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Abstract.  

Estimating gross primary productivity (GPP) over space and time is fundamental for understanding the response of the 10 

terrestrial biosphere to climate change. Eddy covariance flux towers provide in situ estimates of GPP at the ecosystem scale, 

but their sparse geographical distribution limits larger-scale inference. Machine learning (ML) techniques have been used to 

address this problem by extrapolating local GPP measurements over space using satellite remote sensing data. However, the 

accuracy of the regression model can be affected by uncertainties introduced by model selection, parameterization, and choice 

of explanatory features, among others. Recent advances in automated ML (AutoML) provide a novel automated way to select 15 

and synthesize different ML models. In this work, we explore the potential of AutoML by training three major AutoML 

frameworks on eddy-covariance measurements of GPP at 243 globally distributed sites. We compared their ability to predict 

GPP and its spatial and temporal variability based on different sets of remote sensing explanatory variables. Explanatory 

variables from only MODIS surface reflectance data and photosynthetically active radiation explained over 70 % of the 

monthly variability in GPP, while satellite-derived proxies for canopy structure, photosynthetic activity, environmental 20 

stressors, and meteorological variables from reanalysis (ERA5-Land) further improved the frameworks' predictive ability. We 

found that the AutoML framework AutoSklearn consistently outperformed other AutoML frameworks as well as a classical 

Random Forest regressor in predicting GPP, but with small performance differences, reaching an r2 of up to 0.75. We deployed 

the best-performing framework to generate global wall-to-wall maps highlighting GPP patterns in good agreement with 

satellite-derived reference data. This research benchmarks the application of AutoML in GPP estimation and assesses its 25 

potential and limitations in quantifying global photosynthetic activity. 

1 Introduction 

Terrestrial gross primary productivity (GPP) describes the gross photosynthetic assimilation of atmospheric carbon dioxide 

(CO2) at the ecosystem scale. As the largest flux in the global carbon cycle, GPP plays a vital role in maintaining ecosystem 

functions and sustaining human well-being (Beer et al., 2010; Friedlingstein et al., 2019). In addition, the dynamics of GPP 30 

directly affect the growth rate of atmospheric CO2 concentrations and ecosystem feedbacks to the climate system. Therefore, 

accurate estimates of the magnitude and spatiotemporal patterns of terrestrial GPP are essential for understanding ecosystem 

carbon cycling and developing effective climate change mitigation and adaptation strategies (Keenan et al., 2016; Canadell et 

al., 2021). 

 35 

While in situ GPP estimates are available from methods such as the eddy covariance technique, global spatiotemporal patterns 

are challenging to estimate due to the lack of large-scale observations and the high uncertainty of process-based vegetation 

models (Anav et al., 2015). Fluxes captured by the eddy covariance measurements are limited to the area within the tower's 

footprint, typically ranging from several hundred meters to several kilometers (Gong et al., 2009). Therefore, various data-
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driven methods such as machine learning (ML) have been used to scale up in situ GPP measurements from flux tower networks 40 

to a global scale. These ML models use independent globally available explanatory data from remote sensing or other 

continuous model outputs to infer a functional relationship to the GPP measurements, which can be used to predict GPP in 

areas beyond the limited flux tower footprints. Commonly applied models include tree-based methods (Bodesheim et al., 2018; 

Wei et al., 2017; Beer et al., 2010; Jung et al., 2011), artificial neural networks (Joiner and Yoshida, 2020; Beer et al., 2010; 

Papale et al., 2015), linear regressors, kernel methods, and ensembles thereof (Tramontana et al., 2016). Despite the wide 45 

variety of ML models applied, a high degree of uncertainty remains in the selection of appropriate features, algorithms, and 

configurations (Reichstein et al., 2019). The data-based models typically perform well in estimating seasonal GPP patterns but 

show limitations in predicting trends and interannual variability (Tramontana et al., 2016). 

 

The contribution of different explanatory variables, such as greenness measures, photosynthetically active radiation (PAR), 50 

land surface temperature (LST), soil moisture (SM), and meteorological variables (vapor pressure deficit, temperature, 

precipitation) to the accuracy of the GPP predictions (hereafter referred to as variable importance) has not been conclusively 

clarified. Both Tramontana et al. (2016) and Joiner and Yoshida (2020) confirmed the dominant control of remotely sensed 

greenness on the ML prediction of GPP at daily to interannual time scales, with meteorological variables contributing 

marginally. Conversely, Stocker et al. (2018) found an important control of site-measured soil moisture on light use efficiency 55 

(LUE) and GPP at daily granularity under drought conditions at flux sites. Furthermore, Dannenberg et al. (2023) showed that 

including satellite-derived soil moisture and LST data significantly improved the estimation of monthly GPP in drylands over 

the western US. However, a comprehensive assessment of the importance of meteorological and satellite-derived variables 

beyond vegetation structure at the global scale is lacking. Given the ubiquitous intercorrelation among remote sensing and 

meteorological variables, the importance of different explanatory variables has typically been accomplished by training 60 

separate models on different input combinations (Tramontana et al., 2016). Yet, ML model performance can vary strongly 

depending on the dimension of input features, hyperparameter tuning (the search for the optimal parameters that control the 

learning process of an ML model), and even the specific type of ML model employed (Raschka, 2020; Cawley and Talbot, 

2010). Therefore, a unified ML framework that concurrently optimizes model choice and parameterization is required to 

facilitate a balanced assessment of driver importance in global GPP upscaling. 65 

 

Navigating the search space created by the choice of model architecture, hyperparameters, and preprocessing steps to find a 

suitable combination for GPP prediction is a resource-intensive task. Therefore, researchers often evaluate a selection of 

combinations that they expect to perform well, thereby potentially missing out on the optimal solution (Karmaker et al., 2021). 

Automated machine learning (AutoML) aims to overcome these challenges through an autonomous approach. By evaluating 70 

different combinations of preprocessing steps, candidate ML models, and hyperparameters, AutoML aims to find the optimal 

ML configuration for the given ML problem and available training data. In addition, it leverages the unique strengths of 

different algorithms by using ensembling or stacking techniques. At the time of this study, AutoML is still under ongoing 

development but has recently received increasing attention in the environmental sciences and beyond. It has shown superior 

performance to classical ML, for example, in modeling water nutrient concentrations (Kim et al., 2020), dam water inflows 75 

(Lee et al., 2023), and water quality prediction (Madni et al., 2023), and similar performance to reference models for climate 

zone classification (Traoré et al., 2021) and drought forecasts (Duan and Zhang, 2022). Other use cases include predicting 

landslide hazards (Qi et al., 2021), root zone soil moisture (Babaeian et al., 2021), or GPP at a single flux tower site (Guevara-

Escobar et al., 2021). 

 80 

In this study, we investigate if and how AutoML can improve global GPP upscaling at the monthly frequency from in situ 

measurements using globally available explanatory variables. We examine the three frameworks AutoSklearn, H2O AutoML, 
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and AutoGluon in this study since they have shown outstanding performance in benchmarks and Kaggle competitions (Guyon 

et al., 2019; Erickson et al., 2020; Truong et al., 2019; LeDell and Poirier, 2020; Feurer et al., 2018). All frameworks differ in 

their architecture and approach to selecting ML algorithms. We evaluate their selection of processing and ML algorithms based 85 

on site-level measurements. In addition, we evaluate the variable importance, i.e., the contribution of various remotely sensed 

vegetation structure variables, proxies for photosynthetic activity and environmental stress (i.e., greenness, land surface 

temperature, soil moisture, evapotranspiration), and meteorological factors to the performance of the AutoML frameworks. 

