an average burnt area per fire for each model plant functional type

(PFT). This decouples the fire spread stage from local meteorology and topography, processes not typically resolved in coarse

grids, such as those often used within ESMs.
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BAPFT = IT FPFT BAPFT (1)

where IT represents the fire ignitions, including natural and human ignitions as well as fire suppression by humans, FPFT90

the flammability per PFT dependent on the 1.5 m temperature, 1.5 m relative humidity and fuel density - as defined in Eq. 4

through 6 from Mangeon et al. (2016) - and BAPFT is the average burnt area for each PFT.

INFERNO fire ignitions are split into Natural Ignitions (IN ) from cloud to ground lightning flashes and from Human activ-

ities (IA) dependent on population density (PD) as described in Eq. 2. Humans are also responsible for suppressing fires in

the model, using a suppression function (fNS) dependent on human population density (Eq. 3). The total ignitions (IT ) are95

represented by Eq. 4.

IA = k(PD) PDα× (1 - HDI) (2)

fNS = 7.7
(
0.05 +0.9× e−0.05 PD

)
× ( 1 - HDI) (3)

IT = (IN + IA)
fNS

8.64× 1010
(4)

where k(PD) = 6.8×PD−0.6 is a function that represents the varying anthropogenic influence on ignitions in rural versus100

urban environments, and the parameter α = 0.03 represents the number of potential ignition sources per person per month per

km2, and HDI represents the Human Development Index.

Previously, INFERNO only included information on population density. To represent the socio-economic factors impacting

fire ignition and suppression, we include a Human Development Index (HDI) term (1−HDI) in our human ignition and

suppression Eq. 2 and 3 (shown in bold).105

HDI provides a single index measure, calculated based on four key metrics (Bhanojirao, 1991):

– life expectancy at birth

– expected years of schooling

– average years of schooling

– gross national income (GNI) per capita110

These metrics are then normalised by their respective maximum value, and HDI is calculated as the geometric mean of life

expectancy, education, and GNI per capita, as shown in Eq. 5
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HDI = (HN ·EN · IN )
1
3 (5)

where HN is the normalised life expectancy, EN is the normalised arithmetic mean of the two education indices and IN is

the normalised GNI.115

In this representation of socio-economic impacts on fire ignition and suppression, we assume that fire ignitions decrease and

fire suppression increases for areas with more effort in human development improvements. Moreover, it reduces the impact

changes in population density have in areas with high HDI while keeping a dependency on population density changes for areas

with low HDI, where policies on land and fire management have a greater role than other human behaviours in controlling

ignitions (Nikolakis and Roberts, 2022; Ford et al., 2021; Jacobson et al., 2022; Carreiras et al., 2014; Mourão and Martinho,120

2014). The impact of HDI on INFERNO anthropogenic fire ignitions, represented as IA (Eq. 2), is depicted in Figure 1.

Figure 1. Anthropogenic fire ignitions (ppl−1 month−1 km−2) as a function of population density (ppl km−2) and Human Development

Index.

We obtained HDI data from the gridded global datasets for Gross Domestic Product and Human Development Index (Kummu

et al., 2018), which provides HDI data from 1979 to 2020. To cover the full modelled period (1860-2016), the HDI data is

linearly ramped from the minimum HDI value of the dataset (0.2) to its value in 1979 for each grid point. The anthropogenic

ignitions term (IA) is represented by Eq. 2, the fraction of fires not suppressed by humans (fNS) by Eq. 3 and the total ignitions125

(IT ) are represented by Eq. 4.

2.2 JULES-ES and INFERNO

We use the community land surface model JULES (Joint UK Land Environment Simulator; Clark et al. (2011); Best et al.

(2011)) at version 5.7, with the science configuration of the land surface as used in UKESM1 (Sellar et al., 2019), including 13

PFTs, and dynamic vegetation from TRIFFID (Top-down Representation of Interactive Foliage and Flora Including Dynamics;130
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Cox et al. (2000); Cox (2001)). This configuration of JULES is known as JULES-ES (Mathison et al., 2022). JULES simulates

surface fluxes of water, energy, vegetation and carbon. Here, we use JULES as a stand-alone offline model run at a spatial

resolution of N96 (equivalent to a horizontal resolution of 135 km in the mid-latitudes). The Climate Research Unit - National

Centers for Environmental Predictions reanalysis (CRU-NCEP v7) (Harris et al., 2014; Viovy, 2018) atmospheric variables are

provided at 6-hourly intervals to drive JULES, including CO2, precipitation, temperature, specific humidity, wind, air pressure,135

and short and long wave radiation. The model runs from 1860–2016 with this forcing. In this work, we analyse the period that

overlaps with observations (1997-2016).

