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Abstract. Soil microbes play a crucial role in carbon (C) cycle; however, terrestrial C cycle during historical period with soil 

microbial role considered is still unknown. We applied a microbial-explicit Earth system model – the Community Land Model 

(CLM)-Microbe – to investigate the dynamics of C in vegetation, litter, soil, and microbes during 1901-2016. The CLM-Microbe 15 
model was able to reproduce the variations of gross (GPP) and net (NPP) primary productivity, heterotrophic (HR), and soil (SR) 

respiration, microbial (MBC) biomass C in fungi (FBC) and bacteria (BBC) in the top 30 cm and 1 m, dissolved (DOC) and soil 

organic C (SOC) in the top 30 cm and 1 m during 1901-2016. During the study period, simulated C variables increased by 

approximately 30 PgC yr-1 for GPP, 13 PgC yr-1 for NPP, 12 PgC yr-1 for HR, 25 PgC yr-1 for SR, 1.0 PgC for FBC and 0.4 PgC 

for BBC in 0-30 cm, 1.2 PgC for FBC, 0.7 PgC for BBC, 2.4 PgC for DOC, 34 PgC for SOC, and 4 PgC for litter C in 0-1 m, and 20 
37 PgC for vegetation C. Increases in C fluxes and pools were widely found, particularly at high latitudes and in equatorial regions, 

but we also observed their decreases in some grids. Overall, we observed significant correlations between the area-weighted 

averages of GPP, NPP, and vegetation C and those of MAT and MAP. Similarly, the area-weighted averages of HR, SR, and FBC, 

BBC, DOC, SOC, and litter C in the top 1 m were significantly correlated with that of ST and SM in the top 1 m. These results 

suggested that vegetation productivity was primarily controlled by warming and precipitation, while microbial and soil C were 25 
jointly governed by vegetation C input and soil temperature and moisture. Our simulations revealed the spatial and temporal 

patterns of terrestrial C cycling responses to environmental change with explicit representation of microbial mechanisms, laying 

the foundation for an improved understanding of soil microbial roles in the global terrestrial C cycle. 
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The atmospheric concentration of carbon dioxide (CO2) has been drastically increased due to fossil fuel combustion and land-use 60 

change since the Industrial Revolution (IPCC, 2001, 2013; Lal, 2004, 2008). The radiative forcing caused by the CO2 enrichment 

in the atmosphere has led to an increase in the global surface temperature, known as climate warming (IPCC, 2001). The increases 

of atmospheric CO2 and induced warming climate have induced cascading environmental issues and impacted the carbon (C) cycle 

(Matson et al., 2002; Meeran et al., 2021; Soong et al., 2021).  

 65 

Previous studies have assessed the effects of climate change on the global C cycle using Earth system models (ESMs) (Bonan et 

al., 2019; Todd-Brown et al., 2013). For example, Bonan et al. (2019) compared vegetation productivity, heterotrophic respiration, 

and vegetation and soil C stocks in the Community Land Model (CLM) forced by two climate reconstructions (CRUNCEPv7 and 

GSWP3v1) (Dirmeyer et al., 2006; Viovy, 2018). These models, however, were developed with an implicit representation of 

microbial processes, assuming that respired CO2 is proportional to the soil C stock and leaving unspecified the role of microbes in 70 

decomposition processes. Given the critical role that soil microorganisms play in soil biogeochemical processes and their 

sensitivity to environmental changes, explicit incorporation of soil microbial respiration and activities in decomposition processes 

into ESMs is considered to be essential to improve the prediction of global C cycling (He et al., 2021a; Wang et al., 2015; Wang 

et al., 2017; Wieder et al., 2013). Recently, researchers have applied microbial-explicit models in investigating responses of global 

C cycle to environmental change. For example, Wieder et al. (2015) examined the responses of soil, vegetation, and litter C pools 75 

to environmental change using the MIMICS model. Wang et al. (2017) also investigated the impacts of environmental change on 

enzymes, soil, and microbial biomass C pools using the TRIPLEX-MICROBE model. However, the validation of microbial 

biomass at coarse scales (e.g., global or biome levels) may introduce uncertainties in the model, particularly in soil microbial 

biomass and microbe-mediated processes, which can further affect the predicted soil C cycle in those models. 

 80 

Fungi and bacteria, the two major soil microbial groups, respond differently to environmental change, and differences in their 

physiological traits concerning biogeochemical processes have been incorporated into the CLM-Microbe model (He et al., 2021a; 

He et al., 2021b). For example, fungi decrease more than bacteria under N fertilization (Demoling et al., 2008), whereas fungi are 

less sensitive than bacteria to water stress (Manzoni et al., 2012). Therefore, validating fungal and bacterial biomass in the CLM-

Microbe model at the grid level instead of coarse comparisons at global or biome levels may reduce uncertainties in model 85 

predictions. Changes in fungal and bacterial abundance can primarily affect terrestrial C cycling considering their distinct roles in 

biogeochemical processes such as the decomposition of organic materials (Bailey et al., 2002; Boer et al., 2005; Hršelová et al., 

1999). Predicting changes in the spatial pattern of fungi and bacteria at the global scale and identifying their controls are essential 

for understanding the impacts of environmental changes on the global terrestrial C cycle. 
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To fill the gaps, we investigated the effects of environmental change on the global C cycle using the CLM-Microbe model. The 

CLM-Microbe model, mechanistically representing microbial mechanisms of soil C cycling and differentiating the physiology of 

two major microbial functional groups (i.e., fungi and bacteria), provides a feasible way to investigate the effects of environmental 125 

change on soil C cycling mediated by soil microbes and reveal the roles of different kingdoms of microbes on C cycling (He et al., 

2021a). In this study, we aimed to investigate the effects of environmental change on the global C cycle from 1901 to 2016. We 

first evaluated the performance of the CLM-Microbe model in reproducing soil, vegetation, and microbial C variables, including 

gross (GPP) and net (NPP) primary productivity, fungal (FBC) and bacterial (BBC) biomass C in the top 30 cm and 1 m, 

heterotrophic (HR) and soil (SR) respiration, and dissolved (DOC) and soil (SOC) organic C in the top 30 cm and 1 m. Then, we 130 

investigated the effects of environmental change on the temporal trend of variables related to soil, vegetation, microbial, and litter 

C, including GPP, NPP, HR, SR, FBC, and BBC in the top 30 cm, FBC, BBC, DOC, SOC, and litter C (LitC) in the top 1 m, and 

vegetation C (VegC) from 1901 to 2016. Finally, we investigated spatial patterns and external environmental controls of changes 

in those fluxes and pools from 1901 to 2016. 

 135 

2 Materials and methods 

2.1 Model representation of fungal and bacterial biomass 

The CLM-Microbe model was built on the model framework developed by Xu et al. (2014) and the default CLM4.5 (hereafter 

CLM4.5) (Koven et al., 2013). It has been coupled with a microbial functional group–based methane module (Wang et al., 2022; 

Wang et al., 2019; Xu et al., 2015) and applied to quantify the fungal and bacterial biomass dynamics in natural ecosystems (He 140 

et al., 2021a). Taken together, the CLM-Microbe model has unique modules of microbe-mediated decomposition cascades and 

microbial functional group-mediated methane cycle, with other biogeochemical, thermal, and hydrological processes the same as 

the CLM4.5. The CLM4.5 classifies litter into three pools, i.e., litter 1 (labile), litter 2 (cellulose), and litter 3 (lignin), and soil 

organic matter (SOM), materials left during later stages of organic C decay, into four pools, i.e., SOM 1, SOM 2, SOM 3, and 

SOM 4 (low-high recalcitrance). The three litter pools and four SOM pools differ in base decomposition rate (τ), with turnover 145 

times of litter pools ranging from 20 hours to 71 days and turnover times of SOM pools ranging from 14 days to 27 years (Figure. 

S1). Coarse woody debris (CWD) is fragmented, decomposed, and gradually transferred into litter pools and further from litter to 

SOM pools (Thornton et al. 2007; Koven et al. 2013). In addition to eight C pools (three litter, four SOM, and CWD pools) in the 

CLM4.5, we introduced dissolved organic matter (DOM) and fungal and bacterial biomass pools in the CLM-Microbe model. The 

code for the CLM-Microbe model has been archived at GitHub since 2015. The model version used in this study was checked out 150 
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on May 1, 2021, and was archived at Xu et al. (2022). 

 

In the CLM-Microbe model, fungal and bacterial biomasses are the balance between C assimilation (C flow from the decomposition 

of SOM, DOM, and litter) and C loss through microbial lysis and microbial respiration. Specifically, fungi and bacteria receive C 

through the transitions from litter, DOM, and SOM pools; fungi and bacteria lose C through the transitions from fungal and 170 

bacterial biomass pools to DOM and SOM pools and the atmosphere. The conceptual diagram of the CLM-Microbe model and 

major parameters are in Figure. S1 and Table S1, respectively. 

 

The decomposition rates of SOM, DOM, and litter are controlled by both their potential decomposition rates and environmental 

conditions. The decomposition processes in the CLM-Microbe model are defined following the below equations, 175 

𝐷! = 𝑘 × 𝑟"#$%& × 𝑟%'()* × 𝑟+,%#- × 𝑟.!      equation (1) 
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   equation (4) 

𝑟.! = 𝑓- × (1 − 𝑓)4;4) × 𝑚𝑎𝑥=𝑂<;4',% , 𝑂<3)4@ + 𝑓)4;4 ×𝑚𝑎𝑥=𝑂<',% , 𝑂<3)4@  equation (5) 180 

where DC is the rate of substrate (e.g., SOM, DOM, and litter) breakdown (in per day); k is the potential decomposition rate (in per 

day); 𝑟.! represents the environmental modifier determined by soil oxygen concentration (unitless); rdepth is the environmental 

modifier determined by soil depth (unitless); rwater is environmental modifier determined by soil moisture (unitless); rtsoil means the 

environmental modifier determined by soil temperature (unitless); z means soil depth (in m); 𝑧=  is the e-folding depth for 

decomposition (in m); Tsoil, j is soil temperature at layer j (in Kelvin); Tref is the reference temperature for decomposition (in Kelvin), 185 

which is set as a Kelvin temperature equals to 25°C; Q10 indicates the temperature dependence of decomposition, it is the ratio of 

the rate at a specific temperature to that at 10°C lower (unitless); Ψj is the soil water potential in layer j (in MPa); Ψmin is a lower 

limit for soil water potential control on decomposition rate (set to -10 MPa), rwater will be set as 0 if  Ψj is lower than Ψmin (in MPa); 

Ψmax is the upper limit for soil water potential control on decomposition, which equals to the saturated soil matric potential, rwater 

will be set as 1 if  Ψj is higher than Ψmax; wsoil, j means soil water content in layer j (in MPa); fr is the rooting fraction by soil depth 190 

(unitless); finun means the fraction of inundated area (unitless); 𝑂<;4',% represents the oxygen available to that demanded by roots 

and aerobic microbes in unsaturated area (unitless); 𝑂<3)4 denotes the ratio between minimum anaerobic decomposition rate and 
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potential aerobic decomposition rate in soil (set to 0.2) (unitless); 𝑂<',% represents the oxygen available to that demanded by roots 

and aerobic microbes in saturated area (unitless); 𝑟.! will be set as 1 in oxic conditions, while it will be estimated as the weighted 200 

average of oxygen stress in saturated and unsaturated areas in anoxic conditions (unitless). 