The impacts of the spatial resolution of remote sensing data on GPP estimation are further assessed. Finally, we upscale our 

results to global wall-to-wall GPP maps and evaluate their spatio-temporal patterns and associated uncertainties. 90 

2 Methods and materials 

2.1 Data 

2.1.1 Eddy covariance measurements 

We merged eddy covariance datasets from FLUXNET 2015 (Pastorello et al., 2020), AmeriFlux FLUXNET 

(https://ameriflux.lbl.gov/data/flux-data-products), and ICOS Warm Winter 2020 (ICOS, 2020) to obtain a large number of 95 

monthly GPP estimates from net ecosystem exchange (NEE) measurements. Where sites were available in more than one 

source, we kept the most recent record. The data quality control followed previous studies (Tramontana et al., 2016; Jung et 

al., 2011; Joiner et al., 2018). We considered monthly values where at least 80% of the NEE data came from actual 

measurements or were high-quality gap-filled. We used the GPP derived from NEE using the night-time partitioning approach 

(Reichstein et al., 2005), and negative GPP outliers were truncated at -1 gC m-2 d-1 average daily GPP. 100 

 

The preprocessing resulted in a dataset of 243 sites and 18,218 site-months, ranging from 2001 to 2020, and serving as the 

ground truth for the evaluation of site-level GPP predictions (Fig. 1). The distribution of sites and site-months shows strong 

biases in region, biome, and climate representation (Fig. 2). We reorganized the land cover classes, as individual land cover 

classes related to shrublands and savannas rarely occurred. Therefore, "open shrublands" and "closed shrublands" were 105 

merged, as well as "savannas" and "woody savannas", resulting in the following land cover according to the International 

Geosphere–Biosphere Programme (IGBP)(International Geosphere–Biosphere Programme, 2024): croplands (CRO), 

shrublands (SH), deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), 

grasslands (GRA), mixed forests (MF), savannas (SAV), permanent wetlands (WET), and the non-vegetated classes of 

permanent snow and ice (SNO), water bodies (WAT), and barren soil (BAR). 110 

 

Figure 1: Locations of the measurement sites. The marker size represents the number of monthly measurements available at the 
respective location. The color stands for the land cover class reported at the site and comprises croplands (CRO), shrublands (SH), 
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deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), mixed 
forests (MF), savannas (SAV), and permanent wetlands (WET). 115 

 

Figure 2: Standardized number of sites-months and global area of each land cover type, excluding land covers without any GPP 
measurements. The number of sites-months is shown above their respective columns. The land cover classes reported follow the 
IGBP classification (International Geosphere–Biosphere Programme, 2024) and comprise croplands (CRO), shrublands (SH), 
deciduous broadleaf forests (DBF), evergreen broadleaf forests (EBF), evergreen needleleaf forests (ENF), grasslands (GRA), mixed 120 
forests (MF), savannas (SAV), and permanent wetlands (WET). 

2.1.2 Explanatory variables 

Our goal was to provide as many explanatory variables as possible and let the frameworks decide which to use. We obtained 

gridded explanatory variables from various sources of remotely sensed and modeled data with global coverage. The data 

allowed us to evaluate locally by sampling at the tower locations and to predict on a global wall-to-wall scale. These variables 125 

include products based on Moderate Resolution Imaging Spectroradiometer (MODIS) measurements, such as nadir-BRDF 

adjusted reflectances (NBAR) from optical to infrared wavelengths, the fraction of photosynthetically active radiation (FPAR), 

leaf area index (LAI), day and night surface temperature, and land cover. We also included the photosynthetically active 

radiation (PAR), diffuse PAR, and the surface downwelling shortwave flux (RSDN) from BESS_Rad, as well as solar-induced 

fluorescence (SIF), evapotranspiration (ET), and soil moisture (SM). In addition, we used meteorological data from the ERA5-130 

Land reanalysis, including precipitation, temperature, and vapor pressure deficit (VPD). We applied a three-month lag in 

precipitation to account for water availability. Table 1 shows an overview of all explanatory variables. 

 

Many of the explanatory variables are themselves datasets that have been modeled from MODIS data. For instance, SIF was 

predicted from MODIS NBAR using a feed-forward neural network trained on OCO-2 SIF retrievals (Zhang et al., 2018). ET 135 

estimates were modeled by a coupled land-surface and atmospheric boundary layer model (Atmosphere Land Exchange 

Inverse, ALEXI), which used MODIS LST and LAI as inputs, among others (Hain and Anderson, 2017). Although their input 

data largely overlap with the inputs to our model, we expected additional improvements from including these datasets due to 

the domain knowledge of their models, which would otherwise be difficult to replicate in this study by solely relying on 

MODIS data and limited GPP measurements. 140 

 

We filtered the data for poor-quality pixels, performed gap-filling, and matched spatial and temporal resolutions. We used 

NBAR (MCD43C4 v006), where more than 75 % of high-resolution NBAR pixels were available from the full BRDF 

inversion. We selected LST data by applying the quality control mask, and where the average emissivity error was less than 

0.02. LAI and FPAR were used when retrieved using the main algorithm with or without saturation. Data gaps were filled at 145 

the native resolution, similar to the procedure of Walther et al. (2022). We filled gaps of less or equal five days (8 days for 

four-day resolution datasets) with the average of a fifteen-days moving window for high-frequency datasets (NBAR, LAI, 

FPAR, BESS_Rad, CSIF). We gap-filled LST with a 9-day moving window because we observed higher variations. For SM, 
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we used the moving window median for short gaps and the mean seasonal cycle for long gaps. Finally, we resampled all 

datasets to 0.05 ° spatial resolution and monthly temporal resolution. Coarser-resolution datasets were resampled using a 150 

nearest-neighbor approach, while high-resolution data was down-sampled using the conservative remapping method (Jones, 

1999). 

Table 1: Explanatory variables and sources and their respective spatial and temporal resolution.  

Explanatory Variable Source Spatial 

Resolution 

Temporal 

Resolution 

Reflectance (Nadir-BRDF adjusted; NBAR) 

Bands 1–7 

MODIS MCD43C4 v006 

(Schaaf and Wang, 2015) 

0.05 ° daily 

PAR BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

Diffuse PAR BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

RSDN BESS_Rad (Ryu et al., 2018) 0.05 ° daily 

FPAR MODIS MCD15A2H v006 

(Myneni et al., 2015) 

500m 4 days 

LAI MODIS MCD15A2H v006 

(Myneni et al., 2015) 

500m 4 days 

Land surface temperature (day) MODIS MYD11A1, MOD11A1 

(Wan et al., 2015) 

1km daily 

Land surface temperature (night) MODIS MYD11A1, MOD11A1 

(Wan et al., 2015) 

1km daily 

Evapotranspiration ALEXI (Hain and Anderson, 2017) 0.05 ° daily 

Soil moisture ESA CCI v.06.1 (Gruber et al., 2019) 0.25 ° daily 

SIF CSIF (Zhang et al., 2018) 0.05 ° 4 days 

Instantaneous SIF CSIF (Zhang et al., 2018) 0.05 ° 4 days 

Land cover (biome) MODIS MCD12Q1  

(Friedl and Sulla-Menashe, 2019) 

500m annual 

Total precipitation ERA5-Land  

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Total precipitation (3 months lag) ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Temperature ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

Vapor Pressure Deficit (VPD) ERA5-Land 

(Muñoz-Sabater et al., 2021) 

0.1 ° hourly 

2.2 Automated machine learning 

The performance of ML is highly dependent on the selection and configuration of preprocessing steps, model architectures, 155 

and corresponding hyperparameters, which are determined by the specific ML problem (Hutter et al., 2019). The steps involved 

are typically organized sequentially in an ML pipeline and transform the input features (explanatory variables) into a target 

variable (Zöller and Huber, 2021). The pipeline refers to the entire process of developing and training an ML model and 

typically consists of several tasks, such as preprocessing, feature engineering, model training, hyperparameter tuning, and 

model deployment. 160 
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Selecting the appropriate algorithms and hyperparameters is often referred to as the combined algorithm selection and 

hyperparameter tuning (CASH) problem and involves exploiting a search space spanned by the available algorithms and their 

parameters. Solving the CASH problem is challenging because the search space is high-dimensional and hierarchical, and its 

exhaustive exploitation is often computationally expensive (Kotthoff et al., 2019; Thornton et al., 2013). As a result, candidate 165 

pipeline configurations are typically determined in controlled experiments using optimization methods, such as grid search, 

randomized search, and Bayesian optimization, or through experience and educated guesswork (Karmaker et al., 2021). 