We use the latest fire-vegetation coupling described in Burton et al. (2019a) and Burton et al. (2020), incorporating additional

feedbacks to the carbon cycle from litter and vegetation burning. This setup includes mortality due to fire by plant functional

type (PFT), which is set to 40 % for trees, 60 % for shrubs, and 100 % for grasses. This setup differs from that used in Teixeira140

et al. (2021), where no fire-vegetation feedbacks were considered.

Fire ignitions are based on population density data from HYDE 3.2 (Klein Goldewijk et al., 2017); (Goldewijk et al.,

2017) and monthly lightning flashes climatology from LIS-OTD (Lightning Imaging Sensor – Optical Transient Detector;

Cecil (2006)) observations over 1995-2014, regridded from 0.5-degree resolution to N96 (1.25 degree latitude × 1.875 degree

longitude). After spinning up the model to equilibrium, we complete a full historical simulation from 1860-2019 at N96 and145

use results from the present day (1997-2015) for our analysis to compare with available observations of burnt area.

We performed two model experiments to test the impact of representing the socio-economic factors on fire ignition and

suppression in INFERNO. A control experiment referred to as JULES-INFERNO, and a similar experiment, including socio-

economic factors on fire ignition and suppression parametrisation described in section 2.1, referred as to JULES-INFERNO+HDI.

Introducing the socio-economic factors in JULES-INFERNO+HDI significantly reduced global burnt area, leading to a150

large negative bias compared to observations (not shown). This is because the model has until now been tuned to observations

excluding socio-economic factors, introducing compensating errors, especially in the average burnt area by PFT, which is

generally defined heuristically. To address this, we have revised the values used for BAPFT in line with the latest available

literature from Andela et al. (2019), adapted for the JULES PFTs. In the JULES-INFERNO+HDI experiment, we use the

revised BAPFT values. The BAPFT values in both experiments are detailed in table 1.155

2.3 Burnt area evaluation

We use data from the Global Fire Emission Database version 4 (GFED4s) (Giglio et al., 2013) to assess the model performance

in simulating burnt area. This dataset is provided as a gridded product at a 0.25◦ resolution. It is derived from a multi-sensor

satellite dataset, including satellite data based on active fire detection, and including small fires based on statistical modelling,

as detailed in (Randerson et al., 2012). We apply regions defined in the GFED4s dataset to the modelled data to evaluate the160

results at a regional level (Figure 2).

When comparing datasets (modelled or observed) at different grid resolutions, the higher-resolution dataset is re-gridded to

the lowest-resolution grid using a first-order conservative area-weighted re-gridding method.
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Figure 2. Basis regions, as defined in the GFED4s dataset (Giglio et al., 2013).

Table 1. Biomass burning average burnt areas (km2 fire−1) for various plant functional types based on Burton et al. (2019a) (top row) and

adapted from Andela et al. (2019) (bottom row).

Broadleaf tree Needleleaf tree C3 C4 Shrubs

Deciduous
Evergreen

Evergreen Deciduous Grass Crop Pasture Grass Crop Pasture Deciduous EvergreenTropical Temperate

BAP F T 1.7 1.7 1.7 1.7 1.7 3.2 0.4 3.2 3.2 0.4 3.2 2.7 2.7

Revised BAP F T 5.2 1.4 2.5 5.2 5.2 10.2 1.4 1.4 10.2 1.4 1.4 5.1 5.1

3 Results

3.1 Evaluation of burnt area165

To better understand the regional impact of implementing the socio-economic factors on fire ignition and suppression in IN-

FERNO, we focus on the burnt area results averaged over the GFED4s regions as defined in Figure 2.

Both model experiments reproduce the overall geographical pattern of the annual average burnt area fraction (Figure 3),

though with some regional differences compared to observations. For instance, JULES-INFERNO simulates the observed

pattern in the major fire regions: South America, Africa and Eurasia. However, it shows substantial spatial biases over North170

America, Europe and Asia, leading to a low global spatial correlation of 26.5 % compared with GFED4s. Conversely, JULES-

INFERNO+HDI, reduces fires in the regions with higher HDI values, reducing the biases seen in JULES-INFERNO and

resulting in a better agreement with GFED4s. This experiment has a global pattern correlation of 46.5 % when compared with

GFED4s.

