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Abstract.  

Estimating gross primary productivity (GPP) over space and time is fundamental for understanding the response of the 10 

terrestrial biosphere to climate change. Eddy covariance flux towers provide in situ estimates of GPP at the ecosystem scale, 

but their sparse geographical distribution limits larger-scale inference. Machine learning (ML) techniques have been used to 

address this problem by extrapolating local GPP measurements over space using satellite remote sensing data. However, the 

accuracy of the regression model can be affected by uncertainties introduced by model selection, parameterization, and choice 

of explanatory features, among others. Recent advances in automated ML (AutoML) provide a novel automated way to select 15 

and synthesize different ML models. In this work, we explore the potential of AutoML by training three major AutoML 

frameworks on eddy-covariance measurements of GPP at 243 globally distributed sites. We compared their ability to predict 

GPP and its spatial and temporal variability based on different sets of remote sensing explanatory variables. Explanatory 

variables from only MODIS surface reflectance data and photosynthetically active radiation explained over 70 % of the 

monthly variability in GPP, while satellite-derived proxies for canopy structure, photosynthetic activity, environmental 20 

stressors, and meteorological variables from reanalysis (ERA5-Land) further improved the frameworks' predictive ability. We 

found that the AutoML framework AutoSklearn consistently outperformed other AutoML frameworks as well as a classical 

Random Forest regressor in predicting GPP, but with small performance differences, reaching an r2 of up to 0.75. We deployed 

the best-performing framework to generate global wall-to-wall maps highlighting GPP patterns in good agreement with 

satellite-derived reference data. This research benchmarks the application of AutoML in GPP estimation and assesses its 25 

potential and limitations in quantifying global photosynthetic activity. 

1 Introduction 

Terrestrial gross primary productivity (GPP) describes the gross photosynthetic assimilation of atmospheric carbon dioxide 

(CO2) at the ecosystem scale. As the largest flux in the global carbon cycle, GPP plays a vital role in maintaining ecosystem 

functions and sustaining human well-being (Beer et al., 2010; Friedlingstein et al., 2019). In addition, the dynamics of GPP 30 

directly affect the growth rate of atmospheric CO2 concentrations and ecosystem feedbacks to the climate system. Therefore, 

accurate estimates of the magnitude and spatiotemporal patterns of terrestrial GPP are essential for understanding ecosystem 

carbon cycling and developing effective climate change mitigation and adaptation strategies (Keenan et al., 2016; Canadell et 

al., 2021). 

 35 

While in situ GPP estimates are available from methods such as the eddy covariance technique, global spatiotemporal patterns 

are challenging to estimate due to the lack of large-scale observations and the high uncertainty of process-based vegetation 

models (Anav et al., 2015). Fluxes captured by the eddy covariance measurements are limited to the area within the tower's 

footprint, typically ranging from several hundred meters to several kilometers (Gong et al., 2009). Therefore, various data-
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driven methods such as machine learning (ML) have been used to scale up in situ GPP measurements from flux tower networks 40 

to a global scale. These ML models use independent globally available explanatory data from remote sensing or other 

continuous model outputs to infer a functional relationship to the GPP measurements, which can be used to predict GPP in 

areas beyond the limited flux tower footprints. Commonly applied models include tree-based methods (Bodesheim et al., 2018; 

Wei et al., 2017; Beer et al., 2010; Jung et al., 2011), artificial neural networks (Joiner and Yoshida, 2020; Beer et al., 2010; 

Papale et al., 2015), linear regressors, kernel methods, and ensembles thereof (Tramontana et al., 2016). Despite the wide 45 

variety of ML models applied, a high degree of uncertainty remains in the selection of appropriate features, algorithms, and 

configurations (Reichstein et al., 2019). The data-based models typically perform well in estimating seasonal GPP patterns but 

show limitations in predicting trends and interannual variability (Tramontana et al., 2016). 

 

The contribution importance of different explanatory variables, such as greenness measures, photosynthetically active radiation 50 

(PAR), land surface temperature (LST), soil moisture (SM), and meteorological variables (vapor pressure deficit, temperature, 

precipitation) to the accuracy of the GPP predictions (hereafter referred to as variable importance)in controlling GPP has not 

been conclusively clarified. Both Tramontana et al. (2016) and Joiner and Yoshida (2020) confirmed the dominant control of 

remotely sensed greenness on the ML prediction of GPP at daily to interannual time scales, with meteorological variables 

contributing marginally. Conversely, Stocker et al. (2018) found an important control of site-measured soil moisture on light 55 

use efficiency (LUE) and GPP at daily granularity under drought conditions at flux sites. Furthermore, Dannenberg et al. 

(2023) showed that including satellite-derived soil moisture and LST data significantly improved the estimation of monthly 

GPP in drylands over the western US. However, a comprehensive assessment of the importance of meteorological and satellite-

derived variables beyond vegetation structure at the global scale is lacking. Given the ubiquitous intercorrelation among remote 

sensing and meteorological variables, the importance of different explanatory variables has typically been accomplished by 60 

training separate models on different input combinations (Tramontana et al., 2016). Yet, ML model performance can vary 

strongly depending on the dimension of input features, hyperparameter tuning (the search for the optimal parameters that 

control the learning process of an ML model), and even the specific type of ML model employed (Raschka, 2020; Cawley and 

Talbot, 2010). Therefore, a unified ML framework that concurrently optimizes model choice and parameterization is required 

to facilitate a balanced assessment of driver importance in global GPP upscaling. 65 

 

Navigating the search space created by the choice of model architecture, hyperparameters, and preprocessing steps to find a 

suitable combination for GPP prediction is a resource-intensive task. Therefore, researchers often evaluate a selection of 

combinations that they expect to perform well, thereby potentially missing out on the optimal solution (Karmaker et al., 2021). 

Automated machine learning (AutoML) aims to overcome these challenges through an autonomous approach. By evaluating 70 

different combinations of preprocessing steps, candidate ML models, and hyperparameters, AutoML aims to find the optimal 

ML configuration for the given ML problem and available training data. In addition, it leverages the unique strengths of 

different algorithms by using ensembling or stacking techniques. At the time of this study, AutoML is still under ongoing 

development but has recently received increasing attention in the environmental sciences and beyond. It has shown superior 

performance to classical ML, for example, in modeling water nutrient concentrations (Kim et al., 2020), dam water inflows 75 

(Lee et al., 2023), and water quality prediction (Madni et al., 2023), and similar performance to reference models for climate 

zone classification (Traoré et al., 2021) and drought forecasts (Duan and Zhang, 2022). Other use cases include predicting 

landslide hazards (Qi et al., 2021), root zone soil moisture (Babaeian et al., 2021), or GPP at a single flux tower site (Guevara-

Escobar et al., 2021). 

 80 

In this study, we investigate if and how AutoML can improve global GPP upscaling at the monthly frequency from in situ 

measurements using globally available explanatory variables. We examine the three frameworks AutoSklearn, H2O AutoML, 
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and AutoGluon in this study since they have shown outstanding performance in benchmarks and Kaggle competitions (Guyon 

et al., 2019; Erickson et al., 2020; Truong et al., 2019; LeDell and Poirier, 2020; Feurer et al., 2018). All frameworks differ in 

their architecture and approach to selecting ML algorithms. We evaluate their selection of processing and ML algorithms based 85 

on site-level measurements. In addition, we evaluate the variable importance, i.e., the contribution of various remotely sensed 

vegetation structure variables, proxies for photosynthetic activity and environmental stress (i.e., greenness, land surface 

temperature, soil moisture, evapotranspiration), and meteorological factors, for to the performance of the AutoML frameworks. 

The impacts of the spatial resolution of remote sensing data on GPP estimation are further assessed. Finally, we upscale our 

results to global wall-to-wall GPP maps and evaluate their spatio-temporal patterns and associated uncertainties. 90 

2 Methods and materials 

2.1 Data 

2.1.1 Eddy covariance measurements 

We merged eddy covariance datasets from FLUXNET 2015 (Pastorello et al., 2020), AmeriFlux FLUXNET 

(https://ameriflux.lbl.gov/data/flux-data-products), and ICOS Warm Winter 2020 (ICOS, 2020) to obtain a large number of 95 

monthly GPP estimates from net ecosystem exchange (NEE) measurements. Where sites were available in more than one 

source, we kept the most recent record. The data quality control followed previous studies (Tramontana et al., 2016; Jung et 

al., 2011; Joiner et al., 2018). We considered monthly values where at least 80% of the NEE data came from actual 

measurements or were high-quality gap-filled. We used the GPP derived from NEE using the night-time partitioning approach 

(Reichstein et al., 2005), and negative GPP outliers were truncated at -1 gC m-2 d-1 average daily GPP. 100 

 

The preprocessing resulted in a dataset of 243 sites and 18,218 site-months, ranging from 2001 to 2020, and serving as the 

ground truth for the evaluation of site-level GPP predictions (Fig. 1). The distribution of sites and site-months shows strong 

biases in region, biome, and climate representation (Fig. 2). We reorganized the land cover classes, as individual land cover 

classes related to shrublands and savannas rarely occurred. Therefore, "open shrublands" and "closed shrublands" were 105 

merged, as well as "savannas" and "woody savannas", resulting in the following land cover according to the International 

Geosphere–Biosphere Programme (IGBP)(International Geosphere–Biosphere Programme, 2024): croplands (CRO), 

shrublands (SH), deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), 

grasslands (GRA), mixed forests (MF), savannas (SAV), permanent wetlands (WET), and the non-vegetated classes of 

permanent snow and ice (SNO), water bodies (WAT), and barren soil (BAR). 110 

 

Figure 1: Locations of the measurement sites. The marker size represents the number of monthly measurements available at the 
respective location. The color stands for the land cover class reported at the site and comprises croplands (CRO), shrublands (SH), 
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deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), mixed 
forests (MF), savannas (SAV), and permanent wetlands (WET). 115 

 

Figure 2: Standardized number of sites-months and global area of each land cover type, excluding land covers without any GPP 
measurements. The number of sites-months is shown above their respective columns. The land cover classes reported follow the 
IGBP classification (International Geosphere–Biosphere Programme, 2024) and comprise croplands (CRO), shrublands (SH), 
deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), mixed 120 
forests (MF), savannas (SAV), and permanent wetlands (WET). 

2.1.2 Explanatory variables 

Our goal was to provide as many explanatory variables as possible and let the frameworks decide which to use. We obtained 

gridded explanatory variables from various sources of remotely sensed and modeled data with global coverage. The data 

allowed us to evaluate locally by sampling at the tower locations and to predict on a global wall-to-wall scale. These variables 125 

include products based on Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, such as nadir-BRDF 

adjusted reflectances (NBAR) from optical to infrared wavelengths, several derived vegetation indices (VI), the fraction of 

photosynthetically active radiation (FPAR), leaf area index (LAI), day and night surface temperature, and land cover. We also 

included the photosynthetically active radiation (PAR), diffuse PAR, and the surface downwelling shortwave flux (RSDN) 

from BESS_Rad, as well as solar-induced fluorescence (SIF), evapotranspiration (ET), and soil moisture (SM). In addition, 130 

we used meteorological data from the ERA5-Land reanalysis, including precipitation, temperature, and vapor pressure deficit 

(VPD). We applied a three-month lag in precipitation to account for water availability. Table 1 shows an overview of all 

explanatory variables. 

 

Many of the explanatory variables are themselves datasets that have been modeled from MODIS data. For instance, SIF was 135 

predicted from MODIS NBAR using a feed-forward neural network trained on OCO-2 SIF retrievals (Zhang et al., 2018). ET 

estimates were modeled by a coupled land-surface and atmospheric boundary layer model (Atmosphere Land Exchange 

Inverse, ALEXI), which used MODIS LST and LAI as inputs, among others (Hain and Anderson, 2017). Although their input 

data largely overlap with the inputs to our model, we expected additional improvements from including these datasets due to 

the domain knowledge of their models, which would otherwise be difficult to replicate in this study by solely relying on 140 

MODIS data and limited GPP measurements. 

 

We filtered the data for poor-quality pixels, performed gap-filling, and matched spatial and temporal resolutions. We used 

NBAR (MCD43C4 v006), where more than 75 % of high-resolution NBAR pixels were available from the full BRDF 

inversion. We selected LST data by applying applied the quality control mask, for LST and, where the average emissivity error 145 

was less than 0.02. LAI and FPAR were used when retrieved using the main algorithm with orwith and without saturation. All 

datasets were resampled to a 0.05 ° spatial resolution, and data Data gaps were filled at the native temporal resolution before 

resampling to a monthly frequency using a simple average. We performed the gap filling as follows, similar to the procedure 
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of Walther et al. (2022):. We filled gaps of less or equal five days (8 days for four-day resolution datasets) with the average of 

a fifteen-days moving window for high-frequency datasets (NBAR, LAI, FPAR, BESS_Rad, CSIF). We gap-filled LST with 150 

a 9-day moving window because we observed higher variations. For SM, we followed Walther et al. (2022) and used the 

moving window median for short gaps and the mean seasonal cycle for long gaps. Finally, we resampled all datasets to 0.05 ° 

spatial resolution and monthly temporal resolution. Coarser-resolution datasets were resampled using a nearest-neighbor 

approach, while high-resolution data was down-sampled using the conservative remapping method (Jones, 1999). 

