
Response to RC2 

 

We would like to express our gratitude to the reviewer for constructive and helpful 

comments/feedback. We have carefully addressed each question/comment and made changes 

where we agree that this would improve the manuscript. We have provided an itemized list below 

detailing our responses (in italic font) to the reviewer’s suggestions.  

 

Despite appreciating the author’s efforts in this study, Reviewer has not been convinced by its 

originality. Based on ESM output, numerous existing research works have shown additional data 

sampling (e.g., bgcArgo, SOCCOM, Sailboat,...) critical for error reduction in pCO2 and flux 

estimation over the Southern Ocean and/or the global ocean [Bushinsky et al., 2019, Denvil-

Sommer et al., 2021, Hauck et al., 2023, Landschützer et al., 2023]. One suggestion that would 

add value to the manuscript’s findings is an analysis of spatial and temporal variations of flux 

estimates: to what extent their variability changes subject to the additional data. Some other major 

concerns are listed below.  

 

Our study presents new findings that provide more insight into the number of additional samples 

and spatial pattern, consistent with current technology, that could reduce uncertainty in the ocean 

carbon sink, particularly in the Southern Ocean. There is no other study quantifying the impacts 

of meridional sampling by comparing different USV sampling tracks (also taking winter vs. 

summer sampling into account) in the Southern Ocean by using a Large Ensemble Testbed. 

Bushinsky et al. (2019) base their experiments on real-world SOCCOM float observations and use 

the SOM-FFN product for reconstruction. This is an important contribution. However, float-based 

estimates of pCO2 are not incorporated into the SOCAT database and there are concerns about 

bias. It is therefore important to test the impact of realistic USV sampling, that can take direct 

pCO2 observations with low uncertainties, can cover meridional gradients in the Southern Ocean, 

and are already incorporated into the SOCAT database.  

 

The study by Hauck et al. (2023) uses GOBM output from one single model and reconstructs using 

two reconstruction methods (SOM-FFN and CarboScope), while we use ESM output from 75 

different members and the pCO2-Residual method. We also test a very different sampling pattern 



compared to the “idealized” sampling in Hauck et al. (2023). We do find the study by Hauck et al. 

(2023) interesting, but note that it was not published when we submitted our initial manuscript. In 

the revised version we have added a paragraph discussing this study and comparing their results 

to ours. A key point made is that both Bushinsky et al. (2019) and Hauck et al. (2023) show an 

overestimation of the ocean sink with current sampling, while we show the opposite – an 

underestimation of the ocean sink. This further suggests that our study complements previous 

studies and adds value to this pertinent topic of ocean carbon research. It is important to present 

studies with different types of testbeds and reconstruction methods, so that we can better 

understand the impact of adding autonomous observations.    

 

The study by Denvil-Sommer et al. (2021) is different to ours as it assesses sampling in the Atlantic 

Ocean, whereas our study focuses on sampling in the Southern Ocean and we show global 

reconstructions. Further, their study uses a different reconstruction method and assumes sampling 

from floats, not USVs.  

   

Lines 149-153: "To build reconstruction algorithms through the data-driven training that occurs in 

ML, the statistics in all other algorithms developed to date must identify a function that 

disentangles these competing effects of SST on pCO2. Here, the algorithm is assisted by removing 

this known temperature effect, and it must therefore only learn the pCO2 impacts from 

biogeochemical drivers": there exist many other ML approaches [Friedlingstein et al., 2022] which 

do not separate the SSTeffects from others on pCO2 but succeeds in estimate pCO2. The major 

concerns are how to assess the uncertainty derived from SST effect removal and impacts on the 

experiment outputs.  

 

Our study is not an evaluation of different ML approaches, but rather an assessment of how 

sampling impacts pCO2 reconstructions. An evaluation of the method itself has already been 

performed by Bennington et al. (2022). They demonstrated that the pCO2-Residual method 

performs better compared to other products when evaluating against independent data. They also 

showed improved skill when using pCO2-Residual as the target variable as opposed to pCO2. We 

want to assess how different sampling patterns affect the pCO2 reconstruction. As we use the same 



method for all experiments, we can directly compare them and evaluate how sampling impacts the 

reconstructions. 