 

In contrast, AutoML provides an optimization approach with an end-to-end scope. A fully developed AutoML framework 

iteratively selects the pipeline structure, algorithms, and hyperparameters from the search space based on data requirements 170 

and objective functions while considering a time and resource budget (Yao et al., 2019). Thus, it facilitates usability for domain 

experts and overcomes inefficient trial-and-error approaches. AutoML draws from a pool of classical ML algorithms (base 

models) and preprocessing methods and selects or combines the most appropriate candidates for the ML problem. Typically, 

AutoML frameworks create model ensembles by combining the predictions of their base models, either through a simple 

aggregation or through yet another model that uses the predictions of the base models as input features. This approach is often 175 

superior to individual predictions because it can overcome the limitations of the individual base models (van der Laan et al., 

2007). 

 

AutoML frameworks handle pipeline creation with various degrees of autonomy and scope, given the early-stage development 

of much of the available software at the time of this study. For example, tasks such as pipeline selection or feature engineering 180 

are only sporadically implemented in the available frameworks (Zöller and Huber, 2021). With H2O AutoML, AutoSklearn, 

and AutoGluon, we compared AutoML frameworks that differ in training procedure, optimization method, and available base 

models, and have been tested in a wide range of applications and benchmarks (Balaji and Allen, 2018; Truong et al., 2019; 

Erickson et al., 2020; Hanussek et al., 2020; Ferreira et al., 2021). 

AutoSklearn 185 

AutoSklearn (Feurer et al., 2015) is an AutoML library built on top of the Scikit-Learn ML models. We used AutoSklearn in 

version 0.14.7. The framework relies on a wide range of base models, including AdaBoost, ARD regression, Decision Trees, 

Extra Trees, Gaussian processes, Gradient Boosting, k-Nearest Neighbors, Support Vector regression, MLP regression, 

Random Forests, and SGD regression. It also considers feature engineering algorithms, such as PCA, percentile regression, 

and feature agglomeration (AutoSklearn, n.d.). The framework selects and tunes its base models in a Bayesian optimization 190 

and performs a forward stepwise ensemble selection (Caruana et al., 2004). During this process, the framework draws on a 

pool of ML models to build the model ensemble, but instead of using the entire pool, it adds the models one by one, only using 

the ones that maximize ensemble performance. AutoSklean also uses a meta-learner trained on the meta-features of a variety 

of datasets to warm start the optimization procedure, which increases efficiency and reduces training time (Feurer et al., 2015). 

The meta-learner uses knowledge from previous experiments with similar datasets and can, therefore, select promising ML 195 

models to start with instead of training from scratch each time. 

H2O AutoML 

H2O AutoML (LeDell and Poirier, 2020) is a widely used AutoML framework for supervised regression and classification. 

We used H2O 3 and the Python package of version 3.18.0.2. H2O AutoML draws from a set of base models, which, in the 

developer’s terminology, are divided into the model families of Gradient Boosting models (GBM), XGBoost GBMs, GLMs, 200 

a default Random Forest model (DRF), Extremely Randomized Trees (XRT), and feed-forward neural networks. The 

framework trains these models in a predefined order with increasing diversity and complexity, using pre-specified 



  

 

7 
 

hyperparameters or tuning them by random search. In addition to the individual base models, H2O AutoML creates ensembles 

of the base models, combining their predictions through a generalized linear model (GLM) by default. The ensembles consist 

of either all base models or only the best-performing base models from each model family. H2O AutoML then ranks the 205 

performance of individual models and model ensembles using an internal cross-validation (CV). The best-performing model 

is used for prediction. 

AutoGluon 

AutoGluon Tabular (Erickson et al., 2020) relies heavily on ensemble and stacking techniques. It differs from many other 

frameworks by omitting model selection and hyperparameter tuning, thus avoiding the computationally intensive CASH 210 

problem. The framework draws from a pool of base models: neural networks, LightGBM boosted trees, Random Forests, 

Extremely Randomized Trees, and k-Nearest Neighbors. These models are combined in a multi-layer stack ensembling 

process: AutoGluon first generates predictions from each base model. The predictions are then concatenated with the original 

features and passed to another set of models (the stacker models) in the next layer. Their predictions can be concatenated again 

and passed to the next layer, and so on, creating a layered structure of model sets and concatenation steps. The predictions of 215 

the last layer are combined in an ensemble selection step (Caruana et al., 2004). Each layer consists of the same base model 

types and hyperparameters. In addition, AutoGluon implements k-fold bagging, which improves performance by using the 

training data more efficiently. Global and model-specific preprocessing algorithms are available to impute missing values or 

correct skewed distributions. A feature selection algorithm is provided in the framework but is still in an experimental stage 

and not enabled in the version used. 220 

2.3 Experimental design 

We first evaluated the three AutoML frameworks under three sets of explanatory variables. In addition, we trained a classical 

Random Forest model in a randomized search, which served as our baseline. We then used AutoSklearn with the best-

performing set of explanatory variables to upscale in situ eddy covariance GPP measurements to global wall-to-wall maps 

(Fig. 3). 225 

 

Figure 3 Experiment setup. We trained and evaluated AutoSklearn, H2O AutoML, AutoGluon, and Random Forest, together with 
three sets of explanatory variables in repeated cross-validation on GPP data from eddy covariance measurements. Then, we trained 
AutoSklearn in a bootstrap aggregation to produce global wall-to-wall GPP maps. The abbreviations of the explanatory variable 
sets translate as follows: "RS" for remotely sensed and "meteo" for meteorological data. 230 
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2.3.1 Explanatory variable sets 

We organized the explanatory variables into three sets to determine their impact on GPP predictions within different AutoML 

frameworks (Tramontana et al., 2016; Joiner and Yoshida, 2020). Each set consisted of different features that could explain 

the variation in GPP. The minimal set of remotely sensed variables (RS minimal) included surface reflectance from seven 

MODIS visible to infrared bands and PAR, which largely reflect the ability of the vegetation canopy to intercept solar radiation 235 

for photosynthesis. The "RS" set included all remotely sensed variables and their products. Notably, compared to the "RS 

minimal" set, the "RS" set also included land surface temperature, evapotranspiration, and soil moisture, which provide an 

additional link to vegetation heat and water stress (Green et al., 2022; Stocker et al., 2018). Finally, the "RS meteo" set included 

all remotely sensed variables and, in addition, meteorological variables from the ERA5-Land reanalysis (see Table 2).  

Additionally, we replaced the MODIS reflectance bands, LAI, FPAR, and land cover products with their native 500 m 240 

resolution data in the "RS" set to evaluate the impact of satellite data spatial resolution on GPP estimation. 

 

Table 2 Explanatory variable sets and associated data sets. 

Explanatory Variable RS minimal RS RS meteo 

Reflectance (Nadir-BRDF adjusted; NBAR), Bands 1–7 ● ● ● 

PAR ● ● ● 

Diffuse PAR  ● ● 

RSDN  ● ● 

FPAR  ● ● 

LAI  ● ● 

Land surface temperature (day)  ● ● 

Land surface temperature (night)  ● ● 

ET  ● ● 

Soil moisture  ● ● 

SIF  ● ● 

Instantaneous SIF  ● ● 

Land cover (biome)  ● ● 

Total precipitation   ● 

Total precipitation (3 months lag)   ● 

Temperature   ● 

Vapor Pressure Deficit (VPD)   ● 

 

The explanatory variable sets can provide information about the importance of the input features on the performance of the 245 

upscaling frameworks. They are particularly important as many of the AutoML frameworks lack feature engineering 

algorithms and cannot select relevant features themselves. 