Table 1: Explanatory variables and sources and their respective spatial and temporal resolution. The vegetation indices are 155 
abbreviated with NDVI (Normalized difference vegetation index), EVI (Enhanced vegetation index), GCI (Green chlorophyll index), 
NDWI (Normalized difference water index), NIRv (Near-infrared reflectance of vegetation), and kNDVI (Kernel NDVI). 

Explanatory Variable Source Spatial 

Resolution 

Temporal 

Resolution 

Reflectance (Nadir-BRDF adjusted; NBAR) 

Bands 1–7 

MODIS MCD43C4 v006 

(Schaaf and Wang, 2015) 

0.05 ° daily 

Vegetation indices  

(NDVI, EVI, GCI, NDWI, NIRv, kNDVI) 

Based on MODIS MCD43C4 v006 0.05 °  

PAR BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

Diffuse PAR BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

RSDN BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

FPAR MODIS MCD15A2H v006 

(Myneni et al., 2015) 

500m 4 days 

LAI MODIS MCD15A2H v006 

(Myneni et al., 2015) 

500m 4 days 

Land surface temperature (day) MODIS MYD11A1, MOD11A1 

(Wan et al., 2015) 

1km daily 

Land surface temperature (night) MODIS MYD11A1, MOD11A1 

(Wan et al., 2015) 

1km daily 

Evapotranspiration ALEXI (Hain and Anderson, 2017) 0.05 ° daily 

Soil moisture ESA CCI v.06.1 (Gruber et al., 2019) 0.25 ° daily 

SIF CSIF (Zhang et al., 2018) 0.05 ° 4 days 

Instantaneous SIF CSIF (Zhang et al., 2018) 0.05 ° 4 days 

Land cover (biome) MODIS MCD12Q1  

(Friedl and Sulla-Menashe, 2019) 

500m annual 

Total precipitation ERA5-Land  

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Total precipitation (3 months lag) ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Temperature ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Vapor Pressure Deficit (VPD) ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

2.2 Automated machine learning 

The performance of ML is highly dependent on the selection and configuration of preprocessing steps, model architectures, 

and corresponding hyperparameters, which are determined by the specific ML problem (Hutter et al., 2019). The steps involved 160 
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are typically organized sequentially in an ML pipeline and transform the input features (explanatory variables) into a target 

variable (Zöller and Huber, 2021). The pipeline refers to the entire process of developing and training an ML model and 

typically consists of several tasks, such as preprocessing, feature engineering, model training, hyperparameter tuning, and 

model deployment. 

 165 

Selecting the appropriate algorithms and hyperparameters is often referred to as the combined algorithm selection and 

hyperparameter tuning (CASH) problem and involves exploiting a search space spanned by the available algorithms and their 

parameters. Solving the CASH problem is challenging because the search space is high-dimensional and hierarchical, and its 

exhaustive exploitation is often computationally expensive (Kotthoff et al., 2019; Thornton et al., 2013). As a result, candidate 

pipeline configurations are typically determined in controlled experiments using optimization methods, such as grid search, 170 

randomized search, and Bayesian optimization, or through experience and educated guesswork (Karmaker et al., 2021). 

 

In contrast, AutoML provides an optimization approach with an end-to-end scope. A fully developed AutoML framework 

iteratively selects the pipeline structure, algorithms, and hyperparameters from the search space based on data requirements 

and objective functions while considering a time and resource budget (Yao et al., 2019). Thus, it facilitates usability for domain 175 

experts and overcomes inefficient trial-and-error approaches. AutoML draws from a pool of classical ML algorithms (base 

models) and preprocessing methods and selects or combines the most appropriate candidates for the ML problem. Typically, 

AutoML frameworks create model ensembles by combining the predictions of their base models, either through a simple 

aggregation or through yet another model that uses the predictions of the base models as input features. This approach is often 

superior to individual predictions because it can overcome the limitations of the individual base models (van der Laan et al., 180 

2007). 

 

AutoML frameworks handle pipeline creation with various degrees of autonomy and scope, given the early-stage development 

of much of the available software at the time of this study. For example, tasks such as pipeline selection or feature engineering 

are only sporadically implemented in the available frameworks (Zöller and Huber, 2021). With H2O AutoML, AutoSklearn, 185 

and AutoGluon, we compared AutoML frameworks that differ in training procedure, optimization method, and available base 

models, and have been tested in a wide range of applications and benchmarks (Balaji and Allen, 2018; Truong et al., 2019; 

Erickson et al., 2020; Hanussek et al., 2020; Ferreira et al., 2021). 

AutoSklearn 

AutoSklearn (Feurer et al., 2015) is an AutoML library built on top of the Scikit-Learn ML models. We used AutoSklearn in 190 

version 0.14.7. The framework relies on a wide range of base models, including AdaBoost, ARD regression, Decision Trees, 

Extra Trees, Gaussian processes, Gradient Boosting, k-Nearest Neighbors, Support Vector regression, MLP regression, 

Random Forests, and SGD regression. It also considers feature engineering algorithms, such as PCA, percentile regression, 

and feature agglomeration (AutoSklearn, n.d.). The framework selects and tunes its base models in a Bayesian optimization 

and performs a forward stepwise ensemble selection (Caruana et al., 2004). During this process, the framework draws on a 195 

pool of ML models to build the model ensemble, but instead of using the entire pool, it adds the models one by one, only using 

the ones that maximize ensemble performance. AutoSklean also uses a meta-learner trained on the meta-features of a variety 

of datasets to warm start the optimization procedure, which increases efficiency and reduces training time (Feurer et al., 2015). 

The meta-learner uses knowledge from previous experiments with similar datasets and can, therefore, select promising ML 

models to start with instead of training from scratch each time. 200 
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H2O AutoML 

H2O AutoML (LeDell and Poirier, 2020) is a widely used AutoML framework for supervised regression and classification. 

We used H2O 3 and the Python package of version 3.18.0.2. H2O AutoML draws from a set of base models, which, in the 

developer’s terminology, are divided into the model families of Gradient Boosting models (GBM), XGBoost GBMs, GLMs, 

a default Random Forest model (DRF), Extremely Randomized Trees (XRT), and feed-forward neural networks. The 205 

framework trains these models in a predefined order with increasing diversity and complexity, using pre-specified 

hyperparameters or tuning them by random search. In addition to the individual base models, H2O AutoML creates ensembles 

of the base models, combining their predictions through a generalized linear model (GLM) by default. The ensembles consist 

of either all base models or only the best-performing base models from each model family. H2O AutoML then ranks the 

performance of individual models and model ensembles using an internal cross-validation (CV). The best-performing model 210 

is used for prediction. 

AutoGluon 

AutoGluon Tabular (Erickson et al., 2020) relies heavily on ensemble and stacking techniques. It differs from many other 

frameworks by omitting model selection and hyperparameter tuning, thus avoiding the computationally intensive CASH 

problem. The framework draws from a pool of base models: neural networks, LightGBM boosted trees, Random Forests, 215 

Extremely Randomized Trees, and k-Nearest Neighbors. These models are combined in a multi-layer stack ensembling 

process: AutoGluon first generates predictions from each base model. The predictions are then concatenated with the original 

features and passed to another set of models (the stacker models) in the next layer. Their predictions can be concatenated again 

and passed to the next layer, and so on, creating a layered structure of model sets and concatenation steps. The predictions of 

the last layer are combined in an ensemble selection step (Caruana et al., 2004). Each layer consists of the same base model 220 

types and hyperparameters. In addition, AutoGluon implements k-fold bagging, which improves performance by using the 

training data more efficiently. Global and model-specific preprocessing algorithms are available to impute missing values or 

correct skewed distributions. A feature selection algorithm is provided in the framework but is still in an experimental stage 

and not enabled in the version used. 

2.3 Experimental design 225 

We first evaluated the three AutoML frameworks under four three sets of explanatory variables. In addition, we trained a 

classical Random Forest model in a randomized search, which served as our baseline. We then used AutoSklearn with the 

best-performing set of explanatory variables to upscale in situ eddy covariance GPP measurements to global wall-to-wall maps 

(Fig. 3). 
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Figure 3 Experiment setup. We trained and evaluated AutoSklearn, H2O AutoML, AutoGluon, and Random Forest, together with 
four three sets of explanatory variables in repeated cross-validation on GPP data from eddy covariance measurements. Then, we 
trained AutoSklearn in a bootstrap aggregation to produce global wall-to-wall GPP maps. The abbreviations of the explanatory 
variable sets translate as follows: "RS" for remotely sensed, "VI" for vegetation indices, and "meteo" for meteorological data. 235 

2.3.1 Explanatory variable sets 

We organized the explanatory variables into four three sets to determine their impact on GPP predictions within different 

AutoML frameworks (Tramontana et al., 2016; Joiner and Yoshida, 2020). Each set consisted of different features that could 

explain the variation in GPP. The minimal set of remotely sensed variables (RS minimal) included surface reflectance from 

seven MODIS visible to infrared bands and PAR, which largely reflect the ability of the vegetation canopy to intercept solar 240 

radiation for photosynthesis. The next set of variables (RS minimal + VI) included additional VIs derived from MODIS bands, 

which are designed to optimize the sensitivity to changes in vegetation structure and are widely used in predicting GPP and 

other ecological variables. As we did not detect any further significant performance improvements by including VIs, we did 

not consider them in other variable sets. The "RS" set included all remotely sensed variables and their products, except for 

VIs. Notably, compared to the "RS minimal" set, the "RS" set also included land surface temperature, evapotranspiration, and 245 

soil moisture, which provide an additional link to vegetation heat and water stress (Green et al., 2022; Stocker et al., 2018). 

Finally, the "RS meteo" set included all remotely sensed variables and, in addition, meteorological variables from the ERA5-

Land reanalysis (see Table 2).  Additionally, we replaced the MODIS reflectance bands, LAI, FPAR, and land cover products 

with their native 500 m resolution data in the "RS" set to evaluate the impact of satellite data spatial resolution on GPP 

estimation. 250 
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Table 2 Explanatory variable sets and associated data sets. 

Explanatory Variable RS minimal RS RS meteo 

Reflectance (Nadir-BRDF adjusted; NBAR), Bands 1–7 ● ● ● 

Vegetation indices (NDVI, EVI, GCI, NDWI, NIRv, kNDVI)    

PAR ● ● ● 

Diffuse PAR  ● ● 

RSDN  ● ● 

FPAR  ● ● 

LAI  ● ● 

Land surface temperature (day)  ● ● 

Land surface temperature (night)  ● ● 

ET  ● ● 

Soil moisture  ● ● 

SIF  ● ● 

Instantaneous SIF  ● ● 

Land cover (biome)  ● ● 

Total precipitation   ● 

Total precipitation (3 months lag)   ● 

Temperature   ● 

Vapor Pressure Deficit (VPD)   ● 

 

The explanatory variable sets can provide information about the importance of the input features to on the performance of the 

upscaling frameworks. They are particularly important as many of the AutoML frameworks lack feature engineering 255 

algorithms and cannot select relevant features themselves. 

2.3.2 Framework assessment 

We used five-fold cross-validation to train and evaluate the AutoML frameworks. Grouping the data by site helped us increase 

the independence between the folds and evaluate the models' ability to generalize spatially. Thus, a time series at one site could 

be assigned to only one fold and not split into training and test sets. In addition, stratification by land cover helped to distribute 260 

the folds similarly. We repeated the cross-validation thirty times with different random splits to evaluate the impact of 

partitioning the data on the final performance in our evaluation. 

 

With H2O AutoML, AutoSklearn, and AutoGluon, we selected popular frameworks for supervised regression problems on 

tabular data that support parallelization and a Python interface. Since AutoML is intended to work as an out-of-the-box 265 

solution, we kept the frameworks' configurations at default or recommended parameter values where it was possible and 

reasonable to do so. Moreover, we set each framework to optimize for the root mean squared error (RMSE) and limited the 

resource usage during training to 600 CPU minutes per CV fold (30 minutes on 20 CPUs) and 64GB of memory. 

 

We used the RMSE and the coefficient of determination (r2) to evaluate the frameworks' performance by comparing the out-270 

of-fold predictions to the ground truth values of GPP (Eq. A1). The latter aligns with the Nash-Sutcliffe model efficiency 

(Nash and Sutcliffe, 1970) used in some literature as a performance metric for the GPP prediction (e.g., Tramontana et al. 

(2016)). In addition to obtaining performance metrics for the total time series prediction, we decomposed the time series to 
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evaluate the performance in different spatial and temporal domains. We computed the components as follows: we obtained 

trends by linear regression of the entire time series (using the slope for evaluation with RMSE and r2), seasonality (mean 275 

seasonal cycle) by month-wise averaging, and anomalies as their residuals after detrending and removing seasonality. 

Furthermore, we calculated an across-site variability from the multi-year mean at each site. For this analysis, we considered 

only sites with a minimum of 24 months of measurements to minimize the error from sites with just a few measurements, 

leaving us with 211 sites. When calculating trend metrics, we only considered sites with at least 60 months of measurements 

for our trend evaluations. Time series anomalies were detrended only when this minimum was reached; otherwise, we simply 280 

removed the seasonal component from the time series. 

 

Moreover, we tested how the average ranked performance of each framework compared to the other frameworks. We 

calculated the performance ranks within each repeated cross-validation and obtained an average rank for each framework. 