 

Carbon use efficiency (CUE) of soil microbes for assimilating three litter pools in the CLM-Microbe model are determined 

following the equation in Sinsabaugh et al. (2013). In addition, CUE is reported to vary with temperature, showing a coefficient 

of -0.012 with increasing temperature (Devêvre and Horwáth 2000). Therefore, we assumed that CUE decreased compared with 205 

the ambient thermal regime of microbes’ habitats following the equation as below (Xu et al. 2014), 

CUE = FCUE>?@ − 𝐶𝑈𝐸A × =𝑇 − 𝑇!BC-#D@K × F
𝑀E:G

𝑆E:GN K
1.I

    equation (6) 

where CUE is carbon use efficiency, which is defined as the growth‐to‐assimilation ratio for soil microbes; CUEmax is the 

maximum value of C use efficiency; CUET is the coefficient indicating the dependence of C use efficiency on temperature; 

TCUEref is the reference temperature of C use efficiency, which is defined as 15°C in the CLM-Microbe model; MC:N means the 210 

C:N ratio of soil microbial biomass, which is defined as 8 in the CLM-Microbe model; SC:N represents C:N ratio of the substrate 

(e.g., litter). 

 

The C flow from litter and SOM pools to soil microbes will be partitioned by fungal and bacterial biomass pools based on the 

C:N ratio of fungal and bacterial biomass. The fraction factor quantifying bacteria C gain from litter and SOM is calculated 215 

based on the weighted average of assimilation efficiency of fungi and bacteria following the equation as below, 

𝑓𝑏 = 6
J4:6

K4:68 9
/.8

6
L4:6

K4:68 9
/.8
M6
L4:6

K4:68 9
/.8                      equation (7) 

𝑓𝑓 = 1 − 𝑓𝑏 

where fb is the fraction of C flowing into bacteria; ff is the fraction of C flowing into fungi; BC:N  means the C:N ratio of BBC; 

FC:N  means the C:N ratio of FBC; SC:N represents C:N ratio of substrates (e.g., litter and SOM). 220 

 

Fungi and bacteria have different turnover times; hence, different lysis rate constants were adopted for fungi and bacteria in the 

CLM-Microbe model (He et al., 2021a). In addition, bacterial and fungal growth is highly sensitive to environmental conditions, 

such as soil moisture and temperature. As a result, in the CLM-Microbe model, fungal and bacterial biomass lysis is represented 

as the interactive effects of their lysis rate constants and environmental factors, i.e., 𝑟.!, rwater, rtsoil, and rdepth, as described above. 225 

Microbial respiration is widely affected by multiple abiotic and biotic factors, such as substrate concentration and availability, soil 

moisture, and soil temperature (Gomez-Casanovas et al., 2012; Zhang et al., 2013). Therefore, in the CLM-Microbe model, fungal 
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and bacterial respirations are represented as the interactive effects of substrates (i.e., DOM, SOM, and litter), environmental factors 

(i.e., 𝑟.!, rwater, and rtsoil), and fraction factors quantifying C being respired by fungi and bacteria in transitions (Table S1). Fungal 235 

and bacterial biomass turnover and microbial respiration are defined following below equations, 

𝐿 = 𝑘N × 𝑟"#$%& × 𝑟%'()* × 𝑟+,%#- × 𝑟.!      equation (8) 

𝑅 = 𝐷! × 𝑓-#'$                                           equation (9) 

where L denotes the lysis rate of fungal and bacterial biomass (in per day); kM is the potential turnover rate of fungal (kfungi) or 

bacterial (kbacteria) biomass (in per day); R represents the microbial respiration rate (in per day); fresp is the fraction factor defining 240 

the proportion of C released as respiration during decomposition (unitless).  

 

The CLM-Microbe model treats N in the exactly same framework as CLM4.5, it fully coupled C and nitrogen (N) dynamics in 

land components. Net N mineralization, the inorganic N supply in the soil for plant uptake, is heavily dependent on microbial 

immobilization of N. Microbial immobilization of N during decomposition steps depends on C:N ratio of organic materials for 245 

decomposition, the C:N ratio of fungal and bacterial biomass, and microbial CUE. The sum of potential immobilization over all 

immobilization in the biogeochemistry cascade is used to estimate microbial demand of mineral N. For each time step, such 

microbial mineral N demand is in competition with the total plant N demand of all plant functional types (PFTs) on a soil column. 

Once this competition has been resolved, actual immobilization is calculated as a proportion of potential immobilization, with the 

same proportion applied to all immobilization steps (Thornton et al., 2007). Remaining plant N demand summed over all PFTs 250 

indicates the demand-based competition between plants and microbes for soil mineral N resource on a column. Unmet plant N 

demand results in C supply surplus, which is translated back to the direct downregulation of photosynthetic rate and the reduction 

of GPP. Unmet plant N demand can also indirectly induce the reduced allocation to new growth on light capture in plants. Such 

consequences imply impacts of N limitation exerted by microbial competition for mineral N on plants, which can in turn affect 

soil microbial community through subsequent inputs of organic matter of various qualities. 255 

 

2.2 Representation of fungal- and bacterial-mediated processes by column 

In the CLM-Microbe model, land surface heterogeneity was represented using a hierarchical data structure, which is adapted from 

CLM4.5. Each land grid cell can contain multiple land units (e.g., glacier, lake, wetland, urban, vegetated land, and cropland) and 

each land unit can be further divided into multiple soil/snow columns. On the vegetated land units, multiple (up to 16) PFTs distinct 260 

in physiology and structure from different climate zones (e.g., needleleaf-evergreen-tree-boreal vs. needleleaf-deciduous-tree-

boreal, broadleaf-evergreen-tree-tropical vs. broadleaf-deciduous-tree-tropical, and c3-arctic-grass vs. c3-non-arctic-grass) can 
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occupy space on the column. All vegetation fluxes and state variables were defined at the PFT level, while soil fluxes and state 

variables were defined at the column level. 270 

 

In the CLM4.5 and early versions of the CLM-Microbe model (before January 2021), parameters related to soil processes, such as 

decomposition, were assumed to be homogenous across data structure levels. Our previous work suggested the differences in 

microbial processes among biomes (He et al., 2021a), the implicitly accounted sub-grid microbial processes may introduce 

uncertainties in the estimation of soil and microbial fluxes and state variables. Since soil flux and state variables in the CLM-275 

Microbe model are defined at the column level, we represented the heterogeneity of microbe-mediated processes by column. Each 

PFT shares similar physical, phylogenetic and phenological characteristics, we thus assigned the parameter set of microbial 

properties by PFT. Furthermore, we determined the microbial properties of each column by the relative weight of PFTs occupied 

on the column, with the parameter set of the most dominant PFT adopted to represent the microbial and soil processes (e.g., fungal 

and bacterial biomass turnover rate, DOM degradation rate, and fungal and bacterial C assimilation proportion from SOM, litter, 280 

and DOM) on the column. 

 

2.3 Model forcing data 

The forcing data for the CLM-Microbe model include meteorological variables such as air temperature, relative humidity, incoming 

solar radiation, longwave radiation, precipitation rate, surface pressure, and surface winds. In this study, we used the CRUNCEP 285 

dataset to force the CLM-Microbe model, which has been widely used to force the CLM. The CRUNCEP dataset is a combination 

of two existing datasets, i.e., the Climate Research Center timeseries (CRU TS) dataset of 0.5° × 0.5° at a monthly scale and the 

National Centers for Environmental Prediction (NCEP) reanalysis dataset of 2.5° × 2.5° at 6-hourly scale. In the CRUNCEP dataset, 

the diurnal and daily variation of variables such as the air temperature, precipitation, humidity, solar radiation, surface pressure, 

downward longwave radiation, and wind speed were derived from NCEP dataset, while their monthly means are bias corrected by 290 

the CRU TS dataset. In this study, the CRUNCEP dataset version 7, with a spatial resolution of 0.5° × 0.5°, spanning from 1901 

to 2016, was used to drive the model simulation (Viovy, 2018). 

 

In addition to the meteorological data, we forced the CLM-Microbe model using time-varying CO2 concentration, N deposition, 

and aerosol concentration to estimate the C cycle change in the last century, provided by National Center for Atmospheric Research 295 

(NCAR) for forcing the CLM offline simulations. Atmospheric N deposition during 1849-2006 with a spatial resolution of 1.25° 

longitude × 0.9° latitude was applied for all simulations. The CO2 concentrations remained fixed at 1850 levels (284.7 ppm) for 

accelerated decomposition and final runs and followed by transient historical (1849-2006) changes in the transient run. The aerosol 
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concentration in accelerated decomposition and final runs for offline simulation was prescribed at 1850 level, while aerosol 

concentration with a spatial resolution of 1.25° longitude × 0.9° latitude during 1765-2005 was used in the transient simulation. 

The transient land use and land cover change during the historical period is based on the dataset of the UNH Transient Land Use 

and Land Cover Change Dataset Version 1 (LUHa.v1), covering the period of 1850-2005, which was produced by University of 305 

New Hampshire research group (Louise Chini, George Hurtt, Steve Frolking; https://luh.umd.edu/readme_LUHa_v1.shtml). 