2.3.2 Framework assessment 

We used five-fold cross-validation to train and evaluate the AutoML frameworks. Grouping the data by site helped us increase 

the independence between the folds and evaluate the models' ability to generalize spatially. Thus, a time series at one site could 250 

be assigned to only one fold and not split into training and test sets. In addition, stratification by land cover helped to distribute 

the folds similarly. We repeated the cross-validation thirty times with different random splits to evaluate the impact of 

partitioning the data on the final performance in our evaluation. 
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With H2O AutoML, AutoSklearn, and AutoGluon, we selected popular frameworks for supervised regression problems on 255 

tabular data that support parallelization and a Python interface. Since AutoML is intended to work as an out-of-the-box 

solution, we kept the frameworks' configurations at default or recommended parameter values where it was possible and 

reasonable to do so. Moreover, we set each framework to optimize for the root mean squared error (RMSE) and limited the 

resource usage during training to 600 CPU minutes per CV fold (30 minutes on 20 CPUs) and 64GB of memory. 

 260 

We used the RMSE and the coefficient of determination (r2) to evaluate the frameworks' performance by comparing the out-

of-fold predictions to the ground truth values of GPP (Eq. A1). The latter aligns with the Nash-Sutcliffe model efficiency 

(Nash and Sutcliffe, 1970) used in some literature as a performance metric for the GPP prediction (e.g., Tramontana et al. 

(2016)). In addition to obtaining performance metrics for the total time series prediction, we decomposed the time series to 

evaluate the performance in different spatial and temporal domains. We computed the components as follows: we obtained 265 

trends by linear regression of the entire time series (using the slope for evaluation with RMSE and r2), seasonality (mean 

seasonal cycle) by month-wise averaging, and anomalies as their residuals after detrending and removing seasonality. 

Furthermore, we calculated an across-site variability from the multi-year mean at each site. For this analysis, we considered 

only sites with a minimum of 24 months of measurements to minimize the error from sites with just a few measurements, 

leaving us with 211 sites. When calculating trend metrics, we only considered sites with at least 60 months of measurements 270 

for our trend evaluations. Time series anomalies were detrended only when this minimum was reached; otherwise, we simply 

removed the seasonal component from the time series. 

 

Moreover, we tested how the average ranked performance of each framework compared to the other frameworks. We 

calculated the performance ranks within each repeated cross-validation and obtained an average rank for each framework. 275 

Using the Friedman test, we tested for statistically significant differences in the rank distribution, evaluating the null hypothesis 

of no significant differences with a significance level of 0.01. We then used the Nemenyi post hoc test to find frameworks with 

significant differences in mean rank while adjusting for type I error inflation by using a family-wise error correction. We 

rejected the null hypothesis (no significant difference between the two frameworks) if the difference between the average ranks 

exceeded a critical difference (CD), which depends on the critical value of the Studentized range distribution (Demšar, 2006). 280 

2.3.3 GPP upscaling 

We used AutoSklearn with the "RS" explanatory variable set to upscale the eddy covariance measurements to a global scale, 

as this combination of framework and explanatory variables performed best in the benchmark. We trained thirty models in a 

bootstrap aggregation approach, where each bootstrap was sampled with replacement to a size of 80 % of the total number of 

sites. We kept the time series grouped by site but removed the land cover stratification. This technique allowed us to estimate 285 

GPP as the mean of the bootstrapped predictions and provided a sampling error (standard error of the mean) as a spatially 

distributed uncertainty estimate for the model prediction. We produced global GPP and standard error maps at a resolution of 

0.05 ° in monthly frequency from 2001 to 2020, which we compared with the two ML-based reference datasets FluxCom v6 

(RS only, based on data from the MODIS collection 6) (Jung et al., 2020) and FluxSat (Joiner and Yoshida, 2020). 

3 Results 290 

3.1 AutoML Framework performance 

In general, we found that all frameworks perform in a close range of coefficients of determination (r2), explaining on average 

between 70% and 75% of the variation in eddy covariance GPP measurements. However, the performance depends on the 
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framework used and the selection of variables. Examining the distribution of r2values for the different repeated cross-

validations, we can see that AutoSklearn performs best, followed by H2O AutoML, Random Forest, and AutoGluon in 295 

predicting monthly GPP (Fig. 4). AutoSklearn achieved the highest r2 among the four frameworks for all explanatory feature 

sets. A similar pattern is observed for trends, seasonality, across-site variability, and anomalies (Fig. 5). Note that we removed 

one outlier for H2O AutoML trained on the "RS" variable set, which deviated more than five standard deviations from the 

mean value due to very low performance in one CV fold. 

 300 

 

Figure 4 Overall framework performance, expressed as the coefficient of determination (r2) for the candidate frameworks and the 
three different explanatory variable sets. Each distribution belongs to one framework and one set of explanatory variables and 
results from the repeated cross-validations, for each of which one r2 value is calculated over the predictions at all sites. 

AutoSklearn's superior performance is primarily due to its ability to capture seasonal components and across-site variability 305 

(Fig. 5). When trained on "RS" explanatory variables, AutoSklearn achieved average r2 values of 0.7452 ± 0.0003 overall, and 

0.483 ± 0.002 for trends, 0.8142 ± 0.0003 for seasonalities, and 0.689 ± 0.001 for across-site variability. However, all models 

struggle to reproduce the monthly anomalies, explaining less than 11 % of the variability (AutoSklearn: 10.40 ± 0.04 %). 

Uncertainties are reported as the standard error of the mean of all cross-validation results. 
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Figure 5 Evaluation of the temporally and spatially decomposed time series expressed as the coefficient of determination (r2). Each 
distribution belongs to one framework and one set of explanatory variables and results from the repeated cross-validations, for each 
of which one r2 value is calculated over the predictions at all sites. The r2 values for seasonality and anomalies were calculated from 315 
seasonal cycles and anomalies at monthly granularity, while those for trend and across-site variability were calculated from one 
trend or mean value per site, respectively. 

Using the Friedman test, we found that the four ML frameworks are statistically different in their performance in predicting 

monthly GPP as well as its trends, seasonality, anomaly, and across-site variability (p-value < 0.01). However, their difference 

in performance is marginal. The Nemenyi post hoc test shows that for the "RS" explanatory variables, AutoSklearn achieves 320 

the highest average rank with statistical significance among all frameworks for monthly GPP and all its components (Fig. 6a). 

For the prediction of anomalies, we could not find a significant difference in the average rank between AutoSklearn and H2O 

AutoML. Trends were predicted by all AutoML frameworks without significant differences in rank. Random Forest and 

AutoGluon perform the worst, while they are not statistically different in predicting across-site variability and seasonalities. 
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  325 

Figure 6 Critical difference (CD) diagrams (Demšar, 2006) for the ranks of the frameworks and variable sets, which are typically 
used to compare the performance of multiple algorithms on multiple problems (in this case, repeated cross-validations). The graphs 
rank the performance of different framework-variable combinations on the x-axis, with one being the best rank. The ranks shown 
are the average ranks from all repeated cross-validations for each of the frameworks/variable sets. The performance (r2) is given for 
predicting total GPP and for its different spatial and temporal components: trend, seasonality, anomalies, and across-site variability. 330 
We evaluated whether the ranks are statistically significantly different from each other using the critical difference (CD) obtained 
from a Nemenyi post hoc test. If the difference between the ranks is less than the CD, we assume a nonsignificant difference in ranks, 
indicated by a red crossbar between the rank markers. On the left side (a), the ranks of the frameworks trained on the “RS” 
explanatory variables are shown. On the right side (b), the ranks of AutoSklearn trained on different sets of explanatory variables 
are shown. 335 

The selection of explanatory variables had a significant impact on the performance of the frameworks. Models with only 

surface reflectance and PAR (RS minimal) explained the least amount of GPP variability (70–72 %) (Fig. 4). The greatest 

improvement occurred with the "RS" set when information on SIF, FPAR, LAI, LST, ET, soil moisture, and biome type was 

included. The "RS" set increased r2 on "RS minimal " by about 0.02 for all frameworks, with sizable improvements in 

predicting trends and anomalies (Fig. 5). Meteorological variables slightly improved the prediction of monthly GPP by better 340 

explaining spatial variability, trends, and anomalies except for AutoGluon (Fig. 5). However, statistical tests of model ranks 

showed no significant advantage in the rank of the "RS meteo" over the "RS" set of explanatory variables in any of the 

decomposed time series features and frameworks (Fig. 6b). The "RS" set outperformed "RS minimal" for predicting GPP and 

all of its spatiotemporal components. Except for the performance of Random Forest on across-site variability, trend, and 

anomalies, "RS" was always the best-performing variable set or insignificantly different from the best-performing variable set. 345 

In addition, we evaluated whether vegetation indices (VI) could improve the performance of the variable sets, but no 

improvements were found beyond the “RS minimal” dataset (Tab. A1). 

