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Abstract. The 2015/16 Amazon drought was characterized by below-average regional precipitation for an entire year, which 

distinguishes it from the dry-season only droughts in 2005 and 2010. Studies of vegetation indices (VI) derived from optical 

remote sensing over the Amazonian forests indicated three stages in canopy response during the 2015/16 drought, with 

below-average greenness during the onset and end of the drought, and above-average greenness during the intervening 15 

months. To date, a satisfactory explanation for this broad temporal pattern has not been found. A better understanding of 

rainforest behaviors during this unusually long drought should help predict their response to future droughts. We 

hypothesized that negative VI anomalies could be caused by water and heat stress exceeding the tolerance ranges of the 

rainforest. To test our hypothesis, based on monthly observations of terrestrial water storage (TWS), land surface 

temperature (LST) and vapor pressure deficit (VPD) for January 2003–December 2016, we proposed an approach to 20 

categorize regions into two groups: (1) those exceeding normal hydrological and thermal ranges; and (2) those within normal 

ranges. Accordingly, regions exceeding normal ranges during different stages of the 2015/16 event were delineated. The 

results showed a gradual southward shift of these regions: from the north-eastern Amazon in August–October 2015, to the 

north-central part in November 2015–February 2016 and finally to the southern Amazon in July 2016. Over these regions 

exceeding normal ranges during droughts, negative VI anomalies were expected, irrespective of radiation anomalies. Over 25 

the regions within normal ranges, VI anomalies were assumed to respond positively to radiation anomalies, as is expected 

under normal conditions. We found that our proposed approach can explain more than 70% of the observed spatiotemporal 

patterns in VI anomalies during the 2015-16 drought. These results suggest that our ‘exceeding normal ranges’-based 

approach combining (i) water storage, (ii) temperature, and (iii) atmospheric moisture demand drivers can reasonably 
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identify the most likely drought-affected regions at monthly to seasonal time scales. Using observation-based hydrological 30 

and thermal condition thresholds can help with interpreting the response of the Amazon rainforest to future drought events. 

1 Introduction 

The Amazon rainforest is the largest contiguous area of tropical rainforest in the world and plays a crucial role in the water 

cycle and carbon budget, both regionally and globally (Tian et al., 1998; Pan et al., 2011; Ahlström et al., 2015). In little 

more than one decade, three record-breaking droughts have hit the region in 2005, 2010 (Marengo and Espinoza, 2016) and 35 

2015/16 (Jiménez-Muñoz et al., 2016). Hydro-meteorological signals observed in the 2005 and 2010 droughts include a 

strong precipitation deficit during the extended dry season (Liu et al., 2018), low river discharge and total water storage (Xu 

et al., 2011), high canopy temperatures (Toomey et al., 2011) and enhanced atmospheric moisture demand (Lee et al., 2013). 

These resulted in widespread reductions in canopy photosynthesis and canopy water content (Xu et al., 2011; Saatchi et al., 

2012; Lee et al., 2013; Liu et al., 2018), a slowdown of forest growth, and increased tree mortality (Phillips et al., 2009; 40 

Lewis et al., 2011; Gatti et al., 2014; Feldpausch et al., 2016; Hubau et al., 2020).  

 

The 2005 and 2010 droughts occurred primarily during the extended dry season, from May through October (Liu et al., 

2018). In contrast, during the 2015/16 drought below-average regional precipitation and above-average radiation occurred 

for a full year, from August 2015 through July 2016, i.e. from the dry season of 2015 to the dry season of 2016 (Yang et al., 45 

2018). The 2015/16 drought was also characterized by high temperatures (Yue et al., 2017) and low water storage (Erfanian 

et al., 2017). Long- and short-term responses to drought by tropical forests may differ in key respects (Meir et al., 2018). An 

analysis of the Amazon forest response during the unusually prolonged drought of 2015/16, in comparison to previous, 

shorter droughts, may provide new insights into the underlying mechanisms and help predict forest response in a changing 

climate at monthly to inter-annual timescales.  50 

 

Two vegetation indices, the Normalized Difference Vegetation Index (NDVI) and Enhanced Vegetation Index (EVI), have 

been derived from the optical Moderate Resolution Imaging Spectroradiometer (MODIS) instruments on NASA’s Terra and 

Aqua satellites and are the most commonly used data to characterize Amazon rainforest canopy dynamics (Xiao et al., 2006; 

Anderson et al., 2010; Atkinson et al., 2011; Galvao et al., 2011; Samanta et al., 2012; Hilker et al., 2015; Maeda et al., 55 

2016). Both vegetation indices (VI) provide measures of canopy ‘greenness’ that have been shown to correlate well to 

canopy photosynthetic capacity, which itself is the combined result of leaf chlorophyll, leaf age, canopy cover and structure 

(Ramachandran et al., 2011). While the NDVI is sensitive to chlorophyll abundance, the EVI is more responsive to canopy 

structural variations, and the two indices are to some degree complementary in detecting vegetation change (Huete et al., 

2002). An important feature of MODIS VI is that they capture widespread canopy greening in response to increased solar 60 
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radiation during the dry season of non-drought years (Huete et al., 2006). This phenological response has been confirmed by 

field measurements (Restrepo-Coupe et al., 2013; Saleska et al., 2016; Wu et al., 2018, Gonçalves et al., 2023).    