Using the Friedman test, we tested for statistically significant differences in the rank distribution, evaluating the null hypothesis 285 

of no significant differences with a significance level of 0.01. We then used the Nemenyi post hoc test to find frameworks with 

significant differences in mean rank while adjusting for type I error inflation by using a family-wise error correction. We 

rejected the null hypothesis (no significant difference between the two frameworks) if the difference between the average ranks 

exceeded a critical difference (CD), which depends on the critical value of the Studentized range distribution (Demšar, 2006). 

2.3.3 GPP upscaling 290 

We used AutoSklearn with the "RS" explanatory variable set to upscale the eddy covariance measurements to a global scale, 

as this combination of framework and explanatory variables performed best in the benchmark. We trained thirty models in a 

bootstrap aggregation approach, where each bootstrap was sampled with replacement to a size of 80 % of the total number of 

sites. We kept the time series grouped by site but removed the land cover stratification. This technique allowed us to estimate 

GPP as the mean of the bootstrapped predictions and provided a sampling error (standard error of the mean) as a spatially 295 

distributed uncertainty estimate for the model prediction. We produced global GPP and standard error maps at a resolution of 

0.05 ° in monthly frequency from 2001 to 2020, which we compared with the two ML-based reference datasets FluxCom v6 

(RS only, based on data from the MODIS collection 6) (Jung et al., 2020) and FluxSat (Joiner and Yoshida, 2020). 

3 Results 

3.1 AutoML Framework performance 300 

In general, we found that all frameworks perform in a close range of coefficients of determination (r2), explaining on average 

between 70% and 75% of the variation in eddy covariance GPP measurements. However, the performance depends on the 

framework used and the selection of variables. Examining the distribution of r2values for the different repeated cross-

validations, we can see that AutoSklearn performs best, followed by H2O AutoML, Random Forest, and AutoGluon in 

predicting monthly GPP (Fig. 4). AutoSklearn achieved the highest r2 among the four frameworks for all explanatory feature 305 

sets. A similar pattern is observed for trends, seasonality, across-site variability, and anomalies (Fig. 5). Note that we removed 

one outlier for H2O AutoML trained on the "RS" variable set, which deviated more than five standard deviations from the 

mean value due to very low performance in one CV fold. 
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310 

 

Figure 4 Overall framework performance, expressed as the coefficient of determination (r2) for the candidate frameworks and the 
three different explanatory variable sets. Each distribution belongs to one framework and one set of explanatory variables and 
results from the repeated cross-validations, for each of which one r2 value is calculated over the predictions at all sites. 

Figure 4: Overall framework performance, given in the coefficient of determination r2 for the candidate frameworks and the four 315 
different explanatory variable sets. Each distribution results from the repeated CV and belongs to one framework and one 
explanatory variable set. 

AutoSklearn's superior performance is primarily due to its ability to capture seasonal components and across-site variability 

(Fig. 5). When trained on "RS" explanatory variables, AutoSklearn achieved average r2 values of 0.7452 ± 0.0003 overall, and 

0.483 ± 0.002 for trends, 0.8142 ± 0.0003 for seasonalities, and 0.689 ± 0.001 for across-site variability. However, all models 320 

struggle to reproduce the monthly anomalies, explaining less than 11 % of the variability (AutoSklearn: 10.40 ± 0.04 %). 

Uncertainties are reported as the standard error of the mean of all cross-validation results. 
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Figure 5 Evaluation of the temporally and spatially decomposed time series expressed as the coefficient of determination (r2). Each 
distribution belongs to one framework and one set of explanatory variables and results from the repeated cross-validations, for each 
of which one r2 value is calculated over the predictions at all sites. The r2 values for seasonality and anomalies were calculated from 
seasonal cycles and anomalies at monthly granularity, while those for trend and across-site variability were calculated from one 330 
trend or mean value per site, respectively. 

Figure 5: Evaluation of the temporally and spatially decomposed time series given in the coefficient of determination r2. Each 
distribution results from the repeated CVs and belongs to one framework and one explanatory variable set. 

Using the Friedman test, we found that the four ML frameworks are statistically different in their performance in predicting 

monthly GPP as well as its trends, seasonality, anomaly, and across-site variability (p-value < 0.01). However, their difference 335 
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in performance is marginal. The Nemenyi post hoc test shows that for the "RS" explanatory variables, AutoSklearn achieves 

the highest average rank with statistical significance among all frameworks for monthly GPP and all its components (Fig. 6a). 

For the prediction of anomalies, we could not find a significant difference in the average rank between AutoSklearn and H2O 

AutoML. Trends were predicted by all AutoML frameworks without significant differences in rank. Random Forest and 

AutoGluon perform the worst, while they are not statistically different in predicting across-site variability and seasonalities. 340 
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Figure 6 Critical difference (CD) diagrams (Demšar, 2006) for the ranks of the frameworks and variable sets, which are typically 
used to compare the performance of multiple algorithms on multiple problems (in this case, repeated cross-validations). The graphs 
rank the performance of different framework-variable combinations on the x-axis, with one being the best rank. The ranks shown 345 
are the average ranks from all repeated cross-validations for each of the frameworks/variable sets. The performance (r2) is given for 
predicting total GPP and for its different spatial and temporal components: trend, seasonality, anomalies, and across-site variability. 
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We evaluated whether the ranks are statistically significantly different from each other using the critical difference (CD) obtained 
from a Nemenyi post hoc test. If the difference between the ranks is less than the CD, we assume a nonsignificant difference in ranks, 
indicated by a red crossbar between the rank markers. On the left side (a), the ranks of the frameworks trained on the “RS” 350 
explanatory variables are shown. On the right side (b), the ranks of AutoSklearn trained on different sets of explanatory variables 
are shown. 

The selection of explanatory variables had a significant impact on the performance of the frameworks. Models with only 

surface reflectance and PAR (RS minimal) explained the least amount of GPP variability (70–72 %) (Fig. 4). VIs provided 

additional predictive power in explaining across-site variability, seasonality, and anomalies, leading to a marginal increase in 355 

r2 for monthly GPP (Fig. 5). The greatest improvement occurred with the "RS" set when information on SIF, FPAR, LAI, LST, 

ET, soil moisture, and biome type was included. The "RS" set increased r2 on "RS minimal +VI" by about 0.02 for all 

frameworks (Fig. 4), with sizable improvements in predicting trends and anomalies (Fig. 5). Meteorological variables slightly 

improved the prediction of monthly GPP by better explaining spatial variability, trends, and anomalies except for AutoGluon 

(Fig. 5). However, statistical tests of model ranks showed no significant advantage in the rank of the "RS meteo" over the "RS" 360 

set of explanatory variables in any of the decomposed time series features and frameworks (Fig. 6b). The "RS" set 

outperformed "RS minimal" for predicting GPP and all of its spatiotemporal components. Except for the performance of 

Random Forest on across-site variability, trend, and anomalies, "RS" was always the best-performing variable set or 

insignificantly different from the best-performing variable set. In addition, we evaluated whether vegetation indices (VI) could 

improve the performance of the variable sets, but no improvements were found beyond the “RS minimal” dataset (Tab. A1). 365 

 

To determine which explanatory variable was most effective for predicting GPP, we evaluated the permutation importance of 

the variables for the AutoSklearn framework. Permutation importance is the decrease in prediction performance on the test 

dataset when one of the variables is randomly shuffled to break its relationship with the target variable. To deal with collinearity 

among the explanatory variables (Fig. A1), we first clustered them based on their average mutual Pearson correlation 370 

coefficient, regardless of their data source or ecological function. Variables with an average correlation greater than 0.7 were 

clustered and permuted together, resulting in clusters focused around specific meteorological characteristics (e.g., precipitation, 

temperature), vegetation properties, or combinations of reflectance bands but also combining features that are not directly 

biophysically related (Fig. A2 and A3). 

 375 

Figure 7 Permutation importance for different explanatory variables with the AutoSklearn framework and “RS” and “RS meteo” 
variable sets. The variables are grouped into clusters of colinear variables regardless of data source or ecological function. The 
importance is the decrease of r2 at test time when the variables of the corresponding cluster are randomly shuffled. The variables 
include the MODIS NBAR bands (red, NIR, blue, green, and 3 SWIR bands), land surface temperature (LST), leaf area index (LAI), 
photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), diffuse PAR (Diff PAR), daily and instantaneous 380 
solar-induced fluorescence (SIF), surface downwelling shortwave flux (RSDN), soil moisture (SM), evapotranspiration (ET), 
precipitation (Precip), temperature at 2m height (T), vapor pressure deficit (VPD), and precipitation with 3-months lag (Precip (-
3)). The distribution results from the repeated cross-validations, for each of which one r2 value is calculated over the predictions at 
all sites. 

Our results show the largest decrease in r2 of AutoSklean-RS when removing the cluster of SIF, LAI, and FPAR, followed by 385 

PAR, RSDN, LST, and ET (Fig. 7). The other variables do not substantially reduce the framework performance. Trained on 
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“RS meteo,” AutoSklearn’s variable importance gives a similar picture despite slightly different clusters due to the inclusion 

of the meteorological variables. Again, the cluster of SIF, LAI, and FPAR shows by far the highest importance, followed by 

the PAR, RSDN, ET, and temperature-related variables (Fig. 7). The meteorological variables temperature, VPD, and 

precipitation are generally in clusters of lower importance, as are the MODIS NBAR features. In contrast, the “RS minimal” 390 

product shows the highest variable importance for the visible NBAR spectrum, followed by NIR and PAR in descending order. 

The SWIR bands are hardly used in any setup. 

 

Furthermore, we grouped the predictions by site and evaluated the site-level r2 for each land cover type for AutoSklearn with 

"RS" explanatory variables (Fig. 8). EBF and SH sites show low r2 (median r2 -0.38 and 0.33, respectively) with substantially 395 

higher variance, whereas MF and DBF could be predicted with high quality (median r2 0.84 and 0.87, respectively). Regarding 

anomaly estimation, EBF and WET show significantly lower r2 values (median r2 0.04 and 0.01, respectively). Furthermore, 

our analysis indicated that models tended to exhibit a significant positive bias when predicting small GPP values (in the lowest 

quartile) while displaying a negative bias for large GPP values. This implies an overestimation of small GPP and an 

underestimation of large GPP values by the models. 400 

 

Figure 8 Distribution of r2 values for the GPP prediction by AutoSklearn with "RS" explanatory variables for different land cover 
types. Shown are the overall performance and performances for seasonality and the anomalies. 

Finally, we examined the effect of including higher-resolution data in the explanatory data. Replacing the MODIS reflectance 

bands, LAI, FPAR, and land cover products with their 500 m resolution counterparts resulted in significant improvements in 405 

r2. We tested this behavior for AutoSklearn with the "RS" variable set. The prediction r2 was with 0.8164 ± 0.0005 overall and 

0.444 ± 0.003, 0.787 ± 0.002, 0.8723 ± 0.0005, and 0.3094 ± 0.0006 for trend, across-site variability, seasonality, and 

anomalies, respectively, in all aspects except trend significantly higher than for the lower resolution data product (Fig. 9). 
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Figure 9 Comparison of the predicted 0.05 ° product and the one with 500 m resolution from AutoSklearn ensemble averages and 410 
the "RS" variable set. The latter shows higher r2 values compared to the ground truth GPP estimates from FLUXNET, AmeriFlux 
OneFlux, and ICOS. We refer to GPP measurements derived from eddy covariance at the flux tower locations as ground truth.  

3.2 Analysis of AutoSklearn Pipelines 

We investigated the different components (base models and preprocessing algorithms) of the AutoSklearn framework, which 

was trained on the "RS" variable set in the repeated cross-validation (See figure A4 for the model run statistic). For every fold 415 

in each of the repeated cross-validations, we considered the best-performing model of each base-model type and min-max-

scaled their RMSE to a scale from zero to one. The scaling accounts for the different predictability of the test data in the 

respective fold. We then took the mean across all folds within each repetition of the cross-validation and each base-model 

type, resulting in a distribution of scaled RMSEs for each base-model type (Fig. 10). We also considered whether these models 

preprocessed the training data or not.  420 

 

The base models achieving the lowest scaled RMSE were ensembles of weak learners, such as Extra Trees, Random Forest, 

Gradient Boosting, or AdaBoost. These models could, by themselves, achieve the best predictions of GPP. That, however, 

does not suggest that they were necessarily used in the final model ensemble constructed by AutoSklearn. The ensemble 

selection algorithm (forward stepwise model selection) in AutoSklearn, which creates the model ensembles, recursively adds 425 

the base models that improve the RMSE of the ensemble prediction most in combination with the models already part of the 

ensemble (Caruana et al., 2004). Hence, a model showing a low RMSE by itself does not need to be beneficial to the ensemble 

of models ultimately used by AutoSklearn. 

 

Figure 10 Performance of AutoSklearn base models and feature pre-processors. The chart shows the distribution of the mean RMSE 430 
for each base model type across all folds within each repetition of the cross-validation. We considered only the best-performing 
models for each model class within each fold. The RMSE is min-max scaled from zero to one within each cross-validation fold to 
account for variations in the data's predictability depending on the data's split. The use of preprocessing algorithms is shown as 
colors in the proportions of their usage in each bin (detailed preprocessing methods in figure A5). 
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3.3 Global GPP maps 435 

From the bootstrap aggregation of the AutoSklearn framework with "RS" features, we predicted global GPP with wall-to-wall 

coverage, resulting in 30 predictions for the entire period from 2001 to 2020 in monthly intervals. In addition, we applied land-

sea and vegetation masks to the prediction, similar to previous research (Tramontana et al., 2016; Joiner et al., 2018). 