 

To determine which explanatory variable was most effective for predicting GPP, we evaluated the permutation importance of 

the variables for the AutoSklearn framework. Permutation importance is the decrease in prediction performance on the test 350 

dataset when one of the variables is randomly shuffled to break its relationship with the target variable. To deal with collinearity 
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among the explanatory variables (Fig. A1), we first clustered them based on their average mutual Pearson correlation 

coefficient, regardless of their data source or ecological function. Variables with an average correlation greater than 0.7 were 

clustered and permuted together, resulting in clusters focused around specific meteorological characteristics (e.g., precipitation, 

temperature), vegetation properties, or combinations of reflectance bands but also combining features that are not directly 355 

biophysically related (Fig. A2 and A3). 

 

Figure 7 Permutation importance for different explanatory variables with the AutoSklearn framework and “RS” and “RS meteo” 
variable sets. The variables are grouped into clusters of colinear variables regardless of data source or ecological function. The 
importance is the decrease of r2 at test time when the variables of the corresponding cluster are randomly shuffled. The variables 360 
include the MODIS NBAR bands (red, NIR, blue, green, and 3 SWIR bands), land surface temperature (LST), leaf area index (LAI), 
photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), diffuse PAR (Diff PAR), daily and instantaneous 
solar-induced fluorescence (SIF), surface downwelling shortwave flux (RSDN), soil moisture (SM), evapotranspiration (ET), 
precipitation (Precip), temperature at 2m height (T), vapor pressure deficit (VPD), and precipitation with 3-months lag (Precip (-
3)). The distribution results from the repeated cross-validations, for each of which one r2 value is calculated over the predictions at 365 
all sites. 

Our results show the largest decrease in r2 of AutoSklean-RS when removing the cluster of SIF, LAI, and FPAR, followed by 

PAR, RSDN, LST, and ET (Fig. 7). The other variables do not substantially reduce the framework performance. Trained on 

“RS meteo,” AutoSklearn’s variable importance gives a similar picture despite slightly different clusters due to the inclusion 

of the meteorological variables. Again, the cluster of SIF, LAI, and FPAR shows by far the highest importance, followed by 370 

the PAR, RSDN, ET, and temperature-related variables (Fig. 7). The meteorological variables temperature, VPD, and 

precipitation are generally in clusters of lower importance, as are the MODIS NBAR features. In contrast, the “RS minimal” 

product shows the highest variable importance for the visible NBAR spectrum, followed by NIR and PAR in descending order. 

The SWIR bands are hardly used in any setup. 

 375 

Furthermore, we grouped the predictions by site and evaluated the site-level r2 for each land cover type for AutoSklearn with 

"RS" explanatory variables (Fig. 8). EBF and SH sites show low r2 (median r2 -0.38 and 0.33, respectively) with substantially 

higher variance, whereas MF and DBF could be predicted with high quality (median r2 0.84 and 0.87, respectively). Regarding 

anomaly estimation, EBF and WET show significantly lower r2 values (median r2 0.04 and 0.01, respectively). Furthermore, 

our analysis indicated that models tended to exhibit a significant positive bias when predicting small GPP values (in the lowest 380 

quartile) while displaying a negative bias for large GPP values. This implies an overestimation of small GPP and an 

underestimation of large GPP values by the models. 
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Figure 8 Distribution of r2 values for the GPP prediction by AutoSklearn with "RS" explanatory variables for different land cover 
types. Shown are the overall performance and performances for seasonality and anomalies. 385 

Finally, we examined the effect of including higher-resolution data in the explanatory data. Replacing the MODIS reflectance 

bands, LAI, FPAR, and land cover products with their 500 m resolution counterparts resulted in significant improvements in 

r2. We tested this behavior for AutoSklearn with the "RS" variable set. The prediction r2 was with 0.8164 ± 0.0005 overall and 

0.444 ± 0.003, 0.787 ± 0.002, 0.8723 ± 0.0005, and 0.3094 ± 0.0006 for trend, across-site variability, seasonality, and 

anomalies, respectively, in all aspects except trend significantly higher than for the lower resolution data product (Fig. 9). 390 

 

Figure 9 Comparison of the predicted 0.05 ° product and the one with 500 m resolution from AutoSklearn ensemble averages and 
the "RS" variable set. The latter shows higher r2 values compared to the ground truth GPP estimates from FLUXNET, AmeriFlux 
OneFlux, and ICOS. We refer to GPP measurements derived from eddy covariance at the flux tower locations as ground truth.  

3.2 Analysis of AutoSklearn Pipelines 395 

We investigated the different components (base models and preprocessing algorithms) of the AutoSklearn framework, which 

was trained on the "RS" variable set in the repeated cross-validation (See figure A4 for the model run statistic). For every fold 

in each of the repeated cross-validations, we considered the best-performing model of each base-model type and min-max-

scaled their RMSE to a scale from zero to one. The scaling accounts for the different predictability of the test data in the 
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respective fold. We then took the mean across all folds within each repetition of the cross-validation and each base-model 400 

type, resulting in a distribution of scaled RMSEs for each base-model type (Fig. 10). We also considered whether these models 

preprocessed the training data or not.  

 

The base models achieving the lowest scaled RMSE were ensembles of weak learners, such as Extra Trees, Random Forest, 

Gradient Boosting, or AdaBoost. These models could, by themselves, achieve the best predictions of GPP. That, however, 405 

does not suggest that they were necessarily used in the final model ensemble constructed by AutoSklearn. The ensemble 

selection algorithm (forward stepwise model selection) in AutoSklearn, which creates the model ensembles, recursively adds 

the base models that improve the RMSE of the ensemble prediction most in combination with the models already part of the 

ensemble (Caruana et al., 2004). Hence, a model showing a low RMSE by itself does not need to be beneficial to the ensemble 

of models ultimately used by AutoSklearn. 410 

 

Figure 10 Performance of AutoSklearn base models and feature pre-processors. The chart shows the distribution of the mean RMSE 
for each base model type across all folds within each repetition of the cross-validation. We considered only the best-performing 
models for each model class within each fold. The RMSE is min-max scaled from zero to one within each cross-validation fold to 
account for variations in the data's predictability depending on the data's split. The use of preprocessing algorithms is shown as 415 
colors in the proportions of their usage in each bin (detailed preprocessing methods in figure A5). 

3.3 Global GPP maps 

From the bootstrap aggregation of the AutoSklearn framework with "RS" features, we predicted global GPP with wall-to-wall 

coverage, resulting in 30 predictions for the entire period from 2001 to 2020 in monthly intervals. In addition, we applied land-

sea and vegetation masks to the prediction, similar to previous research (Tramontana et al., 2016; Joiner et al., 2018). 420 
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Figure 11 Total GPP, amplitude of seasonality, trend, and anomalies of prediction with AutoSklearn trained on remotely sensed 
data ("RS" dataset) in a bootstrap aggregation of 30 bootstraps. The mean was calculated at each location over all bootstrapped 
predictions and the entire time series. The seasonality is displayed as the amplitude of the month-wise average. Trends were 
calculated as the slope from an ordinary least squares linear regression over time and masked so that only significant trends were 425 
included (p < 0.05). The anomalies are shown as the standard deviation of the residuals after subtracting the seasonal and trend 
components from the time series. 

