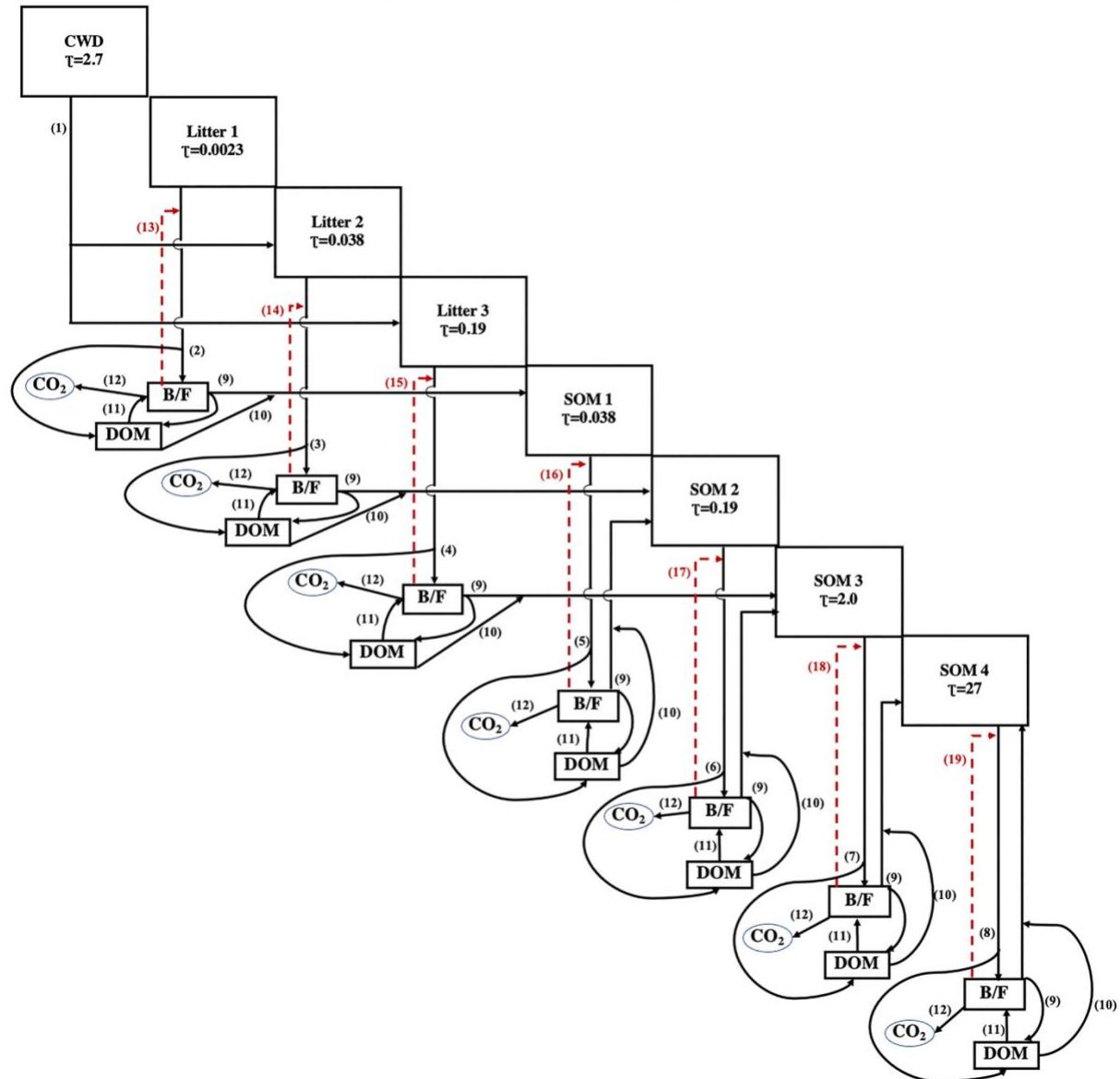


Supplementary Online Materials

for

**Historical dynamics of terrestrial carbon during 1901-2016 as simulated
by the CLM-Microbe model**


Liyuan He¹, Jorge L. Mazza Rodrigues², Melanie A. Mayes³, Chun-Ta Lai¹, David A. Lipson¹,
Xiaofeng Xu*¹