 

Previous studies used MODIS VI to examine the dynamics of Amazon rainforest greenness during the 2015/16 drought 

(Yang et al., 2018; Yan et al., 2019). Over the 12-month period August 2015–July 2016, the spatial patterns of greenness and 65 

radiation anomalies were positively correlated (Yang et al., 2018) (Fig. 1a and b). The NDVI may exhibit the signal 

saturation issue over high biomass regions (Huete et al. 2002). We examined the anomaly in NDVI and EVI separately and 

found their spatial distributions are similar (Fig. D1). Therefore, we combined NDVI and EVI to quantify the greenness 

anomalies in this study. However, at shorter time scales, the agreement breaks down (Fig. 1c-l). Regional greenness 

appeared below average at the start (August–October 2015) and end (July 2016) of the 12-month drought, but above or close 70 

to average during the intervening eight months (Fig. 1c). This temporal pattern was also found by Yang et al. (2018) and Yan 

et al. (2019), despite slight differences in the VIs products used and study periods. The 12 months (i.e. August 2015–July 

2016) can be divided into four stages according to greenness anomaly: (Stage I) below average during August–October 

2015, (Stage II) close to average during November 2015–February 2016, (Stage III) above average during March–June 2016 

and (Stage IV) below average in July 2016. Meanwhile, radiation remained above average for most of the 2015/16 event, 75 

though it was close to average during Stage III (Fig. 1d). Spatially, the discrepancy between the anomalies in greenness and 

radiation was the most striking in Stages I and IV, i.e. below-average greenness but above-average radiation over the 

northeast during August–October 2015 (Fig. 1e and f) and south in July 2016 (Fig. 1k and l). This discrepancy suggests that 

other factors, in addition to radiation, played a role in controlling greenness in the first and last months of the 2015/16 

drought event. Several potential driving factors could be expected to be correlated, including radiation, moisture availability 80 

and temperature. This makes it challenging to identify their individual contributions. Better understanding of their 

interactions during the 2015/16 drought should help improve our capacity to predict canopy responses to future droughts, 

which may become more frequent, severe and/or longer (Malhi et al., 2008; Meir and Woodware, 2010). 
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Figure 1. Standardized anomalies (Std. Ano.) in vegetation indices (VI) and photosynthetically active radiation (PAR) during the 2015/16 85 
Amazon drought over the 1° grid cells with more than 80% covered by ‘evergreen broadleaf forests’. Panels (a) and (b) are the spatial 

distribution of standardized anomalies in VI and PAR for the 12 months between August 2015 and July 2016, respectively. Units measure 

how many standard deviations from the non-drought years’ average (i.e. 2003–2016, excluding four drought years 2005, 2010, 2015 and 

2016). Standardized anomaly in EVI was calculated for each grid cell first; the same for NDVI. We took the mean value of these two 

standardized anomalies and considered it as the standardized anomaly in VI, as EVI and NDVI provide complementary information to 90 
each other (Huete et al. 2002). Panels (c) and (d) show the regional average standardized anomaly in VI and PAR for each month from 

August 2015 through July 2016. These 12 months can be divided into four stages based on the anomaly directions of VI. Panels (e) to (l) 

are the spatial distribution of standardized anomalies in VI and PAR, for each of the four stages defined in panel (c). More details about 

data sources and pre-processing of VI and PAR can be found Table 1 and the Methods section, respectively.   

Interpretation of EVI and NDVI over the Amazon rainforest has been challenging as their temporal variation is small and 95 

influenced by sun-target-sensor geometry changes as well as clouds and aerosols (Samanta et al., 2010; Morton et al., 2014; 

Saleska et al., 2016). Based on EVI and NDVI derived from the MODIS, widespread below-average greenness was observed 

in the dry season (July–September) during the 2010 Amazon drought (Atkinson et al., 2011; Xu et al., 2011). However, 

using the same data, there has been debate around greenness anomalies in the dry season of the 2005 drought (Saleska et al., 

2007; Samanta et al., 2010). Considerable efforts have been made to apply more accurate atmospheric correction, cloud 100 

detection, improved sensor calibration and sun-target-sensor geometry correction (Lyapustin et al., 2011a; Lyapustin et al., 

2011b; Lyapustin et al., 2012), but some noise may still persist (Bi et al., 2016; Maeda et al., 2016). In addition to vegetation 
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observations, independent satellite observations of, among others, precipitation, temperature and terrestrial water storage are 

also available since around 2000. This provides an opportunity to draw on multiple lines of evidence and characterize the 

hydro-meteorological drivers of rainforest response. Spatiotemporal consistency among these independent observations may 105 

increase the certainty of interpretation thus indicating the most likely eco-hydrological mechanisms involved. 

 

Field experiments suggest that the Amazon rainforest has water and heat threshold limits beyond which normal physiological 

behavior is adversely affected (Meir et al., 2015). In the dry season of non-drought years, soil water is found sufficient for 

both sap flow and transpiration to occur even when soil water content reaches its annual minimum value (Fisher et al., 2006; 110 

Fisher et al., 2007; Nepstad et al., 2007; Meir et al., 2009; Wu et al., 2016; da Costa et al., 2018; Meir et al., 2018; Meng et 

al., 2022). This indicates that the soil profile can supply enough water during a normal dry season, probably assisted by 

deeper root systems (Nepstad et al., 1994; Yang et al., 2016). However, when the dry season coincides with a drought, there 

can be a limit to this capacity. For example, in an experiment preventing 50% of precipitation falling through the canopy 

from infiltrating into the soil, soil water availability was apparently below the minimum for non-drought years (Meir et al., 115 

2015). As a result, sap flow was reduced considerably (Fisher et al., 2007; da Costa et al., 2018). In addition, there appear to 

be similar thresholds in canopy temperature and vapor pressure deficit (VPD, a measure of atmospheric moisture demand) 

(Tan et al., 2017; Pau et al., 2018; Grossiord et al., 2019). Photosynthesis and sap flow rate thus tend to increase with 

temperature and VPD while these remain below the threshold, but decrease beyond it. In non-drought years, Amazon 

rainforests experience maximum temperature and VPD during the dry season (Hutyra et al., 2007). At the same time, new 120 

leaf flush occurs and ecosystem photosynthesis can be maintained or increased if dry-season radiation is high and soil 

moisture supply is sufficient (Carswell et al., 2002).  