Including a parametrisation for socio-economic factors on fire ignition and suppression reduces the burnt area in regions with175

high prosperity (high values of HDI), leading to improvements over North America, Europe and Asia, as shown in Figure 4.

Moreover, compared to JULES-INFERNO, JULES-INFERNO+HDI reduces the positive bias over South America and India,

although it increases the negative bias over the boreal regions, Australia, and South East Asia.

JULES-INFERNO+HDI has a smaller bias than JULES-INFERNO globally, except for savanna regions in Africa, Australia,

and central Eurasia.180
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Figure 3. Burnt area fraction (%) mean annual average (1997 - 2016) for a) GFED4s, b) JULES-INFERNO and c) JULES-INFERNO+HDI.

Figure 4. Burnt area fraction (%) mean annual average bias (1997 - 2016) for a) JULES-INFERNO and b) JULES-INFERNO+HDI. Stippling

shows the points where the bias is smaller than in its counterpart experiment.

Figure 5 shows the burnt area annual mean time series. In addition, and to aid the analysis of these time series, we performed

statistical analysis including various metrics such as, the Root Mean Squared Error (RMSE), Root Mean Squared Error after

removal of constant mean bias (RMSEUE), the bias, Pearson correlation, and Standard Deviation (STD) of the burnt area

monthly and annual mean time series for all GFED4s regions (Table 2). We also assess the model’s ability to reproduce

observed trends using a simple log-transformed linear regression. For conciseness, this analysis focuses on the regions with185

the largest change between the JULES-INFERNO and JULES-INFERNO+HDI experiments. Nonetheless, an additioanl figure

containing the results for all GFED4s regions is provided as supplementary material in Figure A1.

To analyse the model performance, we calculated the following statistical and error measures, relative to observations:

– Deviation of the modelled data in relation to observed values:

ϕ′i = ϕi −ϕi,obs (6)190

– Bias, which represents the mean deviation of the modelled data in relation to the observed values.

Bias =
1
N

N∑

i=1

ϕ′i (7)
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– The Root Mean Square Error.

RMSE =

√√√√√
N∑

i=1

(ϕi −ϕi,obs)
2

N
(8)

– The Root Mean Square Error after the removal of a constant bias.195

RMSEUB =

√√√√
n∑

i=1

[(
ϕi −ϕ

)
−

(
ϕi,obs −ϕobs

)]2

N
(9)

– Standard deviation for the modelled - equation 10 - and observed - equation 11 - data.

S =

√√√√
n∑

i=1

(
ϕi −ϕ

)2

N
(10)

Sobs =

√√√√
n∑

i=1

(
ϕi,obs −ϕobs

)2

N
(11)

were i is the temporal index and N is the number of elements of ϕ considered.200

Considering the statistics presented in Table 2, a perfect simulation would have the following criteria:

– RMSE = 0

– RMSEUE = 0

– bias = 0205

– Pearson correlation = 100 %

– STD / STDGFED4s = 1

– RMSE / STDGFED4s = 0

– RMSEUE / STDGFED4s = 0

The results presented both in Figure 5 and Table 2 show that the inclusion of the socio-economic factors in INFERNO210

leads to improvements in the simulation of annual burnt area for regions such as Temperate North America (TENA), Central

America (CEAM), Southern Hemisphere South America (SHSA), Europe (EURO), consequently reducing the large relative
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Table 2. Annual burnt area statistics for the different GFED4s fire regions (Giglio et al., 2013).
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Figure 5. Burnt area annual mean time series (Mha) for the regions with the largest changes between experiments.

bias found in these regions in the JULES-INFERNO experiments. This bias reduction is especially significant for many areas

with substantially large relative bias (bias greater than 150 %) in JULES-INFERNO against observations.

For example, the bias in the TENA region is reduced from 735.6 % in JULES-INFERNO to 44.5 % in JULES-INFERNO-215

HDI. Other bias reductions include 259.22 % to 24.24 % in CEAM, 191.73 % to -1.72 % in SHSA, 258.81 % to -48.79 % in

EURO, and 420.52 % to 231.75 % in MIDE.

Conversely, there is an increase in the relative bias for NHSA from -60.06 % in JULES-INFERNO to -94.27 % in JULES-

INFERNO+HDI and AUST from -21.79 % to -82.29 %.

Despite the socio-economic factors in INFERNO resulting in a reduction of bias and RMSE in regions where improvements220

are most needed, it also results in a general reduction in the interannual variability of the burnt area. Although this effect benefits

some regions, such as TENA and CEAM, it tends to impact regions which experience high levels of burning negatively.