 

2.4 Model implementation 

The model implementation was carried out in three stages, with the spatial resolution of the simulations being 2.5° longitude × 1.9° 

latitude. First, we ran the accelerated decomposition spin-up to allow the system to reach its steady state (Koven et al., 2013; 310 

Thornton & Rosenbloom, 2005). We set the model simulations to 1200 years for the accelerated decomposition phase to reach the 

steady state (Figure S2). Then, we ran a final spin-up of 100 years to ensure the system was ready for transient simulations during 

1850-2016. For the model years of 1850-1900 in transient simulations, we cycled atmospheric forcing during 1901-1910 of the 

CRUNCEP dataset version 7 to force the model. Then, we used the atmospheric data during 1901-2016 of the CRUNCEP dataset 

version 7 to drive the simulation between 1901 and 2016. The CLM-Microbe model was initially parameterized for fungal and 315 

bacterial mediated processes using time-series data of fungal and bacterial biomass carbon, HR, and SR by biome, and the initial 

setting for microbial parameters by PFT was adopted from He et al. (2021a) and He et al. (2021b). Specifically, we assigned same 

microbial parameters for PFTs found in a biome as their initial setting, since our previous parametrization for microbial processes 

were biome specific. For example, broadleaf-evergreen-tree-tropical and broadleaf-deciduous-tree-tropical, belonging to the biome 

of Tropical/Subtropical forests, parameter set for Tropical/Subtropical forests biome were applied for PFTs of broadleaf-evergreen-320 

tree-tropical and broadleaf-deciduous-tree-tropical in initial simulations. 

 

2.5 Validation data 

Several datasets were employed in this study for model validation. To produce realistic soil conditions in the CLM-Microbe model 

at the grid level, we used datasets of SOC in the top 1 m soil profile from the Harmonized World Soil Database (HWSD) at 0.05-325 

degree spatial resolution archived at Oak Ridge National Laboratory (Wieder, 2014) and SOC in the top 30 cm from the Global 

Soil Organic C Map (GSOCmap) version 1.5 at a spatial resolution of 1 km provided by Food and Agriculture Organization of the 

United Nations (FAO, 2018) to validate the SOC in the top 1 m and 30 cm of the CLM-Microbe model, respectively. To guarantee 

the reasonability of vegetation productivity, GPP and NPP of MODIS gridded datasets with a spatial resolution of 30 seconds 

during 2000-2015 were used to compare with the simulated GPP and NPP, respectively (Zhao et al., 2005). To reproduce the soil 330 
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C emission flux, SR and HR from Global Gridded 1-km Annual Soil Respiration Database (SRDB) version 3 available at Oak 

Ridge National Laboratory were used to validate SR and HR, respectively (Warner et al., 2019). For FBC and BBC in the top 30 

cm, the dataset of FBC and BBC with a resolution of 0.5 degrees obtained from He et al. (2020) was used to validate FBC and 

BBC in the top 30 cm in the CLM-Microbe model, respectively. Microbial biomass C (MBC), the sum of FBC and BBC, in the 335 

top 1 m of the CLM-Microbe model outputs were compared with Xu et al. (2013) for accuracy. The DOC in 0-30 cm and 0-1 m 

with a resolution of 0.5 degrees derived from Guo et al. (2020) were used to compare with that in the top 30 cm and 1 m, respectively, 

from the CLM-Microbe output for validation. More details about the datasets used for validation can be found in Table S4. Ten-

year (2000-2009) averages of simulated soil, vegetation, and microbial variables from the CLM-Microbe output were calculated 

to compare with those from observed datasets previously described. 340 

 

To assess the efficacy of the CLM-Microbe model, the available soil and vegetation variables from the CLM4.5, including GPP, 

NPP, HR, SR, and SOC in the top 30 cm and 1 m, were adopted for comparison. The simulation results during 1850-2014 was 

forced using GSWP3v1 (Dirmeyer et al., 2006), with environmental changing factors including N deposition and rising CO2 

considered in the historical simulation. The GPP, NPP, HR, SR, and SOC in the top 30 cm and 1 m were provided by Climate Data 345 

Gateway at National Center for Atmospheric Research (NCAR). The GPP, NPP, HR, SR, and SOC in the top 30 cm and 1 m were 

from CLM land-only release. All variables were at a resolution of 0.9° latitude × 1.25° longitude. The temporal resolutions were 

different among variables; GPP, NPP, SR, and HR are of a monthly output, whereas SOC in 0-30 cm and 0-1 m are of yearly 

simulations. Ten-year (2000-2009) averages of the CLM4.5-simulated GPP, NPP, HR, SR, and SOC (0-30 cm and 0-1 m) were 

calculated to represent the long-term soil and vegetation status and for comparison with observed variables. 350 

 

Since observational datasets and model simulations are of different resolutions and 0.5 degree is the most widely used, we used 

the function of linint2 in NCAR Command Language to interpolate those datasets and model outputs from their original resolutions 

to 0.5 degrees. To make the maps comparable, we used the nibble and extracted by mask functions provided by ArcGIS version 

10.2 (ESRI, Redlands, California, USA) to make all maps consistent in geographical boundary and missing values. 355 

 

2.6 Model parameterization 

Although most processes in the CLM-Microbe model were adapted from the CLM4.5, the modification of microbe-mediated 

decomposition cascades and microbial functional group-mediated methane cycle may reduce the applicability of default parameters 

in the CLM4.5, Therefore, we performed the parameterization against observational data of FBC and BBC in He et al., (2021a) 360 

and HR and SR in He et al., (2021b), with at least two sites in each biome (one for calibration and the rest for validation). Before 
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the parameterization, we guaranteed the reasonable soil and vegetation conditions by comparing the simulated NPP and SOC with 

observational data. To calibrate DOC simulated in the model, we collected reported observational data from previous publications. 

When selecting the data, we ensured that observational DOC in the top 30 cm and 1 m were from natural biomes and each biome 

included at least two sites (Table S2-3). We calibrated the DOC in the top 30 cm and 1 m by plotting the simulated DOC in the top 

30 cm and 1 m against observational data, and we found good performance of the CLM-Microbe in reproducing the observed DOC 395 

in both top 30 cm (R2=0.6, P<0.0001) and 1 m (R2=0.6, P<0.0001) (Figure S3).  

 

Despite the good performance the CLM-Microbe model in calibration phase using observational data at the site scale, minor 

adjustments of parameters were necessary to capture variations at the global scale. We optimized the model parameters related to 

plant, soil, and microbial processes based on SOC in the top 30 cm from GSOCmap and that in the top 1 m from HWSD dataset, 400 

vegetation GPP and NPP from MODIS, SR, and HR from SRDB, FBC and BBC (0-30 cm) in He et al. (2020), MBC in Xu et al. 

(2013), and DOC (0-30 cm and 0-1 m) in Guo et al. (2020). We primarily focused on parameters related to plant photosynthesis 

(e.g., flnr), e-folding factor for decomposition (e.g., decomp_depth_efolding) to match the reported GPP, NPP, and SOC in the top 

0-30 cm and 1 m. To calibrate the model to fit the observed FBC, BBC, and DOC, we adjusted parameters related to soil microbial 

(k_fungi and k_bacteria) and DOC (k_dom) turnover, microbial C assimilation efficiency (m_rf_s1m, m_rf_s2m, m_rf_s3m, and 405 

m_rf_s4m), the proportion of C being released as respiration (m_batm_f and m_fatm_f), plant C allocation (froot_leaf), and the N 

concentration of plant tissues (leafcn and frootcn) to optimize the model simulations of FBC, BBC, MBC, DOC, SR, and HR.  

 

2.7 Model evaluation 

To evaluate the model performance in capturing the spatial variation in soil and vegetation variables, we compared GPP, NPP, HR, 410 

SR, FBC and BBC in the top 30 cm, MBC (0-1 m), and DOC and SOC (0-30 cm and 0-1 m) reported by the observational datasets 

and simulated averages of these variables during 2000-2009. Due to the non-normality of those variables, Spearman's rank 

correlation was used to evaluate the overall model performance for those variables. The Spearman's rank correlation coefficient 

(rs), measuring the strength and direction of association between two ranked variables, was calculated following the equation as 

below, 415 

𝑟' =
O(P(R(:),R(U)	)
W9(3)W9(<)

         equation (10) 

where rs is the Spearman's rank correlation coefficient; R(x) means the rankings of variable x; R(y) indicates the rankings of 

variable y; cov(R(x),R(y)) is the covariance of R(x) and R(y); σ(R(x) and σR(y) are the standard deviations of the rankings of variable 

x and y, respectively. 
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2.8 Statistical analysis 

Due to the non-normality of simulated and observed GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, MBC (0-1 m), and DOC 425 

and SOC (0-30 cm and 0-1 m), we examined the agreement between variables simulated by the CLM-Microbe model or CLM4.5 

during 2000-2009 and corresponding observed values at the grid level using Spearman's rank-order correlation. Such analyses 

were conducted using the function of cor.test with a method of spearman in “stats” package in R (R Core Team, 2013). The 

differences in soil, vegetation, litter, and microbial variables between decadal averages of 1901-1910 and 2007-2016 were 

examined using an independent t-test, conducted with the function of t.test in “stats” package in R (R Core Team, 2013) by 430 

continents  and with the function of ttest in NCAR Command Language (https://www.ncl.ucar.edu) by grid. 

 

To identify external environmental controls of soil, vegetation, litter, and microbial variables, we examined the correlations 

between vegetation productivity and mean annual temperature (MAT) and precipitation (MAP) and correlations of soil temperature 

(ST) and moisture (SM) with soil, litter, and microbial variables with respect to their area-weighted averages at the grid level from 435 

1901 to 2016. Considering the consistent but stronger environmental influence on soil and microbial variables in the top 30 cm 

than in the top 1 m, only correlations between external environmental factors and soil and microbial variables in the top 1 m were 

assessed whether an association exists. The correlations between external environmental factors (e.g., MAP, MAT, SM, and ST) 

and annual averages of GPP, NPP, HR, SR, VegC, and FBC, BBC, DOC, SOC, and LitC in the top 1 m at the global level during 

1901-2016 were estimated using the Pearson’s correlation. These statistical analyses above were performed and relevant figures 440 

(Figs. 1-7, 10, and 14) were plotted using “graphics” (R Core Team, 2013) and “ggcorrplot” (Kassambara & Kassambara, 2019) 

packages in R.  