 

Accordingly, we hypothesized that the below-average greenness during the 2015/16 drought year was most likely caused by 

an exceedance of moisture deficit and/or heat tolerance limits, particularly in Stages I and IV. To test our hypothesis, we 125 

used data on terrestrial water storage (TWS), land surface temperature (LST) and vapor pressure deficit (VPD) for 2003–

2016, which includes both drought and non-drought years. We identified the range of TWS, LST and VPD averaged during 

non-drought years (i.e. defined as 2003-2016 excluding four drought years 2005, 2010, 2015 and 2016) for each grid cell, 

and used these as an estimate of the normal hydrological and thermal range. Subsequently, we mapped when and where this 

‘normal’ range was exceeded during the 2015/16 drought. By comparing their spatiotemporal patterns with those in radiation 130 

and greenness anomalies, we sought to explain observed differences in greenness response during the event.  
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2 Data 

2.1 Data sources 

Several eco-hydrological variables were used to characterize the spatiotemporal patterns of greenness and drought during the 

2015/16 event (Table 1). They include: (i) greenness represented by Enhanced Vegetation Index (EVI) (Huete et al., 1994; 135 

Huete et al., 1997) and Normalized Difference Vegetation Index (NDVI) (Tucker, 1979) from the MODIS instrument 

onboard Aqua (Didan 2015); (ii) photosynthetically active radiation (PAR, W m-2) from the Clouds and Earth’s Radiant 

Energy System (CERES, SYN1deg_Ed4.1) onboard Aqua and Terra (Wielicki et al., 1996); (iii) precipitation (P, mm month-

1) derived from the Tropical Rainfall Measuring Mission (TRMM 3B43 v7) (Huffman et al., 2007); (iv) terrestrial water 

storage (TWS, mm) from the Gravity Recovery and Climate Experiment (GRACE Mascons) (Watkins et al., 2015; Wiese et 140 

al., 2016; Save et al., 2016; Loomis et al., 2019); (v) volumetric soil water (SW, m3 m-3) obtained from the ERA5-Land 

reanalysis (Copernicus Climate Change Service, 2019), (vi) land surface temperature (LST, K) from the daytime overpasses 

(1:30 PM) of the Atmospheric Infrared Sounder (AIRS) onboard Aqua (version 7) (Kahn et al., 2014; Susskind et al., 2014; 

Ding et al., 2020); and (vii) 2 m dewpoint temperature (Tdew, K) and 2 m temperature (Tair, K) obtained from the ERA5-Land 

reanalysis (Copernicus Climate Change Service, 2019) which were used to calculate the atmospheric vapor pressure deficit 145 

(VPD, kPa).  
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Table 1. Major characteristics of the datasets used herein for January 2003–December 2016. 

Variable Sources 

Original 

spatial & 

temporal 

resolution 

Download links (last accessed: 22 February 2024) 

Vegetation Indices 

(VI) 

MODIS/ 

Aqua 

0.05°/ 

monthly 
https://e4ftl01.cr.usgs.gov/MOLA/MYD13C2.061 

Photosynthetically 

Active Radiation 

(PAR) 

CERES/ 

Terra and 

Aqua 

1°/ 

monthly 

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp 

 ('PAR Surface Flux Direct' and 'PAR Surface Flux Diffuse') 

Precipitation (P) 

TRMM and  

other 

satellites 

0.25°/ 

monthly 

https://disc2.gesdisc.eosdis.nasa.gov/data/TRMM_L3/TRMM_3B43.7 

(TRMM 3B43 v7) 

Terrestrial Water 

Storage (TWS) 
GRACE 

0.25° to 1°/ 

monthly 

http://grace.jpl.nasa.gov  

http://www2.csr.utexas.edu/grace 

https://earth.gsfc.nasa.gov/geo/data/grace-mascons 

(Simple arithmetic mean of JPL, CSR and GSFC fields used) 

 

Volumetric  

Soil Water  

(SW) 

ERA5-Land 
0.1°/ 

monthly 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-

monthly-means?tab=form 

(Product type: Monthly averaged reanalysis;  

Variables: 'Volumetric soil water layer 1, 2, 3 and 4') 

Land Surface 

Temperature 

(LST) 

AIRS/ 

Aqua 

1°/ 

monthly 

https://acdisc.gesdisc.eosdis.nasa.gov/data/Aqua_AIRS_Level3 

('SurfSkinTemp_A') 

Surface Dewpoint 

Temperature (Tdew) 

and Surface Air 

Temperature (Tair) 

ERA5-Land 
0.1°/ 

monthly 

https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-

monthly-means?tab=form 

(Product type: Monthly averaged reanalysis;  

Variables: '2m dewpoint temperature' and '2m temperature') 

 165 

2.2 Data pre-processing 

All data were available at monthly temporal resolution for January 2003–December 2016. All datasets have full 168-month 

coverage except TWS. Occasional months (21 out of 168 months during 2003–2016, the longest gap being three consecutive 

months) were missing in the original TWS dataset. Missing TWS data are commonly filled using linear interpolation (Chen 

et al., 2013; Solander et al., 2017), on the assumption that missing data were not local maxima or minima. To avoid this 170 

assumption, instead, we gap-filled the missing values by considering their correlation to precipitation and radiation (see 

Appendix A for details). 

 

Vapor pressure deficit (VPD, kPa) is the difference between the vapor pressure when the air is saturated (es) and actual vapor 

pressure (ea). Here, VPD was calculated as es–ea with the availability of surface dewpoint temperature (Tdew, °C) and surface 175 

air temperature (Tair, °C) from ERA5-Land reanalysis.  

https://ceres-tool.larc.nasa.gov/ord-tool/jsp/SYN1degEd41Selection.jsp
http://grace.jpl.nasa.gov/
https://www2.csr.utexas.edu/grace/
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-land-monthly-means?tab=form
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es = 0.6108 × exp((17.27 × Tair)/(Tair+237.3))  (1) 

ea = 0.6108 × exp((17.27 × Tdew)/(Tdew+237.3))  (2) 

 

To allow direct comparison, all datasets were resampled to 1° resolution by aggregation. The spatial extent of Amazon 180 

rainforest was delineated based on the 0.05° MODIS land cover type product (MCD12C1.006) for 2015. To minimize the 

influence of non-forest vegetation signals, our analysis was limited to 1° grid cells with more than 80% of 0.05° grid cells 

classified as ‘evergreen broadleaf forests’ following the International Geosphere-Biosphere Programme (IGBP) 

classification (Friedl et al., 2010).   