These results suggest that, although there is good agreement between the observed mean burnt area and JULES-INFERNO

at a global scale (e.g., a bias of -7.21 %), this is due to compensating biases at the regional scale. We find that JULES-

INFERNO+HDI performs better regionally, improving the representation of burnt area variability (STD / STDGFED4s = 0.99;225

Table 2), reducing the RMSE (RMSEUE is reduced from 32.50 in JULES-INFERNO to 24.12 in JULES-INFERNO+HDI),

and better correlating with GFED4s (correlation of 75.25 % and 84.19 % for JULES-INFERNO and JULES-INFERNO+HDI

respectively; Table 2).
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3.2 Impact on burnt area trends

Including socio-economic factors in INFERNO adds a new external forcing to the model. Through this, historical changes to230

socio-economic factors, represented through HDI, impact how population density changes affect fire ignitions in the model

(see Section 2.1 and Figure 1). Specifically, for regions with high HDI, variations in population have less of an impact on

anthropogenic ignitions, while for regions with low HDI, variations in population can have a more considerable impact. This

alters the importance of population density changes for highly developed regions, making HDI the dominant factor driving

burnt area trends.235

Figure 6. Burnt area fraction trend (% year−1) (calculated between the period 1997 - 2016) for a) GFED4s, b) JULES-INFERNO and c)

JULES-INFERNO+HDI.

In figure 6, both JULES-INFERNO and JULES-INFERNO+HDI represent the main global burnt area trends. JULES-

INFERNO can represent both regions with burnt area increases (e.g., Southern Africa and Northeast South America) and

captures the dominant region for decreased burnt area - North Africa. However, this model setup tends to have weaker neg-

ative trends when compared to GFED4s. Conversely, JULES-INFERNO+HDI presents stronger trends, better representing

those found in observations. However, it cannot reproduce the positive trends in Southern Africa and Northeast South Amer-240

ica. JULES-INFERNO and JULES-INFERNO+HDI cannot represent the observed trends in Central Asia or Boreal North

America.

Overall, including socio-economic factors in INFERNO results in an improvement in burnt area trends in comparison with

observations. As seen in Table 2, JULES-INFERNO+HDI better represents the global negative trend in burnt area when com-

pared to observations (-6.77 Mha year−1 for GFED4s, -2.24 Mha year−1 for JULES-INFERNO, and -7.58 Mha year−1245

for JULES-INFERNO+HDI). This improvement comes mostly from a better representation of the burnt area trends in regions

with strong negative trends, such as SHSA, NHAF, CEAS and AUST, but also by better-representing regions with weak nega-

tive burnt area trends, namely CEAM, NHSA, EURO and BOAS. Moreover, in regions CEAM, NHSA, EURO, BOAS, CEAS,

and AUST, JULES-INFERNO+HDI shows a negative burnt area trend, better agreeing with observations.

Contrary to these improvements, JULES-INFERNO+HDI can also produce trends that are too strong. For example, for250

South Hemisphere Africa (SHAF), although JULES-INFERNO+HDI has the same burnt area trend sign as in the observations

(negative), the trend is too strong (-0.54 Mha year−1 for GFED4s, -0.14 Mha year−1 for JULES-INFERNO, and -1.94
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Mha year−1 for JULES-INFERNO+HDI), and JULES-INFERNO provides a better representation in these regions. In addi-

tion, for regions where observations show a positive burnt area trend (TENA, MIDE and SEAS), JULES-INFERNO+HDI has

a trend of opposite sign (negative). At the same time, JULES-INFERNO can capture the positive trend in TENA and SEAS.255

3.2.1 Impact of external model drivers on burnt area trends

As described in section the 2.2, JULES-ES experimental setup relies on ancillary forcing data to represent external processes

to JULES, such as atmospheric weather conditions, atmospheric composition, and population density, and biogenic drivers.

These external forcings can drive fire by forcing changes to the evolution of land surface properties, fire ignitions, and fire

weather. It is important to understand the impact these external drivers have on the burnt area trends and the interaction with260

the parametrised socio-economic factors in fires. Therefore a set of sensitivity experiments were performed by fixing the

external model drivers to the year 1990 and only allowing a given external driver to vary transiently through the experiment.

