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Abstract: The subtropical forests gross primary productivity (GPP) play a pivotal role in the global 

carbon cycle and in regulating the global climate. Quantifying the individual and combined effects of 

forest cover change (FCC), vegetation structural change (VSC, i.e., leaf area index (LAI)), CO2 

fertilization, and climate change (CC) on annual gross primary productivity (GPP)GPP dynamics of 

various subtropical forest types are essential for mitigating carbon emissions and predicting future 

climate changes, but these impacts remain unclear. In this study, we used a processed-based model to 

comprehensively investigate the impacts of these factors on GPP variations with a series of model 

experiments in China’s subtropical forests during 2001-2018. Simulated actual GPP showed a significant 

increasing trend (20.67 gC/m2/year26.72 TgC year-1, p < 0.001) under the interaction effects of FCC, 

LAI change, rising CO2 and CCthese factors. The CO2 fertilization (6.84 gC/m2/year8.23 TgC year-1, p 

< 0.001) and VSC LAI change (3.79 gC/m2/year, p = 0.0044.55 TgC year-1, p = 0.005) were the two 

dominant drivers of total subtropical forest GPP increase, followed by the effect of FCC (0.52 gC/m2/year, 

p < 0.0011.35 TgC year-1, p < 0.001) and CC (0.92 gC/m2/year1.11 TgC year-1, p = 0.08). We observed 

different responses to drivers depending on forest types. The evergreen broadleaved forests have a high 

carbon sink potential due to the positive effects of all drivers. Both the FCC (0.19 gC/m2/year, p < 

0.051.29 TgC year-1, p < 0.001) and CC (1.22 gC/m2/year, p < 0.050.53 TgC year-1, p < 0.05) significantly 

decreased evergreen needleleaved forest GPP, while their negative effects were almost offset by the 

positive impact of VSC LAI changes. Our results indicated that forest structural changeLAI outweighed 

the forest cover changeFCC in promoting GPP, which is an overlooked essential driver that needs to be 

accounted for in studies, as well as ecological and management programs. Overall, our study offers a 

novel perspective on different drivers of subtropical forest GPP changes, which and provides valuable 

information for policy makers in to better manage subtropical forests management to mitigate climate 35 
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change risks. 

Keywords: Subtropical forests, Gross primary production (GPP), Vegetation structure change, Climate 

change, BEPS process-based model 

Abbreviations: BEPS, the Boreal Ecosystem Productivity Simulator; GPP, Gross primary productivity; 

FCC, Forest cover change; LAI, Leaf area index; CC, Climate change; CO2, Carbon dioxide; EBF, 40 

Evergreen broadleaved forest; ENF, Evergreen needle-leaved forest; DBF, Deciduous broadleaved forest; 

MXF, Mixed forest; QYZ, Qianyanzhou station; DHS, Dinghushan station; ALS, Ailaoshan station; 

Vcmax, the maximum carboxylation rate; NEP, Net ecosystem productivity; ER,  Ecosystem respiration. 

1. Introduction 

Terrestrial ecosystems can capture carbon dioxide (CO2) from the atmosphere through 45 

photosynthesis, which is regarded as a potential solution for slowing down the increase in global CO2 

concentration (Keenan et al., 2016) and mitigating global warming (Fang et al., 2018; Shevliakova et al., 

2013)Mitigating emissions through ecosystem carbon absorption is a potential solution to slow the 

increase of global atmospheric carbon dioxide (CO2) concentration and temperature (Fang et al., 2014). 

Forest ecosystems, which cover about 30% of the global land area  (Thornton et al., 2002)(Forzieri et al., 50 

2022), are one of the main terrestrial carbon sinks (Mathias and Trugman, 2022; Pan et al., 2011) through 

photosynthesis (Beer et al., 2010). China’s forest ecosystems, with an area of approximately 1.95 × 106 

km2 (Li et al., 2014), are mainly distributed in the subtropical regions, which are an important component 

of the global forest ecosystems and crucial to the global and regional climate system (Fang et al., 2010; 

Yu et al., 2014). However, China is still one of the world’s top emitters of greenhouse gases that directly 55 

contribute to global warming (Friedlingstein et al., 2022; Yu et al., 2014). GPP is an important indicator 

reflecting the ecosystem carbon sequestration capacity, which drives terrestrial carbon sequestration and 

partially offsets anthropogenic CO2 emissions. Therefore, precise quantification of China’s subtropical 

forest GPP and understanding of its driving mechanisms are of great importance for scientists and policy 

makers to mitigate climate change and carbon emissions with the carbon sink potential of the Chinese 60 

subtropical forests (Fang et al., 2010; Yu et al., 2014). 

Several national key ecological restoration programs have been implemented in China to reverse 

land and environmental degradation (Lu et al., 2018)., such asAs a result,  the natural and planted forest 

area increased by 2.3 × 107 ha and 2.6 × 107 ha during the past two decades, respectively (Chen et al., 

2021b). Remote sensing observations have also identified the hotspots of forest gains and greening in 65 

southern China resulting from these programs' implements (Chen et al., 2019a; Tong et al., 2018). 

However, the subtropical regions are the most developed in China and have a very high population 

density with more than 10% (approximately 8.20.82 billion) of the world population. Intense land 

cover/use changes have become prominent in this region due to rapid industrialization and urbanization, 

leading to serious changes to forest ecosystems (e.g., LAI and GPP) (Chen et al., 2019b; Tong et al., 70 

2018; Zhang et al., 2014). Previous studies reported that LAI was the important biotic driver of carbon 

sink increase in China’s forest ecosystems VSC can reflect the vegetation growth and land-use 

management (Chen et al., 2019a; Chen et al., 2019b). Especially, LAI is a critical parameter for depicting 
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vegetation canopy structure, which can influence some important photosynthetic parameters (e.g., 

quantum yield (α), diurnal ecosystem respiration rate (Rd), etc.), and in particular, it can determine the 75 

amount of photosynthetically active sunlight that is absorbed by vegetation and thus influence 

photosynthetic assimilation rate (Piao et al., 2020). In addition, LAI can influence the annual productivity 

of vegetation by ruling the length of the growing season (i.e., phenology). Meanwhile, the annual mean 

atmospheric CO2 concentration in China has reached new highs due to large anthropogenic emissions 

(e.g., 407 ppm in 2017) (CMA, 2018). Elevated CO2 concentrations may enrich the intercellular CO2 80 

content and thus enhance the photosynthetic rates and plant productivity (i.e., GPP) at the ecosystem 

scale, which is known as the CO2 fertilization effect (Piao et al., 2020). The CO2 fertilization was also 

identified as the pivotal driver for enhancing carbon sink in terrestrial ecosystems, and some studies even 

reported that the southern region of China was more affected by the CO2 fertilization effect than other 

Chinese regions (Chen et al., 2019b; Zhu et al., 2016). which also affected the photosynthetic rates, and 85 

thereby influenced the vegetation productivity (Chen et al., 2022a). 

 In addition to these drivers, the annual mean temperature in the Chinese subtropical monsoon 

region has increased by more than 1.0 °C over the past 30 years the annual mean temperature in the 

Chinese subtropical monsoon region has increased by more than 1.0 °C over the past 30 years, which 

was higher than the global average (Fang et al., 2018), which was higher than the global surface 90 

temperature increase (Sun et al., 2019) and has also influenced the forest carbon uptake (Gao et al., 2017; 

Yuan et al., 2016). Recently, several studies investigated the roles of climate factors in regulating the 

changes of forest GPP changes at the site or global scales (Barman et al., 2014; Ma et al., 2015), as well 

as in some regions of China (Ma et al., 2019; Yao et al., 2018b). For instance, previous studies showed 

that temperature was the major factor influencing GPP variations in the Yangtze River Basin of southern 95 

China (Nie et al., 2023), as well as in other southern parts of China (Ma et al., 2019). Generally, a proper 

increasing temperature can promote enzyme activity and CO2 fixation (Siddik et al., 2019; Moore, et al., 

2021). However, when the temperature increases exceed the optimal temperature, the activity of enzymes 

in plants will decrease, thereby affecting the photosynthesis rate and carbon sequestration. Climate 

warming can also increase the vapor pressure deficit (VPD), leading to more drought stress on plants 100 

(Yuan et al., 2019). When atmospheric moisture is insufficient, plants tend to inhibit photosynthesis by 

reducing stomatal conductance, thereby significantly reducing GPP (Yuan et al., 2019; Grossiord et al., 

2020). Besides, Li et al., (2022) highlighted that precipitation dominated the interannual changes in forest 

GPP in Southwest China, while vegetation productivity response to precipitation variations shows large 

spatial heterogeneity (Camberlin et al., 2007), which largely depends on topographic attributes, 105 

vegetation types, and even soil texture. Additionally, a previous study also indicated that the GPP changes 

were more affected by solar radiation than by precipitation and temperature in humid region of China 

(Chen et al., 2021a). Therefore, the changes in GPP in response to different climatic factors can be both 

positive and negative across different regions and periods. Some studies indicated that temperature was 

the major factor in forest GPP variations, while other studies suggested that precipitation and solar 110 

radiation were the key driving forces (Chen et al., 2021a; Fyllas et al., 2017; Li et al., 2022; Mo et al., 

2018). Moreover, and CO2 fertilization were the pivotal drivers for enhancing carbon sink in terrestrial 

vegetation, particularly of China’s forest ecosystems (Chen et al., 2019b; Chen et al., 2021a). Therefore, 
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the dominant factors affecting GPP varied a lot depending on regions and different time scales, and thus 

these studies in identifying the drivers of changes in GPP led to divergent conclusions. Moreover, some 115 

of the recent studiesmost of the current studies mainly considered different forests as a single forest type, 

and attempted to untangle the individual and combined impact of different factors on forest GPP changes 

(Chen et al., 2021a; Zhang et al., 2022). However, the relative contributions of these factors to China’s 

subtropical forest GPP variations for specific forest types were still not clear.  