3 Methods 185 

3.1 Overview of the experimental design 

Herein, we conducted a comparative analysis between the outcomes derived from two distinct approaches (see Fig. 2); they 

are outlined below. 

 

Approach #1: It is assumed that VI anomalies are exclusively driven by PAR anomalies (Nemani et al., 2003; Huete et al., 190 

2006; Saleska et al., 2016), leading to changes in the same direction. Accordingly, we created a map depicting the predicted 

direction of VI anomalies (either positive or negative) for each grid cell across the Amazonian forests. 

 

Approach #2: We first utilized the non-drought years’ extreme values of TWS, LST and VPD to categorize regions into two 

groups: (a) those within historical observed normal ranges and (b) those exceeding those normal ranges. For regions within 195 

normal ranges, we hypothesized that VI anomalies would align with PAR anomalies, exhibiting changes in the same 

direction. In regions exceeding the normal ranges during droughts, negative VI anomalies are expected, irrespective of the 

direction of PAR anomalies. Accordingly, we generated another map illustrating the predicted direction of VI anomalies 

(either positive or negative) for each grid cell. 

 200 

By comparing the predicted VI anomalies from both approaches independently with MODIS-observed VI anomalies for all 

grid cells we calculated the percentage of observed VI anomalies aligning with the predicted direction in both approaches. 

This comparative analysis allows us to determine whether the incorporation of the ‘exceeding normal ranges’-based method 

better explained the MODIS-observed VI anomalies. 

 205 
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Figure 2. Overview of the experimental design implemented herein. Examples with 9 grid cells are used here to illustrate how the 

directions of VI anomalies were predicted for each grid cell in these two approaches. Developing the terrestrial water storage (TWS), land 

surface temperature (LST) and vapor pressure deficit (VPD)-based method to categorize grid cells into two groups in Approach #2 is the 

focus of the Methods section. The impact of precipitation variability (e.g. total annual precipitation, length of dry season) is accounted for 210 
by these three variables, and therefore, precipitation is not included in the method in Approach #2. 

3.2 Development of TWS, LST and VPD-based method 

This section focuses on how we developed the TWS, LST and VPD-based methods to categorize grid cells into two groups: 

(1) within and (2) exceeding normal ranges. 

3.2.1 How to calculate non-drought years’ average and extreme values 215 

Here we calculated the non-drought years’ average and extreme values of the three variables (TWS, LST and VPD) for every 

grid cell. A detailed example is shown in Fig. 3. For example, we took the average of TWS values in August of all non-

drought years and derived the non-drought years’ average TWS in August (i.e. TWSND-Ave in August). We performed the 

same calculation for the other 11 months and obtained TWSND-Ave in September, October, November, December, January, 

February, March, April, May, June, and July, respectively. In total, there are 12 TWSND-Ave values, and the lowest one of 220 

these 12 values was taken as the extreme TWS value (i.e. TWSMin). Following the same process, we obtained 12 LSTND-Ave 
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and 12 VPDND-Ave values, and the highest one of them was taken as the extreme LST and VPD values (i.e. LSTMax, and 

VPDMax, respectively). Applying this procedure to all grid cells over the Amazon rainforest, we derived twelve maps each of 

TWSND-Ave, LSTND-Ave and VPDND-Ave and one map of each TWSMin, LSTMax, and VPDMax. 

 225 

Figure 3. Example illustrating how to derive (1) non-drought years’ average and (2) non-drought years’ extreme values of TWS, LST and 

VPD using the 1° grid cell centered at 9.5°S, 69.5°W. Panel (a) shows how we derived the non-drought years’ average and extreme TWS 

values. Taking August for example, each grey dot represents August TWS value from one non-drought year, and there are ten non-drought 

years (i.e. 2003 to 2016, but excluding 2005, 2010, 2015 and 2016). The average of these ten TWS values is considered as the non-drought 

years’ average in August (i.e. TWSND-Ave in August). Following the same process, we derived TWSND-Ave for the other 11 months. The 230 
minimum value of 12 TWSND-Ave was taken as the extreme TWS (TWSMin); for this example grid cell, October’s TWSND-Ave was chosen as 

TWSMin. Panels (b) and (c) show the same as (a), but for LST and VPD. The extreme values of LST and VPD are LSTMax and VPDMax, 

respectively, which were reached in September and August during non-drought years for this example grid cell. 
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3.2.2 How to determine a grid cell ‘exceeding normal ranges’   235 

Based on the findings from previous field experiments over the Amazon rainforest (Fisher et al., 2006; Fisher et al., 2007; 

Nepstad et al., 2007; Meir et al., 2009; Meir et al., 2015; Wu et al., 2016; Tan et al., 2017; da Costa et al., 2018; Meir et al., 

2018; Pau et al., 2018; Grossiord et al., 2019; Meng et al., 2022), we considered that at least one variable from TWS, LST 

and VPD was ‘beyond the non-drought years’ extreme values’ (i.e. TWSMin, LSTMax, and VPDMax) when the hydrological 

and thermal conditions exceeded normal ranges. Here we tested three ways to determine a grid cell ’exceeding normal 240 

ranges’.  

 

(#2A) Two or three variables of TWS, LST and VPD are ‘beyond the non-drought years’ extreme values’. In the example 

shown in Fig. 4, August, September, and October were considered ‘exceeding normal ranges’ accordingly.   