– 1990 control: where all external model drivers are fixed to the year 1990

– clim: where only the atmospheric drivers are transient (downward long wave radiation flux, downward short wave

radiation flux, precipitation, surface pressure, air temperature, meridional and zonal Wind components)265

– tas: where only air temperature at 2 m is transient

– ppn: where only precipitation is transient

– lu: where only the land use is transient

– Ndep: where only Nitrogen deposition is transient

– pop: where only population density is transient270

– CO2: where only atmospheric Carbon Dioxide mixing ratio is transient

– HDI: where only the Human Development Index is transient (only for JULES-INFERNO+HDI)

These sensitivity experiments branched from their respective reference runs (ref) - JULES-INFERNO and JULES-INFERNO+HDI

- starting from 1990 and run up to 2016. In this way, the underlying land surface state from the reference run is preserved, and

only changes to the forcing that take place during the period of interest are taken into effect. The trends for each relevant275

external forcing are in Supplementary Figure A2.

The results of these sensitivity experiments on the burnt area trends (Mha year−1) for the different GFED4s fire regions

are presented in Table 3. Burnt area trends in JULES-INFERNO tend to be driven by climate, land use, or population density

changes (relative contribution greater than 50 % when compared to their reference), with the dominant driver for the majority

of regions being climate (including through air temperature and precipitation), for example, BONA, TENA, NHSA, SHSA,280

EURO, MIDE, SHAF, BOAS, CEAS, SEAS, and AUST. On the one hand, air temperature is a significant driver of increasing
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Table 3. Burnt area trends (Mha year−1) for the different GFED4s fire regions (Giglio et al., 2013) from the model sensitivity experiments.

Values in bold represent trends that are significantly different from zero at the 99% confidence level.
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burnt area trends for CEAM, NHSA, BOAS and CEAS. For MIDE, precipitation has a dominant role in reducing burnt area.

On the other hand, despite dominating the burnt area trends, temperature and precipitation can have opposite effects. Namely,

for BONA (not significant for air temperature), TENA , SHSA, EURO , and AUST, precipitation causes a reduction in burnt

area, while temperature results in an increase, although results are not statistically significant for precipitation over TENA,285

SHSA, EURO, CEAS, CEAM and AUST.

Anthropogenic drivers, such as land use and population density can play a major role in some regions. For example, land use

is the dominant driver in SHSA and SHAF, population density in CEAM, and both drivers in TENA, EURO, MIDE, NHAF.

Land use can have cause either an increase (TENA, EURO, and SHAF) or a decrease in burnt area, while population density

results in a reduction in burnt area for all the regions where this external driver is dominant (TENA, CEAM, EURO, MIDE,290

and NHAF).

Biogenic drivers such as nitrogen deposition and atmospheric carbon dioxide tend to play a less significant role in the burnt

area trends, impacting burnt area trends only for NHSA through carbon dioxide, and CEAS through both nitrogen deposition

and atmospheric carbon dioxide.

As seen before, HDI is the dominant driver in the burnt area trend for all regions, with the exception of NHAF and EQAS.295

This is evident in the sensitivity experiments for JULES-INFERNO+HDI where only HDI forcing is made transient (HDI). In

all cases, including socio-economic factors in INFERNO changes the relative role that external forcings have in determining

burnt area trends. For example, it reduces the role that climate, population density, and land use have in burnt area trends

towards a stronger role from socio-economic effects (HDI).

This impact is especially evident when comparing the role of the climate forcing in driving burnt area trends between300

JULES-INFERNO and JULES-INFERNO+HDI in their respective sensitivity experiments, clim, tas, and ppn. For instance,

where temperature effects on burnt area trends were dominant in JULES-INFERNO, they show less of an impact on the burnt

area trends in JULES-INFERNO+HDI, but still statistically significant (e.g., TENA, EURO, CEAS, and AUS). In addition,

where the climate contributions to the burnt area trends were small in JULES-INFERNO (BONA, CEAM, and NHSA), when

considering socio-economic factors, these become statistically non-significant in terms of the climate contributions to the305

trends. In addition, including socio-economic factors in INFERNO led to a change in how precipitation and temperature

can impact some regions. For example, for MIDE, in JULES-INFERNO precipitation was the dominant driver of burnt area

trends, causing a reduction of burnt area in this region (trend of -0.038 Mha year−1). Conversely, in JULES-INFERNO+HDI,

precipitation has less impact on the burnt area trend ((trend of -0.016 Mha year−1), while temperature has a larger impact on

the burnt area trend (+0.034 Mha year−1). A similar result is also seen for NHAF, where the role of temperature becomes310

statistically significant in JULES-INFERNO+HDI (trend of +0.342 Mha year−1), while it was not statistically significant in

JULES-INFERNO (trend of +0.007 Mha year−1).