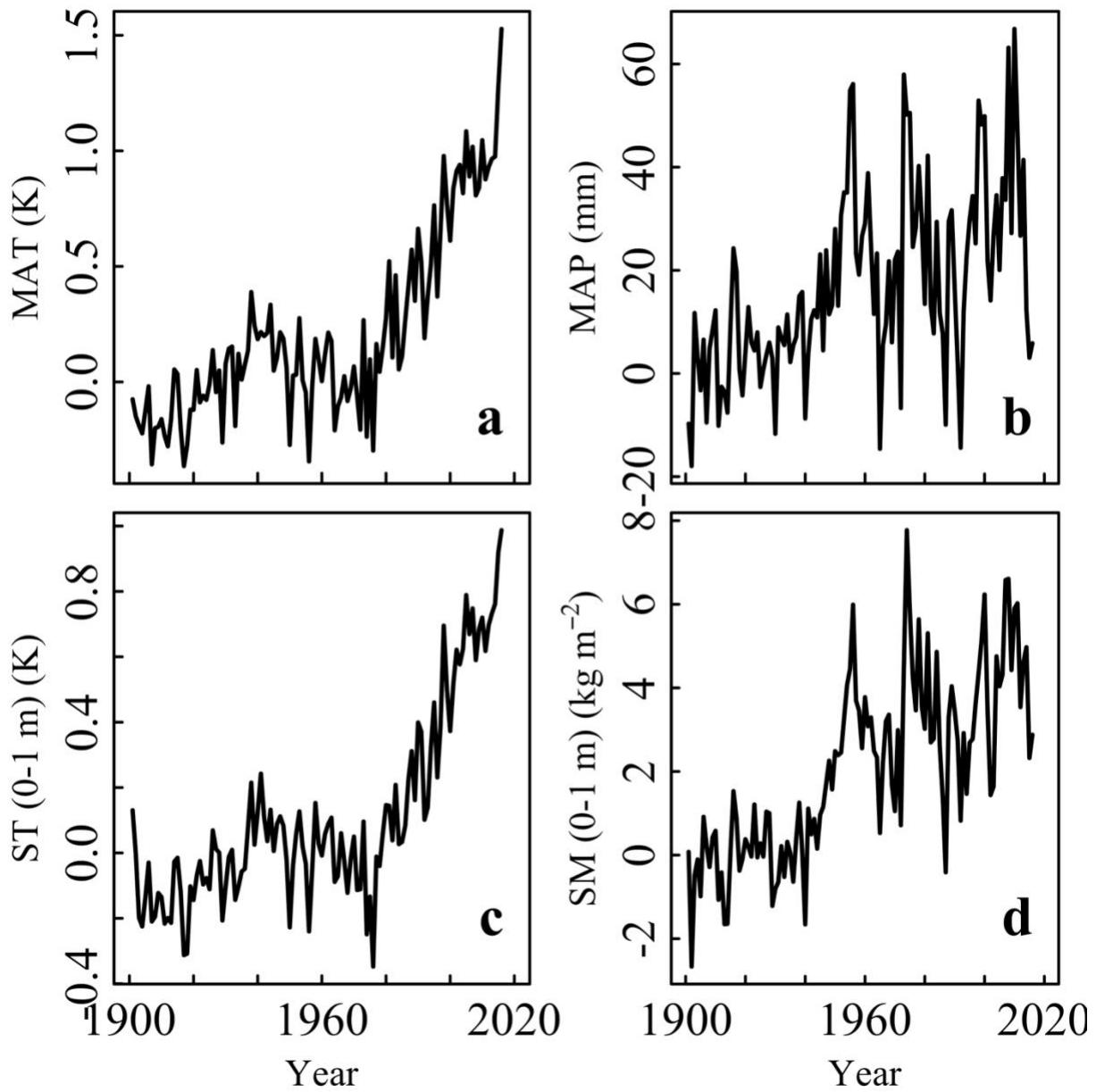
1. Biology Department, San Diego State University, San Diego, CA, 92182, USA