In the past decades, different methods have been used to estimate vegetation GPP. The process-120 

based models, especially in combination with remote sensing data (Chen et al., 2019b; Liu et al., 1997), 

are by far one of the most important tools for different forests by explicitly representing processes and 

their interaction with the environment and for disentangling the drivers of GPP variations over multiple 

spatiotemporal scales. The Boreal Ecosystem Productivity Simulator (BEPS) was developed based on 

the FOREST-BGC model (Running and Coughlan, 1988), which is a process-based diagnostic model 125 

and has the advantages of incorporating the remote sensing data (e.g., LAI and land cover type) to 

represent the solid biophysical processes. Recently, the BEPS model has been widely used to simulate 

carbon fluxes at the regional and global scalesRecently, the BEPS model has been widely used at the 

regional and global scale and proved to be one of the better-performing models for forest GPP simulations 

(Chen et al., 2019b; Chen et al., 2012; Liu et al., 1997; Luo et al., 2019; Wang et al., 2021a), Although, 130 

it has been well evaluated and validated in Chinaespecially it has been well evaluated and validated in 

China (Feng et al., 2007; Liu et al., 2018; Peng et al., 2021; Wang et al., 2018), it but has not been used 

to unravel the drivers of different forests changes.  

Therefore, in this study, we especially focus on the subtropical forest ecosystems of China. The 

BEPS model was used to simulate different forest GPP. The specific objective of this study is to (1) test 135 

the performance of the BEPS model in simulating the GPP of the China’s subtropical forest ecosystems, 

(2) quantify the spatiotemporal trends in GPP of different forest types across the subtropicsquantify 

spatiotemporal trends in different GPP across the subtropical forests, and (3) disentangle the relative 

effects of the forest cover change, climate change, LAIvegetation structure change, and CO2 fertilization 

on different forest GPP variations in the study area. The results of this study may provide valuable 140 

information for scientists and policy makers The results of this study can provide forest managers with 

basic reference on the carbon sequestration potential of different Chinese subtropical forests. Moreover, 

investigating the dynamics of GPP and their dominant driving factors in the study area is crucial for 

decision-makers to adjust and optimize forest management policies promptly, so as to ensure that forests 

can provide the best ecological services for humans. 145 

2. Materials and methods 

2.1 Study area description 

In this study, we focused on China’s subtropical forests which account for approximately 64% 

(~1.25 ×106 km2) of the total forested area in China, and the boundary of the subtropical region was 

derived from the Resource and Environment Science and Data Center of China (He et al., 2021a; He et 150 

al., 2019), which covers a latitudinal range of 21.33–33.91°N and a longitudinal range of 91.39–122.49°E 
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and has a typical subtropical monsoon climate. The mean annual temperature in the study area is about 

15.5°C, and it normally increases from the northwest toward the southeast.The average annual 

temperature is about 15.5°C and theThe mean annual precipitation ranges from 800 mm in the north to 

more than 2000 mm in the south, with 80% of precipitation concentrated in the growing season. The 155 

main forest types in the subtropical region of China include the evergreen broadleaved forest (EBF), 

evergreen needle-leaved forest (ENF), deciduous broadleaved forest (DBF), and mixed forest (MXF) 

(Fig.1). There are three operating flux towers in the area: Qianyanzhou (QYZ), Dinghushan (DHS), and 

Ailaoshan (ALS). A more detailed description of these flux tower sites can be found in Table S1.  

 160 

Figure 1 Location of the study area and 3 flux sites. The forest cover map (2018) shown here was derived 

from the European Space Agency land cover data (ESA CCI-LC). The forest types of ALS and DHS are 

EBF, and the forest type of QYZ is ENF.   

2.2 Model description 

In this study, we used the BEPS model to simulate the subtropical forest GPP and NEP (i.e., net 165 

ecosystem productivity) with a resolution of 0.05°. The BEPS is a process-based model driven by the 

remotely sensed leaf area index (LAI), land cover types, soil data, and meteorological data. Recently, the 

BEPS model was used to simulate the terrestrial ecosystem carbon and water fluxes over different regions, 

such as the globe (Chen et al., 2019b; Chen et al., 2012), North America (Sprintsin et al., 2012; Xie et 

al., 2018), Europe (Wang et al., 2003), East Asia (Matsushita and Tamura, 2002), as well as the whole 170 

or southern China (Liu et al., 2018; Liu et al., 2014; Peng et al., 2021). A more detailed description of 

the original BEPS can be found in Supplementary section Text S1 and previous studies (Chen et al., 

2019b; Chen et al., 1999; Ju et al., 2006; Liu et al., 1999; Liu et al., 1997). In BEPS, the daily GPP 

(gC m−2day−1) is calculated as (Chen et al., 1999): 

GPP = GPPsunLAIsun + GPPshadeLAIshade (1) 

where GPPsun (gC m−2day−1) and GPPshade (gC m−2day−1) denote the GPP per unit area of sunlit and 175 
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shaded leaves; LAIsun (m2 m-2) and LAIshade (m2 m-2) respectively represent the LAI of sunlit and shaded 

leaves. LAIsun and LAIshade depend on the mean solar zenith angle (θ, unitless): 

LAIsun = 2cosθ × (1 − exp (−0.5ΩLAI/cosθ)) (2) 

LAIshade =  LAI − LAIsun (3) 

where LAI is the total canopy leaf area index (m2 m-2) and Ω is the clumping index (unitless).  

In the BEPS model, the maximum carboxylation rate Vcmax (μmol m−2 s−1) is one of the important 

and sensitive parameters to influence the photosynthesis photosynthetic rate of plants and estimate the 180 

carbon fluxes (Croft et al., 2017; Luo et al., 2019). V𝑐𝑚𝑎𝑥  mainly depends on Vcmax25 and air temperature 

(Ta, °C) in BEPS model, see supplementary section Text S1 (Eq. S4). Generally, Vcmax25 is a commonly 

defined constant among different plant functional types (PFTs) in the model. However,  Vcmax25 actually 

has large spatial variations (Table S2) due to the changes of species composition, soil properties, and 

climates within the same PFT, even observations showed a 2-3 fold variation in Vcmax25 for the same 185 

PFT (Chen et al., 2022b). As a result, using a PFT with fixed Vcmax25 in the model may distort the spatial 

distribution of the GPP simulation (Chen et al., 2022b). Therefore, in this study, we introduced a spatial 

variation of Vcmax25 derived from remote sensing data to replace the constant Vcmax25 in the original 

BEPS model. The other parameters, including the clumping index, maximum stomatal conductance, 

specific leaf area, respiration coefficient for leaf, stem, coarse root, and fine root, Q10 for leaf, stem, and 190 

root, etc., used in the BEPS model for each plant functional type can be found in Liu et al. (2018), which 

were specially parameterized for the simulation simulating of the carbon fluxes of terrestrial ecosystems 

in China based on the flux tower observations (Liu et al., 2013a; Liu et al., 2016; Liu et al., 2013b) and 

the published literature (Feng et al., 2007; Liu et al., 2015; Zhang et al., 2012). 

2.3 Data and processing 195 

(1) Flux tower data 

To evaluate the models’ performance, we acquired the daily eddy covariance (EC)-derived GPP 

and NEP (net ecosystem productivity) from three flux tower sites over the study area (Fig. 1), which was 

available from the ChinaFLUX network (Yu et al., 2006).  The ChinaFLUX has undergone strict data 

quality control, including coordinate rotation, Webb-Pearman-Lenuing (WPL) correction, and nighttime 200 

flux correction., gap filling, and flux partitioning. For instance, the nighttime CO2 flux data under low 

atmospheric turbulence conditions were screened using site-specific thresholds of friction velocity (u*), 

which was identified following Reichstein et al. (2005) For instance,  the nighttime CO2 flux correction 

mainly includes removing outliers when there is precipitation, CO2 concentration exceeds the 

instrument's measurement range, insufficient turbulence (e.g., the threshold of u* < 0.2 m s-1 was used 205 

for the QYZ and ALS stations, while the threshold of u* < 0.05 m s-1 was used for the DHS station), and 

less than 15,000 valid samples, and the NEE was also partitioned into GEP and ER with the method of 

Reichstein et al. (2005). 