Moreover, results also show an impact on the role of anthropogenic drivers (land use and population density) on burnt area

trends between JULES-INFERNO and JULES-INFERNO+HDI sensitivity experiments. For BONA, CEAM, and NHSA re-

gions, burnt area decreases for JULES-INFERNO+HDI (pop and lu) sensitivity experiments while for JULES-INFERNO+HDI315

(pop and lu) an increase was observed.
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Together, these results show that including socio-economic factors in the representation of fires in Earth System Models is

important for realistically simulating the burnt area mean state, for quantifying burnt area trends and for understanding the

main drivers of those trends at regional scales.

4 Conclusions320

Discussion & Conclusions This work aimed to represent socio-economic factors, through the use of the HDI, together with

the Pechony and Shindell (2009) anthropogenic fire ignitions to parameterise human socio-economic impacts on fires. When

using the INFERNO fire model, the aim was to improve the regional representation of human–environmental coupling for

applications at large spatial scales within an ESM.

The results presented in this study show that including socio-economic factors in the fire ignition and suppression parametri-325

sation within INFERNO leads to improved performance in regions that were affected by large biases in the JULES-INFERNO

configuration, without having a negative impact in regions that perform well when compared to GFED4s. Large bias reduc-

tions are evident in TENA, CEAM, SHSA, EURO and MIDE, with the largest reductions in TENA where a 735.57 % bias

in JULES-INFERNO is reduced to 44.46 % in JULES-INFERNO+HDI. Furthermore, it should be highlighted that although

JULES-INFERNO performs well at the global scale, as can be seen when comparing the annual mean burnt area against330

GFED4s in Table 2, this is due to compensating errors at the regional level.

Moreover, including socio-economic factors in INFERNO-JULES+HDI improves the representation of the burnt area trends,

especially in areas where GFED4s presents negative trends. At the same time, JULES-INFERNO shows no significant trends

(e.g., SHSA, NHAF, CEAS, and AUST), as well as better representing regions with weak negative burnt are trends (CEAM,

NHSA, EURO, and BOAS). However, JULES-INFERNO+HDI can also produce too strong trends (e.g., SHAF) or misrepre-335

sents the observed positive burnt area trends found in TENA, MIDE and SEAS.

Overall, the improved representation of the burnt area trends in JULES-INFERNO+HDI when compared to JULES-INFERNO

highlights the importance of including the socio-economic factors in fire ignitions and suppression in order to confidently re-

produces the observed fire trends. This impact is especially evident when comparing the role of external climate drivers on

burnt area trends between JULES-INFERNO and JULES-INFERNO+HDI using a set of sensitivity experiments. The results340

of these experimeents have shown that including the socio-economic impacts on fire results in the burnt areas trends being dom-

inated by the socio-economic drivers, through a reduction in the contribution from climate drivers, especially from temperature

and precipitation.

4.1 Modelled burnt area trends

We show that introducing the representation of socio-economic factors can change the impact external forcing has on burnt area345

trends and that the mechanisms that lead to this can differ at a regional level. For example, the inclusion of socio-economic

factors reduce the role of temperature in driving trends by reducing the role of temperature in driving trends (e.g., increase

for TENA, EURO, CEAS, and AUS), as well as by changing the behaviour of climate drivers have in burnt area trends (e.g.,
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MIDE, NHAF, and SEAS). Socio-economic effects on fire also change the role of land use and population by changing the

role land use and population density towards more impact through the socio-economic fire effects (e.g., BONA, CEAM, and350

NHSA).

These results are consistent with other studies, which show that for developed regions, land and fire management policies

have a greater role than other human behaviours in controlling ignitions (Nikolakis and Roberts, 2022; Ford et al., 2021;

Jacobson et al., 2022; Carreiras et al., 2014; Mourão and Martinho, 2014).

The work of Kelley et al. (2019) and Jones et al. (2022) shows that, despite the increases in fire weather seasons and fire355

weather extremes that have been observed in all world regions, burnt area has shown a variety of regional trends and that the

negative trends were found to be significant only in Africa (NHAF and SHAF), Europe (EURO), and Central Asia (CEAS). At a

global scale, burnt area trends show a decline predominantly driven by a decline in burnt area in the savannah-grassland systems

caused by the expansion of high-capital agriculture (Andela et al., 2017), as well as reductions in vegetation productivity driven

by changes to the hydrological balance (Zubkova et al., 2019). The results on the impact of external model drivers on burnt360

area trends, detailed in Section 3.2.1, agree with this. In both JULES-INFERNO and JULES-INFERNO+HDI, the dominant

forcings contributing to the negative trend in global burnt area are linked to anthropogenic drivers (land use, population density

and HDI), as well as precipitation. Several authors have also shown that declines in burnt area in the Mediterranean have

occurred irrespective of increases in fire weather, as well as extensions to the fire weather season length, which is attributed to

increased fire prevention and in combating and mitigating fire impacts (Jones et al., 2022; Urbieta et al., 2019; Carreiras et al.,365

2014; Mourão and Martinho, 2014).