Mean GPP for 2001–2020 (Fig. 11) showed high values for tropical climates in low latitudes, such as the Amazon region, 

Southeast Asia, and Central Africa, with maximum GPP values for the EBF land cover. Conversely, low GPP appears in high 

latitudes and SH, SAV, and GRA regions. 430 

 

Again, we decomposed the local time series into trends, seasonality, and anomalies (Fig. 11). The amplitude of the seasonal 

component exhibits significant regional differences. Mid-latitude regions in the northern hemisphere show high amplitudes, 

covering the central and eastern US, Europe, parts of Russia, and north-eastern China. In contrast, low-latitude regions have 

low GPP amplitudes. The data show significant trends (p < 0.05) over the observation period with positive clusters, especially 435 

for eastern China and western India, while negative trends are less pronounced. The bootstrapped AutoSklearn framework 

shows clusters of high GPP anomalies in, e.g., parts of South America (especially eastern Brazil and Argentina), East Africa, 

and Southeast Australia. Land cover in these areas does not follow a consistent pattern but is often dominated by CRO, SH, 

and GRA. 

 440 

In addition to the GPP prediction, we produced a sampling error estimate by calculating the average standard error across all 

bootstraps for each location and time (Fig. 12). We observed high relative errors in low GPP regions, high latitude regions 

(e.g., with temporary snow cover), and arid SH regions. The distribution of standard errors relative to the bootstrap mean peaks 

near zero and ends in a long tail towards higher values for all biomes (Fig. 13a). However, the distribution of sampling 

uncertainty in GPP varies among land cover classes, ranging from low medians for EBF (0.5 %) and SAV (0.8 %) up to higher 445 

medians for ENF (4.0 %) and SH (6.9 %).  
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Figure 12 Absolute standard errors from the bootstrap aggregation. For relative values, see figure A6. 

 

Figure 13 Histogram of the relative standard error of the mean (SEM) by land cover class during the entire observation period (a) 450 
and distribution of r2 values for total GPP of the upscaled GPP AutoSklearn product with "RS" variables, compared to the FluxCom 
v6 and FluxSat datasets (b). For the latter, GPP is sampled at 10000 random locations and compared in a Mann-Whitney U test. 

3.4 Comparison to reference data 

We compared the upscaled results of total GPP from our AutoSklearn "RS" prediction with GPP datasets FluxCom v6 

(Tramontana et al., 2016) and FluxSat (Joiner et al., 2018) at 10000 random sample locations. When tested with a Mann-455 

Whitney U test, our predictions show significantly higher agreement (p virtually zero) with FluxSat than with FluxCom (Fig. 

13b). In our prediction, 51 % of the samples explain more than 80 %, respectively, of the variation in FluxSat, while this is the 

case for only 17 % of the samples in FluxCom. Thus, AutoSklearn shows good agreement with the GPP patterns predicted by 

FluxSat, whereas it deviates more strongly from the FluxCom product. 

4 Discussion 460 

4.1 AutoML framework performance 

The results demonstrate the closeness of the overall predictive performance of the evaluated frameworks and the baseline 

Random Forest. Despite the different complexity of the model architectures, the frameworks capture a similar fraction of the 

variability in the GPP measurements. Framework choice does not appear to be a major factor in this experimental setup, 

resulting in only a low difference in r2. These findings align with previous research on applying classical ML models 465 

(Tramontana et al., 2016). 

 

The performance differences between the frameworks are statistically significant but slight. AutoSklearn consistently 

outperforms H2O AutoML, AutoGluon, and Random Forest. The framework is based on ensemble prediction, which can 

exploit the different advantages of each base model. The evaluation of base models used by AutoSklearn outlines the 470 
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applicability of various ML model types for predicting GPP. It is evident that ensembles of weak learners, such as Extra Trees 

or Random Forest, are generally favorable for this task. These models can be promising for GPP prediction either in a stand-

alone implementation or as part of a model ensemble. The performance comparable to H2O AutoML and AutoGluon shows 

furthermore that implementing feed-forward neural networks does not necessarily lead to performance improvements. Low 

performance of AutoGluon, even when compared to Random Forest, may relate to the lack of hyperparameter tuning. However, 475 

the differences between frameworks are challenging to explain, as the reasons for the frameworks' results are obscured by their 

black box character. 

 

AutoSklearn trained on “RS” explanatory variables tended to overestimate small GPP values while underestimating large GPP 

values. This behavior was already observed in the FluxCom (RS), FluxSat, and several light use efficiency models (Yuan et 480 

al., 2014; Joiner et al., 2018). It has also been shown for the early MODIS GPP product (Running et al., 2004), where the 

overestimation was attributed to an artificially high FPAR while the underestimation was related to low light use efficiency in 

the MODIS algorithm (Turner et al., 2006). Another reason could be the strong reliance of the AutoSklearn framework on 

tree-based models (Fig. 10). These models are constructed by recursively partitioning the feature space into small regions to 

which they fit a simple model, which limits them in their ability to extrapolate beyond the range of target values already 485 

observed. Furthermore, our predictions showed differing prediction quality at the land cover level, which might result from 

biome-specific circumstances and the availability of measurement sites. For example, biomes with a pronounced seasonal 

cycle, such as DBF or MF, exhibit high overall r2, whereas EBF and WET show large variability that the model could not 

capture. In addition, variability within a land cover type could affect the performance assessment, such as for SH, which 

includes both arid and subarctic shrublands.  490 

 

Finally, it is crucial to note that the r2 metric only expresses how well a framework can reproduce measurements from the 

measurement samples, which are limited in underrepresented areas. We grouped data by site and applied a land cover 

stratification during the CV to increase independence between the folds. That, however, does not prevent sites from being 

repeatedly selected for validation during the repeated CV, which can inflate the performance metric and reduce variance. It 495 

also cannot account for spatial autocorrelation. This affects the assumption of independence and identical distribution for train 

and test folds, which is crucial for obtaining realistic CV results. Violating these requirements can lead to overestimating model 

performance and inflating map accuracies, yet it is commonly done in data upscaling efforts (Roberts et al., 2017; Ploton et 

al., 2020). More training data with better geographic representation could help mitigate these shortcomings and could lead to 

more robust predictions, model evaluations, and potentially higher model performance. 500 

4.2 Importance of explanatory variables 

AutoML is a powerful approach for assessing the importance of the variables on model performance since it selects the optimal 

base models and constructs optimal pipelines independently for each feature set under consideration. This means that no 

subjectivity bias is introduced into assessing variable importance, e.g., by pre-selecting specific algorithms that are expected 

to perform well on a particular task or set of explanatory variables. This could increase the quality of the reported importance, 505 

especially as features in GPP prediction often exhibit severe intercorrelations. Importantly, variable importance is model-

specific, meaning it can indicate which variable is most effectively used by a particular model, but it does not directly indicate 

the intrinsic predictive value of a variable. Furthermore, it may depend on the choice of temporal and spatial scales and data 

quality, given that many of the input features are themselves model outputs. 

 510 

The frameworks' performance depends significantly on the choice of predictive features on which they are trained. The results 

show that while the seven NBAR bands and PAR from the "RS minimal" variable set provide the model with sufficient 
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information for a GPP prediction,  the full set of "RS" variables adds additional information that all the frameworks can exploit. 