 

2. Figure 3: Relatively small bias and RMSE values have shown their imprints on the SOCAT track 

compared to "unseen" model truth. This evidences the problems of model overfitting. The authors 

can double-check whether model overfitting comes from the cross-validation technique or the 

pCO2-Residual method. As the key findings of this manuscript are based on the data reconstruction 

results, Reviewer suggests the authors to carefully verify their methods and solve the problems of 

model overfitting before further consideration for publication. 

 

We would argue that the global mean bias and RMSE for the SOCAT reconstruction is comparable 

to values shown for pCO2 reconstructions using other methods (e.g., Stamell et al., 2020; Gregor 

et al., 2019). For example, as shown in Figure 3, bias generally ranges between -10 to +10 µatm, 

which is comparable to the study by Hauck et al. (2023). However, after carefully evaluating our 

calculations following the reviewer’s feedback, we noticed an error in our code that calculates the 

RMSEs. After fixing this error, the mean RMSE values increased by ~ 3-4 µatm.   

 

Editorial and specific comments:  

 

1. Lines 11-12: "anthropogenic" can be removed. The SO has taken up atmospheric CO2 without 

specifying natural or anthropogenic sources.  

 

The Southern Ocean actively cycles natural and absorbs anthropogenic carbon. Gruber et al. 

(2009) demonstrate that the Southern Ocean is a source for natural carbon. The ocean sink for 

anthropogenic carbon is what we wish to focus on in this discussion.  

 

2. Line 37: "fCO2" is not defined. "uncertainty of < 5 µatm": this holds only for the measurements 

chosen to provide gridded SOCAT datasets.  

 

Noted and revised: “The Surface Ocean CO2 ATlas (SOCAT; Bakker et al., 2016) is the largest 

global database of surface ocean CO2 observations, with data starting in 1957. The main synthesis 



and gridded products contain over 33 million high-quality direct shipboard measurements of fCO2 

(fugacity of CO2) with an uncertainty of < 5 μatm (Bakker et al., 2022)”. 

 

3. Line 42: "Observation-based data products" −→ "Data mapping methods".  

 

We wish to use the term ‘observation-based data products’ consistently following recent literature 

(e.g., Fay et al., 2021; Crisp et al., 2022; Friedlingstein et al., 2023).  

 

4. Line 45: "These data products" −→ "These methods".  

 

See above comment.  

 

5. Lines 46-47: please remove or change ";" in the brackets to facilitate reading. You can use "-" 

instead. Line 47: "xCO2; atmospheric CO2" −→ "atmospheric CO2 - xCO2"  

 

Noted and revised. 

 

6. Line 48: "where these are co-located" −→ "where their available data are colocated".  

 

We chose to keep the original sentence.   

 

7. Lines 50-51: "Since the data products rely on observations to train the algorithms and thus 

produce these relationships": please rephrase this sentence. Data products do not train algorithms 

and produce relationships, but the ML-based methods themselves estimate the function between 

predictors and target data!  

 

Noted and revised: “Since the data products rely on pCO2 observations to estimate functions 

between the target and driver variables, data sparsity remains a fundamental limitation to this 

technique”. 

 



8. Line 57: "indirect pCO2 estimates": can you define this term? Are they computed from float 

measurements of other carbonate variables?  

 

Noted and revised. We added this sentence: “These large uncertainties and biases arise when pCO2 

is not measured directly as in the observations included in SOCAT, but is rather estimated using 

measurements of pH combined with a regression-derived alkalinity estimate (Williams et al., 2017; 

Gray et al., 2018). SOCAT includes only direct pCO2 observations”. 

 

9. Lines 67-68: "Such improvements in sampling are critically important in the undersampled 

Southern Ocean": USVs with low measurement uncertainty would prompt to be employed for 

observing network systems of pCO2 but to draw this statement, it requires to provide the 

availability of USVs to sample pCO2 by showing the sampling frequency and data coverage area 

over the SO?  