 

To estimate the changing rate of GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, FBC, BBC, DOC, LitC, and SOC in the top 

1 m, and VegC during 1901-2016, we conducted linear regression models for these variables with time at the grid level, with the 445 

changing rate indicated by the slope of the regression model. In addition, correlations between environmental factors (e.g., MAT, 

MAP, ST, and SM) and vegetation, soil, litter, and microbial variables including GPP, NPP, HR, SR, VegC, and FBC, BBC, DOC, 

SOC, and LitC in the top 1 m at the grid level were estimated using Pearson’s correlation. Such statistical analyses were performed 

using NCAR Command Language (https://www.ncl.ucar.edu). Relevant figures (Figs. 8-9, 11-13, and 15-16) were produced using 

Matlab version 2021b (The MathWorks, Inc.). 450 
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3 Results 

3.1 Model validation and comparison with the CLM4.5 

The CLM-Microbe produced comparable results with most observed data and performed comparable to or slightly better than the 455 

CLM4.5 with respect to the global C budget (Table 1), latitudinal trend (Figures 1 & 2), and individual grid (Figures 3 & 4). The 

CLM-Microbe model and the CLM4.5 overestimated the GPP by 15.7% and 7.3%, respectively (Table 1). However, NPP 

simulated by the CLM-Microbe model and the CLM4.5 was overestimated by 1.3% and underestimated by 8.1%, respectively. 

Similarly, SR was overestimated in both the CLM-Microbe model (15.6%) and the CLM4.5 (4.0%). HR in the CLM-Microbe 

model and the CLM4.5 was overestimated by 1.7% and underestimated by 4.4%, respectively. Both the CLM-Microbe model and 460 

the CLM4.5 underestimated SOC (0-30 cm), by 8.5% and 22.4%, respectively, while SOC (0-1 m) in the CLM-Microbe model 

and the CLM4.5 was overestimated by 32.4% and underestimated by 21.4%, respectively. The FBC, BBC, MBC, and DOC, only 

available in the CLM-Microbe model, were better predicted in the top 30 cm than 1 m. The simulated FBC, BBC, and DOC in the 

top 30 cm were underestimated by 3.3% and overestimated by 26.7% and 24.9%, respectively, while MBC and DOC in the top 1 

m were overestimated by 69.5% and 75.0%, respectively.  465 

 

The CLM-Microbe model can reasonably reproduce the latitudinal trends of vegetation, soil, and microbial variables, with the 

model performance varied among variables and along soil depth (Figure 1). The latitudinal trends of both GPP and NPP in the 

CLM-Microbe model agreed with observed data with a slight overestimation at northern latitudes and in equatorial regions, but 

NPP was slightly underestimated in the southern hemisphere (Figures 1a & 1b). Both HR and SR simulated by the CLM-Microbe 470 

model agreed well with observed data in the Southern Hemisphere but were overestimated in equatorial regions and at mid-high 

latitudes and underestimated at low latitudes in the Northern Hemisphere (Figures 1c & 1d). Similar latitudinal trends of HR and 

SR were also observed in the CLM4.5 simulation (Figures 2c & 2d). Soil C pools showed similar latitudinal patterns across soil 

depths (Figures 1e-1k). Specifically, DOC (0-30 cm and 0-1 m) was overestimated in equatorial regions but underestimated in 

northern temperate regions (Figures 1e-1f). Meanwhile, the CLM-Microbe model produced an overestimation of SOC (0-30 cm 475 

and 0-1 m) in equatorial and northern high-latitude regions, but underestimation in northern mid-latitude regions (Figures 1g & 

1h). As opposed to the CLM-Microbe model, the CLM4.5 consistently underestimated SOC (0-30 cm and 0-1 m) along latitudes, 

except for SOC (0-1 m) at latitudes of >60° N. Similarly, both FBC and BBC in the top 30 cm were overestimated in equatorial 

regions and at northern high latitudes but underestimated in northern mid-latitude regions (Figures 1i & 1j). Overall, FBC (0-30 

cm) at southern latitudes was well predicted by the CLM-Microbe model, but BBC (0-30 cm) in that region was underestimated, 480 

while MBC (0-1 m) was overestimated across latitudinal gradients (Figure 1k). 
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At the grid scale, the simulated values of vegetation, soil, and microbial variables with the CLM-Microbe model were significantly 

consistent with observed (P<0.05; Figure 3). The CLM4.5 also indicated significant consistency between simulated and observed 485 

vegetation and soil variables (P<0.05; Figure 4). Overall, both the CLM-Microbe model and CLM4.5 performed better at 

simulating GPP and NPP than simulating soil and/or microbial variables. The simulated GPP (rs=0.91) and NPP (rs=0.86) with the 

CLM-Microbe model were significantly and positively related to their observed values (Figures 3a & 3b). The GPP (rs=0.88) and 

NPP (rs=0.82) in the CLM4.5 were also significantly and positively associated with observed values (Figures 4a & 4b).  The SR 

tended to be better predicted than HR in both the CLM-Microbe model (rs=0.70 for SR vs. rs=0.68 for HR) and the CLM4.5 490 

(rs=0.68 for SR vs. rs=0.64 for HR) (Figures 3c & 3d, Figures 4c & 4d). The DOC in 0-1 m (rs=0.36) was slightly better reproduced 

than in 0-30 cm (rs=0.34) in the CLM-Microbe model (Figures 3e & 3f), while both the CLM-Microbe model (rs=0.68 for 0-30 

cm vs. rs=0.63 for 0-1 m) and CLM4.5 (rs=0.63 for 0-30 cm vs. rs=0.59 for 0-1 m) performed better at simulating SOC in the top 

30 cm than in the top 1 m (Figures 3g & 3h, Figures 4e & 4f). Similarly, the CLM-Microbe model performed better in simulating 

FBC and BBC in the top 30 cm than MBC in the top 1 m (rs=0.43) (Figures 3i-3k). In addition, BBC (rs=0.53) was better reproduced 495 

than FBC (rs=0.46) in the top 30 cm. 

 

3.2 Carbon fluxes and pools associated with vegetation, litter, microbes, and soil 

The GPP, NPP, HR, and SR displayed increasing trends from 1901 to 2016 (Figure 5), with different magnitudes among variables. 

By 2016, GPP (30 PgC yr-1) increased about twice more than NPP (13 PgC yr-1). Similarly, the increase of SR (25 PgC yr-1) was 500 

about twice that of HR (12 PgC yr-1) from 1901. Their increasing rates showed variations with time. We observed a relatively 

modest increase of GPP, NPP, HR, and SR during 1901-1980, whereas their increase were more rapid from 1981 to 2016. 

 

Microbial, vegetation, litter, and soil C pools increased from 1901 to 2016 despite the year-to-year variability (Figure 6). The VegC, 

FBC and BBC in the top 30 cm, and FBC, BBC, DOC, SOC, and LitC in the top 1 m increased by about 37, 1.0, 0.4, 1.2, 0.7, 2.4, 505 

34, and 4 PgC, respectively, from 1901 to 2016. However, the temporal trends of those variables varied during 1901-2016. The 

VegC and LitC and SOC in the top 1 m showed a steady increase during 1901-2016 (Figures 6f & 6h), while FBC (0-30 cm and 

0-1 m) decreased from 1901 to 1940 and increased after 1940 (Figures 6a & 6b). The BBC (0-30 cm and 0-1 m) exhibited little 

change during 1901-1940 but increased rapidly during 1941-2016 (Figures 6c & 6d). The DOC (0-1 m) slightly decreased from 

1901 to 1920 but increased after 1920 (Figure 6e). 510 

 

During 1901-2016, the decadal average of soil C was the largest C pool in the soil-vegetation-litter system, about 15 times of the 

sum of vegetation and litter C (Table 2). Soil, litter, and vegetation C significantly increased from 1901-1911 to 2007-2016 
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(P<0.05). However, the absolute increase in those C pools were different, with soil (37.0 PgC) and vegetation (37.1 PgC) increased 

to a larger extent than litter (5.1 PgC). Although soil and vegetation increased to a similar extent, vegetation (19.2%) showed a 

larger relative increase than soil (0.8%) due to its smaller pool size. Despite the smallest absolute increase, litter (8.0%) increased 545 

more than soil with respect to relative values.  

 

3.3 Spatial pattern of vegetation and soil carbon fluxes 

Compared with 1901-1910, GPP, NPP, HR, and SR increased across latitudinal gradients in 2007-2016 (Figure 7). However, the 

magnitude of the increase differed among latitudinal gradients. Specifically, increases in GPP, NPP, HR, and SR were larger and 550 

more prominent at northern latitudes and equatorial regions than at southern latitudes. Across the globe, GPP, NPP, HR, and SR 

showed similar spatial patterns (Figure 8), and increases in most grids across the globe were statistically significant (P<0.05; 

Figures 8c, 8f, 8i, and 8l). Correspondingly, we observed positive relative change in most areas from 1901-1910 to 2007-2016 

(Figures 8c, 8f, 8i, and 8l). However, we also observed decreases in GPP, NPP, HR, and SR in the grids of South Asia. The GPP, 

NPP, HR, and SR displayed similar spatial patterns of changing rates (Figures 9). We widely observed significant and positive 555 

changing rates of GPP, NPP, HR, and SR from 1901 to 2016 (P<0.05). However, we also found significant negative changing 

rates of GPP, NPP, HR, and SR in grids of South Asia (P<0.05). 

 

3.4 Spatial pattern of vegetation, litter, microbial, and soil carbon stocks 

Similar to C fluxes, C pools in vegetation, soil, microbes, and litter increased across latitudinal gradients from 1901-1910 to 2007-560 

2016 (Figure 10). Overall, FBC and BBC in the top 30 cm, FBC, BBC, DOC, SOC, and LitC in the top 1 m, and VegC showed a 

small but to different extents of increase across latitudinal gradients. Specifically, the increases were more prominent at northern 

high latitudes and equatorial regions than at other latitudes. 

 

At the global scale, FBC and BBC in the top 30 cm and 1 m showed similar spatial patterns and widely increased from 1901-1910 565 

to 2007-2016 (Figures 11a & 11b, 11d & 11e, 11g & 11h, and 11j & 11k). Correspondingly, we observed positive relative changes 

in FBC and BBC in the top 30 cm and 1 m in those regions from 1901-1910 to 2007-2016 (Figures 11c, 11f, 11i, and 11l). Similarly, 

DOC (0-1 m) showed increases from 1901-1910 to 2007-2016 (Figures 12a & 12b), and the relative changes in DOC (0-1 m) were 

mostly positive (Figure 12c). We also widely observed increases in SOC (0-1 m) by 2007-2016 relative to 1901-1910 (Figures 12d 

& 12e), which reached the significance level of 0.05 (Figure 12f). The relative increases were widely positive, while grids of South 570 

Asia displayed decreases in SOC (0-1 m) (Figure 12f). The VegC and LitC (0-1 m) exhibited similar spatial patterns and widely 
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increased across the globe (Figures 12g-12l). The relative change in both VegC and LitC (0-1 m) were mostly positive across the 

globe, but the magnitudes were different. The relative change in VegC was to a larger extent than in LitC (0-1 m). Despite the 770 

widely increase, both VegC and LitC (0-1 m) decreased in South Asia. The FBC and BBC in the top 30 cm, DOC, SOC, and LitC 

of top1 m, and VegC showed similar spatial patterns of changing rates (Figures 13a-13h). Consistent with the spatial patterns of 

absolute and relative changes, increasing temporal trends of such variables were widely observed across the globe. However, we 

also observed decreases of those variables in South Asia (Figures 11-13). In addition, we observed decreases of FBC and BBC in 

the top 30 cm and FBC, BBC DOC, and SOC in the top 1 m in grids of central North America (Figure 11, Figures 12a-12f, and 775 

Figures 13a-13f). 