 245 

(#2B) One variable of TWS, LST and VPD is ‘beyond the non-drought years’ extreme value’, while the other two variables 

are ‘significantly (p<0.05) different from the same months of the non-drought years’. The non-parametric Wilcoxon signed 

rank test was used to determine the significance level (Gibbons and Chakraborti, 2011). As many hydrologic variables are 

not normally distributed, using the non-parametric Wilcoxon rank test offers the advantage of not assuming that data are 

normally distributed. Accordingly, September, October, and November were considered ‘exceeding normal ranges’ (Fig. 4). 250 

September and October meet the selection criteria of both #2A and #2B.  

 

 (#2C) The combination of #2A and #2B. In the example of Fig. 4, all four months from August to November were 

considered ‘exceeding normal ranges’ here. 
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 255 

Figure 4. Example illustrating (1) the difference between ‘significantly (p<0.05) different from the same months of non-drought years’ 

and ‘beyond non-drought years’ extreme values’, and (2) how to determine the hydrological and thermal conditions ‘exceeding normal 

ranges’ in Approach #2A, #2B and #2C, respectively. In panel (a), terrestrial water storage (TWS) values in the drought year are 

‘significantly (p<0.05) different from the same months of non-drought years’ for six months (i.e. September, October, November, May, 

June and July), but ‘beyond non-drought years’ extreme values’ (i.e. TWS<TWSMin) for only three months (September, October and 260 
November). In panels (b) and (c) the same is shown for land surface temperature (LST) and vapor pressure deficit (VPD), respectively. 

The months marked as #2A in panel (c) are considered ‘exceeding normal ranges’ according to #2A. Same for #2B and #2C marks in 

panel (c). 

4 Results 

We found strong spatial and seasonal variations in the TWS, LST and VPD for non-drought years (Fig. 5). The minimum 265 

TWSND-Ave (i.e. TWSMin) was observed around September in the south of the Amazon, and between December-March in the 

north (Fig. 5m-o). The maximum LSTND-Ave (LSTMax) was observed around September for nearly all grid cells. Maximum 

VPD values (VPDMax) occurred around September in the southeast of the Amazon and between December and March for 

part of the northwest.   
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 270 

Figure 5. Spatial distribution of monthly average of non-drought years (ND) and extreme value of non-drought years’ average over the 1° 

grid cells with more than 80% covered by ‘evergreen broadleaf forests’. Panels (a) to (l) provide the spatial distribution of the average 

values of non-drought years, i.e. TWSND-Ave, LSTND-Ave and VPDND-Ave, for September, December, March and June, respectively. Panels 

(m), (n) and (o) show the spatial distribution of TWSMin, LSTMax, and VPDMax, respectively. 

 275 

The greatest departures of monthly TWS, LST and VPD during the 2015/16 drought occurred in different months (Fig. 6). 

TWS declined throughout the first half of the drought (Fig. 6a). Regional mean TWS was slightly above non-drought years’ 

average during the first two months due to the carryover of stored water from the wet preceding months (Fig. B1). TWS 

reached its lowest value in December 2015 and started to increase afterwards. Regional mean LST and VPD showed similar 
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temporal dynamics (Fig. 6b-c). Both were higher than the non-drought years’ average values throughout the full 12 months. 280 

The greatest LST and VPD anomaly departures occurred during Stage I (August–October 2015) and exceeded the ‘normal’ 

range. They subsequently declined to within ‘normal’ range during Stage II (November 2015–February 2016) and moved 

closer to average values during Stage III (March–June 2016), before increasing again during Stage IV (July 2016).  

 

Figure 6. Temporal patterns of terrestrial water storage (TWS), land surface temperature (LST) and vapor pressure deficit (VPD) 285 
anomalies during the 2015/16 drought event. Panel (a) shows the regional average (i.e. average over all grid cells) TWS for each month 

from August 2015 to July 2016 as well as for the non-drought years’ average (± standard deviation) (plot on left y-axis) and differences 

between TWS values in 2015/16 and non-drought years’ average (bar on right y-axis). It is noted that we first calculated the regional 

average TWS for each month from January 2003 through December 2016, and then derived non-drought years’ average and standard 

deviation. Panels (b) and (c) are the same as (a), but for LST and VPD, respectively. 290 
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Grid cells and drought stages were identified where TWS, LST and VPD (1) ‘significantly (p<0.05) different from the same 

months of non-drought years’, or (2) ‘beyond non-drought years’ extreme values’ of TWS, LST and VPD (Fig. 7). During 

Stage I, LST exceeded LSTMax across the region while VPD exceeded VPDMax over the central and north-east of the Amazon. 

Stage II showed strong anomalies in TWS, LST and VPD and all three were ‘beyond non-drought years’ extreme values’ in 295 

the north-central region. During Stage III, only a small area with TWS<TWSMin occurred in the north-east. During Stage IV, 

LST and VPD were ‘beyond non-drought years’ extreme values’ in the south of the Amazon. Thus, there was a gradual 

southwards movement of the regions ‘exceeding normal ranges’, from the northeast during August–October 2015, to the 

central-north during November 2015–February 2016, and finally the south by July 2016. 

 300 

Figure 7. Spatial distribution of terrestrial water storage (TWS), land surface temperature (LST) and vapor pressure deficit (VPD) 

anomalies for four stages over the 1° grid cells with more than 80% covered by ‘evergreen broadleaf forests’. Coloured grid cells denote 

TWS, LST and VPD values are ‘beyond non-drought years’ extreme values’ (i.e. TWS < TWSMin or LST > LSTMax or VPD > VPDMax). 

Hatched grid cells mean they are statistically significant (p < 0.05) different from the same months of non-drought years.   