Moreover, results also show an impact on the anthropogenic drivers (land use and population density) in the burnt area

trends, resulting in a decrease in burnt area for JULES-INFERNO+HDI compared to JULES-INFERNO, for BONA, CEAM,

and NHSA regions. This result, combined with the impact seen in the reduction of the effects temperature has in burnt area,

are especially relevant in South America (NHSA and SHSA), leading to a better performance of JULES-INFERNO+HDI in370

these regions overall. The impact of socio-economic effects on fire is also documented for the Amazonia region, where fire is

routinely used for land clearing, resulting in a strong link between burnt area and deforestation rates. Through the last decade,

this region has seen a decline in deforestation rates leading to an observed negative trend in burnt area. However, this decline

in burnt area has not been uniform due to historical shifts in economic and environmental policies (Silva Junior et al., 2021;

Aragão et al., 2018; Nepstad et al., 2014).375

The analysis of the impact of including socio-economic factors in INFERNO has also shown that JULES-INFERNO+HDI

can also produce trends that are too strong, leading to too strong negative trends resulting in worse performance when compared

to JULES-INFERNO (e.g., SHAF). In addition, for regions where observations present a positive burnt area trend (TENA,

MIDE and SEAS) JULES-INFERNO+HDI presents an opposite trend sign (negative), while JULES-INFERNO is able to

capture the positive trend in TENA and SEAS.380

It is known that there is an increases in the frequency of large and severe fires in Continental United States of America (Goss

et al., 2020; Williams et al., 2019; Abatzoglou and Williams, 2016), as well as boreal regions (Canada and Alaska) (Kasischke

and Turetsky, 2006; Stocks et al., 2002; Veraverbeke et al., 2017), leading to observed increases in burnt area, with fire activity
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having a strong relationship with fire weather in these regions. However, due to the nature of model resolutions and timescales

in Earth System Modelling, INFERNO was not designed to model the processes that are needed to represent large and severe385

fires which dominate the trends and fire regime characteristics of these regions (e.g., it is based on the use of a value for the

average burnt area for each plant functional type). Therefore, it is expected that regions where fire regimes are dominated by

large and severe fires may be affected by a negative bias in burnt areas and fire emissions, as well as on their response to a

changing climate.

4.2 Model limitations and known issues390

The use of socio-economic factors in INFERNO reduces the inter-annual variability of burnt area for most of the fire regions

(Figure 5). While this benefits INFERNO performance over regions such as TENA and CEAM, it results in a reduction in the

variability overall, reducing the ability of the model to represent the burnt area regions that are characterised by high inter-

annual variability, namely, BONA, BOAS, AUST, CEAS, SHSA and NHSA. Although this is seen as a negative impact, it

must be noted that the control model - JULES-INFERNO - despite having a larger inter-annual variability, also has a poor395

performance in this aspect compared to observations.

Although socio-economic factors are included in JULES-INFERNO+HDI, the HDI dataset provides information mainly at

a national level. To improve the impact of socioeconomic activities on fire at a regional level, it would be beneficial to use data

capturing the HDI changes at a sub-national administrative level. Furthermore, it should be highlighted that the HDI does not

account for the different implementation of fire management practices and government policies at the regional level.400

It should also be highlighted that INFERNO does not include a peat-burning capability. The work of Teixeira et al. (2021)

highlights that this could be responsible for the negative bias over equatorial Asia and boreal regions where peatland fires

represent a significant amount of burnt area and biomass burning emissions. Further work in this area could significantly

improve the model performance over these regions and help to reduce the burnt area bias both at regional and global scales.

In addition, and as shown by Teixeira et al. (2021), biases in the underlying vegetation can significantly impact on the405

modelled burnt area. Despite the improvements introduced by Burton et al. (2019b) to JULES, including fire-vegetation inter-

actions, there are still a number of regions that present significant vegetation biases, which in turn affect the performance of

INFERNO. For example, it is known that JULES vegetation has few needle-leaf trees across the boreal regions compared to

observations. Moreover, the trees across the extratropics and savanna regions are notably reduced.