 

3.5 External environmental controls on C cycling 

The area-weighted average of GPP, NPP, and VegC were significantly correlated with those of MAT and MAP (P<0.05; Figure 

14a). However, the correlations with MAT are stronger than with MAP. At the grid level, MAP and MAT had widely significant 780 

correlations with GPP, NPP, and VegC. The spatial patterns of those correlations were similar among GPP, NPP, and VegC, but 

different between MAT and MAP (Figure 15). The MAT mostly showed significant positive correlations with GPP, NPP, and 

VegC (P<0.05; Figures 15a, 15c, and 15e). But we also found significant negative correlations of MAT with GPP, NPP, and VegC 

in southeast North America, South Asia, southern Africa, and central and northern Australia/Oceania (P<0.05). Despite the similar 

spatial patterns among GPP, NPP, and VegC in correlations with MAT and MAP, there were differences in the strengths and signs 785 

of their correlations. For example, both GPP and VegC had significant positive correlations with MAT in northeast South America 

(P<0.05), while correlations between NPP and MAT were weak negative in such regions. Both GPP and NPP showed significant 

positive correlations with MAT in central Africa (P<0.05), while the correlation between VegC and MAT was weak in that area 

(P>0.05). Significant positive correlations of GPP, NPP, and VegC with MAP were also widely found (P<0.05; Figures 15b, 15d, 

and 15f). However, we also found weak negative correlations in the northern and east edge of Asia and central Africa. In addition, 790 

although correlations of MAP with GPP, NPP, and VegC were similar in spatial patterns, correlations with GPP and NPP tended 

to be stronger than with VegC. 

  

The area-weighted average of HR, SR, and FBC, BBC, DOC, SOC, and LitC in the top 1 m were significantly correlated with that 

of ST and SM in the top 1 m (P<0.05; Figure 14b). However, the strengths of correlations depended on both environmental controls 795 

(ST and SM in the top 1 m) and variables (HR, SR, and FBC, BBC, DOC, SOC, and LitC in the top 1 m). For example, correlations 

of HR and SR with ST and SM in the top 1 m were of the same magnitude, while the FBC, BBC, DOC, SOC, and LitC were more 

strongly correlated with ST than with SM in the top 1 m. 
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In contrast, soil, litter, and microbial variables were more widely and positively correlated with ST than with SM in the top 1 m 

(Figure 16). Correlations of ST (0-1 m) with HR and SR were similar in spatial pattern. We widely observed significant positive 

correlations of HR and SR with ST (0-1 m) (P<0.05; Figures 16a & 16c). While negative correlations of HR and SR with ST (0-1 

m) were found in South Asia, southeast North America, central North America, central Africa, and central and northern 865 

Australia/Oceania. The FBC, BBC, DOC, and SOC in the top 1 m displayed similar spatial patterns (Figures 16e, 16g, 16i, and 

16k). We found significant and positive correlations of FBC, BBC, DOC, and SOC with ST in the top 1 m in most grids across the 

globe (P<0.05). However, we also found some girds with negative correlations in central North America, Europe, Asia, South 

America, Africa, and Australia/Oceania. In contrast, correlations between LitC and ST in the top 1 m were equally found to be 

positive and negative (Figure 16m). Significant positive correlations were observed in central Europe and Asia, northeast South 870 

America, central and east coast of Africa, and southern and central Australia/Oceania; while significant negative correlations were 

distributed in northeast Asia (P<0.05). 

 

Correlations of HR, SR, and FBC, BBC, DOC, and SOC with SM in the top 1 m were similar in spatial patterns, with significant 

and positive correlations widely observed (P<0.05; Figures 16b, 16d, 16f, 16h, 16j, and 16l). But we also observed negative 875 

correlations at middle and low latitudes in North America, Europe, and Asia, east coast of South America and Africa, and southern 

Australia/Oceania. In contrast, correlations between LitC and SM in the top 1 m were mostly negative and significant (P<0.05; 

Figure 16n). In addition, some grids with significant and positive correlation coefficients were scattered throughout central Africa, 

southwest Asia, and central and northern Australia/Oceania (P<0.05).  

 880 

4 Discussion 

4.1 Comparison with previous studies 

The latitudinal trends and grid-level distribution of GPP, NPP, HR, SR, FBC and BBC in the top 30 cm, and FBC, BBC, DOC, 

and SOC in the top 1 m were well-reproduced in the CLM-Microbe model (Figures 1 & 3). The CLM-Microbe model performed 

better than or comparable to the CLM4.5 in simulating the spatial distribution of vegetation, soil, and microbial variables (Figures 885 

2 & 4). In line with our results, multiple models captured the spatial variation of GPP, NPP, HR, and SR (Delire et al., 2020; Kim 

et al., 2019; Wiltshire et al., 2021; Zheng et al., 2020). Wieder et al. (2015) reported a high spatial correlation (r = 0.46) of SOC 

(0-1 m) between MIMICS outputs and HWSD. In addition, Wang et al. (2017) observed the high consistency in SOC (0-1 m) 

(R2=0.96; P<0.01) between the TRIPLEX-MICROBE model and HWSD by vegetation type. Huang et al., (2021) also found good 

performance of the ORCHIMIC v2.0 in reproducing SOC by comparing the simulated values with multiple SOC datasets. The 890 
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well-developed plant physiology and environmental controls in the model may explain their good performance in simulating 

vegetation and soil processes (Flato, 2011; Mathieu & O'Neill, 2008). However, the latitudinal trends and grid-level distribution 

of DOC, SOC, and MBC (sum of FBC and BBC) in the top 1 m were relatively worse reproduced than those in the top 30 cm 

(subfigures e-k of Figures 1 & 3, subfigures e-f of Figures 2 & 4), indicating that the vertical distribution of processes related to 915 

decomposition, microbial turnover, and plant C input needs further improvements. Although parameters classifying the active 

decomposition depth and biological function to perturbation were defined in the CLM-Microbe model, the gradual change of 

microbial turnover and activity defined along soil profile may need to be improved in future models (Preusser et al., 2019; Zhu et 

al., 2021). In addition, processes or parameters related to the active layer for decomposition and perturbation caused by biological 

(e.g., nematode) and abiotic (e.g., drying and rewetting) activities can cause uncertainties in the vertical distribution of C cycle, 920 

which needs further efforts and attention in model development (Ettema & Wardle, 2002; Gabet et al., 2003; Kuzyakov & 

Blagodatskaya, 2015; Schimel, 2018). 

 

We estimated global annual averages of 129.5, 56.5, 99.8, and 49.8 PgC yr-1 for GPP, NPP, HR, and SR, respectively (Table 1). 

Consistent with our results, previous studies reported similar values of GPP, NPP, HR, and SR (Cramer et al., 1999; Hashimoto et 925 

al., 2015; Huang et al., 2020; Lu et al., 2021; Nemani et al., 2003; Zhao et al., 2017; Zheng et al., 2020). The consistent simulations 

and reasonable estimations of GPP, NPP, HR, and SR across models may indicate the convergent plant physiology among models, 

and well-defined soil and microbial processes in the CLM-Microbe model. In addition, compared with observed data, the CLM-

Microbe model produced more consistent NPP and HR but overestimated GPP and SR (Table 1). The overestimation of GPP and 

SR may be due to the lower ecosystem-scale CUE in the CLM-Microbe model. The vegetation physiology module in the CLM-930 

Microbe model is adapted from CLM4.5. The ecosystem-scale CUEs between the CLM-Microbe model (0.44) and CLM4.5 (0.43) 

were comparable but lower than in MODIS (0.5). Correspondingly, we observed a higher contribution of roots to total SR in the 

CLM-Microbe model (0.5) and the CLM4.5 (0.48) than in the observed SRDB dataset (0.43). Therefore, the well-simulated NPP 

and HR but higher predicted GPP and SR in the CLM-Microbe model were attributed to the low ecosystem-scale CUE in the 

CLM-Microbe. Increasing ecosystem-scale CUE in the CLM-Microbe model will improve the modeling performance of GPP and 935 

SR in model development. 

 

The CLM-Microbe model can reasonably predict FBC, BBC, and DOC in the top 30 cm well at the global level, indicating the 

well-represented microbial processes in surface soils (Table 1). However, MBC and DOC in the top 1 m were vastly overestimated, 

with MBC and DOC in the top 1 m overestimated by 69.5% and 75.0%, respectively. Inconsistent with our results, previous studies 940 

suggested the underestimation of MBC (0-1 m) in their models. For example, Wang et al. (2017) estimated the global MBC as 21 
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PgC in the TRIPLEX-MICROBE model. Wieder et al. (2015) suggested the steady-state MBC (0-1 m) of 16.3 Pg in the MIMICS. 945 

The relatively poor performance of the CLM-Microbe model in simulating DOC and MBC in the top 1 m and the discrepancy in 

simulated MBC (0-1 m) among studies may result from three aspects. First, the hydrologically active layer in the CLM-Microbe 

model may not be sufficient to define soil microbial processes along soil profile. We observed better performance of the CLM-

Microbe model in simulating FBC, BBC, and DOC in the top 30 cm relative to MBC and DOC in the top 1 m, indicating that the 

representation of microbial and soil processes along soil profile may need improvements. Second, the difference in calibration for 950 

MBC may cause discrepancy between studies. The SOC in Wieder et al. (2015) was calibrated to observed data but not MBC, 

Wang et al. (2017) calibrated the MBC (0-1 m) in the TRIPLEX-MICROBE by vegetation types, while we calibrated both MBC 

and SOC in 0-30 cm and 0-1 m by grid in the CLM-Microbe model. The differences in variables and depths calibrated between 

studies can partly explain the discrepancy. Third, the difference in simulated vegetation, litter, and soil C pools among studies can 

result in the discrepancy. Vegetation C as litter and volatile organic compounds, DOC, and SOC are the C source for microbial C 955 

assimilation through decomposition (Figure S1). Consequently, the overestimation of SOC and DOC can partly explain the 

overestimation of MBC in the top 1 m (Table 1). 

