Point-to-point reply

Referee #1

Referee comment	Authors' response	Authors' changes
Define 'feature importance'.	Thank you for this suggestion. Yes, we	I.50-53: "The contribution of different explanatory variables, such
Clearly state what you refer to with 'the	refer indeed to the importance for model	as greenness measures, photosynthetically active radiation (PAR),
importance of features' or 'the	accuracy. We will include a clear definition	land surface temperature (LST), soil moisture (SM), and
contribution of variables'. It seems you	of variable importance in the introduction	meteorological variables (vapor pressure deficit, temperature,
refer to the contribution to/ the	of the manuscript. Furthermore, we will	precipitation) to the accuracy of the GPP predictions (hereafter
importance for model accuracy, but this	make sure that the terminology is	referred to as variable importance) has not been conclusively
only becomes clear after having read the	consistent throughout the manuscript. We	clarified."
complete manuscript. In several instances	assume you are referring to I.241, I.491	
it is not clear what is meant, it could also	and hope that our changes will resolve	I.245-247: "The explanatory variable sets can provide information
be the contribution to/the importance for	these clarity issues.	about the importance of the input features on the performance of
the predicted GPP value itself, as opposed		the upscaling frameworks."
to its accuracy. Examples of instances with		
need for clarification are in paragraph		I.502-503: "AutoML is a powerful approach for assessing the
l.49-64, l.210, 415.		importance of the variables on model performance since it selects
		the optimal base models and constructs optimal pipelines
		independently for each feature set under consideration."
Do you perform any quality checks on the	We will reformulate the paragraph on	I.142-152: "We filtered the data for poor-quality pixels, performed
MODIS products before aggregating to	quality checks and gap filling (l.134-142)	gap-filling, and matched spatial and temporal resolutions. We
monthly and 0.05deg? Data quality is	to make it clearer and more	used NBAR (MCD43C4 v006), where more than 75 % of high-
another very important factor	understandable.	resolution NBAR pixels were available from the full BRDF
determining the accuracy of model		inversion. We selected LST data by applying the quality control
results, so information whether and if so,		mask and where the average emissivity error was less than 0.02.
how this has been handled in the work is		LAI and FPAR were used when retrieved using the main algorithm
necessary to report in the manuscript.		with or without saturation. Data gaps were filled at the native
How do you handle data gaps or low		resolution, similar to the procedure of Walther et al. (2022). We
sample availability within a month?		filled gaps of less or equal five days (8 days for four-day resolution
		datasets) with the average of a fifteen-days moving window for
		high-frequency datasets (NBAR, LAI, FPAR, BESS_Rad, CSIF). We
		gap-filled LST with a 9-day moving window because we observed

		higher variations. For SM, we used the moving window median for short gaps and the mean seasonal cycle for long gaps. Finally, we resampled all datasets to 0.05 ° spatial resolution and monthly temporal resolution. Coarser-resolution datasets were resampled using a nearest neighbor approach, while high-resolution data was down-sampled using the conservative remapping method (Jones, 1999)."
I still wonder what potential consequences it has that many of the features included are model output themselves, partly driven by very similar remotely sensed data sets like in the feature set. Any speculations or justification?	The features used for the modeled datasets, such as CSIF and ET, largely overlap with the features used to model GPP in this study. CSIF draws from the MODIS NBAR product whereas ET is using MODIS LST, LAI, albedo, ASTER surface emissivity, land cover (Hansen), and a GTOPO DEM. Despite these overlaps, they incorporate information that is not provided to our model. The CSIF dataset is trained on OCO-2 SIF data, allowing their model to establish a functional relationship specifically between NBAR and SIF. The ET data, on the other hand, is modeled from a process-based model, which includes domain knowledge that may be challenging for our ML approach to learn. With ideal model capabilities and scalable training data, we would expect a redundancy of these input data since these relationships would be learned inherently by the ML models just from the MODIS input features. However, given that the ML models might not capture all relationships and that they are trained on	I.134-140: "Many of the explanatory variables are themselves datasets that have been modeled from MODIS data. For instance, SIF was predicted from MODIS NBAR using a feed-forward neural network, trained on OCO-2 SIF retrievals (Zhang et al., 2018). ET estimates were modeled by a coupled land-surface and atmospheric boundary layer model (Atmosphere Land Exchange Inverse, ALEXI), which used MODIS LST and LAI as inputs, among others (Hain and Anderson, 2017). Although their input data largely overlap with the inputs to our model, we expected additional improvements from including these datasets due to the domain knowledge of their models, which would otherwise be difficult to replicate in this study by solely relying on MODIS data and limited GPP measurements."