 

Additional high-accuracy observations from the sparsely sampled Southern Ocean, such that can 

be obtained by USVs, are key to provide further constraints on the ocean carbon sink and air-sea 

flux. We do not believe it is necessary to go into detail about the data coverage over the Southern 

Ocean, as we reference studies such as Bakker et al. (2016, 2022) describing the SOCAT coverage 

(which includes the Saildrone observations from Sutton et al. (2021) in the latest version). We also 

mention that the SOCAT coverage is shown in supplementary Fig. S3 (Fig. S5 in the revised 

version). 

 

10. Line 86: "actual observations": should be clarified. If you used the SOCAT grided data tracks 

in your LET experiments, please change to "SOCAT observation-based data" or "SOCAT gridded 

data".  

 

We have revised the sentence: “However, instead of using real-world observations, we sample the 

target (i.e., surface ocean pCO2) and driver variables (i.e., SST, SSS, MLD, Chl-a and xCO2) from 

our Large Ensemble Testbed (LET) of Earth System Models (ESMs) (e.g., Stamell et al., 2020; 

Gloege et al., 2021; Bennington et al., 2022a)”. 

 



11. Lines 89-90: "in an ESM, surface ocean pCO2 is known at all times and locations": not precise 

enough. It depends on which approximations and computational resources. So far, the models have 

been derived at 1 ◦ or 0.25◦ and monthly resolutions?  

 

We are just aiming to convey that an ESM will not have huge gaps like in the real ocean. We have 

revised the sentence: “First, in an ESM, the surface ocean pCO2 field is provided precisely at all 

model times and 1°x1° points”. The models used in our study have a 1°x1° resolution, which is 

stated multiple times throughout the manuscript.  

 

12. Lines 161-162: "where pCO2 mean and SST mean is the long-term mean of surface ocean 

pCO2 and temperature, respectively, using all 1°x1° grid cells from the testbed": pCO2 mean is 

different regionally, why you don’t compute a global map of pCO2 mean?  

 

We do compute a mean of pCO2 globally, which is the pCO2mean and this is used to calculate the 

residual.    

 

13. Lines 165-168: Please clarify. The authors have excluded pCO2-Residual which have values 

below −250 µatm or over 250 µatm. They mention that such outliers correspond to model values 

higher than the maximum SOCAT data (816 µatm) and that do not reflect reality. It is not correct. 

First, both negative and positive pCO2- Residual values cannot represent the upper bound of 

SOCAT data. Second, SOCAT only covers a tiny portion of the global ocean at a monthly time 

scale, and there might exist unobserved pCO2 values higher than 816 µatm (e.g., over permanently 

or seasonally strong upwelling regions: Eastern Equatorial Pacific, Western Arabian Sea, 

Benguela, etc).  

 

We are not saying that both negative and positive pCO2-Residual values represent the upper bound 

of SOCAT data. Our statement is “These pCO2-Residual values generally correspond to high 

pCO2, above the maximum value in SOCAT (816 µatm)”. By this we mean that the majority of the 

pCO2-Residual values that have been filtered out represent pCO2 values that are larger than 816 

µatm. However, since this seemed to be unclear, we have re-phrased this sentence: “Prior to 

algorithm processing, pCO2-Residual values > 250 μatm and < -250 μatm from the testbed were 



filtered out targeting values that are not representative of the real ocean. The majority of the pCO2-

Residual values that were filtered out correspond to high pCO2, above the maximum value in 

SOCAT (816 μatm; Stamell et al., 2020)”. 

 

14. Lines 310-311: "Our presentation of global maps is limited to runs ‘x5_5Y_W’ (5022 

observations) and 311 ‘Z_x4_10Y_YR’ (7600 observations)". The information of gridded data 

used in the experiments should be declared in addition to the number of observations by USVs.  

 

We revised the sentence: “Our presentation of global maps is limited to runs ‘x5_5Y_W’ (5,022 

monthly 1°x1° observations) and ‘Z_x4_10Y_YR’ (7,600 monthly 1°x1° observations)”.  

 

15. Lines 319-321: How did the authors compute Bias (and RMSE) over the global ocean? In order 

to fairly compare the results of two or more runs (e.g., zigzag vs one-latitude, SOCAT vs 

SOCAT+USV), error statistics are computed on modelbased data excluding all used in ML 

training. Specifically, the evaluation should not consider ‘zigzag+one-latitude’ (‘SOCAT+USV’) 

pCO2 data.  

