01 Sep 2023
 | 01 Sep 2023
Status: this preprint is currently under review for the journal BG.

Latitudinal distribution of biomarkers across the western Arctic Ocean and the Bering Sea: an approach to assess sympagic and pelagic algal production

Youcheng Bai, Marie-Alexandrine Sicre, Jian Ren, Vincent Klein, Haiyan Jin, and Jianfang Chen

Abstract. The drastic decline of Arctic sea ice due to global warming and polar amplification of environmental changes in the Arctic basin profoundly alter primary production with consequences for polar ecosystems and the carbon cycle. In this study, we use highly branched isoprenoids (HBIs), brassicasterol, dinosterol and terrestrial biomarkers (n-alkanes and campesterol) in surface sediments to assess sympagic and pelagic algal production with changing sea ice conditions along a latitudinal transect from the Bering Sea to the high latitudes of the western Arctic Ocean. Suspended particulate matter (SPM) was also collected in surface waters at several stations of the Chukchi basin to provide snapshots of phytoplankton communities under various sea ice conditions for comparison with underlying surface sediments. Our results show that sympagic production (IP25 and HBI-II) increased northward between 62° N and 73° N, with maximum values at the sea ice edge in the Marginal Ice Zone (MIZ) between 70° N and 73° N in southeastern Chukchi Sea and along the coast of Alaska. They were consistently low at northern high latitudes (>73° N) under perennial sea ice and in the Ice-Free Zone (IFZ) of the Bering Sea. Enhanced pelagic sterols and HBI-III occurred in the IFZ across the Bering Sea and in southeastern Chukchi Sea up to 70° N–73° N in the MIZ conditions that marks a shift of sympagic over pelagic production. In surface water SPM, pelagic sterols display similar patterns as Chl a, increasing southwards with higher amounts found in the Chukchi shelf pointing out the dominance of diatom production. Higher cholesterol values were found in the mid-Chukchi Sea shelf where phytosterols were also abundant. This compound prevailed over phytosterols in sediments, compared to SPM, reflecting efficient consumption of algal material in the water column by herbivorous zooplankton.

Youcheng Bai et al.

Status: open (until 26 Oct 2023)

Comment types: AC – author | RC – referee | CC – community | EC – editor | CEC – chief editor | : Report abuse

Youcheng Bai et al.

Youcheng Bai et al.


Total article views: 127 (including HTML, PDF, and XML)
HTML PDF XML Total Supplement BibTeX EndNote
90 30 7 127 11 4 3
  • HTML: 90
  • PDF: 30
  • XML: 7
  • Total: 127
  • Supplement: 11
  • BibTeX: 4
  • EndNote: 3
Views and downloads (calculated since 01 Sep 2023)
Cumulative views and downloads (calculated since 01 Sep 2023)

Viewed (geographical distribution)

Total article views: 180 (including HTML, PDF, and XML) Thereof 180 with geography defined and 0 with unknown origin.
Country # Views %
  • 1
Latest update: 24 Sep 2023
Short summary
Algal biomarkers were used to assess sea ice and pelagic algal production across the western Arctic Ocean with changing sea ice conditions. They show three distinct areas along with a marked latitudinal gradient of sea ice over pelagic algal production in surface sediments that are reflected by the H-print index. Our data also show that efficient grazing consumption accounted for the dramatic decrease of diatom derived biomarker in sediments compared to that of particulate matter.