	limited GPP measurements (difference in	
	scale), the datasets might provide	
	additional information that are useful for	
	the GPP modeling. The variable	
	importance analysis provides further	
	insights. We will also include a statement	
	highlighting this matter.	
What is the reason for leaving out the	We will provide more clarity about the use	Tab. 1,2: Removed the VIs
vegetation indices from the RS and	of the VIs in the manuscript. While VIs	Fig. 3-6: Removed RS minimal +VI
RSmeteo feature sets?	slightly improved the performance of the	
	RS minimal datasets, we could not detect	I.232-241: "We organized the explanatory variables into three
	any performance improvements in the	sets to determine their impact on GPP predictions within different
	other datasets. However, this is not one of	AutoML frameworks (Tramontana et al., 2016; Joiner and Yoshida,
	our main findings in this study and might	2020). Each set consisted of different features that could explain
	confuse the reader more than provide	the variation in GPP. The minimal set of remotely sensed variables
	insights. For better understanding, we will	(RS minimal) included surface reflectance from seven MODIS
	not consider the VI variables as a separate	visible to infrared bands and PAR, which largely reflect the ability
	variable set anymore and instead just	of the vegetation canopy to intercept solar radiation for
	mention the finding concerning the VIs	photosynthesis. The "RS" set included all remotely sensed
	directly in the text and in an additional	variables and their products. Notably, compared to the "RS
	table in the appendix.	minimal" set, the "RS" set also included land surface temperature,
		evapotranspiration, and soil moisture, which provide an additional
		link to vegetation heat and water stress (Green et al., 2022;
		Stocker et al., 2018). Finally, the "RS meteo" set included all
		remotely sensed variables and, in addition, meteorological
		variables from the ERA5-Land reanalysis (see Table 2).
		Additionally, we replaced the MODIS reflectance bands, LAI, FPAR,
		and land cover products with their native 500 m resolution data in
		the "RS" set to evaluate the impact of satellite data spatial
		resolution on GPP estimation."
		I.346-347: "In addition, we evaluated whether vegetation indices
		(VI) could improve the performance of the variable sets, but no
		(vi) could improve the performance of the variable sets, but no

		improvements were found beyond the "RS minimal" dataset (Tab. A1)."
		Tab. A1: Added an additional table of mean r2 values to the appendix for the repeated cross-validations, including the results with VIs.
Please clarify which data product versions were used for the ESA CCI soil moisture and for the Fluxcom (I.250 states Fluxcom v6, so does this refer to the Fluxcom RSonly data from MODIS c006?).	We used ESA CCI v06.1 (see Table 1) and FluxCom v6, RS only (see l.284). This refers to RS only from MODIS collection 006. We will highlight this in the text.	I.287-289: "We produced global GPP and standard error maps at a resolution of 0.05° in monthly frequency from 2001 to 2020, which we compared with the two ML-based reference datasets FluxCom v6 (RS only, based on data from the MODIS collection 6) (Jung et al., 2020) and FluxSat (Joiner and Yoshida, 2020)."
How was the R2 computed (http://www.jstor.org/stable/2683704)?	Thank you for raising this matter. Our R2 definition aligns with the Nash-Sutcliffe model efficiency (I.258), which corresponds to Eq. 1 in Kvalseth (1985). We will include an equation in the appendix.	Eq. A1: $r^{2} = 1 - \frac{\sum_{i=1}^{N} (y_{i} - \hat{y}_{i})^{2}}{\sum_{i=1}^{N} (y_{i} - \bar{y})^{2}}$
Figure 4 and 5: Do these distributions represent 30 (cross-validation rounds) R2 values computed across all sites, or 30 (cross-validation rounds) x 245 (sites) R2 values computed for each site and shown all together? For spatial variability I understand it is always 30, right? Similarly, the question on the grouping for the R2 in	Thank you for raising this question. The graphs show the distribution of the R2- values from the 30 repeated cross- validations (hence, a distribution of 30 R2- values, the first part of your question). Within each cross-validation, the R2 is calculated over the entire prediction, in which all sites are merged. This applies to	I.302-304 (Caption fig. 4): "Overall framework performance, expressed as the coefficient of determination (r ²) for the candidate frameworks and the three different explanatory variable sets. Each distribution belongs to one framework and one set of explanatory variables and results from the repeated cross-validations, for each of which one r ² value is calculated over the predictions at all sites."
Fig.7.	total, trend, seasonality, anomalies, and also spatial variability. The only difference for spatial variability is, that we compare averages instead of temporal time series components. We will formulate the corresponding text passages more clear.	I.313-317 (Caption fig. 5): "Evaluation of the temporally and spatially decomposed time series expressed as the coefficient of determination (r^2) . Each distribution belongs to one framework and one set of explanatory variables and results from the repeated cross-validations, for each of which one r^2 value is calculated over the predictions at all sites. The r^2 values for seasonality and anomalies were calculated from seasonal cycles