 

The reviewer is correct - the training data should ideally be removed before computing error 

statistics. When using actual observations, one would evaluate the reconstruction based on the test 

set alone. However, since we are using a model testbed, we have the opportunity to evaluate against 

pCO2 values from “unseen” grid cells as well. In our study, we compute error statistics based on 

the full reconstruction, however this should have been communicated more clearly. The training 

data represents only about 1% of the full reconstruction. Below, we show the 75-member testbed 

spread in bias and RMSE calculated based on the full reconstruction (what we present in our 

study) vs. ‘unseen’ grid cells for the ‘SOCAT-baseline’. The difference in mean bias and RMSE 

between the full and ‘unseen’ reconstruction is only 0.01 μatm and 0.08 μatm, respectively. The 

results from the different runs can therefore be compared even though the full reconstruction is 

taken into account. We agree however with the reviewer that the training data should have been 

removed. Considering that we would have to re-run all experiments, and it would not change the 

error statistics significantly or change our conclusions, we chose not to move forward with this for 



this study. However, for future studies using the testbed, the training set will be removed before 

calculating statistical metrics.  

 

We now add mention of this: “Here, we calculate error statistics based on the full reconstruction 

(pCO2 from all 1°x1° grid cells of the testbed, except for those masked or filtered out). In the full 

reconstruction, ~ 99 % of the data do not correspond to SOCAT or Saildrone USV observations 

used to train the algorithm (Fig. S1). Training data would ideally be removed before performance 

evaluation, but since the training data represent only ~ 1 %, the impact of not removing them is 

negligible (Fig. S2)”. (Figs. S1 and S2 are shown below). 

 



  
Figure S1: Maps of the full pCO2-Residual reconstruction (all 1°x1° grid cells of the testbed, 
except for those masked or filtered out; see Section 2.1 and 2.2), ‘unseen’ reconstruction (all 1°x1° 
grid cells that do not correspond to SOCAT observations), and training data from the testbed. The 
maps show data from CESM member 001 for the month of March 2016 for the ‘SOCAT-baseline’. 
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175,606



Numbers on panels represent the total monthly 1°x1° grid cells for the entire testbed period (1982-
2016) for each group of data.  
 

     
Figure S2: Spread of bias (a) and RMSE (b) for the 75 members of the Large Ensemble Testbed 
for the ‘unseen’ and full reconstruction for the ‘SOCAT-baseline’. The ‘unseen’ reconstruction 
represents independent data, i.e., all 1°x1° grid cells that do not correspond to SOCAT or Saildrone 
USV observations, and is not part of the training set.   
 

 

16. Figures S4 and S5 show cyclic marks (it would be exposed clearly if the authors use a discrete 

colormap with a low number of colors). Would they be imprints of a driver variable?  

 

These “cyclic marks” are likely imprints of the three-component n-vector that replaces the 

longitude and latitude coordinates to continuous values between 0 and 1 (i.e., to avoid the 

algorithm interpreting 0 and 360 degrees to be far apart; see figure below). 

A

B



  
 

Bennington et al. (2022) present global maps (their Fig. 4) of the feature importance of various 

driver variables used in the surface ocean pCO2 reconstruction (MLD, SST, Chl-a, location and 

day of year). Such “cyclic marks” are apparent for “geographic location” and “day of year”, but 

none of the other drivers. We did two test runs (using only one member from the testbed), removing 

day of year (DOY) and geographic location (n-vector; A, B and C) as inputs for the reconstruction. 

As shown by the figure below, the “cyclic” marks disappear when the n-vector is removed. When 

removing the n-vector transformation, however, the reconstruction shows significantly higher bias 

in the Southern Ocean, so we chose to keep these driver variables.    

 

 
  

 

17. Figures 5 and 8: The author should report the number of data gridded from USV observations 

used in ML training. And the error statistics must be computed on the evaluation data (i.e., model-

truth-based data excluding all the training data). Figure 8’s caption: The mean of RMSEs here is 

computed with respect to space or time? Instead, the author should compute the mean of squared 

errors over the global ocean and the periods of interest and then report its square root.  