(2) Remote sensing data 

LAI. The Global Land Surface Satellite (GLASS) LAI product during 2001-2018 was obtained 210 

from the University of Maryland. This data was generated using the general regression neural networks 
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(GRNNs) with a spatiotemporal resolution of 0.05° and 8-day (Xiao et al., 2016). The daily LAI at 0.05° 

resolution was obtained by linear interpolation of the 8-day GLASS LAI, which was used to drive the 

BEPS model (Wang et al., 2022). The GLASS LAI was used in this study because of its higher accuracy 

in China’s forests compared to other satellite LAI products, such as the GEOVI LAI, etc. (Liu et al., 215 

2018; Xie et al., 2019). For example, Liu et al. (2018) estimated the accuracy of different satellite-derived 

LAI products for the simulation of carbon and water fluxes in China’s forests based on the BEPS model, 

and proved that GLASS LAI showed higher accuracy in simulating forest GPP than other LAI products 

(e.g., FSGOM LAI and MODIS LAI). The consistent conclusions also have been reported in other studies 

(Chen et al., 2021a; Jiang et al., 2017; Xie et al., 2019). Therefore, it was reasonable to use GLASS LAI 220 

as input to model subtropical forest GPP in this study. 

Satellite-derived Vcmax25 products. We obtained the spatial variation of satellite-derived Vcmax25 

products from the National Ecosystem Science Data Center, National Science & Technology 

Infrastructure of China, available spaning from 2000 to 2019, with a spatiotemporal resolution of 500m 

and 8-day. We used an average yearlythe annual mean Vcmax25 for each pixel that varied from year to year 225 

(2001-2018), and it was further resampled to 0.05°×0.05° for driving the model. The Vcmax25 product was 

produced by satellite-derived leaf chlorophyll content (LCC) (Xu et al., 2022) and a semi-mechanistic 

model (Lu et al., 2022). It has been shown to be robust enough to reduce uncertainty in BEPS model 

simulations  It has been shown that this can effectively reduce the uncertainty in the simulations of the 

BEPS model (Lu et al., 2022; Lu et al., 2020; Wang et al., 2020b). More mechanisms for deriving Vcmax25 230 

from remote sensing data are available in Lu et al. (2022), Luo et al. (2018), and Xu et al. (2022). 

Published GPP products. To better estimate the model performance of the BEPS model, we also 

used five global GPP products generated by different methods to compare with our simulated GPP, which 

were further aggregated into 0.05°×0.05° for comparison. The five published GPP products include (a) 

the MODIS GPP (MOD17A2H Version 6) (Running et al., 2015), (b) the EC-LUE GPP generated by a 235 

revised light use efficiency model (Zheng et al., 2020), (c) the NIRv GPP produced by near-infrared 

reflectance (NIRV) and machine learning method (Wang et al., 2021b), (d) the VPM GPP produced by 

the Vegetation Photosynthesis Model (VPM) (Zhang et al., 2017), and (e) another published BEPS GPP 

product (hereinafter referred to as BEPSg GPP), which was also generated by the BEPS model but with 

independent driving data and globally calibrated parameters (Chen et al., 2019b; He et al., 2021b). See 240 

Table S3 for more details on the five GPP products.  

(3) Climate data 

We obtained the daily meteorological data including the temperature, precipitation, relative 

humidity, and downward solar radiation from the Climate Meteorological Forcing Dataset (CMFD) (He 

et al., 2020), and used it them to drive the BEPS model. The CMFD is a high spatial (about 0.1°) and 245 

temporal (e.g., hourly and daily) resolution reanalysis product and covers the period of 1979-2018, which 

has been evaluated against the in-situ meteorological data (He et al., 2020) and were widely used in 

previous studies (Huang et al., 2021; Wang et al., 2020a; Yang et al., 2017a). To ensure consistency with 

the resolution of the other driversdriving data, the CMFD was also resampled to 0.05° based on the 
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bilinear interpolation method.  250 

 (4) Land cover data 

The annual land cover data sets from the European Space Agency (ESA) were used for 

simulations (ESA, 2017). The ESA CCI land cover data has a resolution of 300 meters, spanning the 

1992-present period. The overall global accuracy of CCI land cover data is nearly 75.4%, with higher 

accuracy for forests (ESA, 2017). In this study, the original CCI land cover data were first aggregated 255 

into 0.05°×0.05° by using the CCI LC user tool. Considering the CCI land cover data composed of 37 

original classes original vegetation classes, we referred to (Tagesson et al., 2020) to reclassify the CCI 

land cover data into 9 classes, including the evergreen broadleaved forest (EBF), evergreen needleaved 

forest (ENF), deciduous broadleaved forest (DBF), and mixed forest (MF), cropland (CRO), grassland 

(GRA), shrubland (SHR), urban (URB), and barren land (BAR).  260 

(5) Soil and atmospheric CO2 data  

The available water capacity (AWC) data with a spatial resolution of 0.05° was extracted from 

the re-gridded Harmonized World Soil Database (RHWSD) v1.2 (FAO, 2012; Wieder et al., 2014) and 

used to drive the model in this study. We obtained the annual mean atmospheric CO2 concentration data 

(2001-2018) from the Hawaiian Mauna Loa observatory.  265 

2.4 Experiment design 

To understand the individual and combined effects of forest cover change, LAIvegetation 

structure change, CO2 fertilization, and climate change on annual subtropical forest GPP variations 

during 2001-2018, we designed five groups of simulations in this study (Table 1). First, in scenario 

Sbaseline, the model was run based on all the dynamic inputs during 2001-2018, including the dynamic 270 

land cover, LAI, CO2, and all climate variables. In scenario S1, we fixed the land cover in 2001 and 

allowed all other driven data to vary from 2001 to 2018. It should be noted that in this scenario, land 

cover change may lead to changes in LAI and thus forest GPP, such as the conversion of forest to non-

forest or vice versa, however, the direct cause of LAI change in this scenario is actually due to forest 

cover change, thus in the present study we set this part of GPP change as the contribution of land cover 275 

change (Chen et al., 2021a).In scenario S2, we conducted four different simulations to investigate how 

the key climatic factors (S2.1: precipitation; S2.2: temperature; S2.3: solar radiation) and all climate change 

(S2.4) influence the subtropical forest GPP. We individually fixed the precipitation, temperature, solar 

radiation, and all climatic factors in the year 2001, while allowed all other factors (i.e., land cover, LAI, 

and CO2) to change over time. In scenario S3, the LAI was fixed at the level of 2001 and other factors 280 

were changed over time. In scenario S4, we fixed CO2 concentration (371.31 ppm) in 2001, with other 

drivers being dynamics. Finally, the difference between Sbaseline and different scenarios was were 

calculated for estimating the effect of different drivers on subtropical forest GPP changes.  

Table 1 Design of the scenarios for unravelling the effect of forest cover change, LAIvegetation structure 

change, CO2 fertilization, and climate change on subtropical forest GPP variations.  285 

Scenarios Land cover LAI Climate  Atmospheric CO2  Purpose 
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Sbaseline Dynamic Dynamic Dynamic Dynamic 
Estimating actual 

dynamics of  GPP 

S1 Fixed in 2001 Dynamic  Dynamic Dynamic 

Estimating the effect of 

forest cover change on 

GPP 

S2 

S2.1 Dynamic Dynamic Fixed in 2001 Dynamic 
Estimating the effect of 

precipitation on GPP 

S2.2 Dynamic Dynamic Fixed in 2001 Dynamic 
Estimating the effect of 

temperature on GPP 

S2.3 Dynamic Dynamic Fixed in 2001 Dynamic 
Estimating the effect of 

radiation on GPP 

S2.4 Dynamic Dynamic Fixed in 2001 Dynamic 
Estimating the effect of 

climate change on GPP 

S3 Dynamic 
Fixed in 

2001 
Dynamic Dynamic 

Estimating the effect of 

vegetation structural 

changeLAI on GPP 

S4 Dynamic Dynamic Dynamic Fixed in 2001 
Estimating the effect of 

CO2 fertilization on GPP 

 

2.5 Statistical analysis 

Three statistical metrics were used to assess the performance of the BEPS model in the simulation 

of GPP and NEP. These metrics include the coefficient of determination (R2), the root mean square error 

(RMSE), and the mean bias error (MBE). 290 

The average values of 3 × 3 pixels centered around the flux sites (provided that these grid pixels 

have the same land cover type) were used to validate the predicted GPP and NEP (Peng et al., 2021; 