These results highlight that the high burnt area variability in these regions may result from a mechanism not currently rep-410

resented in INFERNO. For example, Kirillina et al. (2020); Andela and Van Der Werf (2014) show how changes in areas with

increasing anthropogenic alteration, such as agricultural systems, and changes in fire management practices and government

policies, often lead to shifts in peak fire activity for regions such as India and southwest Russia. They also show that the

widespread adoption of Aboriginal fire management with increased prescribed burning has curbed the frequency of large fires

over a broad region in Australia. Similarly, the dominant spatial and temporal variability in the burnt area for Southern Europe415

and North Africa (Chergui et al., 2018), as well as South America (Chuvieco et al., 2021), is known to be driven by shifts in

the amounts of fuel and continuity imposed by changes in socioeconomic drivers.
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4.3 Concluding remarks

This study shows that including a parametrisation for socio-economic impacts on fire based on HDI in INFERNO provides

a simple and linear representation of these effects on fire ignition and suppression. This leads to an improvement in model420

performance, especially in developed regions.

Furthermore, several authors have shown that socio-economic policies on management and control of fire play a major role

in controlling fire ignition and suppression (Nikolakis and Roberts, 2022; Ford et al., 2021; Jacobson et al., 2022; Carreiras

et al., 2014; Mourão and Martinho, 2014). This is especially important in the context of future climate projections (Pivello

et al., 2021; Duane et al., 2019; Gillson et al., 2019; Paveglio et al., 2018). It is only with the understanding of the expected425

impact of climate change that adaptation and mitigation policies can be developed with the aim of protecting infrastructure

and ecosystems from fire hazards. This shows the importance of representing socio-economic controls on fire when modelling

future projections in the Earth System Modelling context.

Introducing socio-economic factors into INFERNO, reduces compensating biases and improves the modelled burnt area

trends in comparison with observations. In particular, the results here show that including socio-economic factors in the rep-430

resentation of fires in Earth System Models is important for realistically simulating the burnt area mean state, for quantifying

burnt area trends in the recent past, and for understanding the main drivers of those trends at regional scales.

Considering this, we recommend that socio-economic factors should be included in all fire modelling studies at both global

and regional scales, particularly when considering future climate change scenarios. This work will form the basis of a future

study on understanding the impact of fires in the Earth System when considering future climate change scenarios.435
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Appendix A

Figure A1. Burnt area annual mean time series (Mha).
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Figure A2. Trends calculated between the period 1997 - 2016 for JULES-ES external forcing variables a) Precipitation

(kg m−2 day−1 year−1), b) Temperature at 2 m (C◦ year−1), c) Crop land fraction (% year−1), d) Pasture land fraction (% year−1), e)

Population density (population km−2 year−1), f) Human Development Index (year−1), g) Nitrogen deposition (kg m−2 day−1 year−1),

and h) Carbon Dioxide mixing ration (kg m−2 day−1 year−1).
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Code and data availability. Both the model code and the files for running it are available from the Met Office Science Repository Service:

https://code.metoffice.gov.uk/ (last access: 26 July 2023). Registration is required, and code is freely available subject to completion of a

software license.

Details of the simulations performed: JULES simulations are compiled and run in suites developed using the Rose suite engine (MetOffice,440

2022) and scheduled using the cylc workflow engine (Oliver et al., 2019). Both Rose and cylc are available under v3 of the GNU General

Public License (GPL). In this framework, the suite contains the information required to extract and build the code as well as configure and

run the simulations. Each suite is labelled with a unique identifier and is held in the same revision-controlled repository service in which we

hold and develop the model code. This means that these suites are available to any licensed of JULES under the following suite IDs:

– JULES-INFERNO: u-by849445

– JULES-INFERNO+HDI: u-by851

For JULES-INFERNO sensitivity experiments:

– 1990 control: u-co594

– clim: u-cs067

– tas: u-cs068450

– ppn: u-cs069

– lu: u-cr440

– Ndep: u-cr441

– pop: u-cr442

– CO2: u-cr443455

For JULES-INFERNO+HDI sensitivity experiments:

– 1990 control: u-ct759

– clim: u-cs070

– tas: u-cs071

– ppn: u-cs072460

– lu: u-cr447

– Ndep: u-cr448

– pop: u-cr449

– CO2: u-cr450

– HDI: u-cn957465

Author contributions. JCMT led the writing of the paper and model development. All co-authors contributed to the simulation design, writing

sections, performing evaluation and reviewing drafts of the paper.
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