		 and anomalies at monthly granularity, while those for trend and across-site variability were calculated from one trend or mean value per site, respectively." I.365-366 (Caption fig. 7): "The distribution results from the repeated cross-validations, for each of which one r² value is
		calculated over the predictions at all sites."
 I. 485-490: Would you expect more (dummy) training data or feature selection enabled to be more promising for higher model accuracy? I.14/15: These are some, but not all choices that affect the accuracy of the regression model. 	We expect higher robustness of the model predictions and the evaluation metrics from more and better-balanced training data. We will highlight that these are just some aspects.	 I.499-500: "More training data with better geographic representation could help mitigate these shortcomings and could lead to more robust predictions, model evaluations, and potentially higher model performance." I.13-15: "However, the accuracy of the regression model can be affected by uncertainties introduced by model selection, parameterization, and choice of explanatory features, among
		others."
Discussion on light-use-efficiency is unclear to me given the monthly temporal scale of interest in this study. Line 428, 436 contrast instantaneous GPP reductions due to environmental stress. I suggest to rephrase this paragraph and give the (in my opinion) more reasonable explanation of the difference between site level and reanalysis meteorology more visibility.	Thank you for this suggestion. We are a bit unclear as of to what you refer to by l. 428 and l. 436. We assume you are referring to l. 507 and l. 515 and hope that our changes satisfactorily address your concerns. We will reformulate this paragraph to highlight the scale mismatch better as a possible explanation.	I.522-532: "Including the meteorological explanatory features (ERA5-Land) in the training data does not significantly improve the prediction quality for any of the frameworks. This implies that meteorological data may not contain additional information that the machine learning frameworks in this study can effectively use to predict GPP. A possible explanation could be the mismatch between reanalysis and site meteorology. The coarse resolution and large uncertainties of the reanalysis data may result in a poor representation of the flux tower footprints, which are often smaller than one pixel of the reanalysis data, leading to uncertainties in the modeling. For example, Joiner and Yoshida (2020) showed that using site-measured meteorological data instead of reanalyzed data significantly improved the performance of GPP predictions. At the monthly scale, the "RS" variable set may already encode information about the instantaneous environmental stress from adverse meteorological conditions through, for example, LST, ET, and soil moisture, which are important controls on GPP (Bloomfield et al., 2023). Further

Discussion of spatial resolution I. 441-445:	We assume you refer to I.551-556. We will	studies could potentially assess these uncertainties by comparing models trained with tower meteorological data to gridded reanalysis datasets." I.563-565: "These results underscore the importance of spatial
To me this paragraph suggests between the lines that training such models by pairing eddy-covariance data with 0.05 or 0.25 pixels as done in this work is the state-of-the-art. It is not. And this could become more clear. For some variables there is no other option because data are not available at finer spatial resolution, this is clear. But the authors chose to take the coarser pixels as the normal standard, and I suggest to make this difference between author choice and state-of-the- art clear.	highlight that the spatial resolution in this study is a result of the authors' choice and reformulate the paragraph less suggestive.	resolution and suggest the use of data with a resolution that better represents smaller landscape features and flux tower footprints, in contrast to our initial choice of 0.05 ° resolution in this study. (Xiao et al., 2008; Yu et al., 2018; Chu et al., 2021)."