Wang et al., 2022). In addition, the linear regression analysis was used to detect the long-term trend of 

the differences between the real and control experiments, which was were considered as the impact of 

the controlled variable on the GPP changes. 295 

Moreover, the spatial correlation was adopted in this study to compare the spatial consistency of 

our simulated GPP with other GPP products. The spatial correlation was calculated pixel by pixel at the 

annual scale. First, two GPP time series for a certain pixel were obtained in the same period, and then 

the correlation between the two GPPs was calculated. By analogy, the spatial distribution of the 

correlation coefficients can be achieved. 300 

3. Results 

3.1 Model performance 

We first compared the simulated daily GPP with the flux-site GPP (Fig. 2). The overall accuracy 

of GPP simulated by the BEPS model agreed well with measurements from the three flux sites (ALS: R2 

= 0.58, RMSE = 1.57 gC m-2 day-1, and MBE = 0.03 gC m-2 day-1; DHS: R2 = 0.44, RMSE = 1.17 gC m-305 

2 day-1, and MBE = 0.25 gC m-2 day-1; QYZ: R2 = 0.77, RMSE = 1.36 gC m-2 day-1, and MBE = 0.05 gC 

m-2 day-1) (Fig. 2a-c). The BEPS model also showed good performance in simulating daily GPP each 

year (Table S4, Fig. S1-S3). For example, the R2 ranged between 0.50 and 0.72 for ALS (2009-2013), 

ranged between 0.43 and 0.65 for DHS (2032003-2010), and ranged between 0.70 and 0.85 for QYZ 

(2032003-2010). Simulated GPP also captured both the absolute values and the inter-annual variability 310 

of observed annual GPP for in the three flux sites (Fig. 2d-f). Compared with the yearly measured GPP, 

the overall accuracy (R2) of GPP simulated by the BEPS model was 0.89 (ALS), 0.53 (DHS), and 0.73 
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(QYZ), respectively (Fig. 2 d-f). We further examined the BEPS model in simulating daily NEP, which 

also showed the BEPS model agreed reasonably well with measured daily NEP (Table S5, Fig. S4-S6). 

The overall accuracy (R2) of simulated daily NEP was 0.25 (ALS), 0.35 (DHS), and 0.42 (QYZ), 315 

respectively (Table S5). However, the simulation accuracy of NEP was generally lower than that of GPP 

(Table S4-S5). In this study, we used the NEP for testing the model performance, because NEP (i.e., -

NEE (net ecosystem exchange)) is a direct measurement of carbon fluxes between the atmosphere and 

ecosystems. Therefore, we not only used the observed GPP from the flux sites to validate our model, but 

also the NEP. The validation of model performance based on measured NEP was relatively lower than 320 

that of GPP. One cause is that the simulation of NEP in the model is influenced not only by the accuracy 

of simulated GPP, but also by the accuracy of simulated heterotrophic respiration (Rh) and autotrophic 

respiration (Ra). 

 

Figure 2 Comparison of simulated GPP with measured GPP from three flux tower stations at daily (a-c) 325 

and annual (d-f) scales. The green lines and dark circles represent the simulated GPP and observed GPP, 

respectively. 

At the regional level, the BEPS model captured well the spatial gradient in GPP when compared 

with the other GPP products (Fig. 3S7). The mean R2 values between our simulated GPP and NIRv GPP, 

EC-LUE GPP, MODIS GPP, BEPS GPP, and VPM GPP were 0.52, 0.67, 0.41, 0.54, and 0.41, 330 

respectively (see Fig. S7FS8f). Especially, the simulated GPP was well consistent with the spatial pattern 

of the EC-LUE GPP (Fig. S8bS7). In nearly 67% and 34% of forest areas, the R2 was higher than 0.6 

and 0.8, respectively. Besides, we compared the multi-year mean of annual total GPP in our study with 

the other five GPP products among the entire forest and different forest types (Fig. S9S8). The multi-

year mean of annual total GPP for the entire forest area in our study is 2.23 ± 0.14 PgC year-1,  which 335 

closing to the magnitudes of the three GPP products which falled in the range of the five GPP products 

(i.e., another BEPSg GPP product: 2.54 ± 0.16 PgC year-1; MODIS GPP: 2.10 ± 0.07 PgC year-1; VPM 

GPP: 2.05 ±  0.10 PgC year-1) and the mean of the five GPP products (2.07 ±  0.11 PgC year-1 ), 
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respectively (Fig. S9S8). Meanwhile, for the entire and different forests, the annual GPP of this study 

and other GPP products also showed a similar increasing trend (Fig. S8fS9f-8j9j). For example, such as 340 

the trend of the entire forestsDBF and MXF in this study (0.026 PgC year-1, p < 0.001) was closed to the 

BEPS VPM GPP (0.028 PgC year-1, p < 0.001) and the VPM EC-LUE GPP (0.017 PgC year-1, p < 0.001) 

(Fig. S8fS9h, Fig. S9j). Overall, all the evaluations indicated that the performance of the BEPS model 

was reasonably well in simulating GPP in the study area. Although our simulated GPP is slightly higher 

for the entire subtropical forests, EBF and ENF than other GPP products, it is very close to other GPP 345 

products for specific forest types such as DBF and MXF (Fig. S9). Similarly, these commonly used GPP 

products also have large differences when compared to each other (Fig. S9). These results indicate that 

there is still a large discrepancy in modelling GPP to date, due to many differences in model structure, 

parameterization, and driving data. For example, the MODIS GPP was mainly generated by the 

Terra/Aqua satellite observations, while the newly released NIRv GPP was produced by near-infrared 350 

reflectance (i.e., the AVHRR reflectance from LTDR (Land Long Term Data Record v4) product). Thus, 

the data sources derived from divergent satellite observations may result in the differences between the 

two GPPs. Additionally, the EC-LUE GPP, VPM GPP, and the BEPSg GPP are all model outputs, where 

EC-LUE GPP and VPM GPP are simulated by different light use efficiency (LUE) models, respectively, 

and the BEPSg GPP is produced by a process model. However, current LUE-based models do not 355 

completely integrate other key environmental regulations to vegetation productivity, such as the effect 

of atmospheric CO2 concentration. Thus, the underestimation in other GPP products is possibly due to 

failure to assess the CO2 fertilizer effects, because almost no apparent response to the rising atmospheric 

CO2 concentration in the LUE models leads to an underestimated trend. In our study, the GPP was 

estimated by a process-based model (i.e., BEPS) that considers the CO2 fertilization effect, which may 360 

lead to a higher GPP when compared to other GPP products. 
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Figure 3 Comparison of the spatial distribution of the mean annual GPP. (a) NIRv GPP, (b) EC-LUE 

GPP, (c) MODIS GPP, (d) another published BEPS GPP, and (f) our simulated GPP. All the maps were 

calculated over the 2001–2018 period, except for VPM GPP which is only available from 2001 to 2016. 365 

3.2 Spatiotemporal variations of the subtropical forest GPP 

The simulated actual GPP showed a significant increasing trend (20.67 gC/m2/year26.72 TgC 

year-1, p = 0.000) during 2001-2018 over the entire subtropical forests due to the interactive effect of 

different drivers (Fig. 4a3a). Among the four forest types, the EBF showed the largest significantly 

increasing trend (28.24 gC/m2/year14.78 TgC year-1, p = 0.000), followed by DBF (20.68 gC/m2/year1.55 370 

TgC year-1, p = 0.000), the MXF (16.12 gC/m2/year6.46 TgC year-1, p = 0.000), and ENF (15.20 

gC/m2/year3.92 TgC year-1, p = 0.000). Spatially, 90.4% of forested land in the study area showed an 

increasing trend in GPP, while 9.6% of forested land exhibited a decreasing trend in GPP Spatially, 90.4% 

and 9.6% of the forest GPP showed increased and decreased, respectively (Fig. 3b). Among them,The 

areas with the significantly increased and decreased GPP respectively accounted for 70.1% and 2.6% of 375 

the total entire subtropical forest area, respectively (Fig. 3b).  
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Figure 4 3 (a) Temporal variations of the annual subtropical forest GPP anomaly during 2001-2018, and 

the annual GPP anomaly is calculated relative to the base year of 2001; (b) Spatial distribution of the 380 

annual trends in actual GPP.  

3.3 Disentangling the effects of driving factors on subtropical forest GPP changes 

3.3.1 Impacts of forest cover changedifferent driving factors on subtropical forest GPP changes 

We investigated the area of gains or losses for different subtropical forest types between 2001 and 

2018 using the ESA CCI land cover data (Fig. S10). We found that FCC increased the entire subtropical 385 

forest GPP at a rate of 0.52 gC/m2/year (p = 0.000) (Fig. 4a), and the increase mainly driven by EBF GPP 

(0.39 gC/m2/year, p = 0.011) and MXF GPP (1.14 gC/m2/year, p = 0.000). However, the FCC had a 

negative effect on the DBF GPP and ENF GPP variations at the rate of -0.06 gC/m2/year (p = 0.632) and 

-0.19 gC/m2/year (p = 0.002), respectively. Spatially, 92.2% of the total GPP were relatively stable, and 

only 7.8% of GPP exhibited an increase or decrease under the effect of FCC (Fig. 4b). Among them, 3.9% 390 

of the GPP increased significantly and the increased were mainly located in the western region (e.g., the 

south slope of the Qinling mountains, the southwest karst region), while 2.6% of the GPP was 

significantly reduced in the eastern regions where the ENF is dominated (Fig. 4b). 