 

Figure 11 Total GPP, amplitude of seasonality, trend, and anomalies of prediction with AutoSklearn trained on remotely sensed 440 
data ("RS" dataset) in a bootstrap aggregation of 30 bootstraps. The mean was calculated at each location over all bootstrapped 
predictions and the entire time series. The seasonality is displayed as the amplitude of the month-wise average. Trends were 
calculated as the slope from an ordinary least squares linear regression over time and masked so that only significant trends were 
included (p < 0.05). The anomalies are shown as the standard deviation of the residuals after subtracting the seasonal and trend 
components from the time series. 445 

Mean GPP for 2001–2020 (Fig. 11) showed high values for tropical climates in low latitudes, such as the Amazon region, 

Southeast Asia, and Central Africa, with maximum GPP values for the EBF land cover. Conversely, low GPP appears in high 

latitudes and SH, SAV, and GRA regions. 

 

Again, we decomposed the local time series into trends, seasonality, and anomalies (Fig. 11). The amplitude of the seasonal 450 

component exhibits significant regional differences. Mid-latitude regions in the northern hemisphere show high amplitudes, 

covering the central and eastern US, Europe, parts of Russia, and north-eastern China. In contrast, low-latitude regions have 

low GPP amplitudes. The data show significant trends (p < 0.05) over the observation period with positive clusters, especially 

for eastern China and western India, while negative trends are less pronounced. The bootstrapped AutoSklearn framework 

shows clusters of high GPP anomalies in, e.g., parts of South America (especially eastern Brazil and Argentina), East Africa, 455 

and Southeast Australia. Land cover in these areas does not follow a consistent pattern but is often dominated by CRO, SH, 

and GRA. 

 

In addition to the GPP prediction, we produced a sampling error estimate by calculating the average standard error across all 

bootstraps for each location and time (Fig. 12). We observed high relative errors in low GPP regions, high latitude regions 460 

(e.g., with temporary snow cover), and arid SH regions. The distribution of standard errors relative to the bootstrap mean peaks 
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near zero and ends in a long tail towards higher values for all biomes (Fig. 13a). However, the distribution of sampling 

uncertainty in GPP varies among land cover classes, ranging from low medians for EBF (0.5 %) and SAV (0.8 %) up to higher 

medians for ENF (4.0 %) and SH (6.9 %).  

 465 

Figure 12 Absolute standard errors from the bootstrap aggregation. For relative values, see figure A6. 

 

Figure 13 Histogram of the relative standard error of the mean (SEM) by land cover class during the entire observation period (a) 
and distribution of r2 values for total GPP of the upscaled GPP AutoSklearn product with "RS" variables, compared to the FluxCom 
v6 and FluxSat datasets (b). For the latter, GPP is sampled at 10000 random locations and compared in a Mann-Whitney U test. 470 

3.4 Comparison to reference data 

We compared the upscaled results of total GPP from our AutoSklearn "RS" prediction with GPP datasets FluxCom v6 

(Tramontana et al., 2016) and FluxSat (Joiner et al., 2018) at 10000 random sample locations. When tested with a Mann-

Whitney U test, our predictions show significantly higher agreement (p virtually zero) with FluxSat than with FluxCom (Fig. 

13b). In our prediction, 51 % of the samples explain more than 80 %, respectively, of the variation in FluxSat, while this is the 475 

case for only 17 % of the samples in FluxCom. Thus, AutoSklearn shows good agreement with the GPP patterns predicted by 

FluxSat, whereas it deviates more strongly from the FluxCom product. 

4 Discussion 

4.1 AutoML framework performance 

The results demonstrate the closeness of the overall predictive performance of the evaluated frameworks and the baseline 480 

Random Forest. Despite the different complexity of the model architectures, the frameworks capture a similar fraction of the 

variability in the GPP measurements. Framework choice does not appear to be a major factor in this experimental setup, 

resulting in only a low difference in r2. These findings align with previous research on applying classical ML models 

(Tramontana et al., 2016). 

 485 
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The performance differences between the frameworks are statistically significant but slight. AutoSklearn consistently 

outperforms H2O AutoML, AutoGluon, and Random Forest. The framework is based on ensemble prediction, which can 

exploit the different advantages of each base model. The evaluation of base models used by AutoSklearn outlines the 

applicability of various ML model types for predicting GPP. It is evident that ensembles of weak learners, such as Extra Trees 

or Random Forest, are generally favorable for this task. These models can be promising for GPP prediction either in a stand-490 

alone implementation or as part of a model ensemble. The performance comparable to H2O AutoML and AutoGluon shows 

furthermore that implementing feed-forward neural networks does not necessarily lead to performance improvements. Low 

performance of AutoGluon, even when compared to Random Forest, may relate to the lack of hyperparameter tuning. However, 

the differences between frameworks are challenging to explain, as the reasons for the frameworks' results are obscured by their 

black box character. 495 

 

AutoSklearn trained on “RS” explanatory variables tended to overestimate small GPP values while underestimating large GPP 

values. This behavior was already observed in the FluxCom (RS), FluxSat, and several light use efficiency models (Yuan et 

al., 2014; Joiner et al., 2018). It has also been shown for the early MODIS GPP product (Running et al., 2004), where the 

overestimation was attributed to an artificially high FPAR while the underestimation was related to low light use efficiency in 500 

the MODIS algorithm (Turner et al., 2006). Another reason could be the strong reliance of the AutoSklearn framework on 

tree-based models (Fig. 10). These models are constructed by recursively partitioning the feature space into small regions to 

which they fit a simple model, which limits them in their ability to extrapolate beyond the range of target values already 

observed. Furthermore, our predictions showed differing prediction quality at the land cover level, which might result from 

biome-specific circumstances and the availability of measurement sites. For example, biomes with a pronounced seasonal 505 

cycle, such as DBF or MF, exhibit high overall r2, whereas EBF and WET show large variability that the model could not 

capture. In addition, variability within a land cover type could affect the performance assessment, such as for SH, which 

includes both arid and subarctic shrublands.  

 

Finally, it is crucial to note that the r2 metric only expresses how well a framework can reproduce measurements from the 510 

measurement samples, which are limited in underrepresented areas. We grouped data by site and applied a land cover 

stratification during the CV to increase independence between the folds. That, however, does not prevent sites from being 

repeatedly selected for validation during the repeated CV, which can inflate the performance metric and reduce variance. It 

also cannot account for spatial autocorrelation. This affects the assumption of independence and identical distribution for train 

and test folds, which is crucial for obtaining realistic CV results. Violating these requirements can lead to overestimating model 515 

performance and inflating map accuracies, yet it is commonly done in data upscaling efforts (Roberts et al., 2017; Ploton et 

al., 2020). More training data with better geographic representation could help mitigate these shortcomings and could lead to 

more robust predictions, model evaluations, and potentially higher model performance. 

4.2 Importance of explanatory variables 

AutoML is a powerful approach for assessing variable the importance of the variables on model performance since it selects 520 

the optimal base models and constructs optimal pipelines independently for each feature set under consideration. This means 

that no subjectivity bias is introduced into assessing variable importance, e.g., by pre-selecting specific algorithms that are 

expected to perform well on a particular task or set of explanatory variables. This could increase the quality of the reported 

feature importance, especially as features in GPP prediction often exhibit severe intercorrelations. Importantly, variable 

importance is model-specific, meaning it can indicate which variable is most effectively used by a particular model, but it does 525 

not directly indicate the intrinsic predictive value of a variable. Furthermore, it may depend on the choice of temporal and 

spatial scales and data quality, given that many of the input features are themselves model outputs. 
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The frameworks' performance depends significantly heavily on the selection choice of predictive features on which they are 

trained. The results show that while only considering the seven NBAR bands and PAR from the "RS minimal" variable set 530 

does not provide the model with all the sufficient information necessary for a GPP prediction, , and neither does adding 

vegetation indices. However, the completethe full set of "RS" variables contains adds additional information that all the 

frameworks can exploit. The additional variables in the "RS" variable set, such as SIF, LAI, FPAR, ET, LST, SM, and plant 

function type, seem appear to include crucial important environmental forcings and structural variables that cannot be 

accounted for by only consideringprovide a marginal advantage over the limited variables on only vegetation structure and 535 

radiation in "RS minimal" and "RS minimal +VI" (Green et al., 2019; Stocker et al., 2019; Xu et al., 2020). For example, 

environmental stress, such as heat waves and droughts, often causes instantaneous reductions in GPP. However, the response 

of vegetation greenness to these stressors is typically slower and may only become apparent if the stress persists for a sufficient 

duration (Orth et al., 2020; Zhang et al., 2016; Smith et al., 2018; Yan et al., 2019). In such cases, relying solely on VIs and 

surface reflectance may not sufficiently capture the variability of GPP. 540 

 

Including the meteorological explanatory features (ERA5-Land) in the training data does not significantly improve the 

prediction quality for any of the frameworks. This implies that meteorological data may not contain additional information 

that the machine learning frameworks in this study can effectively use to predict GPP. A possible explanation is that  could be 

the mismatch between reanalysis and site meteorology. The coarse resolution and large uncertainties of the reanalysis data 545 

may result in a poor representation of the flux tower footprints, which are often smaller than one pixel of the reanalysis data, 

leading to uncertainties in the modeling. For example, Joiner and Yoshida (2020) showed that using site-measured 

meteorological data rather than  instead of reanalyzed data significantly improved the performance of GPP predictions. At the 

monthly scale, the "RS" variable set already includes variables, such as LST, ET, and soil moisture, that may already encode 

information about the instantaneous environmental stress on LUE due tofrom adverse meteorological conditions through, for 550 

example, LST, ET, and soil moisture, which are important controls of on GPP (Bloomfield et al., 2023). At a monthly scale, 

the information contained in the meteorological data may overlap with the data provided by the “RS” variables. Furthermore, 

the coarse resolution of the reanalyzed meteorological data could introduce additional uncertainty due to a scale mismatch 

with the flux tower footprint sizes. Finally, its quality may not adequately inform the machine learning models due to the 

presence of large uncertainties. For example, Joiner and Yoshida (2020) showed that using site-measured meteorological data 555 

rather than reanalyzed data significantly improved the performance of GPP predictions. Further studies could potentially 

evaluate assess these uncertainties by comparing models trained with tower meteorological data to gridded reanalysis datasets. 

 

The permutation importance of explanatory variables provides further insight into which variables AutoSklearn uses and which 

are indifferent to the framework. Our results show that both “RS” and “RS meteo”-trained AutoSklearn frameworks rely 560 

primarily on features of canopy structure (LAI, FPAR), proxies for photosynthetic activity (SIF), and ET, which strongly 

couples with GPP in favorable environmental conditions. Meteorological information, such as temperature and VPD, are less 

relevant for the model prediction. This suggests that the insignificant changes in performance between “RS” and “RS meteo” 

may be related to a small additional contribution of meteorological conditions to the prediction of monthly GPP beyond what 

is already provided by vegetation structure and PAR. Soil moisture was also found to have minimal influence overall, which 565 

might be partly due to uncertainties and noises in the remote sensing soil moisture data and due to its coarse spatial resolution. 

It is also important to note that previous studies have demonstrated the importance of soil moisture from SMAP in predicting 

GPP in water-limited ecosystems (Dannenberg et al., 2023; Kannenberg et al., 2024). The performance difference between 

“RS minimal” (NBAR and PAR only) and “RS” variables seems to be driven at least partly by features that are themselves 

model outputs based on MODIS NBAR, i.e., SIF, LAI, and FPAR. We grouped the variables into clusters with high correlation 570 
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to improve the interpretability of the importance measures. However, we could not completely eliminate correlations between 

clusters. High correlations between, for example, PAR and LST, and ET and PAR, as well as lower correlations between other 

variables, could not be taken into account and introduced further uncertainty in the reported variable importance. 

 

The ability of the frameworks to reproduce GPP patterns and the corresponding variable importance must be evaluated in light 575 

of the choice of temporal resolution. In this study, we evaluated machine learning upscaling of monthly GPP dynamics, which 

are dominated by light availabilities and seasonal changes in vegetation structures. However, at shorter time scales, such as 

hourly or daily, GPP is more closely aligned with diurnal and short-term variations in meteorological conditions such as 

temperature and VPD. Thus, these variables are likely more influential in predicting GPP at these higher frequencies (Frank 

et al., 2015; von Buttlar et al., 2018). Additionally, complex machine learning models may also offer greater benefits at 580 

harnessing the large data quantities involved in predicting GPP at hourly or daily scales. Further research is needed to 

benchmark machine learning algorithms and assess choices of environmental data in predicting GPP across different 

timescales.  

 

We found that besides selecting an appropriate set of explanatory variables, the resolution of the data highly affects prediction 585 

outcomes. Including 500 m resolution data should reduce the mixed pixel problem and match the flux towers' footprints better 

with the pixel size of the gridded data sets. This led to improvements in all time series components, with exceptional increases 

in r2 for the estimation of anomalies. These results underscore the importance of spatial resolution and suggest the use of data 

with a resolution that better represents smaller landscape features and flux tower footprints, in contrast to our initial choice of 

0.05 ° resolution in this study. However, we found that the computational demands of the higher resolution made the global 590 

upscaling difficult. We suggest further exploring how to align the datasets better, e.g., through better representing the flux 

tower footprints (Xiao et al., 2008; Yu et al., 2018; Chu et al., 2021). 