 305 
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Spatial distributions of predicted VI anomaly direction (derived from Approaches #1, #2A, #2B and #2C) and MODIS-

observed VI anomaly direction for the four stages from August 2015 through July 2016 are shown in Fig. 8. Their spatial 

agreements (%) are shown in Table 2. When compared with approach #1, all three #2 approaches have a better spatial 

agreement with MODIS observations, with the best performance derived from #2C. When we replaced TWS with soil water 

product from ERA5-Land and performed the same analysis, similar results were obtained (Table 2 and Table 3). This 310 

suggests that the choice of ‘wetness’ product does not essentially change the results of this study, which further demonstrates 

the robustness of the ‘exceeding normal ranges’-based method developed in this study. 

 

 

Figure 8. Spatial distributions of (1st-4th columns) predicted VI anomaly direction from approaches #1, #2A, #2B and #2C, respectively, 315 
and (5th column) MODIS-observed VI anomaly direction for the four stages from August 2015 through July 2016. 
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Table 2. Spatial agreement (%) between predicted VI anomaly direction derived from different approaches and MODIS-observed VI 320 
anomaly direction. There are 390 one-degree grid cells over the Amazon with more than 80% covered by ‘evergreen broadleaf forests’ 

considered in these statistics. 

Period 

Approach  

#1  

Approach  

#2A 

Approach  

#2B 

Approach  

#2C 

(Using PAR)        (Using TWS, LST and VPD first, then PAR) 

Stage I 

(August–October 2015) 

 

39% 67% 54% 72% 

Stage II 

(November 2015–February 2016) 

 

66% 68% 68% 68% 

Stage III 

(March–June 2016) 

 

72% 72% 72% 72% 

Stage IV 

(July 2016) 
44% 59% 69% 71% 

 

Table 3. Spatial agreement (%) between predicted VI anomaly direction derived from different approaches and MODIS-observed VI 

anomaly direction. Same as Table 2, but TWS was replaced by soil water. 325 

Period 

Approach  

#1 

 

Approach  

#2A 

Approach  

#2B 

Approach  

#2C 

(Using PAR)    (Using Soil Water, LST, VPD first, then PAR) 

Stage I 

(August–October 2015) 

 

39% 69% 67% 71% 

Stage II 

(November 2015–February 2016) 

 

66% 68% 68% 68% 

Stage III 

(March–June 2016) 

 

72% 72% 72% 72% 

Stage IV 

(July 2016) 
44% 58% 60% 64% 

5 Discussion 

The spatiotemporal patterns of canopy greenness anomaly during the 2015/2016 drought found herein agree well with other 

independent satellite- and field-based vegetation observations. From the perspective of satellite observations, Koren et al. 

(2018) used the newly developed satellite-based sun-induced fluorescence (SIF) product (2007–2016) to examine the impact 

of the 2015/2016 Amazon drought. Temporally, it was found that the regional mean SIF was below its climatological 330 

average at the beginning and end of the drought, but above the average in the first half of 2016. Spatially, the eastern part of 

Amazon experienced much larger reductions in SIF than the western part. Petchiappan et al. (2022) used the Advanced 

Scatterometer (ASCAT) backscatter (2007–2016) and found large-scale negative anomalies in backscatter over the Amazon 

rainforest and savannah in late 2015, with a stronger magnitude over the eastern part of the region. From the perspective of 
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field measurements, Santos et al. (2018) measured leaf gas exchange, chlorophyll and nutrient content in canopy leaves in 335 

the central Amazon throughout 2015 and during the dry season of 2016. They found that, during the extremely dry season of 

2015 under conditions of extremely high LST and VPD, the light-saturated photosynthetic rate decreased 28%, relative to 

other 2015 seasons and the dry season of 2016. However, with precipitation returning after the dry season of 2015, the 

photosynthetic rate increased to ‘normal’ conditions again. Meanwhile, massively new leaf flushing occurred, leading to 

above-average canopy greenness in the first half of 2016 (Goncalves et al., 2020). As for the possible causes for the quick 340 

recovery of photosynthetic rate, Santos et al. (2018) found that the photosynthesis reduction under extreme drought and high 

temperature in the 2015 dry season was primarily due to stomatal closure, which can reverse when water becomes available. 

 

Findings from field measurements also support our TWS, LST and VPD-based threshold approach developed herein during 

the 2015/16 Amazon drought. Fontes et al. (2018) found that leaf and xylem safety margins (LXSMs) of central Amazonian 345 

trees showed a sharp drop in the months with unusually high canopy temperature and VPD from August to December 2015. 

LXSMs were significantly negatively (p < 0.05) correlated with VPD, but not with soil water storage. Moreover, the high 

values of predawn leaf water potential from 2015 through 2017 suggested that soil water supply was not limiting during their 

study period. These results indicate that the atmospheric demand could be the main driver for decreasing plants’ LXSMs. We 

examined the anomalies of TWS, LST and VPD over Fontes’ grid cell for the same period (August to December 2015) (Fig. 350 

9). Strong positive anomalies in LST and VPD agree with the field measurements in Fontes et al. (2018). Moreover, TWS 

from August to November 2015 was higher than in the same months of non-drought years, suggesting sufficient soil water 

was available during this period.   

https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0209
https://royalsocietypublishing.org/doi/10.1098/rstb.2018.0209
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Figure 9. Temporal patterns of terrestrial water storage (TWS), land surface temperature (LST) and vapor pressure deficit (VPD) 355 
anomalies during August to December 2015 for the 1° grid cell centered at 2.5°S, 60.5°W. Panel (a) shows TWS for each month from 

August to December 2015 as well as for the non-drought years’ average (± standard deviation). Panels (b) and (c) are the same as (a), but 

for LST and VPD, respectively. 