Based on the ESA CCI land cover data between 2001 and 2018, it showed that the EBF and MXF 
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had a net increase of 17,340 km2 and 11,660 km2, respectively, while the ENF showed a negative net 395 

change (-16,580 km2) and the DBF was almost unchanged between 2001 and 2018 (Fig. 5). As a whole, 

the total forest area in our study area showed a net increase change of 12,800 km2 (Fig. 5a). We found 

that FCC positively affected the entire forest GPP at a rate of 1.35 TgC year-1 (p = 0.000) (Fig. 5b), 

mainly driven by EBF GPP (1.17 TgC year-1, p = 0.001) and MXF GPP (2.15 TgC year-1, p = 0.000). 

However, the FCC had a negative effect on the DBF GPP and ENF GPP variations at the rate of -0.05 400 

TgC year-1 (p = 0.195) and -1.92 TgC year-1 (p = 0.000), respectively. Spatially, 92.2% of the total forest 

GPP showed a stable state, and only 7.8% of GPP exhibited an increase or decrease under the effect of 

FCC (Fig. 5c). Among them, 3.9% of the forest GPP increased significantly, mainly located in the 

western region (e.g., the south slope of the Qinling mountains, the southwest karst region), while 2.6% 

of the forest GPP was significantly reduced in the eastern regions, which belong to the ENF (Fig. 5). 405 

 

Figure 5 (a) Changes in forest areas between 2001 and 2018. (b) Temporal variation of the effect of 

forest cover change on annual forest GPP changes. (c) Spatial distribution of the impacts of forest cover 

change on GPP. 

3.3.2 Impacts of climate change on forest GPP changes 410 

The annual total precipitation and annual mean temperature over the entire forest region and 

different forest areas showed an increasing trend, while the annual total radiation displayed a decreasing 
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trend for the entire forest region and different forest areas (Fig. S11). The individual effect of 

precipitation, temperature, and solar radiation on subtropical forest GPP was first investigated in Fig S12, 

and their combined effects on GPP changes were shown in Fig. 4c-d. The results showed that climate 415 

change increased the GPP across the entire forest area (0.92 gC/m2/year, p = 0.080), especially a 

significant increase in the EBF (3.83 gC/m2/year, p = 0.000) and DBF (2.49 gC/m2/year, p = 0.003), 

while the climate change decreased the GPP of ENF (-1.22 gC/m2/year, p = 0.016) and MXF (-1.23 

gC/m2/year, p = 0.075) (Fig. 4c). Spatially, 10.3% and 19.1% of the study area exhibited a significant 

upward trend and downward trend (Fig. 4d), respectively, due to the effect of climate change. Overall, 420 

increase in GPP induced by precipitation, temperature, and solar radiation change heavily erases their 

negative effects on GPP, making climate change contribute to GPP increase in the whole study area. 

Simulation results showed that an increase in precipitation induced the GPP enhancement at the rate of 

0.26 TgC year-1 (p = 0.541) for all the forest types together (Fig. 6a). The negative effect of precipitation 

on ENF GPP (-0.02 TgC year-1, p = 0.618) and MXF GPP (-0.14 TgC year-1, p = 0.137) was mainly 425 

offset by EBF GPP (0.33 TgC year-1, p = 0.304) and DBF GPP (0.09 TgC year-1, p = 0.013) enhancements 

(Fig. 6a). Spatially, the positive effect of precipitation on GPP changes accounted for most parts of the 

total area (87.5%), of which 3.1% showed a significant (p < 0.05) increase, mainly located in the west 

and north, which was consistent with the trends in the spatial distribution of precipitation (Fig. S9b). 

Precipitation also caused a small part of GPP (12.5%) decrease, and there is almost no significant 430 

decrease trend (Fig. 6b). Changes in temperature slightly increased the GPP across all forest types (Fig. 

6c), but it showed great spatial variations (Fig. 6d). The significantly negative effect of temperature on 

GPP (13.3%) was mainly distributed in the south and west, while the significantly positive effect of 

temperature on GPP (8.9%) was mainly located in the western mountainous areas (Fig. 6d). Decreasing 

solar radiation (Fig. 6e) led to the negative impact of all the forest area (-1.13 TgC year-1, p = 0.162) as 435 

well as different forest types (EBF:  ̶ 0.35 TgC year-1, p = 0.263; DBF:  ̶ 0.05 TgC year-1, p = 0.442; ENF: 

 ̶ 0.51 TgC year-1, p = 0.126; MXF:  ̶ 0.22 TgC year-1, p = 0.201). The decrease in solar radiation caused 

a significant decrease in GPP of 10.1% (p < 0.05) (Figure 6f). A small portion of the study areas exhibited 

GPP enhancement under the influence of solar radiation, but it was hardly significant (3.3%). 

Ultimately, the combined and interactive effects of climate change resulted in an increase in GPP 440 

across the entire forest area (1.11 TgC year-1, p = 0.080), especially a significant increase in the EBF 

(1.76 TgC year-1, p = 0.000) and DBF (0.18 TgC year-1, p = 0.003), while the climate change led to the 

decrease in ENF (-0.53 TgC year-1, p = 0.016) and MXF (-0.29 TgC year-1, p = 0.792) (Fig. 6g). Nearly 

41.8% of the study area exhibited an upward trend due to the effect of climate change, mainly distributed 

in the west and the north (Fig. 6f), of which 10.3% showed a significant (p < 0.05) increase. On the 445 

contrary, 58.2% of the study area (a significant area accounted for 6.4%) showed a decreasing trend, 

mainly located in the east, central, and southwest (Fig. 6f). Overall, the increase in GPP induced by 

precipitation, temperature, and solar radiation can erase their negative effects on GPP, making climate 

change contribute to GPP increase in the whole study area. Although all the main climatic factors did not 

change significantly during the study period, their combined effects would have a significant impact on 450 

different subtropical forest GPP changes (Fig. 6g and 6h), suggesting that different subtropical forest 

GPP has a different sensitivity to climate change. 
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Figure 6 Temporal variation of the effects of precipitation (a), temperature (c), solar radiation (e), and 

all climate changes (g) on annual GPP trends. Spatial distribution of the impacts of precipitation (b), 455 

temperature (d), solar radiation (f), and all climate changes (h) on subtropical forest GPP.  

3.3.3 Impacts of LAI change on forest GPP changes 

The LAI of entire and different forests showed significant upward trends during the study period 

(Fig. S13). The simulations showed that LAI exerted a significant positive effect of 3.79 gC/m2/year (p 

= 0.004) in the entire forest region (Fig. 4e), confirming the positive role of LAI in subtropical forest 460 

GPP variations. There was significant spatial heterogeneity in the effect of LAI on GPP changes (Fig. 

4f). A significant (p < 0.05) positive effect of LAI on GPP was observed over 29.9% of the study area 

and these areas are mainly located in the south and north (Fig. 4f). The areas with a significant decreasing 

trend (p < 0.05) accounted for 6.0% and are mainly distributed in the western and central parts of the 
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study area (Fig. 4f). There are more positive changes in GPP due to the effect of LAI that heavily offsets 465 

the negative changes in GPP, ultimately making LAI the main factor in GPP increases throughout China’s 

subtropical forests. 

The LAI of entire and different forests showed significant upward trends during the study period 

(Fig. S10). The simulations showed that the VSC exerted a significant positive effect of 4.55 TgC year-1 

(p = 0.005) for the entire forest region (Fig. 7a), confirming the positive role of VSC in forest GPP 470 

variations. Especially, the positive effect of VSC on EBF (1.64 TgC year-1, p = 0.025) contributed the 

most to the GPP increment (Fig. 7a). There was significant spatial heterogeneity in the effect of VSC on 

GPP changes (Fig. 7b). A positive effect of VSC on GPP was observed over 68.7% of all forest types 

together, where GPP increased significantly (p < 0.05) in 29.9% of the total study area. Most of the 

significantly increasing areas were located in the south and north (Fig. 7b). The areas with a significant 475 

decreasing trend (p < 0.05) accounted for 6.0%, and they were mainly distributed in the western and 

central parts of the study area (Fig. 7b). Overall, the results showed that most GPP increases in China’s 

subtropical forests due to the increase of LAI, which also offset the negative effects of VSC on GPP, thus 

allowing VSC to play a key driving factor in promoting GPP increases throughout the forest area . 