4.3 Spatio-temporal patterns 

The globally upscaled measurements could capture the variation of GPP in the ML-based FluxCom and FluxSat reference 

datasets reasonably well and resemble their total GPP patterns and seasonality (Tramontana et al., 2016; Joiner and Yoshida, 595 

2021). However, the prediction could explain a significantly larger fraction of the variation in FluxSat than in FluxCom. Both 

datasets are based on MODIS-derived products, but the training sites we used show higher similarities to FluxSat than to 

FluxCom. 

 

We observed several clusters of positive trends consistent with previous results and local studies (Chen et al., 2019; Wang et 600 

al., 2020; Schucknecht et al., 2013; Carvalho et al., 2020). However, the magnitude was lower than the reference dataset 

FluxSat (Joiner and Yoshida, 2021) and showed less frequent significant negative trends than predicted by FluxCom 

(Tramontana et al., 2016). The areas with high predicted GPP overlap with the highly productive regions in the tropics and 

mainly cover the EBF regions (Ahlström et al., 2015). In addition, we observed high seasonality, especially in CRO-dominated 

regions, which may be due to high productivity in maize, wheat, rice, and soybean cultivation and a profound seasonality, with 605 

a period of very low GPP after harvest. (Kalfas et al., 2011; Gray et al., 2014; Sun et al., 2021). High anomalies occurred in 

mainly temperate and semi-arid climates, the latter of which have also been shown to dominate the interannual variability of 

the global terrestrial carbon sink (Ahlström et al., 2015). Besides random variations included in the anomalies, reasons could 

be non-seasonal events, such as weather extremes or human interventions, coupled with a high turnover rate in dry vegetation. 

The patterns agree with FluxSat and exceed those that FluxCom models estimated.  610 
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4.4 Uncertainty 

Predicting wall-to-wall maps from a non-representative distribution of measurement sites is challenging. A non-representative 

network of flux towers might fail to reproduce the main features of the underlying GPP population for the entire study area 

(Sulkava et al., 2011). Land cover types with less abundant eddy covariance measurements may potentially be estimated less 

reliably and could show a higher variation in GPP estimations. We used the standard error to estimate how robustly the 615 

frameworks react to different subsets (bootstraps) of data during the training process. Generally, high relative error values in 

low GPP regions are expected due to the normalization of the error. However, SH, ENF, and regions adjacent to SNO and 

BAR also show an elevated error in absolute terms. The distributions (Fig. 13a) show similarities to the spread of r2 values 

obtained from the framework benchmark (Fig. 8). 

 620 

Higher standard errors may indicate that monthly remote sensing and modeled input data are better proxies for some 

ecosystems than others. For example, GPP can be predicted with low relative uncertainty for ecosystems with a high seasonal 

variation of biomass, such as croplands, broadleaf forests, and mixed forests. In contrast, predicting GPP in drylands can be 

more challenging. Drylands are highly sensitive to water availability, resulting in abrupt responses to precipitation and drought 

events (Barnes et al., 2021). They are characterized by high spatial heterogeneity and irregular temporal vegetation patterns, 625 

which are difficult to capture at our spatial and temporal resolution. Together with a low vegetation signal-to-noise ratio, these 

factors pose a considerable challenge for GPP remote sensing (Smith et al., 2019). In an attempt to assess the uniqueness of 

NEE measurements at FLUXNET sites, Haughton et al. (2018) showed that drier sites and shrubland sites had a higher 

discrepancy between locally and globally fit models and exhibited more idiosyncratic NEE patterns compared to others. Our 

results show a similar behavior, with higher model uncertainty for GPP in dryland and shrubland regions. 630 

 

The results delineate that AutoSklearn could not reliably infer a robust functional relationship in low-productivity regions, 

where it shows a significant positive bias. We suggest further research ways to improve thon ways to improve performance in 

low-GPP regions. One method that could potentially enhance the prediction is to include dummy measurement sites in the 

masked regions manually. These sites would constantly report zero GPP and could improve estimates in adjacent regions, such 635 

as arid zones or seasonally snow-covered areas, which are also less proportionately represented in the flux tower networks 

(Smith et al., 2019).  

 

Finally, an additional limitation is introduced by the eddy covariance measurements themselves. We use night-time-partitioned 

GPP, which is modeled as the difference between NEE and ecosystem respiration. While NEE and night-time respiration are 640 

directly measurable, daytime respiration is modeled with a temperature response function, which extrapolates from night-time 

respiration (Reichstein et al., 2005). Up to this point, it is not conclusively clarified how reliably this approach can be employed, 

considering that it is indifferent to some environmental stress factors and changes in respiration behavior between day and 

nighttime (Wohlfahrt and Galvagno, 2017; Keenan et al., 2019; Tramontana et al., 2020). The inherent uncertainty and bias in 

the ground truth GPP data could be a potential cap to the performance we can obtain in our efforts to predict GPP. 645 

5 Conclusion 

We investigated whether and how automated machine learning (AutoML) frameworks can improve global upscaling of gross 

primary productivity (GPP) from in situ measurements using AutoSklearn, H2O AutoML, AutoGluon, and a baseline Random 

Forest model in repeated cross-validation stratified by land cover. In addition, we evaluated different sets of explanatory 

variables for the GPP prediction from satellite imagery and ERA5-Land reanalysis data. Our results show that the AutoML 650 

frameworks can capture about 70–75 % of the monthly GPP variability at the measurement sites. 
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AutoSklearn slightly but significantly outperformed the other frameworks across all sets of explanatory variables for total 

GPP, trends, seasonality, and anomalies. It did this by creating ensembles of base models and preprocessing algorithms that 

improved the prediction over individual machine learning models. The ensemble members were primarily models that 655 

combined weak learners, such as Extra Trees, AdaBoost, or Random Forests. However, the difference in performance was 

small compared to other frameworks and the Random Forest model, suggesting that the choice of framework may play only a 

minor role in improving GPP prediction performance. 

 

We found that remotely sensed (RS) explanatory variables provided the best results in combination with the investigated 660 

frameworks. However, relying oWhile only relying on the MODIS NBAR reflectance bands, and PAR, and vegetation indices 

("RS minimal" and "RS minimal +VI") did not provided the models with sufficient sufficient information for GPP prediction, 

without considering other proxies of photosynthetic activity and canopy structure, such as solar-induced fluorescence, leaf 

area index, and fraction of absorbed photosynthetic activity, increased the performance of all models. Meteorological factors 

and soil water availability had less influence on the GPP prediction. Also, additional meteorological variables from ERA5-665 

Land could not be used effectively by the models. In particular, the resolution of the satellite imagery played a significant role 

in prediction quality. 

 

Finally, we used the best-performing framework (AutoSklearn with "RS" explanatory variables) to upscale GPP to global wall-

to-wall maps in a bootstrapping approach. The predictions are in good agreement with the FluxSat dataset and deviate 670 

significantly more from the FluxCom predictions. The GPP product captures major spatial patterns for total GPP and trends 

but shows high uncertainty for low-GPP regions, where the predictions are positively biased. In general, prediction 

performance and sampling uncertainty are highly dependent on the land cover type. 

 

In conclusion, AutoML can be a considerable technique for predicting and extrapolating GPP from in situ measurements. 675 

Automated creation of machine learning pipelines can facilitate the process of algorithm and feature selection, thereby avoiding 

biases in the modeling process. In addition, AutoML enables the exploration of a wide range of models and algorithms, 

uncovering potential relationships and patterns that may have been missed manually. However, we were unable to demonstrate 

that AutoML produces GPP predictions that are considerably more accurate and robust than classical ML models. In particular, 

the non-automated Random Forest model performed almost as well as AutoSklean. Researchers must carefully interpret and 680 

validate the results obtained through AutoML, ensuring that the models and features chosen are consistent with ecological 

knowledge and scientific understanding. Nevertheless, given the early stage of development, AutoML may be useful in the 

future to improve and accelerate research on GPP upscaling. 

Appendix 

Equation A1 Coefficient of determination 𝒓𝟐, where 𝒚𝒊 is the observed value, 𝒚i the modeled value, and 𝒚 the observed average over 685 
all 𝑵 values. 

𝑟 = 1 −
∑ ( i i)i

∑ ( i )i
  

Table A1 Overall framework performance. Shown are the mean r2 values with the corresponding error of the mean, averaged over 
all cross-validation repetitions. Additionally to the three predictor variable sets, we added the vegetation indices (VI) NDVI 
(Normalized difference vegetation index), EVI (Enhanced vegetation index), GCI (Green chlorophyll index), NDWI (Normalized 690 
difference water index), NIRv (Near-infrared reflectance of vegetation), and kNDVI (Kernel NDVI) to each variable set to evaluate 
if they improve the performance. 

Variable set Random Forest H2O AutoML AutoSklearn AutoGluon 
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RS minimal 0.7052 ± 0.0003 0.7112 ± 0.0009 0.7214 ± 0.0005 0.7013 ± 0.0005 

RS minimal (incl. VI) 0.7193 ± 0.0002 0.7166 ± 0.0007 0.7261 ± 0.0004 0.7097 ± 0.0007 

RS 0.7369 ± 0.0002 0.739 ± 0.001 0.7452 ± 0.0003 0.7324 ± 0.0003 

RS (incl. VI) 0.7352 ± 0.0002 0.7383 ± 0.0004 0.7437 ± 0.0003 0.7315 ± 0.0002 

RS meteo 0.7383 ± 0.0002 0.7416 ± 0.0008 0.7214 ± 0.0004 0.7318 ± 0.0004 

RS meteo (incl. VI) 0.7356 ± 0.0002 0.7402 ± 0.0005 0.7201 ± 0.0003 0.7310 ± 0.0002 

 

 

Figure A1 Pearson correlation matrix between the scalar explanatory variables, including the MODIS NBAR bands, land surface 695 
temperature (LST), leaf area index (LAI), photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), diffuse 
PAR (Diff PAR), daily and instantaneous solar-induced fluorescence (SIF), surface downwelling shortwave flux (RSDN), soil 
moisture (SM), evapotranspiration (ET), precipitation (Precip), temperature at 2m height (T), vapor pressure deficit (VPD), and 
precipitation with 3-months lag (Precip (-3)). 

 700 

 

Figure A2 Dendrogram for clustering the explanatory variables of the “RS” set. The variables are clustered after their average 
distance, which is one minus the absolute of the Pearson correlation coefficient. See figure A1 for variable abbreviations. 
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Figure A3 Dendrogram for clustering the explanatory variables of the “RS meteo” set. The variables are clustered after their average 705 
distance, which is one minus the absolute of the Pearson correlation coefficient. See figure A1 for variable abbreviations. 

 

Figure A4 Run statistics of the AutoSklearn base models. The four statuses show how many base models succeeded or failed during 
training due to insufficient memory, training time, or other unknown reasons. Only the successful models were used for the 
configuration of AutoSklearn. 710 

 

Figure A5 Detailed use of preprocessing algorithms by AutoSklearn. The chart shows the distribution of the mean RMSE for each 
base model type across all folds within each repetition of the cross-validation. We considered only the best-performing models for 
each model class within each fold. The RMSE is min-max scaled from zero to one within each cross-validation fold to account for 
variations in the data's predictability depending on the data's split. The use of preprocessing algorithms is shown as colors in the 715 
proportions of their usage in each bin. 
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Figure A6 Relative average standard error, normalized by the mean GPP prediction. 

Code availability 720 

The code can be found at 10.5281/zenodo.8262618. 

Author contribution 

The study was conceptualized by YK and MG. YK contributed to the data curation. MG performed the formal analysis and 

developed the experimental methodology. MG prepared the manuscript draft, with contributions from YK and the other co-

authors. The project was supervised by TK and GS. 725 

Competing interests 

The authors declare that they have no conflict of interest. 

Acknowledgments 

We would like to express our gratitude to Martha Anderson and Christopher Hain for providing the ALEXI ET dataset, which 

has greatly enriched our research. TK acknowledges funding from the LEMONTREE (Land Ecosystem Models based On New 730 

Theory, obseRvations and ExperimEnts) project, funded through the generosity of Eric and Wendy Schmidt by 

recommendation of the Schmidt Futures programme, a DOE Early Career Research Program award #DE-SC0021023, and 

NASA Awards 80NSSC21K1705 and 80NSSC20K1801. YK acknowledges support from a DOE Early Career Research 

Program award #DE-SC0021023 and the LEMONTREE project.  

References 735 

Ahlström, A., Raupach, M. R., Schurgers, G., Smith, B., Arneth, A., Jung, M., Reichstein, M., Canadell, J. G., Friedlingstein, 
P., Jain, A. K., Kato, E., Poulter, B., Sitch, S., Stocker, B. D., Viovy, N., Wang, Y. P., Wiltshire, A., Zaehle, S., and Zeng, N.: 
The dominant role of semi-arid ecosystems in the trend and variability of the land CO 2 sink, Science, 348, 895–899, 
https://doi.org/10.1126/science.aaa1668, 2015. 

Anav, A., Friedlingstein, P., Beer, C., Ciais, P., Harper, A., Jones, C., Murray-Tortarolo, G., Papale, D., Parazoo, N. C., Peylin, 740 
P., Piao, S., Sitch, S., Viovy, N., Wiltshire, A., and Zhao, M.: Spatiotemporal patterns of terrestrial gross primary production: 
A review: GPP Spatiotemporal Patterns, Rev. Geophys., 53, 785–818, https://doi.org/10.1002/2015RG000483, 2015. 

auto-sklearn/autosklearn/pipeline/components/feature_preprocessing at master · automl/auto-sklearn: 
https://github.com/automl/auto-sklearn, last access: 13 August 2022. 