 

Our ‘exceeding normal ranges’-based method developed herein can help resolve the debate around greenness anomalies in 360 

the dry season (July–September) of the 2005 drought (Saleska et al., 2007; Samanta et al., 2010). When we examined the 

MODIS-observed VI anomalies from May to October over the southern Amazon, both 2005 and 2010 witnessed a two-stage 

process: positive VI anomalies followed by negative VI anomalies (Fig. 10a and d). According to our method, the number of 

grid cells ‘exceeding normal ranges’ was very low in May, June, and July of both years (Fig. 10b and e), which means VI 

anomalies were primarily driven by PAR anomalies (Fig. 10c and f). Therefore, positive VI anomalies were observed during 365 

these months, with the strongest positive VI anomalies found in May 2005. With the progress of droughts, more than 50% of 

southern Amazon was found ‘exceeding normal ranges’ in August, September, and October 2005, while this number was 

greater than 75% in 2010. Therefore, stronger negative VI anomalies were observed in August, September, and October 
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2010, irrespective of radiation anomalies. When calculating the average VI anomalies for the transition months from positive 

to negative VI anomalies (i.e. average over July to September), it is very likely to obtain positive VI anomalies in 2005 but 370 

negative VI anomalies in 2010. Our results suggest that examining the hydrological, thermal and radiation conditions from 

the onset to the termination of droughts will enable us to better understand the responses of the Amazon rainforest. 

 

 

Figure 10. Temporal patterns of (a) standardized anomalies in vegetation indices (VI), (b) percentage of rainforest ‘exceeding normal 375 
ranges’ according to Approach #2c, and (c) standardized anomalies in photosynthetically active radiation (PAR) from May to October in 

2005 over southern Amazon. Panel (d-f) Same as panel (a-c), but for the year 2010. 

 

The spatiotemporal analysis approach developed here shows both similarities and differences with the Maximum 

Climatological Water Deficit (MCWD) approach commonly used to characterize water stress during droughts at large scale 380 

across Amazon rainforest (Aragão et al., 2007; Lewis et al., 2011; Aragão et al., 2018). An important difference is that 

MCWD is calculated using a simple bucket model approach, with a running water balance from monthly precipitation and an 

assumed constant actual evapotranspiration of 100 mm per month (da Rocha et al., 2004; Guan et al., 2015; Maeda et al., 

2017). It makes no assumption of soil water storage in calculating a water ‘deficit’. When monthly precipitation is below 100 

mm, the calculated water deficit of that month is the difference between precipitation and evapotranspiration (negative 385 

value). When monthly precipitation is above 100 mm, water deficit of that month is calculated as the difference between 
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precipitation and evapotranspiration (positive value) plus the water deficit of the previous month; if this sum-up is above 

zero, it is set to zero. Accordingly, calculated in this way without any soil water storage term (Meir et al. 2015), the water 

deficit can become a very strongly negative value when precipitation is below 100 mm for several months in a row. The 

MCWD corresponds to the maximum value of the water deficit reached for a grid cell within the year. The MCWD anomaly, 390 

i.e. the difference in MCWD between drought and non-drought years, is used to characterize the severity of water stress. The 

MCWD approach is therefore a measure of deficit in the water ‘flux’ during the drought year, i.e. how much less water falls 

into the soil consecutively over time, whereas the method we present here focuses on the water storage ‘status’ at monthly to 

seasonal time scales, i.e. when and where the water storage is below the minimum level of non-drought years. These two 

approaches provide complementary information. To illustrate the differences that arise from the two approaches, we 395 

calculated the MCWD anomaly over the Amazon for the 2015/16 drought year following Aragão et al. (2007) (Fig. C1). The 

strongest calculated MCWD anomaly occurred over the north-central Amazon, which agrees with the location of anomalies 

in our observation-based water availability data (TWS < TWSMin) during Stages II and III (Fig. 7). Considering both fully 

independent information sources together provides corroborating evidence and supports a more robust characterization of 

water availability during drought. A further difference is that we also took LST and VPD conditions into account. We 400 

identified regions where high LST and VPD, rather than a water deficit per se, appeared to be the main drivers associated 

with below-average canopy greenness during Stages I and IV (Fig. 7).   

     

Our results demonstrate that comparing values of TWS, LST and VPD to their non-drought years’ ranges can help delineate 

the most likely drought-affected regions and explain spatiotemporal patterns in greenness anomalies. There are several 405 

caveats to the method and data used, and these may be responsible for some of the remaining 30% of unexplained greenness 

anomalies. Firstly, each of the datasets used has its uncertainties. These certainly include uncertainties in vegetation indices 

due to sun-target-sensor geometry and atmospheric effects, but also uncertainties in the other data used. Secondly, we used 

the range of TWS, LST and VPD in non-drought years as an estimate of the tolerance thresholds of the rainforest. This is a 

simplified representation, as a sharp threshold is not to be expected given the ecological and physiographic complexity of the 410 

large areas covered by each grid cell. It is also possible that the observed non-drought years’ ranges of variables were 

exceeded without, in fact, exceeding physiological and ecological tolerance thresholds in the vegetation. In that case, for 

example, higher VPD would act to enhance rather than limit photosynthesis and lead to above- rather than below-average 

greenness. Thirdly, additional local factors controlling greenness may not be captured in the satellite and re-analysis data 

record. Finally, the non-drought years’ range defined here is based on a relatively short record in relation to the effect of the 415 

lifespan of the dominant rainforest vegetation and how natural selection may act to alter the related ecological thresholds, 

and so this ‘normal’ range should be considered a qualitative estimate. With the availability of longer and more reliable 

satellite records, along with increasing ground-based observations, it should become possible to develop a more 

sophisticated approach to quantify, predict, and interpret the response of the Amazon rainforest to combined water, heat, and 

radiation conditions during future droughts. 420 
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6 Conclusions 