 

The CLM-Microbe model indicated an underestimation of 8.5% for SOC (0-30 cm) and an overestimation of 32% for SOC (0-1 

m) when comparing with observed data (Table 1). Compared with the CLM4.5, the CLM-Microbe predicted larger stocks of SOC 960 

(0-30 cm and 0-1 m). Previous studies suggest large variations in simulated SOC (0-1 m) among models. For example, Todd-

Brown et al. (2013) reported the SOC (0-1 m) stock ranging from 510 to 3040 PgC among 11 CMIP5 ESMs. The TRIPLEX-

MICROBE modeled the global SOC (0-1 m) stock as 1195 PgC (Wang et al., 2017). Wieder et al. (2015) documented the steady-

state SOC pool in the MIMICS as 1530 PgC. Delire et al. (2020) reported the SOC (0-1 m) as 1611 PgC and 1520 PgC in the new 

(ISBA_bgc6) and old (ISBA_bgc5) versions, respectively, of ISBA‐CTRIP. Given the wide range (510 to 3040 PgC) of simulated 965 

SOC (0-1 m) in models, the CLM-Microbe model thus predicted reasonable SOC stocks. 

 

4.2 Temporal trends of carbon fluxes and stocks 

The area-weighted average of GPP, NPP, HR, and SR in the CLM-Microbe model increased by 30, 13, 12, and 25 PgC yr-1, 

respectively, from 1901 to 2016 (Figure 5). Consistent with our findings, Wiltshire et al. (2021) also observed the increasing trends 970 

of GPP and NPP in the JULES model, with GPP and NPP increased by about 12 and 25 PgC yr-1, respectively, from 1901 to 2005. 

Bonan et al. (2019) observed the increase of about 20 PgC yr-1 of GPP, 10 PgC yr-1 of NPP, and 8 PgC yr-1 of HR from 1850 to 

2014 in the CLM4.5. The global increasing rate of SR was estimated as 0.04-0.14 PgC yr-1 by Huang et al. (2020). Temperature, 

water, CO2 concentration, and N are key factors determining plant photosynthesis, the increasing N deposition and rising CO2 
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concentration and temperature may explain the enhancement of vegetation productivity under environmental change (Dusenge et 980 

al., 2019; Piñeiro et al., 2017). In this study, we observed significant and positive correlations of GPP and NPP with MAT and 

MAP (Figure. 14a). Although the compounding effects of such environmental change factors also have positive effects on 

autotrophic respiration, but to a lesser extent, leading to increasing vegetation productivity in terrestrial ecosystems (Delire et al., 

2020). In addition, the rising ST (0-1 m) may explain the observed increase in HR considering the positive relationship between 

ST (0-1 m) and HR (Figures 14 & S2b). The increase of HR can partly explain the rising SR from 1901 to 2016 given its critical 985 

contribution to SR. In addition to HR, the increase in root respiration due to increasing C availability and rising temperature 

accounted for a crucial proportion of the SR increase (Bond-Lamberty & Thomson, 2010; Hashimoto et al., 2015; Piñeiro et al., 

2017; Zhou et al., 2016). Therefore, the increase of GPP and NPP can be associated with environmental change (e.g., rising MAP 

and MAT). Increases of GPP and NPP together with rising ST and SM in top 1 m enhanced HR and SR in the last century. Similar 

with GPP and NPP, by 2007-2016, both LitC (0-1 m) (4 PgC) and VegC (37 PgC) increased (Figures. 6g & 6h), which is consistent 990 

with a previous study (Bonan et al., 2019). The VegC indicates the C stock of vegetation biomass, while LitC is the C loss of 

vegetation biomass. Increasing water availability and temperature usually have negative impacts on maintenance of vegetation 

biomass and litter in the soil (Delire et al., 2020), while we observed positive correlations of VegC with MAT and MAP and of 

LitC with SM and ST in the top 1 m (Figure. 14). Therefore, the increase of LitC (0-1 m) and VegC may attributed to increases in 

GPP and NPP in the last century. 995 

 

The area-weighted FBC and BBC in 0-30 cm increased by 1.0 and 0.4 PgC and those in 0-1 m increased by 1.2 and 0.7 PgC, 

respectively, from 1901 to 2016 in the CLM-Microbe model (Figures 6a & 6d). In addition, both DOC (2.4 PgC) and SOC (34 

PgC) in the top 1 m increased from 1901 to 2016 (Figures 6e & 6f). Similarly, Bonan et al. (2019) also observed the increase of 

SOC (0-1 m) by about 30 PgC from 1850 to 2014 in the CLM4.5. Rising temperature has negative impacts on fungal and bacterial 1000 

biomass due to its facilitating effects on microbial turnover (He & Xu, 2021). Meanwhile, the observed increase in FBC and BBC 

in the top 30 cm and 1 m in the CLM-Microbe model, indicating the higher decomposition potential of soil microbial community 

(Figure S1). In addition, rising temperature and water availability promotes microbial decomposition (Allison et al., 2010; Qiu et 

al., 2005; Wardle & Parkinson, 1990). Despite those negative impacts on microbial biomass maintenance and SOC stabilization, 

we observed increases in microbial and soil C pools from 1901 to 2016. Vegetation provides the major C source for microbial C 1005 

assimilation and soil C sequestration, increases in GPP and NPP can explain the increasing trends of soil and microbial C pools 

during 1901-2016. Litter, SOM, and DOC are three C sources for soil microbes in the CLM-Microbe model (Materials and methods; 

Figure S1). The positive temporal trends of DOC, LitC, and SOC can explain the increase in FBC and BBC in the CLM-Microbe 

model (Figure 6). 
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The annual averages of fluxes (GPP, NPP, HR, and SR) and pools (FBC, BBC, DOC, LitC, and SOC in the top 1 m and VegC) 

exhibited more rapid increases since 1980 (Figures 5 & 6). Concurrently, we observed a more rapid increase in MAT, MAP, and 

ST and SM in the top 1 m since 1980 (Figure S2). In line with this study, Cheng et al. (2017) analyzed SM simulations during 1015 

historical (1920–2005) and future (2006–2080) periods in the CESM from CIMP5; they also found 1980 as a transition for a 

subsequent increase of variation during 1920-2005, indicating more rapid changes in SM after 1980. We observed significant 

correlations of GPP, NPP, and VegC with MAT and MAP (Figure 14a) and of HR, SR, and FBC, BBC, DOC, LitC, and SOC with 

ST and SM in the top 1 m (Figure 14b). Therefore, more rapid increases in MAT, MAP, and ST and SM in the top 1 m after 1980 

may explain the more rapid increases of such variables since 1980. 1020 

 

4.3 Changes in carbon fluxes and stocks over the space and their controls 

The GPP and NPP widely increased from 1901-1910 to 2007-2016 (Figures 7a & 7b, 8a-8f, and 9a & 9b). In line with this study, 

Zheng et al. (2020) reported that GPP in vegetated areas, particularly temperate and humid regions (e.g., most of Asia and central 

and southern Africa), increased from 1982 to 2017 in the revised EC-LUE model. Yue et al. (2015) observed noticeable increases 1025 

in GPP and NPP in the YIBs model. The broad increase in vegetation productivity may be due to the positive effects of elevated 

CO2 and N deposition (Zheng et al., 2020). In addition, temperature and water availability have a profound influence on plant 

growth and land C fluxes (Yue et al., 2015; Zheng et al., 2020). Our results showed significant correlations of GPP and NPP with 

MAT and MAP (Figures 15a-15d). The wide increase in MAP and MAT can partly explain the overall increase in GPP and NPP 

(Figure S3). In particular, we observed larger increases at northern high latitudes and in equatorial regions (Figures 7a & 7b, 8a-1030 

8f, 9a & 9b), resulting from large increases of GPP and NPP in eastern Asia, central and northern South America, and southern 

Europe. This may be related to changes in MAT and MAP, considering their significant correlations from 1901-1910 to 2007-2016 

(Figures S3a & S3b). Given the significant positive correlations of GPP and NPP with MAT and MAP in southern Europe, the 

large relative increase of GPP and NPP may be associated with the increasing MAT and MAP in that area. However, correlations 

of GPP and NPP with MAT and MAP varied with latitude in Asia, correlations of GPP and NPP with MAT and MAP were 1035 

significant and positive at middle and high latitudes, but negative at low latitudes. Therefore, increases in GPP and NPP at middle 

and high latitudes may be related to rising MAT and those at low latitudes were associated with decreasing MAP. In central and 

northern South America, correlations between GPP and NPP and MAT and MAP were complex. Correlations of GPP and NPP 

with MAT were not consistent in such areas, while GPP and NPP were consistently and positively correlated with MAP in central 

and northern South America. As a result, the increase of GPP and NPP in central and northern South America may be related to 1040 

the increasing MAP. However, we also observed decreases in GPP and NPP in South Asia (Figures 8a-8f). The decreases in GPP 
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and NPP can be explained by the increases in MAT given that GPP and NPP were negatively correlated with MAT in such region 

(Figures S5, 15a-15d). In contrast to the increasing trend of GPP in Amazon region during 1982-2016 in this study (~+5 gC m-2 

yr-2 for most grids; P<0.05), Zheng et al. (2020) observed decreased GPP in tropical regions such as the Amazon Forest from 1982 1095 

to 2017 using the revised EC-LUE model. In addition to CO2, N deposition, and meteorology, vegetation cover and type play an 

important role on GPP (Zheng et al., 2020). Land use and land cover change due to management practices have substantial effects 

on plant growth; such effects on leaf area index were considered in the revised EC-LUE model but not in our simulation. Therefore, 

the discrepancy between studies may be caused by land-use effects. 