 

The number of monthly 1°x1° observations for each experiment is described in Table 1 as well as 

shown on the x-axis of Figure 5 and 8. This was specified in the Table 1 caption, but we now 

specify this in the figure captions as well: “‘# additional observations’ = number of monthly 1°x1° 

USV observations in addition to SOCAT”. We state in the manuscript that: “The test and validation 

set each account for 20 % of the data, leaving 60 % for training”. For both Fig. 5 and 8, the mean 

is computed with respect to both space (top figure shows global and bottom figure shows Southern 

Ocean, which in our study is defined as south of 35° S) and time, which is 2006-2016 (for the 10-

year sampling) and 2012-2016 (for the five-year sampling). This is stated in the figure headlines.   

 

Regarding comment about error statistics, please see answer #15.  

 

18. Line 386: ‘’Z_x10_5Y_YR  

 

Noted and revised.  

 

19. Lines 497-499: "Although run ‘x13_10Y_W’ demonstrates the highest reduction in bias out of 

all runs, the ‘zigzag’ runs still reduce bias in the Southern Ocean by 44-65 % (vs. 77 % for run 

‘x13_10Y_W’)". The evaluation should not put high confidence on the bias reduction since this 

statistic is computed as the mean of negative and positive differences between pCO2 estimates and 

model truth. Reviewer agrees that the bias can be used to assess model over- or underestimation 

but RMSD is a better metric for an overall evaluation. 

 

We agree with the reviewer, and that is why we report both bias and RMSE. Our conclusions do 

not fully rely on bias alone, as is shown throughout the paper. For example, we conclude that the 

zigzag-runs perform best overall, even though run ‘x13_10Y_W’ demonstrates a higher reduction 

with respect to mean bias.  

 

20. Lines 536-541: "To better understand this discrepancy, we performed an additional experiment 

based on run 538 ‘Z_x10_5Y_YR’, but assumed sampling every year for the entire testbed period 

(i.e., 1982-2016). The results from this experiment show a significant eduction in the temporal 



variability of reconstruction bias; with the additional USV sampling, the reconstructed Southern 

Ocean air-sea CO2 flux closely matches the ‘model truth’ for the entire testbed duration (Fig. 

S14).". Here biases increases in the last two decades that do not reflect the increase in the number 

of SOCAT (SOCAT+USV) data as shown in the previous results.  

 

As shown by the figure below, run ‘Z_x10_5Y_YR’ (shown in Fig. 6 in main text) and 

‘Z_x10_35Y_YR’ (shown in Fig. S14 in supplement; in the revised version, this is now Fig. S20) 

show similar variability the last five years when the sampling is identical. For run Z_x10_5Y_YR’, 

USV observations have been added only for the last five years of the testbed, while for run 

‘Z_x10_35Y_YR’, USV observations have been added for the whole testbed period (35 years). The 

bias decreases more significantly in the earlier decades for run ‘Z_x10_5Y_YR’ because there are 

no additional USV observations at this time, and there are significantly less SOCAT observations 

in this period compared from 1990 and onwards (see Fig. S3c; in the revised version, this is now 

Fig. S5c).  

 

 
 

21. Lines 552-554: "Further, we find that this modest amount of additional Saildrone USV 

sampling increases the global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, 25% 

of the uncertainty in the ocean carbon sink ". The increase in global ocean CO2 sink estimated by 

the LET testbed can not be compared with the uncertainty derived from the GCB’s quantification 

[Friedlingstein et al., 2022]. First, they are two different statistics. Second, the GCB’s uncertainty 

is computed based on the ensemble of different data mapping and modeling methods, and thus the 

value might be significantly larger than the one estimated by each method itself. 



 

These values can be compared as they are in the same units. We wish to demonstrate that 0.1 Pg 

C/yr is a significant reduction. Following the reviewer’s comment, we revised the sentence: 

“Further, we find that this modest amount of additional Saildrone USV sampling increases the 

global and Southern Ocean air-sea CO2 flux by up to 0.1 Pg C yr-1, a quantity equivalent to 25 % 

of the uncertainty in the ocean carbon sink”.   
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