We developed a ‘normal’ range-based approach to delineate the regions where the normal hydrological and thermal ranges 

during non-drought years were exceeded during the 2015/16 Amazon drought, focusing on three variables: terrestrial water 

storage, land surface temperature and atmospheric moisture demand records covering 2003–2016. We found a gradual 

southwards shift of these regions: from (1) the north-eastern Amazon during August–October 2015 mainly due to high 425 

temperatures and high atmospheric moisture demand; to (2) the north-central during November 2015–February 2016 where 

soil water deficit, high temperatures and high atmospheric moisture demand co-existed simultaneously; and (3) the southern 

in July 2016 caused by high temperatures and high atmospheric moisture demand again. Within these regions, most grid 

cells were characterized by negative greenness anomalies determined from MODIS vegetation index. Outside of these 

regions, greenness anomalies and radiation anomalies were generally in phase, which is expected to occur under normal 430 

conditions. Combined, drought impact and radiation anomalies can explain more than 70% of the observed fluctuation 

pattern in the regional greenness, i.e., negative greenness anomalies during the onset and end of the drought but positive 

anomalies during the intervening months. These results suggest that our method of combining water storage, temperature and 

atmospheric moisture demand together can reasonably identify the most likely drought-affected regions at monthly to 

seasonal time scales during an event such as the 2015/16 El Niño. Our analysis also highlights the necessity to consider 435 

whether the long-term normal hydrological and thermal ranges were exceeded when interpreting the response of the Amazon 

rainforest to droughts in the future. 

Appendix A Gap-filling of TWS 

We gap-filled the missing values in the original terrestrial water storage (TWS) dataset over the Amazonia individually for 

each 1o spatial resolution grid-cell. A time series of monthly precipitation (P), photosynthetically active radiation (PAR) and 440 

original terrestrial water storage (TWS) from January 2003 through December 2016 for an example grid-cell from southern 

Amazonia is shown in Fig. A1. There are 168 months in total for this 14-year period and TWS values are missing for 21 

months. The gap-filling of missing TWS values is based on the principle that the change in TWS (i.e., time step t minus time 

step t-1) is highly related with P and PAR at the time step t. Here a multiple linear regression equation is used to establish the 

relationship of these variables for each grid-cell.  445 

Change in TWS (t) = TWS(t) – TWS(t-1) = a x P(t) + b x PAR(t) + c     (A1) 
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Figure A1. Example illustrating the monthly time series of (a) precipitation (P), photosynthetically active radiation (PAR) and (b) original 

terrestrial water storage (TWS) from January 2003 through December 2016 for the grid-cell centered at 7.5°S and 55.5°W. Over this 168-

month period, TWS are missing for 21 months (the longest gap is 3 months) while no P or PAR are missing.   450 

There are 131 valid values of “change in TWS” for the example grid-cell (i.e., N=131). By fitting the multiple linear 

equation, the values for parameter a, b and c are 0.47, -0.48 and -41.5, respectively, with the resulting correlation coefficient 

(R) of 0.89 and root mean square error (RMSE) of 34.8 mm (Fig. A2a). After moving the term TWS(t-1) to the right of the 

equation, we can compare the observed TWS (i.e., TWS(t)) with the estimated TWS based on P(t), PAR(t) and TWS(t-1) 

(see Fig. A2b). The R and RMSE values between them are 0.98 and 32.5 mm, respectively. The missing TWS values at time 455 

step t can then be estimated according to the equation 0.47xP(t)-0.48xPAR(t)-41.5+TWS(t-1), and the gap-filled TWS time 

series is shown in Fig. A2c. Our approach is able to estimate and gap-fill the maximum and minimum monthly value of a 

year (e.g., in 2013, 2015 and 2016), which is difficult for linear interpolation approach.    

 

Figure A2. (a) Scatterplot of (y-axis) observed TWS and (x-axis) estimated TWS according to P, PAR and observed TWS from the 460 
previous time step. (b) Time series of gap-filled TWS by combining observed TWS and estimated TWS. 
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When we applied this gap-filling approach to each grid-cell over the Amazon rainforest independently, the estimated TWS 

that we obtained are highly correlated with observed TWS, with R values higher than 0.90 over 90% and higher than 0.8 

over 99% of the Amazon region (Fig. A3a). For the RMSE between observed and estimated TWS, one third of the 

Amazonia has the value below 40 mm, and two thirds are lower than 50 mm (Fig. A3b). Higher RSME values are found 465 

along the major rivers where the dynamic ranges of TWS are also higher (Fig. A3b and c). Overall, the estimated TWS for 

the missing time steps, based on P, PAR and observed TWS from the previous time step, are reasonable.      

 

Figure A3. Spatial distribution of (a) R and (b) RMSE between observed TWS and estimated TWS, as shown in Fig. A2a, and (c) standard 

deviation value of monthly TWS from 2003 to 2016, over 1° grid cells having more than 80% of 0.05° IGBP grid cells classified as 470 
‘evergreen broadleaf forests’. 
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Appendix B TWS anomaly immediately preceding the 2015/16 drought                                                                                                          

 

Figure B1. Spatial distribution of anomaly in precipitation and TWS during (a and b) May–July 2015, (c and d) August 2015, (e and f) 475 
September 2015, and (g and h) October 2015, respectively. It can be seen that although precipitation was below average during August–

October 2015, above-average TWS was still observed over western part of Amazon, due to the carryover effect of above-average TWS 

from May-July 2015. 
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Appendix C MCWD anomaly during August 2015–July 2016 480 

 

Figure C1. The difference between MCWD during August 2015–July 2016 and the mean MCWD of non-drought years (2003–2016, 

excluding 2005, 2010, 2015 and 2016) over the 1° grid cells with more than 80% covered by ‘evergreen broadleaf forests’. MCWD stands 

for maximum climatological water deficit, and its calculation can be found in Aragão et al. (2007). The monthly precipitation data used 

here is derived from TRMM (TRMM 3B43 v7, see Table 1). 485 

Appendix D Anomalies in EVI and NDVI 

 

Figure D1. Standardized anomalies in (a) EVI and (b) NDVI during the 2015/16 Amazon drought over the 1° grid cells with more than 80% 

covered by ‘evergreen broadleaf forests’. EVI and NDVI anomalies show the same anomaly direction over 70% of these grid cells.    

Data availability 490 

All data used in this paper are present in Table 1 with download links provided. Additional information associated with the 

paper is available from the corresponding author upon request. 
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