Referee #2

Referee comment	Authors' response	Authors' changes
Line 129: I think these variables could use	We will include citations and refer to the	I.134-140: "Many of the explanatory variables are themselves
a little more explanation plus citations. My	variables' modeled background. SIF is	datasets that have been modeled from MODIS data. For instance,
reasoning here is, as I mentioned in my	modeled from MODIS NBAR and OCO-2	SIF was predicted from MODIS NBAR using a feed-forward neural
previous comments, that several of these	SIF retrievals, the former of which is also	network, trained on OCO-2 SIF retrievals (Zhang et al., 2018). ET
variables (SIF and ET) are themselves	an input to our GPP models. ET is	estimates were modeled by a coupled land-surface and
modeled from remote sensing data, and I	modeled from MODIS day and nighttime	atmospheric boundary layer model (Atmosphere Land Exchange
think that is important context for how	LST, MODIS LAI, MODIS albedo, ASTER	Inverse, ALEXI), which used MODIS LST and LAI as inputs, among
they are interpreted. The SIF product used	surface emissivity, land cover (Hansen),	others (Hain and Anderson, 2017). Although their input data largely
here, for example, is not truly a measured	and a GTOPO DEM, hence overlapping in	overlaps with the inputs to our model, we expected additional
SIF signal but a modeled SIF based solely	terms of LAI and LST. We will provide	improvements from including these datasets due to the domain
on surface reflectance (the NBAR	more context on these variables.	knowledge of their models, which would otherwise be difficult to
product). In my opinion, it's important to		

make that clearer here since I definitely		replicate in this study by solely relying on MODIS data and limited
think it affects the interpretation of its		GPP measurements."
importance as a variable.		
Line 137: I think just a little more detail	We performed the down sampling using	I.149-152: "Finally, we resampled all datasets to 0.05 ° spatial
about the resampling could be helpful. For	the conservative remapping method, and	resolution and monthly temporal resolution. Coarser-resolution
products with finer resolutions than 0.05	the up sampling using nearest neighbor.	datasets were resampled using a nearest neighbor approach,
degrees, were all pixels within the 0.05	We will include this in the manuscript.	while high-resolution data was down-sampled using the
degree cell averaged together? For those		conservative remapping method (Jones, 1999)."
with coarser resolutions, how were they		
down-scaled to 0.05 degrees?		
Lines 331-332, 501-502, and 626-628: I	Thank you for this valid point. We will	I.511-520: "The frameworks' performance depends significantly
think this is slightly overstating the	rephrase the corresponding paragraph	on the choice of predictive features on which they are trained.
improvement of the RS set over the RS-	and make it less overstating.	The results show that while the seven NBAR bands and PAR from
minimal and RS-minimal+VI sets. Per 331-		the "RS minimal" variable set provide the model with sufficient
332, the full RS set only added 2%		information for a GPP prediction, the full set of "RS" variables
variance explained, so I think it's too		adds additional information that all the frameworks can exploit.
strong to say that the NBAR + PAR "did not		The additional variables in the "RS" variable set, such as SIF, LAI,
provide the models with sufficient		FPAR, ET, LST, SM, and plant function type, appear to include
information." I think it would be more		important environmental forcings and structural variables that
accurate to say that NBAR + PAR is		provide a marginal advantage over the variables on only
responsible for the vast majority of model		vegetation structure and radiation in "RS minimal" (Green et al.,
skill but the remaining variables can add		2019; Stocker et al., 2019; Xu et al., 2020)."
some additional information on the		
margins.		I.633-637: "We found that remotely sensed (RS) explanatory
		variables provided the best results in combination with the
		investigated frameworks. While only relying on the MODIS NBAR
		reflectance bands and PAR ("RS minimal") provided the models
		with sufficient information for GPP prediction, considering other
		proxies of photosynthetic activity and canopy structure, such as
		solar-induced fluorescence, leaf area index, and fraction of
		absorbed photosynthetic activity, increased the performance of all
		models."

Community comment #1

Referee comment	Authors' response	Authors' changes
I have carefully examined the authors'	Thank you for your review. We	
responses to the previous comments and	appreciated your suggestions, which have	
the changes made in the revised	greatly improved this manuscript.	
manuscript. The authors have thoughtfully		
addressed the concerns raised, enhancing		
the quality of the work. I congratulate the		
authors on their diligent efforts and		
appreciate the opportunity to review this		
manuscript. Based on the revisions made,		
I recommend the manuscript be accepted		
for publication.		