2. Department of Land, Air and Water Resources, University of California - Davis, Davis, CA
95616, USA

3. Environmental Sciences Division and Climate Change Science Institute, Oak Ridge National
Laboratory, Oak Ridge, Tennessee, 37831, USA

Correspondence: xxu@sdsu.edu

Fig. S1. Conceptual diagram showing the key processes and the roles of fungi and bacteria in the CLM-Microbe model. CWD, coarse woody debris; SOM, soil organic matter; B, bacteria; F, fungi; DOM, dissolved organic matter. In the CLM-Microbe model, number in the box means turnover time of each pool. Black solid lines indicate transitions in the CLM-Microbe model, which generally represents processes such as 1) decomposition of coarse woody debris, 2) litter 1 decomposition, 3) litter 2 decomposition, 4) litter 3 decomposition, 5) soil organic matter 1 decomposition, 6) soil organic matter 2 decomposition, 7) soil organic matter 3 decomposition, 8) soil organic matter 4 decomposition, 9) fungal and bacterial lysis, 10) dissolved organic matter adsorption, 11) dissolved organic matter uptake by fungal and bacterial, and 12) fungal and bacterial respiration. Red dash lines represent regulatory role of fungi and bacteria on the process, including fungi and bacteria regulation on 13) litter 1, 14) litter 2, 15) litter 3, 16) soil organic matter 1, 17) soil organic matter 2, 18) soil organic matter 3, and 19) soil organic matter 4 decomposition (He et al., 2021).


Table S1. Key model parameters in processes involving fungal and bacterial biomass

Symbol	Range ^a	Unit	Description	Reference
k_dom	0.0025-0.5	d ⁻¹	decomposition rate constant of DOM	(Wheeler et al., 1996; Kirchman et al., 1991; Cherrier et al., 1996)
k_bacteria	0.00143-2	d ⁻¹	lysis rate constant of bacteria	(Rousk and Bååth, 2007, 2011; Moore et al., 2005; Schippers et al., 2005)
k_fungi	0.00027-0.05	d ⁻¹	lysis rate constant of fungi	(Thornton and Rosenbloom, 2005; Rousk and Bååth, 2011; Moore et al., 2005; Wallander et al., 2004)
m_rf_s1m	0-1		fraction factor quantifying carbon from SOM1 to microbes	Calibrated
m_rf_s2m	0-1		fraction factor quantifying carbon from SOM2 to microbes	Calibrated
m_rf_s3m	0-1		fraction factor quantifying carbon from SOM3 to microbes	Calibrated
m_rf_s4m	0-1		fraction factor quantifying carbon from SOM4 to microbes	Calibrated
m_batm_f	0-1		fraction factor quantifying carbon respired by bacteria	Calibrated
m_bdom_f	0-1		fraction factor quantifying carbon from DOM to bacteria	Calibrated
m_bs1_f	0-1		fraction factor quantifying carbon from bacteria to SOM1	Calibrated
m_bs2_f	0-1		fraction factor quantifying carbon from bacteria to SOM2	Calibrated
m_bs3_f	0-1		fraction factor quantifying carbon from bacteria to SOM3	Calibrated
m_fatm_f	0-1		fraction factor quantifying carbon respired by fungi	Calibrated
m_fdom_f	0-1		fraction factor quantifying carbon from DOM to fungi	Calibrated
m_fs1_f	0-1		fraction factor quantifying carbon from fungi to SOM1	Calibrated
m_fs2_f	0-1		fraction factor quantifying carbon from fungi to SOM2	Calibrated
m_fs3_f	0-1		fraction factor quantifying carbon from fungi to SOM3	Calibrated
m_domb_f	0-1		fraction factor quantifying carbon from DOM to bacteria	Calibrated
m_domf_f	0-1		fraction factor quantifying carbon from DOM to fungi	Calibrated
m_doms1_f	0-1		fraction factor quantifying carbon from DOM to SOM1	Calibrated
m_doms2_f	0-1		fraction factor quantifying carbon from DOM to SOM2	Calibrated
m_doms3_f	0-1		fraction factor quantifying carbon from DOM to SOM3	Calibrated
cn_bacteria	3-12		C:N ratio of bacteria	(Strickland and Rousk, 2010)
cn_fungi	3-60		C:N ratio of fungi	(Strickland and Rousk, 2010)
cn_dom	4.2-185		C:N ratio of DOM	(Sinsabaugh et al., 2016)
CUEmax	0.46-0.9		maximum carbon use efficiency of microbes	(Gommers et al., 1988; Sinsabaugh et al., 2013; Sinsabaugh et al., 2016)