  

 

28 
 

Babaeian, E., Paheding, S., Siddique, N., Devabhaktuni, V. K., and Tuller, M.: Estimation of root zone soil moisture from 745 
ground and remotely sensed soil information with multisensor data fusion and automated machine learning, Remote Sensing 
of Environment, 260, 112434, https://doi.org/10.1016/j.rse.2021.112434, 2021. 

Badgley, G., Anderegg, L. D. L., Berry, J. A., and Field, C. B.: Terrestrial gross primary production: Using NIR V to scale 
from site to globe, Glob Change Biol, 25, 3731–3740, https://doi.org/10.1111/gcb.14729, 2019. 

Balaji, A. and Allen, A.: Benchmarking Automatic Machine Learning Frameworks, ArXiv, 2018. 750 

Barnes, M. L., Farella, M. M., Scott, R. L., Moore, D. J. P., Ponce-Campos, G. E., Biederman, J. A., MacBean, N., Litvak, M. 
E., and Breshears, D. D.: Improved dryland carbon flux predictions with explicit consideration of water-carbon coupling, 
Commun Earth Environ, 2, 1–9, https://doi.org/10.1038/s43247-021-00308-2, 2021. 

Beer, C., Reichstein, M., Tomelleri, E., Ciais, P., Jung, M., Carvalhais, N., Rödenbeck, C., Arain, M. A., Baldocchi, D., Bonan, 
G. B., Bondeau, A., Cescatti, A., Lasslop, G., Lindroth, A., Lomas, M., Luyssaert, S., Margolis, H., Oleson, K. W., Roupsard, 755 
O., Veenendaal, E., Viovy, N., Williams, C., Woodward, F. I., and Papale, D.: Terrestrial Gross Carbon Dioxide Uptake: 
Global Distribution and Covariation with Climate, Science, https://doi.org/10.1126/science.1184984, 2010. 

Bloomfield, K. J., Stocker, B. D., Keenan, T. F., and Prentice, I. C.: Environmental controls on the light use efficiency of 
terrestrial gross primary production, Global Change Biology, 29, 1037–1053, https://doi.org/10.1111/gcb.16511, 2023. 

Bodesheim, P., Jung, M., Gans, F., Mahecha, M. D., and Reichstein, M.: Upscaled diurnal cycles of land–atmosphere fluxes: 760 
a new global half-hourly data product, Earth System Science Data, 10, 1327–1365, https://doi.org/10.5194/essd-10-1327-2018, 
2018. 

von Buttlar, J., Zscheischler, J., Rammig, A., Sippel, S., Reichstein, M., Knohl, A., Jung, M., Menzer, O., Arain, M. A., 
Buchmann, N., Cescatti, A., Gianelle, D., Kiely, G., Law, B. E., Magliulo, V., Margolis, H., McCaughey, H., Merbold, L., 
Migliavacca, M., Montagnani, L., Oechel, W., Pavelka, M., Peichl, M., Rambal, S., Raschi, A., Scott, R. L., Vaccari, F. P., 765 
van Gorsel, E., Varlagin, A., Wohlfahrt, G., and Mahecha, M. D.: Impacts of droughts and extreme-temperature events on 
gross primary production and ecosystem respiration: a systematic assessment across ecosystems and climate zones, 
Biogeosciences, 15, 1293–1318, https://doi.org/10.5194/bg-15-1293-2018, 2018. 

Canadell, J. G., Scheel Monteiro, P., Costa, M. H., Cotrim da Cunha, L., Cox, P. M., Eliseev, A. V., Henson, S., Ishii, M., 
Jaccard, S., Koven, C., Lohila, A., Patra, P. K., Piao, S., Rogelj, J., Syampungani, S., Zaehle, S., and Zickfeld, K.: Global 770 
carbon and other biogeochemical cycles and feedbacks, in: Climate Change 2021: The Physical Science Basis. Contribution 
of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, edited by: Masson-
Delmotte, V., Zhai, P., Pirani, A., Connors, S. L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M. I., Huang, 
M., Leitzell, K., Lonnoy, E., Matthews, J. B. R., Maycock, T. K., Waterfield, T., Yelekçi, Ö., Yu, R., and Zhou, B., Cambridge 
University Press, Cambridge, United Kingdom and New York, NY, USA, 673–816, 775 
https://doi.org/10.1017/9781009157896.001, 2021. 

Caruana, R., Niculescu-Mizil, A., Crew, G., and Ksikes, A.: Ensemble selection from libraries of models, in: Twenty-first 
international conference on Machine learning  - ICML ’04, Twenty-first international conference, Banff, Alberta, Canada, 18, 
https://doi.org/10.1145/1015330.1015432, 2004. 

Carvalho, S., Oliveira, A., Pedersen, J. S., Manhice, H., Lisboa, F., Norguet, J., de Wit, F., and Santos, F. D.: A changing 780 
Amazon rainforest: Historical trends and future projections under post-Paris climate scenarios, Global and Planetary Change, 
195, 103328, https://doi.org/10.1016/j.gloplacha.2020.103328, 2020. 

Cawley, G. C. and Talbot, N. L. C.: On Over-fitting in Model Selection and Subsequent Selection Bias in Performance 
Evaluation, 2010. 

Chen, C., Park, T., Wang, X., Piao, S., Xu, B., Chaturvedi, R. K., Fuchs, R., Brovkin, V., Ciais, P., Fensholt, R., Tømmervik, 785 
H., Bala, G., Zhu, Z., Nemani, R. R., and Myneni, R. B.: China and India lead in greening of the world through land-use 
management, Nat Sustain, 2, 122–129, https://doi.org/10.1038/s41893-019-0220-7, 2019. 

Chu, H., Luo, X., Ouyang, Z., Chan, W. S., Dengel, S., Biraud, S. C., Torn, M. S., Metzger, S., Kumar, J., Arain, M. A., 
Arkebauer, T. J., Baldocchi, D., Bernacchi, C., Billesbach, D., Black, T. A., Blanken, P. D., Bohrer, G., Bracho, R., Brown, 
S., Brunsell, N. A., Chen, J., Chen, X., Clark, K., Desai, A. R., Duman, T., Durden, D., Fares, S., Forbrich, I., Gamon, J. A., 790 
Gough, C. M., Griffis, T., Helbig, M., Hollinger, D., Humphreys, E., Ikawa, H., Iwata, H., Ju, Y., Knowles, J. F., Knox, S. H., 
Kobayashi, H., Kolb, T., Law, B., Lee, X., Litvak, M., Liu, H., Munger, J. W., Noormets, A., Novick, K., Oberbauer, S. F., 
Oechel, W., Oikawa, P., Papuga, S. A., Pendall, E., Prajapati, P., Prueger, J., Quinton, W. L., Richardson, A. D., Russell, E. 
S., Scott, R. L., Starr, G., Staebler, R., Stoy, P. C., Stuart-Haëntjens, E., Sonnentag, O., Sullivan, R. C., Suyker, A., Ueyama, 
M., Vargas, R., Wood, J. D., and Zona, D.: Representativeness of Eddy-Covariance flux footprints for areas surrounding 795 



  

 

29 
 

AmeriFlux sites, Agricultural and Forest Meteorology, 301–302, 108350, https://doi.org/10.1016/j.agrformet.2021.108350, 
2021. 

Dannenberg, M. P., Barnes, M. L., Smith, W. K., Johnston, M. R., Meerdink, S. K., Wang, X., Scott, R. L., and Biederman, J. 
A.: Upscaling dryland carbon and water fluxes with artificial neural networks of optical, thermal, and microwave satellite 
remote sensing, Biogeosciences, 20, 383–404, https://doi.org/10.5194/bg-20-383-2023, 2023. 800 

Demšar, J.: Statistical Comparisons of Classifiers over Multiple Data Sets, Journal of Machine Learning Research, 7, 1–30, 
2006. 

Duan, S. and Zhang, X.: AutoML-Based Drought Forecast with Meteorological Variables, 
https://doi.org/10.48550/arXiv.2207.07012, 23 August 2022. 

Erickson, N., Mueller, J., Shirkov, A., Zhang, H., Larroy, P., Li, M., and Smola, A.: AutoGluon-Tabular: Robust and Accurate 805 
AutoML for Structured Data, arXiv:2003.06505 [cs, stat], 2020. 

Ferreira, L., Pilastri, A., Martins, C. M., Pires, P. M., and Cortez, P.: A Comparison of AutoML Tools for Machine Learning, 
Deep Learning and XGBoost, in: 2021 International Joint Conference on Neural Networks (IJCNN), 2021 International Joint 
Conference on Neural Networks (IJCNN), 1–8, https://doi.org/10.1109/IJCNN52387.2021.9534091, 2021. 

Feurer, M., Klein, A., Eggensperger, K., Springenberg, J., Blum, M., and Hutter, F.: Efficient and Robust Automated Machine 810 
Learning, 9, 2015. 

Feurer, M., Eggensperger, K., Falkner, S., Lindauer, M., and Hutter, F.: Practical Automated Machine Learning for the 
AutoML Challenge 2018, 2018. 

Frank, D., Reichstein, M., Bahn, M., Thonicke, K., Frank, D., Mahecha, M. D., Smith, P., van der Velde, M., Vicca, S., Babst, 
F., Beer, C., Buchmann, N., Canadell, J. G., Ciais, P., Cramer, W., Ibrom, A., Miglietta, F., Poulter, B., Rammig, A., 815 
Seneviratne, S. I., Walz, A., Wattenbach, M., Zavala, M. A., and Zscheischler, J.: Effects of climate extremes on the terrestrial 
carbon cycle: concepts, processes and potential future impacts, Global Change Biology, 21, 2861–2880, 
https://doi.org/10.1111/gcb.12916, 2015. 

Friedl, M. and Sulla-Menashe, D.: MCD12Q1 MODIS/Terra+Aqua Land Cover Type Yearly L3 Global 500m SIN Grid V006, 
https://doi.org/10.5067/MODIS/MCD12Q1.006, 2019. 820 

Friedlingstein, P., Jones, M. W., O’Sullivan, M., Andrew, R. M., Hauck, J., Peters, G. P., Peters, W., Pongratz, J., Sitch, S., 
Le Quéré, C., Bakker, D. C. E., Canadell, J. G., Ciais, P., Jackson, R. B., Anthoni, P., Barbero, L., Bastos, A., Bastrikov, V., 
Becker, M., Bopp, L., Buitenhuis, E., Chandra, N., Chevallier, F., Chini, L. P., Currie, K. I., Feely, R. A., Gehlen, M., Gilfillan, 
D., Gkritzalis, T., Goll, D. S., Gruber, N., Gutekunst, S., Harris, I., Haverd, V., Houghton, R. A., Hurtt, G., Ilyina, T., Jain, A. 
K., Joetzjer, E., Kaplan, J. O., Kato, E., Klein Goldewijk, K., Korsbakken, J. I., Landschützer, P., Lauvset, S. K., Lefèvre, N., 825 
Lenton, A., Lienert, S., Lombardozzi, D., Marland, G., McGuire, P. C., Melton, J. R., Metzl, N., Munro, D. R., Nabel, J. E. M. 
S., Nakaoka, S.-I., Neill, C., Omar, A. M., Ono, T., Peregon, A., Pierrot, D., Poulter, B., Rehder, G., Resplandy, L., Robertson, 
E., Rödenbeck, C., Séférian, R., Schwinger, J., Smith, N., Tans, P. P., Tian, H., Tilbrook, B., Tubiello, F. N., van der Werf, G. 
R., Wiltshire, A. J., and Zaehle, S.: Global Carbon Budget 2019, Earth System Science Data, 11, 1783–1838, 
https://doi.org/10.5194/essd-11-1783-2019, 2019. 830 

Gong, L. J., Liu, S. M., Shuang, X., Cai, X. H., and Xu, Z. W.: Investigation of spatial representativeness for surface flux 
measurements with eddy covariance system and large aperture scintillometer, Plateau Meteorology, 28, 246–257, 2009. 

Gray, J. M., Frolking, S., Kort, E. A., Ray, D. K., Kucharik, C. J., Ramankutty, N., and Friedl, M. A.: Direct human influence 
on atmospheric CO2 seasonality from increased cropland productivity, Nature, 515, 398–401, 
https://doi.org/10.1038/nature13957, 2014. 835 

Green, J. K., Seneviratne, S. I., Berg, A. M., Findell, K. L., Hagemann, S., Lawrence, D. M., and Gentine, P.: Large influence 
of soil moisture on long-term terrestrial carbon uptake, Nature, 565, 476–479, https://doi.org/10.1038/s41586-018-0848-x, 
2019. 

Green, J. K., Ballantyne, A., Abramoff, R., Gentine, P., Makowski, D., and Ciais, P.: Surface temperatures reveal the patterns 
of vegetation water stress and their environmental drivers across the tropical Americas, Global Change Biology, 28, 2940–840 
2955, https://doi.org/10.1111/gcb.16139, 2022. 

Gruber, A., Scanlon, T., van der Schalie, R., Wagner, W., and Dorigo, W.: Evolution of the ESA CCI Soil Moisture climate 
data records and their underlying merging methodology, Earth System Science Data, 11, 717–739, 
https://doi.org/10.5194/essd-11-717-2019, 2019. 