 480 

Figure 7 Temporal variation (a) and spatial distribution (b) of the effects of VSC on forest GPP.  
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3.3.4 Impacts of CO2 fertilization on forest GPP changes 

The annual mean CO2 concentration increased from 371.3 ppm to 408.7 ppm during 2001-

2018The annual mean CO2 concentration increased from 371.3 ppm to 408.7 ppm from 2001 to 2018 

(Fig. S14), which led to a significant increase of all subtropical forest GPP at the rate of 6.84 gC/m2/year 485 

(p = 0.000) (Fig. 4g). The significantly positive effects of CO2 fertilization on EBF GPP (6.91 gC/m2/year, 

p = 0.000) and ENF GPP (7.02 gC/m2/year, p = 0.000) was higher than that of DBF GPP (5.93 gC/m2/year, 

p = 0.000) and MXF GPP (6.66 gC/m2/year, p = 0.000). CO2 fertilization showed significant positive 

effects on GPP in Aalmost all the China’s subtropical forests showed significant positive effects of CO2 

fertilization on GPP (nearly accounting for 99.48% of the total forest area) (Fig. 4h), suggesting the high 490 

sensitivity of forests in this area to elevated CO2 concentration. 

 

Figure 8 (a) Temporal variation and (b) spatial distribution of the effects of CO2 fertilization on forest 

GPP.  
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 495 

Figure 4 Temporal variation of the effects of FCC (a), CC (c), LAI (e), and rising CO2 concentration (g) 

on annual subtropical forest GPP trends. Spatial distribution of the impacts of FCC (b), CC (d), LAI (f), 

and rising CO2 concentration (h) on subtropical forest GPP. Light grey in the study area indicates non-

forested areas. 

3.3.53.3.2 Comparison of the effects among FCC, CC, VSCLAI, and CO2 fertilization and the 500 

dominant drivers 

We compared how different drivers contribute to annual trends in different actual subtropical 

forest GPP (Fig. 95). For all forests together, the enhanced CO2 concentration made the largest 

contribution to the overall GPP enhancement, followed by VSCLAI, CC, and FCC (Fig. 9a5a). In 

addition to the CO2 fertilization effect, vegetation structure changeLAI was another most dominant 505 

contributor to actual subtropical forest GPP increase across the entire and different forest types (Fig. 5Fig. 
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9b-9e), especially the positive effect of LAIvegetation structure change almost counteracts the negative 

effect of forest cover change on ENF GPP. The forest cover change, as the dominant factor, mainly 

contributed to MXF GPP increase (Fig. 9e5e), but resulted incontributed to the ENF GPP decrease (Fig. 

9d5d). Climate change increased the broad-leaved forests (EBF and DBF) GPP (Fig. 9b 5b and 9c5c), 510 

but it decreased the ENF GPP and MXF GPP (Fig. 9d 5d and 9e5e). Overall, the EBF in the subtropical 

region of China has the highest carbon uptake potential in the regulation of the regional carbon cycle 

(Fig. 9b). Overall, the GPP of EBF in the subtropical region of China experienced the largest growth rate 

when compared with other forest types (Fig. 5b), and changes in GPP responses to different drivers 

depending on forest types. 515 
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Figure 9 5 Comparison of different drivers to trends in GPP for entire (a) and different forests (b-e). The 

overall effect denotes the combined effect of all driving factors; the VSC LAI effect indicates the impact 

of LAIvegetation structural change on subtropical forest GPP. FCC effect indicates the effect of forest 520 

cover change on GPP; CC-ALL, CC-PRE, CC-TEM, and CC-RAD respectively represent the impacts of 

all climatic factors, precipitation, temperature, and solar radiation on subtropical forest GPP variations.  

We also investigated the spatial distribution of the effects of dominant factors onfor subtropical 

forest GPP trends atover each grid cell level as illustrated in Fig. 106. It was observed that a great 

variation in the spatial distribution of the effects of dominant factors on subtropical forest GPP (Fig. 106). 525 

The CO2 fertilization (41.7%) and VSC LAI (35.7%) were the two dominant factors of subtropical forest 

GPP changes in most regions (Fig. 106). However, the CC (8.9%) was the dominant factor driving 

subtropical forest GPP to increase in the western and northern mountainous areas, and the FCC (4.6%) 

was the dominant driver of subtropical forest GPP decrease in the east. 
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 530 

Figure 10 6 Spatial distribution of the effects of dominant factors on subtropical forest GPP changes. (+) 

and (–) denote the positive and negative effects of these factors on GPP trends, respectively. 

4. Discussion 

4.1 The effects of the FCC, CC, VSCLAI, and CO2 fertilization on subtropical forest GPP 

variation 535 

Overall, the actual GPP in bothof the entire forest region and, as well as different forest types, 

displayed an increasing trend over the past two decades (Fig. 43), which is in line with many previous 

findings (Chen et al., 2021b; He et al., 2019; Li et al., 2022; Tong et al., 2018). The results also confirmed 

that the subtropical forests in China have a high carbon sequestration potential under the background of 

global change. However, there were obvious differences amongbetween these factors that contribute to 540 

the subtropical forest GPP enhancement. 

4.1.1 The effect of FCC on subtropical forest GPP 

In the past two decades, the Chinese government has made an enormous investment to implement 

some key ecological restoration programs to improve the forest areas, such as the Grain for Green 

Program (GGP, initiated in 2000) and the Yangtze and Pearl River Basin Shelterbelt programs (Viña et 545 

al., 2016; Zhang et al., 2022). The nationwide field samplings confirmed the increment of vegetation 

cover and carbon sink via these ecological projects since the end of the 20th century (Lu et al., 2018). 

Especially, the forest restoration hotspots were observed in the south slope of the Qinling Mountains 

(Chen et al., 2021b) and the southwest karst region (Tong et al., 2018) of China. In similar regions, we 

also observed that the positive effect of FCC on GPP increased (Fig. 5c4a-4b). This is due to the increase 550 

in the total area of EBF and MXF (Fig. 5a4a), which is are mainly converted from cropland, as shown in 

the land cover change matrix (Table S6). For example, after the conversion of cropland to MXF in the 

study area, GPP in the converted area increased by 0.16 Tg C between 2001 and 2018. 
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The previous studies (Chen et al., 2021a; Chen et al., 2021b; Zhang et al., 2022) usually 

considered different forests in China as a single forest type, which may ignore the negative effect of a 555 

specific forest type on forest GPP variations which may ignore the different effects of a specific forest 

type on forest GPP variations. In this study, we identified the positive effect (0.52 gC/m2/ year1.35 TgC 

year-1) of FCC on GPP for all subtropical forest types together. However, disagreements with previous 

results were also witnessed. The total area of the ENF was reducedlost obviously during the study period 

in eastern and southern regions, and most of the ENF was converted to MXF (19,040 km2) and cropland 560 

(13,100 km2) non-forest lands such as cropland and urban (Table S6), causing large parts of GPP to 

decrease (Fig. 5c4a). Therefore, this side effect may be overlookedgo unnoticed if different forest types 

are not considered. For example, the reduction in ENF GPP (-0.19 gC/m2/year)  mainly located in the 

eastern and southern regions was more than  offset by the GPP of EBF and MXF (total: 1.53 gC/m2/year) 

in most regions (Fig. 4a-b). Therefore, under the influence of FCC, the entire subtropical forest GPP 565 

showed an increasing trend (0.52 gC/m2/year) (Fig. 5b4a). Additionally, previous studies generally 

lumped the land cover change and land use change (LUCC) together and concluded that LUCC is a 

dominant driver for promoting the forest GPP increase in southern China. However, it may largely ignore 

the huge contribution of land use change (e.g., forest growth and regeneration) to GPP increase, even 

when forest cover is unchanged, thereby overstating the role of increased forest area in carbon 570 

sequestration in China (Chen et al., 2021a). For instance, Zhang et al. (2022) reported that the reduction 

of forest cover area instead induced GPP to increase during 2001-2010 in a similar study area, which 

actually benefited from the contribution of the forest growth (i.e., the increase of the LAI) due to 

reasonable forest management, instead of forest cover change. Therefore, distinguishing the relative 

contributions of land cover change and land use change to GPP is an essential task.  575 

4.1.2 The effect of CC on subtropical forest GPP  

Under the combined effect of all climatic factors, an overall increase (0.92 gC/m2/year) in 

subtropical forest GPP was observed in the study area (Fig. 6g4c). However, different climatic factors 

play different roles in regulating the subtropical forest GPP changes (Fig. 6a-6FS12). The precipitation 

increased the whole subtropical forest GPP of the entire study area (0.21 gC/m2/year) (Fig. 6As12a), 580 

especially in the northern and western mountains (Fig. S12b). This is because the slight increase in 

precipitation in these areas, without exceeding a certain threshold, can increase the soil water content and 

alleviate the impact of drought stress on forest growth, thereby facilitating forest photosynthesis and 

enhancing the GPP (He et al., 2019; Li et al., 2022). Temperature is another complex driver of forest 

GPP variation. Many studies suggested that an increment in temperature can benefit the vegetation 585 

productivity, or could reduce the vegetation productivity such as the effect of drought. Many studies 

suggested that an increment in temperature can benefit the vegetation productivity (Myneni, et al., 1997; 