 1100 

The HR and SR showed a wide increase from 1901-1910 to 2007-2016 across latitudinal gradients and the globe (Figures 7c & 

7d, 8k & 8l, 9c & 9d). Consistent with our findings, Huang et al. (2020) observed a globally significant increase in SR, 

particularly in boreal and tropical regions (e.g., northern Asia, central South America, and central and southern Africa), from 

2000 to 2014. Bond-Lamberty et al. (2018) also observed an increase of HR in multiple biomes during 2000-2015. In addition, 

we observed similar spatial patterns of increases (e.g., higher increases at northern high latitudes and in equatorial regions) in HR 1105 

and SR with those of GPP and NPP (Figures 8k & 8l, 9c & 9d). These results indicated that soil C fluxes were largely dependent 

on vegetation productivity which can enhance soil C fluxes due to high C allocation to belowground (Pendall et al., 2004; 

Prescott et al., 2020). In addition, soil C fluxes can be further increased due to facilitated decomposition in a warming world 

(Noh et al., 2017; Zhou et al., 2007). Temperature and water availability have a profound influence on root respiration and HR 

(Bond-Lamberty & Thomson, 2010; Hashimoto et al., 2015; Sinsabaugh et al., 2016). We also found significant correlations of 1110 

HR and SR with ST and SM in the top 1 m (Figures 16a-16d). The increases of HR and SR can be explained by the increases in 

SM and ST in the top 1 m considering their significant correlations (Figures S4c & S4d). But we also observed decreases of HR 

and SR in the South Asia (Figures 8c & 8d). Vegetation C fixation is the major C source for ecosystems, the decreases of GPP 

and NPP in such regions can largely explain the decrease in HR and SR (Figures 8a-8f). 

 1115 

The VegC and LitC (0-1 m) also increased across latitudinal gradients, with higher increases at northern high latitudes and in 

equatorial regions, and the globe by 2007-2016 relative to 1901-1910 (Figures 10g & 10h, 12g-12l, and 13g-13l). The VegC and 

LitC are closely related to vegetation biomass production, which partly explains the similar spatial patterns of VegC and LitC (top 

1 m) with those of GPP and NPP. In addition, VegC and LitC (0-1 m) are affected by environmental factors such as temperature 

and water availability. We found significant correlations of VegC with MAT and MAP (Figures 15e & 15f) and LitC with ST and 1120 

SM in the top 1 m (Figures 16m & 16n). Similar with GPP and NPP, the increase of VegC may be associated with the increasing 

MAT and MAP (Figures S4a & S4b).  
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The DOC and SOC in the top 1 m also increased across latitude by 2007-2016 relative to 1901-1910 (Figures 10e & 10f). In 

addition, DOC and SOC in the top 1 m widely increased across the globe (Figures 12a-12c, 13e-13f). In line with our results, Eglin 1205 

et al. (2010) also recorded increasing soil C stock in Asia and South America in response to the combined effects of atmospheric 

CO2 concentration and climate simulated by ORCHIDEE–LUC from 1901 to 2002. As vegetation C input provides the major C 

source for SOC stabilization, the increases in GPP, NPP, VegC, and LitC (0-1 m) may partly explain the overall increase of SOC 

and larger increases at northern high latitudes and in equatorial regions (Figures 8a -f 8, 12g-12l, 9a & 9b, 13g & 13h). The changes 

in environmental conditions can also affect SOC stock. Significant correlations of SOC with ST and SM in the top 1 m were 1210 

observed (Figures 16k & 16l). However, contrary to our result, Eglin et al. (2010) found a slight decrease in soil C stock in Africa 

from 1901 to 2002. The SOC decline in Africa may be due to the missing temporal dynamics of N deposition in the ORCHIDEE–

LUC. N has important impacts on plant growth and vegetation productivity and SOC formation, especially in N-limited areas such 

as arid and semiarid area in most African regions (Piñeiro et al., 2017). The DOC is the balance among SOC and litter 

decomposition, microbial lysis, and DOC degradation (Figure S1). In addition, we observed larger increases of DOC (0-1 m) at 1215 

northern high latitudes and in equatorial regions (Figures 10e). The large increase of GPP, NPP, VegC, and LitC and SOC in the 

top 1 m at northern high latitudes and in equatorial regions  can explain the larger increase of DOC (0-1 m) in those regions (Table 

1; Figures 7a & 7b, 10f-10h, 8a-8f, 12d-12l, 9a & 9b, and 13f-13h). However, we also observed decreases of DOC and SOC in the 

top 1 m in South Asia and central North America (Figures 12a-12f, 13e & 13f). As the primary C source is terrestrial ecosystems, 

decreases in vegetation C input as GPP and NPP explain their decreases in South Asia (Figures 8a-8f, 9a & 9b). Soil C is affected 1220 

by environmental factors such as soil temperature and water availability. We observed negative correlations of DOC and SOC in 

the top 1 m with SM (0-1 m) in South Asia and with ST (0-1 m) in central North America, increases of SM (0-1 m) and ST (0-1 

m) in corresponding regions by 2007-2016 relative to 1901-1910 may contribute to decreases in DOC and SOC in the top 1 m in 

such areas (Figures 16i-16l, S5c & S5d). 

 1225 

The FBC and BBC in the top 30 cm and 1 m increased across latitudes during 2007-2016 compared with 1901-1910 (Figures 10a-

10d). In addition, the FBC and BBC in the top 30 cm and 1 m widely increased across the globe (Figures 11, 13a-13d). Vegetation 

is the major C source for soil microbes in terrestrial ecosystems, determining the total amount of C available for microbes by 

regulating microbial C assimilation through SOC, DOC, and litter (Schimel, 1995; Vance & Chapin, 2001; Xu et al., 2014). This 

spatial patterns of GPP and NPP change could explain the wide increases of FBC and BBC in the top 30 cm and 1 m in such areas, 1230 

also their larger increases at high latitudes and in equatorial regions (Figure 10a -10d, 11). However, we also found slight decreases 

of FBC and BBC in the top 1 m in regions such as southern Australia/Oceania (Figures 11, 13a-13d). The decrease of DOC (0-1 
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m) may explain the widespread decrease of FBC and BBC of 30 cm and 1 m in southern Australia/Oceania (Figures 11, 13a-13d). 

Meanwhile, in the top 1 m, FBC and BBC were negatively correlated with ST and positively correlated to SM in southern 

Australia/Oceania (Figures 16e-16h). The increase of ST and SM in the top 1 m can explain the decrease of FBC and BBC in 0-

30 cm and 0-1 m in southern Australia/Oceania (Figures S3c & S3d). In addition, we found decreases of FBC and BBC in the top 1330 

30 cm and 1 m in South Asia and central North America (Figures 11, 13a-13d). Since vegetation productivity is the primary C 

source for terrestrial ecosystems, decreases in vegetation C input as GPP and NPP explain their decreases in South Asia (Figures 

8a-8f, 9a & 9b). In addition, microbial activities are affected by soil temperature and water availability. We observed negative 

correlations of FBC and BBC in the top 1 m with SM (0-1 m) in South Asia and with ST (0-1 m) in central North America, 

increases of SM (0-1 m) and ST (0-1 m) in corresponding regions from 1901-1910 to 2007-2016 may contribute to decreases in 1335 

FBC and BBC in the top 30 cm and 1 m in such areas (Figures 16e-16h, S5c & S5d). 

 

4.4 Future improvements 

Although the CLM-Microbe model can well reproduce the global distribution of C in vegetation, soil, and microbes, four key 

improvements are identified for future work. First, soil and microbial processes along soil profiles need to be better defined. Soil 1340 

and microbial variables such as DOC, SOC, FBC, and BBC in 0-30 cm were better simulated than those in 0-1 m (Table 1; Figures 

1 & 3), indicating that soil and microbial processes in the deeper soil profile are not adequately modeled. Therefore, better defining 

soil and microbial processes with depth can help improve the model efficacy in capturing soil and microbial processes, and further 

reduce uncertainties in future projections of the C cycle. Second, land-use change needs to be considered in future work. In addition 

to changes in environmental factors, land-use change also has profound influences on the plant, soil, and microbial processes. 1345 

Drastic changes in vegetation, soil, and microbial processes due to land-use change can occur at small scales, and the spatial pattern 

of those processes can also be changed (Pascual et al., 1997; Sampaio et al., 2007; Stevenson et al., 2016). Therefore, considering 

the impacts of land-use change in the CLM-Microbe model can help improve the model efficiency in capturing spatial patterns of 

C density and stocks in terrestrial ecosystems. The global biogeographic patterns of soil microbes and their functions have been 

recognized (Xu et al., 2020), this modeling study has made progress toward a full investigation of microbial patterns and 1350 

mechanisms, and a community-wide microbial data system is needed to facilitate more data-model integration to improve microbial 

models. Lastly, factorial analysis to attribute the variations in terrestrial C fluxes will be addressed in our future work. Variations 

in terrestrial C fluxes and pools are driven by multiple environmental change factors that contribute individually or in combination, 

attributing the variations in terrestrial C fluxes and pools to environmental change factors is important for the understanding of 

terrestrial C fluxes and pools dynamics (Xu et al., 2010). 1355 
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5 Conclusion 

The ESMs incorporating microbial processes are expected to represent uncertainties in the terrestrial C cycle more 

comprehensively. The CLM-Microbe model can well reproduce the distribution of vegetation (GPP, NPP, LitC, and VegC), soil 

(HR, SR, DOC, and SOC), and microbial (FBC, BBC, and MBC) variables. In addition, fluxes (GPP and NPP) and pools (HR, 

SR, FBC and BBC in top 30 cm, FBC, BBC, DOC, SOC, and LitC in the top 1 m, and VegC) increased from 1901 to 2016. We 1370 

widely observed increases of such variables across the globe. Slight decreases of FBC, BBC, and DOC in the top 1 m in 

Australia/Oceania were also observed. The increase in GPP, NPP, and VegC were significantly related to rising MAT and MAP, 

while increases in FBC and BBC in top 30 cm and FBC, BBC, DOC, SOC, and LitC in the top 1 m were closely associated with 

increasing C input from vegetation and SM and ST in the top 1 m.  