The additional variables in the "RS" variable set, such as SIF, LAI, FPAR, ET, LST, SM, and plant function type, appear to 

include important environmental forcings and structural variables that provide a marginal advantage over the variables on only 515 

vegetation structure and radiation in "RS minimal" (Green et al., 2019; Stocker et al., 2019; Xu et al., 2020). For example, 

environmental stress, such as heat waves and droughts, often causes instantaneous reductions in GPP. However, the response 

of vegetation greenness to these stressors is typically slower and may only become apparent if the stress persists for a sufficient 

duration (Orth et al., 2020; Zhang et al., 2016; Smith et al., 2018; Yan et al., 2019). In such cases, relying solely on surface 

reflectance may not sufficiently capture the variability of GPP. 520 

 

Including the meteorological explanatory features (ERA5-Land) in the training data does not significantly improve the 

prediction quality for any of the frameworks. This implies that meteorological data may not contain additional information 

that the machine learning frameworks in this study can effectively use to predict GPP. A possible explanation could be the 

mismatch between reanalysis and site meteorology. The coarse resolution and large uncertainties of the reanalysis data may 525 

result in a poor representation of the flux tower footprints, which are often smaller than one pixel of the reanalysis data, leading 

to uncertainties in the modeling. For example, Joiner and Yoshida (2020) showed that using site-measured meteorological data 

instead of reanalyzed data significantly improved the performance of GPP predictions. At the monthly scale, the "RS" variable 

set may already encode information about the instantaneous environmental stress from adverse meteorological conditions 

through, for example, LST, ET, and soil moisture, which are important controls on GPP (Bloomfield et al., 2023). Further 530 

studies could potentially assess these uncertainties by comparing models trained with tower meteorological data to gridded 

reanalysis datasets. 

 

The permutation importance of explanatory variables provides further insight into which variables AutoSklearn uses and which 

are indifferent to the framework. Our results show that both “RS” and “RS meteo”-trained AutoSklearn frameworks rely 535 

primarily on features of canopy structure (LAI, FPAR), proxies for photosynthetic activity (SIF), and ET, which strongly 

couples with GPP in favorable environmental conditions. Meteorological information, such as temperature and VPD, are less 

relevant for the model prediction. This suggests that the insignificant changes in performance between “RS” and “RS meteo” 

may be related to a small additional contribution of meteorological conditions to the prediction of monthly GPP beyond what 

is already provided by vegetation structure and PAR. Soil moisture was also found to have minimal influence overall, which 540 

might be partly due to uncertainties and noises in the remote sensing soil moisture data and due to its coarse spatial resolution. 

It is also important to note that previous studies have demonstrated the importance of soil moisture from SMAP in predicting 

GPP in water-limited ecosystems (Dannenberg et al., 2023; Kannenberg et al., 2024). The performance difference between 

“RS minimal” (NBAR and PAR only) and “RS” variables seems to be driven at least partly by features that are themselves 

model outputs based on MODIS NBAR, i.e., SIF, LAI, and FPAR. We grouped the variables into clusters with high correlation 545 

to improve the interpretability of the importance measures. However, we could not completely eliminate correlations between 

clusters. High correlations between, for example, PAR and LST, and ET and PAR, as well as lower correlations between other 

variables, could not be taken into account and introduced further uncertainty in the reported variable importance. 

 

The ability of the frameworks to reproduce GPP patterns and the corresponding variable importance must be evaluated in light 550 

of the choice of temporal resolution. In this study, we evaluated machine learning upscaling of monthly GPP dynamics, which 

are dominated by light availabilities and seasonal changes in vegetation structures. However, at shorter time scales, such as 

hourly or daily, GPP is more closely aligned with diurnal and short-term variations in meteorological conditions such as 

temperature and VPD. Thus, these variables are likely more influential in predicting GPP at these higher frequencies (Frank 

et al., 2015; von Buttlar et al., 2018). Additionally, complex machine learning models may also offer greater benefits at 555 
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harnessing the large data quantities involved in predicting GPP at hourly or daily scales. Further research is needed to 

benchmark machine learning algorithms and assess choices of environmental data in predicting GPP across different 

timescales.  

 

We found that besides selecting an appropriate set of explanatory variables, the resolution of the data highly affects prediction 560 

outcomes. Including 500 m resolution data should reduce the mixed pixel problem and match the flux towers' footprints better 

with the pixel size of the gridded data sets. This led to improvements in all time series components, with exceptional increases 

in r2 for the estimation of anomalies. These results underscore the importance of spatial resolution and suggest the use of data 

with a resolution that better represents smaller landscape features and flux tower footprints, in contrast to our initial choice of 

0.05 ° resolution in this study.(Xiao et al., 2008; Yu et al., 2018; Chu et al., 2021). 565 

4.3 Spatio-temporal patterns 

The globally upscaled measurements could capture the variation of GPP in the ML-based FluxCom and FluxSat reference 

datasets reasonably well and resemble their total GPP patterns and seasonality (Tramontana et al., 2016; Joiner and Yoshida, 

2021). However, the prediction could explain a significantly larger fraction of the variation in FluxSat than in FluxCom. Both 

datasets are based on MODIS-derived products, but the training sites we used show higher similarities to FluxSat than to 570 

FluxCom. 

 

We observed several clusters of positive trends consistent with previous results and local studies (Chen et al., 2019; Wang et 

al., 2020; Schucknecht et al., 2013; Carvalho et al., 2020). However, the magnitude was lower than the reference dataset 

FluxSat (Joiner and Yoshida, 2021) and showed less frequent significant negative trends than predicted by FluxCom 575 

(Tramontana et al., 2016). The areas with high predicted GPP overlap with the highly productive regions in the tropics and 

mainly cover the EBF regions (Ahlström et al., 2015). In addition, we observed high seasonality, especially in CRO-dominated 

regions, which may be due to high productivity in maize, wheat, rice, and soybean cultivation and a profound seasonality, with 

a period of very low GPP after harvest. (Kalfas et al., 2011; Gray et al., 2014; Sun et al., 2021). High anomalies occurred in 

mainly temperate and semi-arid climates, the latter of which have also been shown to dominate the interannual variability of 580 

the global terrestrial carbon sink (Ahlström et al., 2015). Besides random variations included in the anomalies, reasons could 

be non-seasonal events, such as weather extremes or human interventions, coupled with a high turnover rate in dry vegetation. 

The patterns agree with FluxSat and exceed those that FluxCom models estimated.  

4.4 Uncertainty 

Predicting wall-to-wall maps from a non-representative distribution of measurement sites is challenging. A non-representative 585 

network of flux towers might fail to reproduce the main features of the underlying GPP population for the entire study area 

(Sulkava et al., 2011). Land cover types with less abundant eddy covariance measurements may potentially be estimated less 

reliably and could show a higher variation in GPP estimations. We used the standard error to estimate how robustly the 

frameworks react to different subsets (bootstraps) of data during the training process. Generally, high relative error values in 

low GPP regions are expected due to the normalization of the error. However, SH, ENF, and regions adjacent to SNO and 590 

BAR also show an elevated error in absolute terms. The distributions (Fig. 13a) show similarities to the spread of r2 values 

obtained from the framework benchmark (Fig. 8). 

 

Higher standard errors may indicate that monthly remote sensing and modeled input data are better proxies for some 

ecosystems than others. For example, GPP can be predicted with low relative uncertainty for ecosystems with a high seasonal 595 

variation of biomass, such as croplands, broadleaf forests, and mixed forests. In contrast, predicting GPP in drylands can be 
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more challenging. Drylands are highly sensitive to water availability, resulting in abrupt responses to precipitation and drought 

events (Barnes et al., 2021). They are characterized by high spatial heterogeneity and irregular temporal vegetation patterns, 

which are difficult to capture at our spatial and temporal resolution. Together with a low vegetation signal-to-noise ratio, these 

factors pose a considerable challenge for GPP remote sensing (Smith et al., 2019). In an attempt to assess the uniqueness of 600 

NEE measurements at FLUXNET sites, Haughton et al. (2018) showed that drier sites and shrubland sites had a higher 

discrepancy between locally and globally fit models and exhibited more idiosyncratic NEE patterns compared to others. Our 

results show a similar behavior, with higher model uncertainty for GPP in dryland and shrubland regions. 