Nemani, et al., 2003; Song et al., 2022), or could reduce the vegetation productivity due to increased 

VPD as a result of a high temperature increase (Yuan et al., 2019; Lopez et al., 2021). Our findings also 

proved that the effect of temperature on subtropical forest GPP varied spatially (Fig. S12d). Most of the 590 

region (59.7%) experienced a decline in subtropical forest GPP due to the effects of climate warming, 

while 40.3% of the subtropical forest GPP located in the western mountains displayed a significant 

upward trend (Fig. 6DS12d). This is because the increase in temperature in mountainous areas with high 
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altitudes can extend the growing season and enhance photosynthesis (Nemani et al., 2003; Piao et al., 

2005; Zhang et al., 2014), thereby improving the subtropical forest GPP. The magnitude of GPP increase 595 

in the small areas is significantly higher than in other regions because temperature, precipitation and 

radiation all contribute to GPP increase in these areas (Fig. S12). Although the area of GPP reduction 

due to climate change is relatively large, the magnitude of its impact is relatively small, resulting in 

smaller areas with higher magnitude offsetting the larger area of GPP decrease. On the contrary, the solar 

radiation in this study showed a downward trend (Fig. S9ES11e-f). As a direct limiting factor of 600 

vegetation growth, the reduction of solar radiation can directly affect forest photosynthesis, thus 

declining the subtropical forest GPP. As expected, solar radiation in this study declined GPP over 67.2% 

of GPP of the total area (Fig. 6e-6S12f), which may be associated with the recent increase in air pollution 

in China (Chen et al., 2021a; Zhang et al., 2014). The combined effects of these climatic factors caused 

a positive effect (0.92 gC/m2/year) on the entire subtropical forest GPP, while different forest types 605 

showed different responses to climate change (Fig. 6g4c). For example, climate change has a positive 

effect on evergreen broadleaved forest GPP, but the negative on evergreen needleleaved forest GPP 

climate change has a positive effect on the GPP of EBF, but a negative effect on the GPP of ENF. The 

main reason is that ENF is predominantly located in the eastern and western parts of the subtropics (Fig. 

1). In these areas, individual climatic factors (e.g., temperature, precipitation, and solar radiation) or their 610 

interactions caused the GPP of ENF to decrease (Fig. 4c-4d), and particularly the solar radiation declined 

significantly in the eastern region, which led to a decrease in the GPP of ENF in the east. The EBF is 

mainly distributed in the central and western regions (Fig. 1) where climate change mainly contributes 

to the increase of EBF GPP (Fig. 4c-4d). Therefore, future measures to combating combate and 

mitigating mitigate climate change should consider different forest types and their geographical locations. 615 

4.1.3 The effect of VSC LAI on subtropical forest GPP  

As the most important proxy of vegetation structure structural change (VSC) (Chen et al., 2019b; 

Chen et al., 2021a), LAI can reflect vegetation growth and significantly influence the carbon cycle. Since 

the 2000s, some key forest protection programs, including the Natural Forest Protection Project (NFPP, 

initiated in 1998), were carried out in the subtropical region of China (Chen et al., 2020). Due to forest 620 

protection and reasonable forest use and management with the support of ecological engineering, forest 

natural growth has improved increased the LAI (Chen et al., 2020) and further contributed to the GPP 

increase in China (Tong et al., 2018). A recent study showed that land-use management in China, 

especially forest management, has contributed significantly to earth greening, accounting for 25% of the 

increase in global LAI (Chen et al., 2019a). Chen et al. (2019b) estimated the effect of vegetation 625 

structural changeVSC using the index of LAI on global terrestrial carbon sink since the 1980s, and 

confirmed that VSC LAI significantly improved the carbon uptake over the global terrestrial ecosystems, . 

especially Especially, the VSC LAI also promoted the forest carbon sink in China’s subtropical region, 

but the contribution of different forest VSC LAI to GPP changes was not revealed. Evidence from our 

study demonstrated the VSC LAI as being the dominant contributor (3.79 gC/m2/year) to the GPP 630 

increment of the entire subtropical forests (Fig. 74e), and also identified the MXF were as the main 

contributors to the positive effect of VSC LAI on GPP changes. Recently, although some studies have 

also demonstrated the positive effects of VSC LAI on forest carbon sequestration in China (Chen et al., 
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2019b; Chen et al., 2020; Zhang et al., 2022), these studies did not isolate the independent effects of VSC 

LAI on different forest GPP. Currently, some ecological projects in China are aimed at protecting forests, 635 

others are aimed at increasing forest area. Therefore, it has been long debated on how different ecological 

projects impact ecosystem services in carbon sequestration (Chen et al., 2020; Yin and Yin, 2010; Yu et 

al., 2011). In this study, we designed an experiment to understand the individual impact of VSC LAI (i.e., 

only reflecting forest structure change) on subtropical forest GPP changes. The results showed that forest 

structure change more than forest cover change positively impacted GPP increases in the study area (Fig. 640 

4, Fig. 5Fig. 9a), implying that forest protection projects in the subtropical region of China may have 

greater carbon uptake potential. Consistent with our study period (2001–2018), Chen et al. (2021b) also 

reported an increase in vegetation carbon sequestration in China based on the two indicators of GPP and 

NPP, especially with an accelerated increase in carbon sequestration potential after 2010. They showed 

that GPP and NPP in China increased obviously at the rate of 49.1–53.1 TgC/yr2 and 22.4–24.9 TgC/yr2, 645 

respectively. The significant increase of subtropical forest GPP and NPP was highly attributed to human 

activities (e.g., ecological restoration projects) in southern and eastern China, especially the human-

induced NPP gains can offset the climate-induced NPP losses in southern China. 

4.1.4 The effect of CO2 fertilization on subtropical forest GPP  

The carbon sequestered by vegetation through photosynthesis in a given unit of space and time, 650 

i.e., GPP, forms the fundamental part of the carbon cycle (Monteith 1972). GPP is a crucial indicator for 

estimating the carbon sequestration capacity of ecosystems (Chen et al., 2021b; Ma et al., 2019), which 

reflects the largest carbon sequestered by plant photosynthesis (Christian et al., 2010; Xu et al., 2019). 

Moreover, GPP drives land carbon sequestration and partly offsets anthropogenic CO2 emission, which 

significantly affects global carbon balance and climate change (Running et al., 2008). In this study, we 655 

investigated the the impact of rising CO2 concentration on GPP in subtropical forests in China. Our 

results also suggested that CO2 fertilization was the major contributor to the overall forest GPP increase 

in China’s subtropical region (6.84 gC/m2/year8.23 TgC year-1) (Fig. 84g and Fig. 5). Elevated CO2 

concentration can enrich the intercellular CO2 and stimulate vegetation photosynthetic rates, thereby 

enhancing vegetation productivity. Recent studies suggested that the CO2 fertilization effect was the main 660 

driver in promoting global or regional vegetation productivity (Chen et al., 2022a; Chen et al., 2019b; 

Schimel et al., 2015; Xie et al., 2020). This was also confirmed by the results of free-air CO2 enrichment 

(FACE) experiments (Norby et al., 2010) and a previous study using terrestrial biosphere models, remote 

sensing-based methods, ecological optimality theory and an emergent constraint based on global carbon 

budget estimates (Keenan et al., 2023) This was also confirmed by observations of the globally 665 

distributed eddy covariance networks (Chen et al., 2022a; Zhan et al., 2022). The forests in China are 

characterized by relatively young stand age (< 40 years old) due to a large number of new plantations, 

and thus China’s forest carbon sequestration potential may continue to increase in the near future due to 

the rising CO2 concentration (Yao et al., 2018a). However, there is a lack of dependable and spatially 

explicit CO2 concentration data, especially in China, we only used the annual mean CO2 concentrations 670 

from the Mauna Loa Observatory to represent the spatially homogeneous CO2 concentrations in the study 

area and to drive the model, which may spatially overestimate or underestimate the effect of CO2 

fertilization on forest GPP (Peng et al., 2022), although it may reasonable to use spatially-uniform and 
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annual average CO2 concentration to the estimation of large-scale GPP (Chen et al., 2022a; Chen et al., 

2021a). 675 

4.2 Model and Uncertainties 

In the BEPS model, the LAI is separated into two parts including the LAI of sunlit and shaded 

leaves, which are adopted to calculate the photosynthesis at leaf level (sunlit and shaded leaves) based 

on the FvCB photosynthesis model (Farquhar et al., 1980), and further compute the GPP at canopy level 

by adding the photosynthesis rates of sunlit and shaded leaves. Moreover, the Ball-Berry equation (Ball 680 

et al., 1987) was used in the model to calculate the stomatal conductance of sunlit and shaded leaves, 

which influenced the intercellular CO2, the photosynthesis rate, and evapotranspiration (ET). Therefore, 

the LAI directly determined the allocation of light and water availability and influenced the gross 

photosynthesis rate of the sunlit and shaded leaves. The LAI may impact its contribution to GPP 

variations through these processes. The atmospheric CO2 concentration affects the intercellular CO2 685 

through the stomatal conductance, which, together with temperature and maximum carboxylation rate 

(Vcmax), determines the Rubisco-limited (𝐴𝑐) and RuBP-limited (𝐴𝑗) gross photosynthesis rate in the 

model. Over the past few decades, the CO2 concentrations continuously increased and reached the current 

level of over 400 ppm. Elevated atmospheric CO2 concentration can increase photosynthesis by 

accelerating the rate of carboxylation, thereby influencing the GPP changes. Additionally, solar radiation 690 

variability would directly influence the potential electron transport rate and thus regulate the RuBP-

limited (𝐴𝑗) gross photosynthetic rate. The temperature in the model directly impacts the Vcmax and the 

CO2 compensation point without dark respiration (𝛤), thereby determining the gross photosynthesis rate. 