^aThe values may not be the same as those from literature sources due to unit conversion.

Table S2. Validation and atmospheric forcing datasets used in this study

Variables	Dataset	Source
Gross and net primary productivity	MODIS gridded datasets	Zhao et al. (2005)
Heterotrophic and soil respiration	Global Gridded 1-km Annual Soil Respiration Database	Warner et al. (2019)
Soil organic carbon (0-1 m)	Harmonized World Soil Database	Wieder (2014)
Soil organic carbon (0-30 cm)	Global Soil Organic Carbon Map	Fao (2018)
Fungal and bacterial biomass carbon (0-30 cm)	Global Topsoil Fungal and Bacterial Biomass Carbon Dataset	He et al. (2020)
Microbial biomass carbon (0-1 m)	Global Soil Microbial Biomass Carbon, Nitrogen, and Phosphorus Dataset	Xu et al. (2013)
Dissolved organic carbon (0-30 cm & 0-1 m)	Global Dissolved Organic Carbon Dataset	Guo et al. (2020)
Meteorological Forcing	CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model	Viovy (2018)

Fig. S2 Temporal variations of annual deviations in (a) MAT, (b) MAP, (c) ST of top 1m, and (d) SM of top 1m weighted by area in the CLM-Microbe model from 1901-1910. The baseline was the ten-year average of corresponding variables during 1901-1910. MAT, mean annual temperature; MAP, mean annual precipitation; ST, soil temperature; SM, soil moisture.

Fig. S3 Changes of (a) MAT, (b) MAP, (c) ST (0-1 m), and (d) SM (0-1 m) in 2007-2016 vs. 1901-1910. MAT, mean annual temperature; MAP, mean annual precipitation; ST, soil temperature; SM, soil moisture.

References

Cherrier, J., Bauer, J., and Druffel, E.: Utilization and turnover of labile dissolved organic matter by bacterial heterotrophs in eastern North Pacific surface waters, *Marine Ecology Progress Series*, 139, 267-279, 10.3354/meps139267, 1996.

Fao: Global Soil Organic Carbon Map (GSOCmap) : Technical Report, FAO, Rome, Italy, 167 pp.2018.

Gommers, P. J. F., Schie, B. J. v., Dijken, J. P. v., and Kuenen, J. G.: Biochemical limits to microbial growth yields: An analysis of mixed substrate utilization, *Biotechnology and Bioengineering*, 32, 86-94, 10.1002/bit.260320112, 1988.

Guo, Z., Wang, Y., Wan, Z., Zuo, Y., He, L., Li, D., Yuan, F., Wang, N., Liu, J., and Song, Y.: Soil dissolved organic carbon in terrestrial ecosystems: Global budget, spatial distribution and controls, *Global Ecology and Biogeography*, 2020.

He, L., Lipson, D. A., Rodrigues, J. L. M., Mayes, M., Björk, R. G., Glaser, B., Thornton, P., and Xu, X.: Dynamics of Fungal and Bacterial Biomass Carbon in Natural Ecosystems: Site-level Applications of the CLM-Microbe Model, *Journal of Advances in Modeling Earth Systems*, 13, e2020MS002283, <https://doi.org/10.1029/2020MS002283>, 2021.