 

The results delineate that AutoSklearn could not reliably infer a robust functional relationship in low-productivity regions, 605 

where it shows a significant positive bias. We suggest further research on ways to improve performance in low-GPP regions. 

One method that could potentially enhance the prediction is to include dummy measurement sites in the masked regions 

manually. These sites would constantly report zero GPP and could improve estimates in adjacent regions, such as arid zones 

or seasonally snow-covered areas, which are also less proportionately represented in the flux tower networks (Smith et al., 

2019).  610 

 

Finally, an additional limitation is introduced by the eddy covariance measurements themselves. We use night-time-partitioned 

GPP, which is modeled as the difference between NEE and ecosystem respiration. While NEE and night-time respiration are 

directly measurable, daytime respiration is modeled with a temperature response function, which extrapolates from night-time 

respiration (Reichstein et al., 2005). Up to this point, it is not conclusively clarified how reliably this approach can be employed, 615 

considering that it is indifferent to some environmental stress factors and changes in respiration behavior between day and 

nighttime (Wohlfahrt and Galvagno, 2017; Keenan et al., 2019; Tramontana et al., 2020). The inherent uncertainty and bias in 

the ground truth GPP data could be a potential cap to the performance we can obtain in our efforts to predict GPP. 

5 Conclusion 

We investigated whether and how automated machine learning (AutoML) frameworks can improve global upscaling of gross 620 

primary productivity (GPP) from in situ measurements using AutoSklearn, H2O AutoML, AutoGluon, and a baseline Random 

Forest model in repeated cross-validation stratified by land cover. In addition, we evaluated different sets of explanatory 

variables for the GPP prediction from satellite imagery and ERA5-Land reanalysis data. Our results show that the AutoML 

frameworks can capture about 70–75 % of the monthly GPP variability at the measurement sites. 

 625 

AutoSklearn slightly but significantly outperformed the other frameworks across all sets of explanatory variables for total 

GPP, trends, seasonality, and anomalies. It did this by creating ensembles of base models and preprocessing algorithms that 

improved the prediction over individual machine learning models. The ensemble members were primarily models that 

combined weak learners, such as Extra Trees, AdaBoost, or Random Forests. However, the difference in performance was 

small compared to other frameworks and the Random Forest model, suggesting that the choice of framework may play only a 630 

minor role in improving GPP prediction performance. 

 

We found that remotely sensed (RS) explanatory variables provided the best results in combination with the investigated 

frameworks. While only relying on the MODIS NBAR reflectance bands and PAR ("RS minimal") provided the models with 

sufficient information for GPP prediction, considering other proxies of photosynthetic activity and canopy structure, such as 635 

solar-induced fluorescence, leaf area index, and fraction of absorbed photosynthetic activity, increased the performance of all 

models. Meteorological factors and soil water availability had less influence on the GPP prediction. Also, additional 
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meteorological variables from ERA5-Land could not be used effectively by the models. In particular, the resolution of the 

satellite imagery played a significant role in prediction quality. 

 640 

Finally, we used the best-performing framework (AutoSklearn with "RS" explanatory variables) to upscale GPP to global wall-

to-wall maps in a bootstrapping approach. The predictions are in good agreement with the FluxSat dataset and deviate 

significantly more from the FluxCom predictions. The GPP product captures major spatial patterns for total GPP and trends 

but shows high uncertainty for low-GPP regions, where the predictions are positively biased. In general, prediction 

performance and sampling uncertainty are highly dependent on the land cover type. 645 

 

In conclusion, AutoML can be a considerable technique for predicting and extrapolating GPP from in situ measurements. 

Automated creation of machine learning pipelines can facilitate the process of algorithm and feature selection, thereby avoiding 

biases in the modeling process. In addition, AutoML enables the exploration of a wide range of models and algorithms, 

uncovering potential relationships and patterns that may have been missed manually. However, we were unable to demonstrate 650 

that AutoML produces GPP predictions that are considerably more accurate and robust than classical ML models. In particular, 

the non-automated Random Forest model performed almost as well as AutoSklean. Researchers must carefully interpret and 

validate the results obtained through AutoML, ensuring that the models and features chosen are consistent with ecological 

knowledge and scientific understanding. Nevertheless, given the early stage of development, AutoML may be useful in the 

future to improve and accelerate research on GPP upscaling. 655 

Appendix 

Equation A1 Coefficient of determination 𝒓𝟐, where 𝒚𝒊 is the observed value, 𝒚ෝi the modeled value, and 𝒚ഥ the observed average over 
all 𝑵 values. 

𝑟ଶ = 1 −
∑ (௬iି௬ො i)

మಿ
iసభ

∑ (௬iି௬ത)
మಿ

iసభ
  

Table A1 Overall framework performance. Shown are the mean r2 values with the corresponding error of the mean, averaged over 660 
all cross-validation repetitions. Additionally to the three predictor variable sets, we added the vegetation indices (VI) NDVI 
(Normalized difference vegetation index), EVI (Enhanced vegetation index), GCI (Green chlorophyll index), NDWI (Normalized 
difference water index), NIRv (Near-infrared reflectance of vegetation), and kNDVI (Kernel NDVI) to each variable set to evaluate 
if they improve the performance. 

Variable set Random Forest H2O AutoML AutoSklearn AutoGluon 

RS minimal 0.7052 ± 0.0003 0.7112 ± 0.0009 0.7214 ± 0.0005 0.7013 ± 0.0005 

RS minimal (incl. VI) 0.7193 ± 0.0002 0.7166 ± 0.0007 0.7261 ± 0.0004 0.7097 ± 0.0007 

RS 0.7369 ± 0.0002 0.739 ± 0.001 0.7452 ± 0.0003 0.7324 ± 0.0003 

RS (incl. VI) 0.7352 ± 0.0002 0.7383 ± 0.0004 0.7437 ± 0.0003 0.7315 ± 0.0002 

RS meteo 0.7383 ± 0.0002 0.7416 ± 0.0008 0.7214 ± 0.0004 0.7318 ± 0.0004 

RS meteo (incl. VI) 0.7356 ± 0.0002 0.7402 ± 0.0005 0.7201 ± 0.0003 0.7310 ± 0.0002 
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Figure A1 Pearson correlation matrix between the scalar explanatory variables, including the MODIS NBAR bands, land surface 
temperature (LST), leaf area index (LAI), photosynthetically active radiation (PAR), fraction of absorbed PAR (FPAR), diffuse 
PAR (Diff PAR), daily and instantaneous solar-induced fluorescence (SIF), surface downwelling shortwave flux (RSDN), soil 
moisture (SM), evapotranspiration (ET), precipitation (Precip), temperature at 2m height (T), vapor pressure deficit (VPD), and 670 
precipitation with 3-months lag (Precip (-3)). 

 

 

Figure A2 Dendrogram for clustering the explanatory variables of the “RS” set. The variables are clustered after their average 
distance, which is one minus the absolute of the Pearson correlation coefficient. See figure A1 for variable abbreviations. 675 
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Figure A3 Dendrogram for clustering the explanatory variables of the “RS meteo” set. The variables are clustered after their average 
distance, which is one minus the absolute of the Pearson correlation coefficient. See figure A1 for variable abbreviations. 

 

Figure A4 Run statistics of the AutoSklearn base models. The four statuses show how many base models succeeded or failed during 680 
training due to insufficient memory, training time, or other unknown reasons. Only the successful models were used for the 
configuration of AutoSklearn. 

 

Figure A5 Detailed use of preprocessing algorithms by AutoSklearn. The chart shows the distribution of the mean RMSE for each 
base model type across all folds within each repetition of the cross-validation. We considered only the best-performing models for 685 
each model class within each fold. The RMSE is min-max scaled from zero to one within each cross-validation fold to account for 
variations in the data's predictability depending on the data's split. The use of preprocessing algorithms is shown as colors in the 
proportions of their usage in each bin. 
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Figure A6 Relative average standard error, normalized by the mean GPP prediction. 
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