The temperature positively affects the Vcmax when it is below the optimal temperature. However, when 

the temperature exceeds the optimal temperature, Vcmax will not continue to increase with the temperature. 695 

Therefore, changes in temperature in the model may have a positive or negative impact on GPP. 

It should be noted that changes in LAI could be influenced by both climatic factors and elevated 

atmospheric CO2 concentration (Chen et al., 2019; Chen et al., 2021a; Sun et al., 2022). Previous studies 

reported that the elevated atmospheric CO2 concentration was the dominant driver of global LAI increase, 

and there are also regional differences in the impact mechanism of climate factors on LAI changes (Zhu 700 

et al., 2016; Zhu et al., 2017), thereby influencing the GPP dynamics. Moreover, the interactions between 

these driving factors can also influence the LAI, and even the interactive impacts of these factors on LAI 

may offset each other. For instance, rising CO2 concentration and solar radiation can affect temperature 

and VPD (Chen et al., 2021a). High VPD leads to plants to close their stomata, resulting in lower 

intercellular CO2 concentrations in the leaves, which reduces the rate of photosynthesis (Yuan et al., 705 

2019). Additionally, changes in LAI can feed back to the climate through biogeochemical and 

biogeophysical processes (Li et al., 2023). There is a bidirectional interaction between vegetation and the 

atmosphere, and the relationship between vegetation dynamics and driving factors is complicated. The 

current methods used in this study cannot elucidate the complex interactions of the climate factors and 

elevated CO2 concentration on LAI changes, which may bring some uncertainties to our results. 710 

In this study, we used the process-based BEPS model to simulate subtropical forest GPP of the 

subtropical regionChina. We first used the Vcmax25 product retrieved from remote sensing data (i.e., leaf 
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chlorophyll content) to replace the constant value of the Vcmax25 in the model. Wang et al. (2019), Luo et 

al. (2018), and Croft et al. (2017) indicated that the use of the remotely sensed leaf chlorophyll content 

to invert Vcmax25 can improve the accuracy of GPP simulation in evergreen conifer forests and a temperate 715 

deciduous forest. Our results suggested that the BEPS model with spatial varying Vcmax25 values can also 

reach reasonable simulation of subtropical forest GPP over spatiotemporal scales (Fig. 2, Fig. S1-S6). 

Incorporating the spatial variation of the Vcmax25 inverted by remotely sensed data into the process-based 

model does not require its pre-calibration (Chen et al., 2022b), thus it has great potential to be applied to 

areas with few flux sites, such as China’s subtropical forest area. However, the Vcmax25  retrieved from 720 

remote sensing data is still in the early developing stage (Chen et al., 2022b; Luo et al., 2019). For 

example, the Vcmax25 product used in this study was mainly generated by the MODIS surface reflectance, 

thus the data quality of the surface reflectance may cause the uncertainty in Vcmax25 product. The 

uncertainties in MODIS reflectance datasets can arise from sensor calibration issues, cloud contamination, 

atmospheric correction errors, etc. Changes in the reflectance could result in large changes in the 725 

modelled chlorophyll values, thereby affecting the Vcmax25 product. Additionally, the Vcmax25 was 

produced by a semi-mechanistic model (Friend., 1995), and the key parameter 𝐾𝑐𝑎𝑡
25  (the Rubisco turnover 

rate at 25 ◦C) in the model  would bring uncertainties in modeling Vcmax25, because current ground-based 

data are still rarely used for calibration of this parameter and validation of the Vcmax25 products (Lu et al., 

2022; Chen et al., 2022b). and the high accuracy of spatiotemporal variability of Vcmax25 products at 730 

global and regional scales should be further explored. 

In the BEPS model, the LAI is the most important input for carbon fluxes simulation. Previous 

studies reported large differences in trend and magnitude between existing LAI products over the globe 

(Fang et al., 2019; Jiang et al., 2017; Liu et al., 2018). Therefore, only the GLASS LAI was used in this 

study to simulate GPP, which may cause some uncertainty. However, Liu et al. (2018) estimated the 735 

accuracy of different satellite-derived LAI products for the simulation of carbon and water fluxes in 

China’s forests based on the BEPS model, and proved that GLASS LAI showed higher accuracy in 

simulating forest GPP than other LAI products (e.g., FSGOM LAI and MODIS LAI). The consistent 

conclusions also have been reported in other studies (Chen et al., 2021a; Jiang et al., 2017; Xie et al., 

2019). Therefore, it was reasonable to use GLASS LAI as input to model forest GPP in this study.  740 

There are large differences between the available land cover data, such as ESA CCI land cover 

data (ESA, 2017) and MODIS land cover data (Sulla-Menashe et al., 2019), which were mainly caused 

by the discrepancies in the definition of forest and divergent data sources (Li et al., 2016; Magdon et al., 

2014). Eventually, the use of different land cover data may also lead to uncertainty in the estimate of the 

regional total GPP. The satellite-derived ESA CCI land cover used in this study may suffer from cloud 745 

contamination, satellite signal aliasing, and uncertainty from algorithmic flaws that affect the accuracy 

of forest cover mapping (Dong et al., 2012). Yang et al. (2017b) systematically evaluated the accuracy 

of different land cover data in China, showing that ESA CCI data has higher accuracy, especially 

compared to the commonly used MODIS land cover data. Currently, remote sensing is still considered 

to be the only effective tool for land cover mapping at large scales, and more precise remote sensing is 750 

still needed in the future. Besides, assessing the uncertainties and discrepancies in carbon flux simulations 
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from different land cover data will be the next research work 

5. Conclusions 

In this study, the BEPS model was used to simulate the subtropical forest GPP. We examined the 

performance of the BEPS model in simulating subtropical forest GPP, which can reach a high accuracy 755 

of GPP simulation in the subtropical forest region of China. A significant increasing trend (20.67 

gC/m2/year, p < 0.001) was detected in the subtropical forest GPP over the past two decades, indicating 

that sustained increase in the carbon sink potential of the subtropical forests under the background of 

global change, especially the evergreen broadleaved forest (EBF)EBF is being the biggest contributor 

(28.24 gC/m2/year14.78 TgC year-1, p < 0.001) to total GPP enhancement of the entire subtropical forests. 760 

We designed different groups of simulations to examine the individual and combined impacts of 

FCCforest cover change (FCC), CCclimate change (CC), VSCleaf area index (LAI), and CO2 fertilization 

on inter-annual trends in subtropical forest GPP. There are obvious differences in drivers of different 

subtropical forest GPP variations.  

Although the CO2 fertilization effect is the largest contributor to the overall subtropical forest 765 

GPP increase, the VSC LAI was another most important and not negligible contributor to subtropical 

forest GPP growth in China. The FCC mainly contributed to the mixed forest (MXF)MXF GPP increase 

(1.14 gC/m2/year2.15 TgC year-1, p < 0.001) and EBF GPP (0.39 gC/m2/year, p < 0.001) increase, but 

induced the evergreen needle-leaved forest (ENF)ENF GPP to decrease (-0.19 gC/m2/year1.92 TgC year-

1, p < 0.001). The CC also increased the EBF and deciduous broadleaved forest (DBF)DBF GPP, but it 770 

decreased the ENF and MXF GPP. Especially, the forest EBF and DBF GPP in this region are very 

sensitive (p < 0.05) to CC. Therefore, we emphasized that the mitigation of climate change and carbon 

emissions through forests should consider their different types. Furthermore, our results highlighted the 

VSCLAI effect, which was greater than the effectsthat of FCC, was the important driver of the subtropical 

forest GPP enhancement, suggesting that forest use and management have a more significant positive 775 

impact on GPP increase than forest cover change in the study area. It may attribute to the implementation 

of China’s forest protection and restoration programs. Overall, with the support of the government's 

ecological programs, rational solutions for managing and improving forest structure and function, rather 

than continuously increasing forest area, may facilitate and maintain the sustainability of the carbon 

sequestration potential in the study area. 780 
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