He, L., Rodrigues, J. L. M., Soudzilovskaia, N. A., Barceló, M., Olsson, P. a. A., Song, C., Tedersoo, L., Yuan, F., Yuan, F., and Lipson, D. A.: Global biogeography of fungal and bacterial biomass carbon in topsoil, *Soil Biology and Biochemistry*, 108024, 2020.

Kirchman, D. L., Suzuki, Y., Garside, C., and Ducklow, H. W.: High turnover rates of dissolved organic carbon during a spring phytoplankton bloom, *Nature*, 352, 612-614, 10.1038/352612a0, 1991.

Moore, J. C., McCann, K., and de Ruiter, P. C.: Modeling trophic pathways, nutrient cycling, and dynamic stability in soils, *Pedobiologia*, 49, 499-510, 2005.

Rousk, J. and Bååth, E.: Fungal biomass production and turnover in soil estimated using the acetate-in-ergosterol technique, *Soil Biology and Biochemistry*, 39, 2173-2177, 10.1016/j.soilbio.2007.03.023, 2007.

Rousk, J. and Bååth, E.: Growth of saprotrophic fungi and bacteria in soil, *FEMS Microbiology Ecology*, 78, 17-30, 2011.

Schippers, A., Neretin, L. N., Kallmeyer, J., Ferdelman, T. G., Cragg, B. A., John Parkes, R., and Jørgensen, B. B.: Prokaryotic cells of the deep sub-seafloor biosphere identified as living bacteria, *Nature*, 433, 861-864, 10.1038/nature03302, 2005.

Sinsabaugh, R. L., Manzoni, S., Moorhead, D. L., and Richter, A.: Carbon use efficiency of microbial communities: stoichiometry, methodology and modelling, *Ecology Letters*, 16, 930-939, 2013.

Sinsabaugh, R. L., Turner, B. L., Talbot, J. M., Waring, B. G., Powers, J. S., Kuske, C. R., Moorhead, D. L., and Shah, J. J. F.: Stoichiometry of microbial carbon use efficiency in soils, *Ecological Monographs*, 86, 172-189, 10.1890/15-2110.1, 2016.

Strickland, M. S. and Rousk, J.: Considering fungal: bacterial dominance in soils—methods, controls, and ecosystem implications, *Soil Biology and Biochemistry*, 42, 1385-1395, 2010.

Thornton, P. E. and Rosenbloom, N. A.: Ecosystem model spin-up: Estimating steady state conditions in a coupled terrestrial carbon and nitrogen cycle model, *Ecological Modelling*, 189, 25-48, 2005.

Viovy, N.: CRUNCEP Version 7 - Atmospheric Forcing Data for the Community Land Model, Research Data Archive at the National Center for Atmospheric Research, Computational and Information Systems Laboratory [dataset], 10.5065/PZ8F-F017, 2018.

Wallander, H. a., Göransson, H., and Rosengren, U.: Production, standing biomass and natural abundance of 15 N and 13 C in ectomycorrhizal mycelia collected at different soil depths in two forest types, *Oecologia*, 139, 89-97, 2004.

Warner, D. L., Bond-Lamberty, B. P., Jian, J., Stell, E., and Vargas, R.: Global Gridded 1-km Annual Soil Respiration and Uncertainty Derived from SRDB V3, 10.3334/ORNLDAAC/1736, 2019.

Wheeler, P. A., Gosselin, M., Sherr, E., Thibault, D., Kirchman, D. L., Benner, R., and Whitledge, T. E.: Active cycling of organic carbon in the central Arctic Ocean, *Nature*, 380, 697-699, 10.1038/380697a0, 1996.

Wieder, W.: Regridded Harmonized World Soil Database v1.2, 10.3334/ORNLDAAC/1247, 2014.

Xu, X., Thornton, P. E., and Post, W. M.: A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems, *Global Ecology and Biogeography*, 22, 737-749, 2013.

Zhao, M., Heinsch, F. A., Nemani, R. R., and Running, S. W.: Improvements of the MODIS terrestrial gross and net primary production global data set, *Remote Sensing of Environment*, 95, 164-176, 10.1016/j.rse.2004.12.011, 2005.