 1375 

This study represents one of the first attempts to simulate the spatial and temporal variations C fluxes and pool sizes of soil, 

vegetation, litter, and soil microbes during the last century using a microbial-explicit model – the CLM-Microbe model. As the 

community is moving towards a microbial-explicit Earth system model, this study provides a robust support for microbial model 

development and application for predicting microbial roles in the C-climate feedback. The variations in soil microbial community 

over historical periods and across space simulated by the CLM-Microbe model provide a crucial foundation to study the impacts 1380 

of soil microbes on terrestrial biogeochemical processes.  
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Table 1. Annual flux of GPP, NPP, HR, and SR and carbon stocks of FBC in the top 30 cm, BBC in the top 30 cm, MBC (0-1 

m), DOC in the top 30 cm, SOC in the top 30 cm, and SOC in the top 1 m by observed datasets and by simulations of the CLM-

Microbe model and CLM4.5 at the global scale 1695 

Variables Unit 
Global estimation 

Observed CLM-Microbe CLM4.5 
GPP PgC yr-1 111.94 129.53 120.13 
NPP 55.76 56.49 51.26 
SR 86.34 99.80 89.79 
HR 49.01 49.84 46.87 
FBC (0-30 cm) PgC 13.57 13.12 -- 
BBC (0-30 cm) 3.29 4.17 -- 
MBC (0-1 m) 23.70 40.18 -- 
DOC (0-30 cm) 7.16 8.94 -- 
DOC (0-1 m) 12.90 22.57 -- 
SOC (0-30 cm) 661.71 605.27 513.40 
SOC (0-1 m) 1231.99 1630.90 967.87 

GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic respiration; SR: soil respiration; DOC: 

dissolved organic carbon; SOC: soil organic carbon; FBC: fungal biomass carbon; BBC: bacterial biomass carbon; MBC: 

microbial biomass carbon. -- denoted not available. The SOC (0-1 m) data were from the Harmonized World Soil Database 

(HWSD, https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247); the SOC (0-30 cm) data were from the Global Soil Organic 

Carbon Map (GSOCmap) version 1.5; GPP and NPP data were from MODIS gridded datasets 1700 
(http://files.ntsg.umt.edu/data/NTSG_Products/); the SR and HR data were from Global Gridded 1-km Annual Soil Respiration 

Database (SRDB) version 3 (https://daac.ornl.gov/CMS/guides/CMS_Global_Soil_Respiration.html); the FBC and BBC in the 

top 30 cm were from He et al. (2020); MBC (0-1 m) was compared with Xiaofeng Xu et al. (2013); the DOC (0-30 cm and 0-1 

m) was derived from Guo et al. (2020). Output of the CLM-Microbe model during 2000-2009 (decadal average) were used to 

compare with observational data. 1705 

https://daac.ornl.gov/cgi-bin/dsviewer.pl?ds_id=1247
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Table 2. Carbon stock of vegetation, litter, and soil pools and absolute and relative changes from 1901-1910 to 2007-2016 

Pool 
Total Carbon stock (PgC)   Change from 1901-1910 to 2007-2016 

1901-1910 2007-2016  Absolute change (PgC) Relative change (%) 
SOC 4527 (0.4) 4564 (1.8)  37.0* 0.8 
Litter 63 (0.2) 68 (0.4)  5.1* 8.0 
Vegetation 193 (1.1) 230 (2.9)   37.1* 19.2 

Numbers in parentheses represent standard deviation. * indicates significant absolute change from 1901-1910 to 2007-

2016 at α = 0.05. 
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Fig. 1. Latitudinal comparison between observed (black line) and the CLM-Microbe-simulated (red line) (a) GPP, (b) NPP, (c) 

HR, (d) SR, (e) DOC in the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the 1720 
top 30 cm, (j) BBC in the top 30 cm, and (k) MBC (0-1 m). GPP: gross primary productivity; NPP: net primary productivity; 

HR: heterotrophic respiration; SR: soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal 

biomass carbon; BBC: bacterial biomass carbon; MBC: microbial biomass carbon. 
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 1725 
Fig. 2. Latitudinal comparison between observed (black line) and the CLM4.5-simulated (red line) latitudinal gradients of (a) 

GPP, (b) NPP, (c) HR, (d) SR, (e) SOC in the top 30 cm, and (f) SOC in the top 1 m. GPP: gross primary productivity; NPP: net 

primary productivity; HR: heterotrophic respiration; SR: soil respiration; SOC: soil organic carbon. 
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 1730 
Fig. 3. Grid-by-grid comparison between observed and the CLM-Microbe-simulated (a) GPP, (b) NPP, (c) HR, (d) SR, (e) DOC 

in the top 30 cm, (f) DOC in the top 1 m, (g) SOC in the top 30 cm, (h) SOC in the top 1 m, (i) FBC in the top 30 cm, (j) BBC in 

the top 30 cm, and (k) MBC (0-1 m). Red lines are 1:1 line. GPP: gross primary productivity; NPP: net primary productivity; 

HR: heterotrophic respiration; SR: soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal 

biomass carbon; BBC: bacterial biomass carbon; MBC: microbial biomass carbon. 1735 
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Fig. 4. Grid-by-grid comparison between observed and the CLM4.5-simulated grid cells of (a) GPP, (b) NPP, (c) HR, (d) SR, € 

SOC in the top 30 cm, and (f) SOC in the top 1 m. Red lines are 1:1 line. GPP: gross primary productivity; NPP: net primary 1740 
productivity; HR: heterotrophic respiration; SR: soil respiration; SOC: soil organic carbon. 
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Fig. 5. Evolution of annual carbon flux of area-weighted (a) GPP, (b) NPP, (c) HR, and (d) SR simulated by the CLM-Microbe 1745 
model since 1901. The baseline was the ten-year average of corresponding variables during 1901-1910. GPP: gross primary 

productivity; NPP: net primary productivity; HR: heterotrophic respiration; SR: soil respiration. 
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Fig. 6. Evolution of global carbon stocks of area-weighted (a) FBC in the top 30 cm, (b) FBC in the top 1 m, (c) BBC in the top 1750 
30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 m, and (g) VegC, and (h) LitC in the top 1 m 

simulated by the CLM-Microbe model since 1901. The baseline was the ten-year average of corresponding variables during 

1901-1910. DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal biomass carbon; BBC: bacterial biomass 

carbon; MBC: microbial biomass carbon; VegC: vegetation carbon; LitC: litter carbon. 

 1755 
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Fig. 7. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages of (a) GPP, (b) NPP, (c) HR, and (d) SR 

during 1901-1910 and 2007-2016. GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic 

respiration; SR: soil respiration. 
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 1760 
Fig. 8. Spatial distributions of decadal averages of (a-b) GPP, (d-e) NPP, (g-h) HR, and (j-k) SR during (a, d, g, and j) 1901-1910 

and (b, e, h, and k) 2007-2016 and relative changes in (c) GPP, (f) NPP, (i) HR, and (l) SR by 2007-2016 relative to 1901-1910. 

GPP: gross primary productivity; NPP: net primary productivity; HR: heterotrophic respiration; SR: soil respiration. 
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Fig. 9. Changing rates of the CLM-Microbe model simulated (a) GPP, (b) NPP, (c) HR, and (d) SR from 1901 to 2016. GPP: 

gross primary productivity; NPP: net primary productivity; HR: heterotrophic respiration; SR: soil respiration. Black dot in each 

grid indicates significant regression (P<0.05). 
 1770 
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Fig. 10. Latitudinal gradients of the CLM-Microbe model simulated ten-year averages (a) FBC in the top 30 cm, (b) FBC in the 

top 1 m, (c) BBC in the top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 m, and (g) VegC, and 

(h) LitC in the top 1 m during 1901-1910 and 2007-2016. FBC: fungal biomass carbon; BBC: bacterial biomass carbon; DOC: 1775 
dissolved organic carbon; SOC: soil organic carbon; VegC: vegetation carbon; LitC: litter carbon. 
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Fig. 11. Spatial distributions of decadal averages of (a-b) FBC in the top 30 cm, (d-e) FBC in the top 1 m, (g-h) BBC in the top 1780 
30 cm, and (j-k) BBC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 and relative changes in (c) 

GPP, (f) NPP, (i) HR, and (l) SR by 2007-2016 relative to 1901-1910. FBC: fungal biomass carbon; BBC: bacterial biomass 

carbon. 
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Fig. 12. Spatial distributions of decadal averages of (a-b) DOC in the top 1 m, (d-e) SOC in the top 1 m, (g-h) VegC, and (j-k) 

LitC in the top 1 m during (a, d, g, and j) 1901-1910 and (b, e, h, and k) 2007-2016 and relative changes in (c) DOC in the top 1 

m, (f) SOC in the top 1 m, (i) VegC, and (l) LitC in the top 1 m by 2007-2016 relative to 1901-1910. DOC: dissolved organic 

carbon; SOC: soil organic carbon; VegC: vegetation carbon; LitC: litter carbon. 1790 
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Fig. 13. Changing rates of the CLM-Microbe model simulated (a) FBC in the top 30 cm, (b) FBC in the top 1 m, (c) BBC in the 

top 30 cm, (d) BBC in the top 1 m, (e) DOC in the top 1 m, (f) SOC in the top 1 m, and (g) VegC, and (h) LitC in the top 1 m 

from 1901 to 2016. FBC: fungal biomass carbon; BBC: bacterial biomass carbon; DOC: dissolved organic carbon; SOC: soil 1795 
organic carbon; VegC: vegetation carbon; LitC: litter carbon. Black dot in each grid indicates significant regression (P<0.05). 
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Fig. 14. Heatmap showing Pearson’s correlation between the CLM-Microbe model simulated (a) GPP, NPP, and VegC and 1800 
MAT and MAP and (b) HR, SR, FBC in the top 1 m, BBC in the top 1 1 m, DOC in the top 1 m, SOC in the top 1 m, and LitC in 

the top 1 m and SM and ST in the top 1 m from 1901 to 2016. GPP: gross primary productivity; NPP: net primary productivity; 

HR: heterotrophic respiration; SR: soil respiration; DOC: dissolved organic carbon; SOC: soil organic carbon; FBC: fungal 

biomass carbon; BBC: bacterial biomass carbon; VegC: vegetation carbon; LitC: litter carbon; MAT: mean annual temperature; 

MAP: mean annual precipitation; ST: soil temperature; SM: soil moisture. Black asterisks indicate significant correlations 1805 
(P<0.05). 
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Fig. 15. Pearson’s correlation between the CLM-Microbe model simulated (a-b) GPP, (c-d) NPP, and (e-f) VegC and (a, c, and 1810 
e) MAT and (b, d, and f) MAP from 1901 to 2016. GPP: gross primary productivity; NPP: net primary productivity; VegC: 

vegetation carbon; MAT: mean annual temperature; MAP: mean annual precipitation. Black dot in each grid indicates significant 

correlation (P<0.05). 
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  1815 
Fig. 16. Pearson’s correlation between the CLM-Microbe model simulated (a-b) HR, (c-d) SR, (e-f) FBC in the top 1 m, (g-h) 

BBC in the top 1 m,  (i-j) DOC in the top 1 m, (k-l) SOC in the top 1 m, and (m-n) LitC and (a, c, e, g, i, k, and m) ST and (b, d, 

f, h, j, l, and n) SM in the top 1 m from 1901 to 2016. HR: heterotrophic respiration; SR: soil respiration; FBC: fungal biomass 

carbon; BBC: bacterial biomass carbon; DOC: dissolved organic carbon; SOC: soil organic carbon; LitC: litter carbon; ST: soil 

temperature; SM: soil moisture. Black dot in each grid indicates significant correlation (P<0.05) 1820 
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