  

 

30 
 

Guevara-Escobar, A., González-Sosa, E., Cervantes-Jiménez, M., Suzán-Azpiri, H., Queijeiro-Bolaños, M. E., Carrillo-845 
Ángeles, I., and Cambrón-Sandoval, V. H.: Machine learning estimates of eddy covariance carbon flux in a scrub in the 
Mexican highland, Biogeosciences, 18, 367–392, https://doi.org/10.5194/bg-18-367-2021, 2021. 

Guyon, I., Sun-Hosoya, L., Boullé, M., Escalante, H. J., Escalera, S., Liu, Z., Jajetic, D., Ray, B., Saeed, M., Sebag, M., 
Statnikov, A., Tu, W.-W., and Viegas, E.: Analysis of the AutoML Challenge Series 2015–2018, in: Automated Machine 
Learning: Methods, Systems, Challenges, edited by: Hutter, F., Kotthoff, L., and Vanschoren, J., Springer International 850 
Publishing, Cham, 177–219, https://doi.org/10.1007/978-3-030-05318-5_10, 2019. 

Hain, C. R. and Anderson, M. C.: Estimating morning change in land surface temperature from MODIS day/night observations: 
Applications for surface energy balance modeling, Geophysical Research Letters, 44, 9723–9733, 
https://doi.org/10.1002/2017GL074952, 2017. 

Hanussek, M., Blohm, M., and Kintz, M.: Can AutoML outperform humans? An evaluation on popular OpenML datasets 855 
using AutoML Benchmark, in: 2020 2nd International Conference on Artificial Intelligence, Robotics and Control, New York, 
NY, USA, 29–32, https://doi.org/10.1145/3448326.3448353, 2020. 

Haughton, N., Abramowitz, G., De Kauwe, M. G., and Pitman, A. J.: Does predictability of fluxes vary between FLUXNET 
sites?, Biogeosciences, 15, 4495–4513, https://doi.org/10.5194/bg-15-4495-2018, 2018. 

Hutter, F., Kotthoff, L., and Vanschoren, J. (Eds.): Automated Machine Learning: Methods, Systems, Challenges, Springer 860 
International Publishing, Cham, https://doi.org/10.1007/978-3-030-05318-5, 2019. 

ICOS: Warm Winter 2020 ecosystem eddy covariance flux product for 73 stations in FLUXNET-Archive format—release 
2022-1, 2020. 

International Geosphere–Biosphere Programme: http://www.igbp.net, last access: 8 January 2024. 

Joiner, J. and Yoshida, Y.: Satellite-based reflectances capture large fraction of variability in global gross primary production 865 
(GPP) at weekly time scales, Agricultural and Forest Meteorology, 291, 108092, 
https://doi.org/10.1016/j.agrformet.2020.108092, 2020. 

Joiner, J. and Yoshida, Y.: Vegetation CollectionGlobal MODIS and FLUXNET-derived Daily Gross Primary Production, 
V2, https://doi.org/10.3334/ORNLDAAC/1835, 2021. 

Joiner, J., Yoshida, Y., Zhang, Y., Duveiller, G., Jung, M., Lyapustin, A., Wang, Y., and Tucker, C.: Estimation of Terrestrial 870 
Global Gross Primary Production (GPP) with Satellite Data-Driven Models and Eddy Covariance Flux Data, Remote Sensing, 
10, 1346, https://doi.org/10.3390/rs10091346, 2018. 

Jones, P. W.: First- and Second-Order Conservative Remapping Schemes for Grids in Spherical Coordinates, Monthly Weather 
Review, 127, 2204–2210, https://doi.org/10.1175/1520-0493(1999)127<2204:FASOCR>2.0.CO;2, 1999. 

Jung, M., Reichstein, M., Margolis, H. A., Cescatti, A., Richardson, A. D., Arain, M. A., Arneth, A., Bernhofer, C., Bonal, D., 875 
Chen, J., Gianelle, D., Gobron, N., Kiely, G., Kutsch, W., Lasslop, G., Law, B. E., Lindroth, A., Merbold, L., Montagnani, L., 
Moors, E. J., Papale, D., Sottocornola, M., Vaccari, F., and Williams, C.: Global patterns of land-atmosphere fluxes of carbon 
dioxide, latent heat, and sensible heat derived from eddy covariance, satellite, and meteorological observations, J. Geophys. 
Res., 116, G00J07, https://doi.org/10.1029/2010JG001566, 2011. 

Jung, M., Schwalm, C., Migliavacca, M., Walther, S., Camps-Valls, G., Koirala, S., Anthoni, P., Besnard, S., Bodesheim, P., 880 
Carvalhais, N., Chevallier, F., Gans, F., Goll, D. S., Haverd, V., Köhler, P., Ichii, K., Jain, A. K., Liu, J., Lombardozzi, D., 
Nabel, J. E. M. S., Nelson, J. A., O’Sullivan, M., Pallandt, M., Papale, D., Peters, W., Pongratz, J., Rödenbeck, C., Sitch, S., 
Tramontana, G., Walker, A., Weber, U., and Reichstein, M.: Scaling carbon fluxes from eddy covariance sites to globe: 
synthesis and evaluation of the FLUXCOM approach, Biogeosciences, 17, 1343–1365, https://doi.org/10.5194/bg-17-1343-
2020, 2020. 885 

Kalfas, J. L., Xiao, X., Vanegas, D. X., Verma, S. B., and Suyker, A. E.: Modeling gross primary production of irrigated and 
rain-fed maize using MODIS imagery and CO2 flux tower data, Agricultural and Forest Meteorology, 151, 1514–1528, 
https://doi.org/10.1016/j.agrformet.2011.06.007, 2011. 

Kannenberg, S. A., Anderegg, W. R. L., Barnes, M. L., Dannenberg, M. P., and Knapp, A. K.: Dominant role of soil moisture 
in mediating carbon and water fluxes in dryland ecosystems, Nat. Geosci., 17, 38–43, https://doi.org/10.1038/s41561-023-890 
01351-8, 2024. 



  

 

31 
 

Karmaker, S. K., Hassan, Md. M., Smith, M. J., Xu, L., Zhai, C., and Veeramachaneni, K.: AutoML to Date and Beyond: 
Challenges and Opportunities, ACM Comput. Surv., 54, 175:1-175:36, https://doi.org/10.1145/3470918, 2021. 

Keenan, T. F., Prentice, I. C., Canadell, J. G., Williams, C. A., Wang, H., Raupach, M., and Collatz, G. J.: Recent pause in the 
growth rate of atmospheric CO2 due to enhanced terrestrial carbon uptake, Nat Commun, 7, 13428, 895 
https://doi.org/10.1038/ncomms13428, 2016. 

Keenan, T. F., Migliavacca, M., Papale, D., Baldocchi, D., Reichstein, M., Torn, M., and Wutzler, T.: Widespread inhibition 
of daytime ecosystem respiration, Nat Ecol Evol, 3, 407–415, https://doi.org/10.1038/s41559-019-0809-2, 2019. 

Kim, G. E., Steller, M., and Olson, S.: Modeling watershed nutrient concentrations with AutoML, in: Proceedings of the 10th 
International Conference on Climate Informatics, New York, NY, USA, 86–90, https://doi.org/10.1145/3429309.3429322, 900 
2020. 

Kotthoff, L., Thornton, C., Hoos, H. H., Hutter, F., and Leyton-Brown, K.: Auto-WEKA: Automatic Model Selection and 
Hyperparameter Optimization in WEKA, in: Automated Machine Learning: Methods, Systems, Challenges, edited by: Hutter, 
F., Kotthoff, L., and Vanschoren, J., Springer International Publishing, Cham, 81–95, https://doi.org/10.1007/978-3-030-
05318-5_4, 2019. 905 

van der Laan, M. J., Polley, Eric C., and Hubbard, A. E.: Super Learner, U.C. Berkeley Division of Biostatistics, 2007. 

LeDell, E. and Poirier, S.: H2O AutoML: Scalable Automatic Machine Learning, 7th ICML Workshop on Automated Machine 
Learning (AutoML), 2020. 

Lee, S., Kim, J., Bae, J. H., Lee, G., Yang, D., Hong, J., and Lim, K. J.: Development of Multi-Inflow Prediction Ensemble 
Model Based on Auto-Sklearn Using Combined Approach: Case Study of Soyang River Dam, Hydrology, 10, 90, 910 
https://doi.org/10.3390/hydrology10040090, 2023. 

Madni, H. A., Umer, M., Ishaq, A., Abuzinadah, N., Saidani, O., Alsubai, S., Hamdi, M., and Ashraf, I.: Water-Quality 
Prediction Based on H2O AutoML and Explainable AI Techniques, Water, 15, 475, https://doi.org/10.3390/w15030475, 2023. 

Muñoz-Sabater, J., Dutra, E., Agustí-Panareda, A., Albergel, C., Arduini, G., Balsamo, G., Boussetta, S., Choulga, M., 
Harrigan, S., Hersbach, H., Martens, B., Miralles, D. G., Piles, M., Rodríguez-Fernández, N. J., Zsoter, E., Buontempo, C., 915 
and Thépaut, J.-N.: ERA5-Land: a state-of-the-art global reanalysis dataset for land applications, Earth Syst. Sci. Data, 13, 
4349–4383, https://doi.org/10.5194/essd-13-4349-2021, 2021. 

Myneni, R., Knyazikhin, Y., and Park, T.: MCD15A2H MODIS/Terra+Aqua Leaf Area Index/FPAR 8-day L4 Global 500m 
SIN Grid V006, https://doi.org/10.5067/MODIS/MCD15A2H.006, 2015. 

Nash, J. E. and Sutcliffe, J. V.: River flow forecasting through conceptual models part I — A discussion of principles, Journal 920 
of Hydrology, 10, 282–290, https://doi.org/10.1016/0022-1694(70)90255-6, 1970. 

Orth, R., Destouni, G., Jung, M., and Reichstein, M.: Large-scale biospheric drought response intensifies linearly with drought 
duration in arid regions, Biogeosciences, 17, 2647–2656, https://doi.org/10.5194/bg-17-2647-2020, 2020. 

Papale, D., Black, T. A., Carvalhais, N., Cescatti, A., Chen, J., Jung, M., Kiely, G., Lasslop, G., Mahecha, M. D., Margolis, 
H., Merbold, L., Montagnani, L., Moors, E., Olesen, J. E., Reichstein, M., Tramontana, G., Gorsel, E., Wohlfahrt, G., and 925 
Ráduly, B.: Effect of spatial sampling from European flux towers for estimating carbon and water fluxes with artificial neural 
networks, J. Geophys. Res. Biogeosci., 120, 1941–1957, https://doi.org/10.1002/2015JG002997, 2015. 

Pastorello, G., Trotta, C., Canfora, E., Chu, H., Christianson, D., Cheah, Y.-W., Poindexter, C., Chen, J., Elbashandy, A., 
Humphrey, M., Isaac, P., Polidori, D., Reichstein, M., Ribeca, A., van Ingen, C., Vuichard, N., Zhang, L., Amiro, B., Ammann, 
C., Arain, M. A., Ardö, J., Arkebauer, T., Arndt, S. K., Arriga, N., Aubinet, M., Aurela, M., Baldocchi, D., Barr, A., 930 
Beamesderfer, E., Marchesini, L. B., Bergeron, O., Beringer, J., Bernhofer, C., Berveiller, D., Billesbach, D., Black, T. A., 
Blanken, P. D., Bohrer, G., Boike, J., Bolstad, P. V., Bonal, D., Bonnefond, J.-M., Bowling, D. R., Bracho, R., Brodeur, J., 
Brümmer, C., Buchmann, N., Burban, B., Burns, S. P., Buysse, P., Cale, P., Cavagna, M., Cellier, P., Chen, S., Chini, I., 
Christensen, T. R., Cleverly, J., Collalti, A., Consalvo, C., Cook, B. D., Cook, D., Coursolle, C., Cremonese, E., Curtis, P. S., 
D’Andrea, E., da Rocha, H., Dai, X., Davis, K. J., Cinti, B. D., Grandcourt, A. de, Ligne, A. D., De Oliveira, R. C., Delpierre, 935 
N., Desai, A. R., Di Bella, C. M., Tommasi, P. di, Dolman, H., Domingo, F., Dong, G., Dore, S., Duce, P., Dufrêne, E., Dunn, 
A., Dušek, J., Eamus, D., Eichelmann, U., ElKhidir, H. A. M., Eugster, W., Ewenz, C. M., Ewers, B., Famulari, D., Fares, S., 
Feigenwinter, I., Feitz, A., Fensholt, R., Filippa, G., Fischer, M., Frank, J., Galvagno, M., et al.: The FLUXNET2015 dataset 
and the ONEFlux processing pipeline for eddy covariance data, Sci Data, 7, 225, https://doi.org/10.1038/s41597-020-0534-3, 
2020. 940 



  

 

32 
 

Ploton, P., Mortier, F., Réjou-Méchain, M., Barbier, N., Picard, N., Rossi, V., Dormann, C., Cornu, G., Viennois, G., Bayol, 
N., Lyapustin, A., Gourlet-Fleury, S., and Pélissier, R.: Spatial validation reveals poor predictive performance of large-scale 
ecological mapping models, Nat Commun, 11, 4540, https://doi.org/10.1038/s41467-020-18321-y, 2020. 

Qi, W., Xu, C., and Xu, X.: AutoGluon: A revolutionary framework for landslide hazard analysis, Natural Hazards Research, 
1, 103–108, https://doi.org/10.1016/j.nhres.2021.07.002, 2021. 945 

Raschka, S.: Model Evaluation, Model Selection, and Algorithm Selection in Machine Learning, 
https://doi.org/10.48550/arXiv.1811.12808, 10 November 2020. 

Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M., Berbigier, P., Bernhofer, C., Buchmann, N., Gilmanov, T., 
Granier, A., Grünwald, T., Havránková, K., Ilvesniemi, H., Janous, D., Knohl, A., Laurila, T., Lohila, A., Loustau, D., 
Matteucci, G., Meyers, T., Miglietta, F., Ourcival, J.-M., Pumpanen, J., Rambal, S., Rotenberg, E., Sanz, M., Tenhunen, J., 950 
Seufert, G., Vaccari, F., Vesala, T., Yakir, D., and Valentini, R.: On the separation of net ecosystem exchange into assimilation 
and ecosystem respiration: review and improved algorithm, Global Change Biology, 11, 1424–1439, 
https://doi.org/10.1111/j.1365-2486.2005.001002.x, 2005. 

Reichstein, M., Camps-Valls, G., Stevens, B., Jung, M., Denzler, J., Carvalhais, N., and Prabhat: Deep learning and process 
understanding for data-driven Earth system science, Nature, 566, 195–204, https://doi.org/10.1038/s41586-019-0912-1, 2019. 955 

Roberts, D. R., Bahn, V., Ciuti, S., Boyce, M. S., Elith, J., Guillera-Arroita, G., Hauenstein, S., Lahoz-Monfort, J. J., Schröder, 
B., Thuiller, W., Warton, D. I., Wintle, B. A., Hartig, F., and Dormann, C. F.: Cross-validation strategies for data with temporal, 
spatial, hierarchical, or phylogenetic structure, Ecography, 40, 913–929, https://doi.org/10.1111/ecog.02881, 2017. 

Running, S. W., Nemani, R. R., Heinsch, F. A., Zhao, M., Reeves, M., and Hashimoto, H.: A Continuous Satellite-Derived 
Measure of Global Terrestrial Primary Production, BioScience, 54, 547, https://doi.org/10.1641/0006-960 
3568(2004)054[0547:ACSMOG]2.0.CO;2, 2004. 

Ryu, Y., Jiang, C., Kobayashi, H., and Detto, M.: MODIS-derived global land products of shortwave radiation and diffuse and 
total photosynthetically active radiation at 5km resolution from 2000, Remote Sensing of Environment, 204, 812–825, 
https://doi.org/10.1016/j.rse.2017.09.021, 2018. 

Schaaf, C. and Wang, Z.: MCD43A4 MODIS/Terra+Aqua BRDF/Albedo Nadir BRDF Adjusted Ref Daily L3 Global - 500m 965 
V006, https://doi.org/10.5067/MODIS/MCD43A4.006, 2015. 

Schucknecht, A., Erasmi, S., Niemeyer, I., and Matschullat, J.: Assessing vegetation variability and trends in north-eastern 
Brazil using AVHRR and MODIS NDVI time series, European Journal of Remote Sensing, 46, 40–59, 
https://doi.org/10.5721/EuJRS20134603, 2013. 

Smith, W. K., Biederman, J. A., Scott, R. L., Moore, D. J. P., He, M., Kimball, J. S., Yan, D., Hudson, A., Barnes, M. L., 970 
MacBean, N., Fox, A. M., and Litvak, M. E.: Chlorophyll Fluorescence Better Captures Seasonal and Interannual Gross 
Primary Productivity Dynamics Across Dryland Ecosystems of Southwestern North America, Geophysical Research Letters, 
45, 748–757, https://doi.org/10.1002/2017GL075922, 2018. 

Smith, W. K., Dannenberg, M. P., Yan, D., Herrmann, S., Barnes, M. L., Barron-Gafford, G. A., Biederman, J. A., Ferrenberg, 
S., Fox, A. M., Hudson, A., Knowles, J. F., MacBean, N., Moore, D. J. P., Nagler, P. L., Reed, S. C., Rutherford, W. A., Scott, 975 
R. L., Wang, X., and Yang, J.: Remote sensing of dryland ecosystem structure and function: Progress, challenges, and 
opportunities, Remote Sensing of Environment, 233, 111401, https://doi.org/10.1016/j.rse.2019.111401, 2019. 

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Peñuelas, J., and Seneviratne, S. I.: Quantifying soil moisture 
impacts on light use efficiency across biomes, New Phytologist, 218, 1430–1449, https://doi.org/10.1111/nph.15123, 2018. 

Stocker, B. D., Zscheischler, J., Keenan, T. F., Prentice, I. C., Seneviratne, S. I., and Peñuelas, J.: Drought impacts on terrestrial 980 
primary production underestimated by satellite monitoring, Nat. Geosci., 12, 264–270, https://doi.org/10.1038/s41561-019-
0318-6, 2019. 

Sulkava, M., Luyssaert, S., Zaehle, S., and Papale, D.: Assessing and improving the representativeness of monitoring networks: 
The European flux tower network example, Journal of Geophysical Research: Biogeosciences, 116, 
https://doi.org/10.1029/2010JG001562, 2011. 985 

Sun, W., Fang, Y., Luo, X., Shiga, Y. P., Zhang, Y., Andrews, A. E., Thoning, K. W., Fisher, J. B., Keenan, T. F., and Michalak, 
A. M.: Midwest US Croplands Determine Model Divergence in North American Carbon Fluxes, AGU Advances, 2, 
e2020AV000310, https://doi.org/10.1029/2020AV000310, 2021. 



  

 

33 
 

Thornton, C., Hutter, F., Hoos, H. H., and Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter 
optimization of classification algorithms, in: Proceedings of the 19th ACM SIGKDD international conference on Knowledge 990 
discovery and data mining, New York, NY, USA, 847–855, https://doi.org/10.1145/2487575.2487629, 2013. 

Tramontana, G., Jung, M., Schwalm, C. R., Ichii, K., Camps-Valls, G., Ráduly, B., Reichstein, M., Arain, M. A., Cescatti, A., 
Kiely, G., Merbold, L., Serrano-Ortiz, P., Sickert, S., Wolf, S., and Papale, D.: Predicting carbon dioxide and energy fluxes 
across global FLUXNET sites withregression algorithms, Biogeosciences, 13, 4291–4313, https://doi.org/10.5194/bg-13-
4291-2016, 2016. 995 

Tramontana, G., Migliavacca, M., Jung, M., Reichstein, M., Keenan, T. F., Camps-Valls, G., Ogee, J., Verrelst, J., and Papale, 
D.: Partitioning net carbon dioxide fluxes into photosynthesis and respiration using neural networks, Global Change Biology, 
26, 5235–5253, https://doi.org/10.1111/gcb.15203, 2020. 

Traoré, K. R., Camero, A., and Zhu, X. X.: Compact Neural Architecture Search for Local Climate Zones Classification, in: 
29th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning, The 29th 1000 
European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning (ESANN), Online, 
393–398, 2021. 

Truong, A., Walters, A., Goodsitt, J., Hines, K., Bruss, C. B., and Farivar, R.: Towards Automated Machine Learning: 
Evaluation and Comparison of AutoML Approaches and Tools, in: 2019 IEEE 31st International Conference on Tools with 
Artificial Intelligence (ICTAI), arXiv:1908.05557 [cs, stat], 1471–1479, https://doi.org/10.1109/ICTAI.2019.00209, 2019. 1005 

Turner, D. P., Ritts, W. D., Cohen, W. B., Gower, S. T., Running, S. W., Zhao, M., Costa, M. H., Kirschbaum, A. A., Ham, J. 
M., Saleska, S. R., and Ahl, D. E.: Evaluation of MODIS NPP and GPP products across multiple biomes, Remote Sensing of 
Environment, 102, 282–292, https://doi.org/10.1016/j.rse.2006.02.017, 2006. 

Walther, S., Besnard, S., Nelson, J. A., El-Madany, T. S., Migliavacca, M., Weber, U., Carvalhais, N., Ermida, S. L., Brümmer, 
C., Schrader, F., Prokushkin, A. S., Panov, A. V., and Jung, M.: Technical note: A view from space on global flux towers by 1010 
MODIS and Landsat: the FluxnetEO data set, Biogeosciences, 19, 2805–2840, https://doi.org/10.5194/bg-19-2805-2022, 
2022. 

Wan, Z., Hook, S., and Hulley, G.: MOD11A1 MODIS/Terra Land Surface Temperature/Emissivity Daily L3 Global 1km 
SIN Grid V006, https://doi.org/10.5067/MODIS/MOD11A1.006, 2015. 

Wang, J., Feng, L., Palmer, P. I., Liu, Y., Fang, S., Bösch, H., O’Dell, C. W., Tang, X., Yang, D., Liu, L., and Xia, C.: Large 1015 
Chinese land carbon sink estimated from atmospheric carbon dioxide data, Nature, 586, 720–723, 
https://doi.org/10.1038/s41586-020-2849-9, 2020. 

Wei, S., Yi, C., Fang, W., and Hendrey, G.: A global study of GPP focusing on light-use efficiency in a random forest 
regression model, Ecosphere, 8, e01724, https://doi.org/10.1002/ecs2.1724, 2017. 

Wohlfahrt, G. and Galvagno, M.: Revisiting the choice of the driving temperature for eddy covariance CO2 flux partitioning, 1020 
Agricultural and Forest Meteorology, 237–238, 135–142, https://doi.org/10.1016/j.agrformet.2017.02.012, 2017. 

Xiao, J., Zhuang, Q., Baldocchi, D. D., Law, B. E., Richardson, A. D., Chen, J., Oren, R., Starr, G., Noormets, A., Ma, S., 
Verma, S. B., Wharton, S., Wofsy, S. C., Bolstad, P. V., Burns, S. P., Cook, D. R., Curtis, P. S., Drake, B. G., Falk, M., Fischer, 
M. L., Foster, D. R., Gu, L., Hadley, J. L., Hollinger, D. Y., Katul, G. G., Litvak, M., Martin, T. A., Matamala, R., McNulty, 
S., Meyers, T. P., Monson, R. K., Munger, J. W., Oechel, W. C., Paw U, K. T., Schmid, H. P., Scott, R. L., Sun, G., Suyker, 1025 
A. E., and Torn, M. S.: Estimation of net ecosystem carbon exchange for the conterminous United States by combining MODIS 
and AmeriFlux data, Agricultural and Forest Meteorology, 148, 1827–1847, https://doi.org/10.1016/j.agrformet.2008.06.015, 
2008. 

Xu, H., Xiao, J., and Zhang, Z.: Heatwave effects on gross primary production of northern mid-latitude ecosystems, Environ. 
Res. Lett., 15, 074027, https://doi.org/10.1088/1748-9326/ab8760, 2020. 1030 

Yan, D., Scott, R. L., Moore, D. J. P., Biederman, J. A., and Smith, W. K.: Understanding the relationship between vegetation 
greenness and productivity across dryland ecosystems through the integration of PhenoCam, satellite, and eddy covariance 
data, Remote Sensing of Environment, 223, 50–62, https://doi.org/10.1016/j.rse.2018.12.029, 2019. 

Yao, Q., Wang, M., Chen, Y., Dai, W., Li, Y.-F., Tu, W.-W., Yang, Q., and Yu, Y.: Taking Human out of Learning 
Applications: A Survey on Automated Machine Learning, https://doi.org/10.48550/arXiv.1810.13306, 16 December 2019. 1035 

Yu, T., Sun, R., Xiao, Z., Zhang, Q., Liu, G., Cui, T., and Wang, J.: Estimation of Global Vegetation Productivity from Global 
LAnd Surface Satellite Data, Remote Sensing, 10, 327, https://doi.org/10.3390/rs10020327, 2018. 



  

 

34 
 

Yuan, W., Cai, W., Xia, J., Chen, J., Liu, S., Dong, W., Merbold, L., Law, B., Arain, A., Beringer, J., Bernhofer, C., Black, 
A., Blanken, P. D., Cescatti, A., Chen, Y., Francois, L., Gianelle, D., Janssens, I. A., Jung, M., Kato, T., Kiely, G., Liu, D., 
Marcolla, B., Montagnani, L., Raschi, A., Roupsard, O., Varlagin, A., and Wohlfahrt, G.: Global comparison of light use 1040 
efficiency models for simulating terrestrial vegetation gross primary production based on the LaThuile database, Agricultural 
and Forest Meteorology, 192–193, 108–120, https://doi.org/10.1016/j.agrformet.2014.03.007, 2014. 

Zhang, Y., Xiao, X., Zhou, S., Ciais, P., McCarthy, H., and Luo, Y.: Canopy and physiological controls of GPP during drought 
and heat wave, Geophysical Research Letters, 43, 3325–3333, https://doi.org/10.1002/2016GL068501, 2016. 

Zhang, Y., Joiner, J., Alemohammad, S. H., Zhou, S., and Gentine, P.: A global spatially contiguous solar-induced fluorescence 1045 
(CSIF) dataset using neural networks, Biogeosciences, 15, 5779–5800, https://doi.org/10.5194/bg-15-5779-2018, 2018. 

Zöller, M.-A. and Huber, M. F.: Benchmark and Survey of Automated Machine Learning Frameworks, 
https://doi.org/10.48550/arXiv.1904.12054, 26 January 2021. 

 


